
A non-technical user-oriented display
notation for XACML conditions

Bernard Stepien, Amy Felty, Stan Matwin
University of Ottawa – S.I.T.E., (bernard | afelty | stan)@site.uottawa.ca

Abstract. Access control rules are currently administered by highly qualified
personnel. Thus, the technical barrier that specialized access control languages
represent naturally prevents the prime decision maker to effectively control
such access. The usability is even worse in the case of access control
applications targeting an average consumer, where customers who are casual
users are expected to administer their own rules, e.g. in case of financial
services. XACML is one of the most powerful access control languages because
it allows the definition of complex conditions. In order to make XACML usable
in such applications, there is a need for fully non-technical rule editors. We
propose a notation for XACML rules containing conditions that is a
combination of the usual tree properties of logical expressions but with an
accessible natural language like format. Our early experience indicates that such
rules can be grasped by non-technical users wishing to develop and control
rules for accessing their own resources.

Keywords: access control, notation, XACML

1. Motivation

The XACML (eXtensible Access Control Markup Language) [1] access control

language (ACL) is naturally precise since it is based on an XML schema that
represents the grammar of a given application. But this very property puts it out of
reach of non-technical, and especially casual users that in some cases could even be
computer illiterate. The main obstacles for a casual user in using XACML are:

• Long XML tags
• Long and complex domain references
• Prefix notation for operations
• List oriented notation for conjunction and disjunction operators

While it is practically impossible for a casual user to start coding his rules with a

text editor—this would require full knowledge of XML and XACML grammars—a
first step toward solving

this problem could be to use an XML editor that frees the user from this
knowledge up to a certain point, as the supplied XML Schema enables the selection of
appropriate tags in a context-oriented way.

A number of such tools exist in different syntaxes and formats, each trying to

address a specific technical problem. They can be classified into two broad categories:
• Generic XML editors.
• Specialized application oriented XML editors—where XACML belongs.

While all of these editors claim to be targeting non-technical users, their

documentation indicates that they require at least a basic knowledge of XML. In fact,
one of the main problems with the XACML notation is that it requires some
programming skill regardless of the tools used.

Currently, there is a very limited set of XACML tools. The UMU editor [2] was

the first attempt to have a general XACML editor. Others have further refined the
specialization. This is the case of the visual Language hierarchy solution [4] that
exclusively targets RBAC [5] applications. .

Our new approach has been guided mostly by the study of existing editors. There

are a number of open source and commercial XML and XACML editors available
that follow a number of basic principles.

 2. Current principles in XML editors

XML editors are most often based on a tree display principle of an XML

document. The tree display is most natural, mostly because an XML document is
hierarchical by definition.

XAMLPad [3] is the most commonly used open source editor. It offers three

different views of an XML document: the XML plain text, the grid and the table view.
In addition to these views, a document outline represented as a tree is also available.

Let us imagine that we need to create a rule that authorizes a purchase action if a

specific condition holds. Let us use a simple condition that says that a purchase is
permitted if the day is Sunday and the merchandise purchased is food. This condition
would have a document outline as shown in fig 1. Such an outline mainly shows the
name of the node and the value.

Fig. 1. Document outline of a simple condition

 The corresponding XML source view is shown in fig 2. It can be interactively

edited by positioning the cursor in a region, which triggers the appearance of a choice
of actions. Examples of actions include entering the value of a new attribute if it is
not already present, or appending a new tag. The editor will automatically insert the
attribute or tag selected from a drop down menu. Thus here, the interesting principle
is that although the user sees only plain text, the editor provides features that waive
the need for in-depth knowledge of the data model (DTD or Schema) and thus reduce
the risk of errors such as spelling mistakes of attribute names or forgetting an attribute
altogether. The source view however allows the direct typing of tags and attributes
and a parser is triggered at every save attempt and highlights errors.

Fig. 2. XML source of the condition shown in Fig. 1

The corresponding Grid view is shown in fig 3. It corresponds to a horizontal tree

where each node indicates the tag names and their corresponding attributes and also
the related DTD for the current element. Again, features similar to those available in
the source view are also available. Here however, the presentation of the data model
could actually assist the user in planning his next move.

Fig. 3. Grid view of the condition whose XML is in Fig. 2

The table view shown in fig. 4 is just another way to represent the tree of the grid

view, attempting to further reduce the programming skills required of the user. Note
also the attempt to reduce the amount of information in the tree by factoring out the
name of the tag when there are multiple occurrences of a tag, as in this example for
the arguments of an operation.

Fig. 4. Table view of the tree shown in grid view in Fig. 3

 3. Current principles in XACML editors

In order to understand the implications of writing an XACML specification of the

previous simple example, we need to examine the representation of the condition of
this example in XACML.

<Condition FunctionId="urn:oasis:names:tc:xacml:1. 0:function:and">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0: function:string-

equal">
 <Apply

FunctionId="urn:oasis:names:tc:xacml:1.0:function:s tring-one-and-only">

 <SubjectAttributeDesignator AttributeId="M erchandise"
DataType="http://www.w3.org/2001/XMLSchema#string" />

 </Apply>
 <AttributeValue

DataType=” http://www.w3.org/2001/XMLSchema#string ”
 >food</AttributeV alue>
 </Apply>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0: function:string-

equal">
 <Apply

FunctionId="urn:oasis:names:tc:xacml:1.0:function:s tring-one-and-only">
 <SubjectAttributeDesignator AttributeId=" DayOfTheWeek"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 </Apply>
 <AttributeValue

DataType=” http://www.w3.org/2001/XMLSchema#string ”
 >Monday</Attribu teValue>
 </Apply>
</Condition>

The first XACML editor, developed by University of Murcia [2] is shown in fig 5.

It is based on two complementary views, one for the document outline and one for the
attribute values and some local overviews.

The first problem this editor has addressed is omitting the need to type the domain

names. Functions are merely selected from lists along with their domains.

Conditions are constructed by clicking on a node of the tree and selecting an

operator from a list. Again, while this editor reduces XACML coding effort
considerably, it requires a strong expertise both in XML and XACML.

Fig. 5. UMU editor representation of the condition

This editor is not easily usable by a non-technical user, mostly because this kind of

user will not know the XACML condition grammar. Also the resulting tree is again
reorganizing the terms of a condition in a way that is not mapped directly on to the
corresponding natural language statement of the condition. For example the and
operator is located at the top of the tree hierarchy instead of being in the middle.

More recently the XACML Studio editor tried to alleviate some of the difficulties
of use mentioned about the UMU editor [7] but with most of the same functionalities.

One principle is important in both general purpose and specialized editors

presented so far. All editors provide the capability to hide or expand portions of the
tree in their various views except the source view. This feature allows the user to
focus on a portion of the tree and thus avoids the cluttering that naturally results from
the presentation of large amounts of information. This feature has, however, an
important side effect. It prevents the user from having an overview of the entire
condition he is trying to assemble. This makes the reasoning about the logic of the
expression being built very difficult and could lead to errors.

4. Our proposed notation

Our proposed notation is only a display notation. It is neither a new language nor a

replacement for XACML. However, it bears some formal qualities that we have
chosen mostly to facilitate its use in interactive editors that allow a non-technical user
either to create a new policy or to modify an existing one. Effectively, if we had
followed only the consideration to make the policies and rules understandable by a
non-technical user we could have merely translated them into plain English but we
quickly realized that plain English would have been a challenge to manipulate in an
editor. Thus, we came up with the idea to use trees to represent logical expressions
but again after realizing that a casual user may not grasp abstract mathematical
concepts we decided to create a hybrid between formalism and plain English. This
concept has already been mentioned as a goal for the XACML community by
Vullings [8] but no formal paper seems to have been published yet showing evidence
of results in that research area..

Furthermore, we came to the conclusion that a full non-technical representation of

XACML is not really possible, mostly because XACML is a strongly typed language.
Typing is not a concept that the casual user can grasp beyond the basic types, like
numeric or alpha-numeric. Effectively, the nuances of data storage considerations that
further divide numeric types into various levels of precision such as integer, float,
double, etc. can only be knowingly manipulated by technical users. However, the
actual display of a XACML condition has no real barrier of this kind, and can be
considered user-friendly.

Consequently, we propose a separation of concerns between the data typing

definitions that should remain in the hands of knowledgeable IT technicians, and the
policy editing including its logical expression construction that can be delegated to
the non-technical user.

This approach is appropriate mostly because an access control application is

available within a context where there is an infrastructure organized by the provider
of the service. This infrastructure naturally includes the definition of variables along
with their types and potential allowed values. For example, an eStore will define what

products it will sell along with the necessary parameters such as product identifiers or
codes, units types to express their quantities ordered, etc.

Data typing is thus relegated to another document that we also decided to structure

using XML, where variables used in a given application are defined along with their
data types and potential lists of allowed values.

Our notation is based on the following basic principles:

• Stay as close as possible to the user’s natural language by avoiding any
technical terminology for operators and maintaining the overall structure of a
natural language.

• Offer an implicit structuring by organizing the natural language into a tree.
• Organize the tree so as to make it consistent with the natural language

statement of the condition by using an infix representation for conjunction
and disjunction operators.

• Maintain XACML’s natural non-binary nature of conjunction and
disjunction operators but eliminate its original list representation.

• Use a different, yet still casual terminology for conjunction and disjunction
operators depending on their position in the tree hierarchy.

• Ensure a full graphical overview of the expression being built at all times
regardless of its complexity. This implies no capability to collapse portions
of the tree.

Thus, our notation is very close to a natural language statement of the condition. It

is actually an improvement over it, as it shows the logical structure of the condition.
This will prove very important when building complex expressions requiring the
concept of operator precedence. A casual user should not have to be concerned with
representing operator precedence.

Our previous example augmented with an additional conjunction would be

represented in our notation as follows:

 DayOfTheWeek is Monday
and
 Merchandise is Food
and
 BalanceOfAccount over 500

The simple example above has a very shallow depth. Two additional techniques

can be used to express more complex conditions:
• Allowing multiple values for a given variable.
• Allowing sub-constraints on a value for a variable

The first principle is illustrated in the next example where the condition is

extended to two different days of the week and to two different kinds of
merchandises:

 DayOfTheWeek is one of Monday, Friday

and
 Merchandise is one of Food, Travel
and
 BalanceOfAccount over 500

The above example also illustrates that our notation is not relying on a one-to-one

mapping to XACML. For example, in our notation we show only one occurance of
the variable name DayOfTheWeek. In XACML this would be represented instead by
a disjunction operation on two sub-expressions of the kind – DayOftheWeek is
Monday or DayOftheWeek is Tuesday, both using the XACML string_equal operator.
However, when the user saves this expression, it is fully translated in a XACML
syntax and grammar oriented style where the variable is repeated for each sub-
expression.

The second principle is illustrated by introducing sub-constraints on values by

saying that travel is allowed only on Friday and food purchases only on Monday or
Tuesday. Here, the conjunction operator and has been represented by the provided
that terminology that is more natural since it is in the context of a disjunction.

Merchandise is one of
 Food
 Provided that DayOfTheWeek is one of Monday, Tu esday
 Travel
 provided that DayOfTheWeek is Friday
and
 BalanceOfAccount over 500

The above expression corresponds to the following plain natural language

representation:

“It is permitted to purchase food on a Monday or a Tuesday or travel on a Friday

provided that the balance of the account is over 500”.

As we can see from this example, the order of the sub-constraint in the pure natural

language version is strictly the same as in our notation. The only difference is the
graphical structuring of the tree appearance. It helps clarify the rule in its natural
language form, where putting various sub-constraints in their appropriate context

requires mental effort from the user.

Another advantage of the tree notation we are proposing is that it avoids the

ambiguity of the scope of the disjunction operators. In the natural language
representation above it is hard to understand the exact scope of the or operator that
applies to food or travel because of the presence of the other disjunction about
Monday or Tuesday. In our tree like notation this ambiguity disappears entirely. It is a
well known fact that this kind of scoping problem is the prime source of ambiguities
in interpreting statements in natural language. In fact, with traditional non XACML
notation for logical expression, the only way to resolve these ambiguities would be to
use parentheses as follows:

((Merchandise == Food) and ((DayOfTheWeek == Monday) or (DayOfTheWeek
== Tuesday))) or ((Merchandise == Travel) and (DayO fTheWeek == Friday))

and (BalanceOfAccount > 500)

As already mentioned, our notation is not intended to be formal even if it looks

formal. One of the main features of this notation is that we do not represent
conjunction and disjunction operators with a single equivalent. This is to follow the
principles where for example a conjunction is represented either with the word and or
a paraphrase such as “provided that” that implies the conjunction but is more
conceptually precise in the context of a disjunction, thus in a way naturally resolving
the ambiguities that a mix of conjunction and disjunction operators would
unavoidably yield. We further resolve the ambiguities using indentation.

Another consideration is that we do not intend to cover the entire capabilities

provided by the XACML grammar. This is mostly due to the fact that as pointed out
already in the XACML standard, logical expressions should remain simple. to be
understandable not to mention the fact that complex expressions in XACML are
extremely hard to read in the first place. The only problem is that our notation allows
to compose complex logical expressions without getting lost and thus may call for a
full support of the XACML grammar.

We also support the XACML negation operator not by merely integrating it in the

natural language representation as follows:

Merchandise is not Food

We also support the concept of XACML variables that consist in factoring out a

portion of logical expression such for example as creating a variable for week days
which would be either a disjunction between equalities for each day or a member of
construct also provided by XACML.

5. Our notation in the context of an editor

We have developed a XACML editor as a series of interfaces in which our notation

is used in all cases where an expression is required such as in target subjects,
resources and action specifications, and in the conditions of rules.

Our XACML editor reads a configuration file which specifies the names, data type

and potentially allowed values from an XML file as in the following example:

<Variable name="DayOfTheWeek" type="String">
 <Values>
 <Value name="Monday"/>
 <Value name="Tuesday"/>
 <Value name="Wednesday"/>
 <Value name="Thursday"/>
 <Value name="Friday"/>

 <Value name="Saturday"/>
 <Value name="Sunday"/>
 </Values>
</Variable>

The XACML policy interface allows the user to create or modify a policy. The

rule interface allows creating or modifying a rule and especially its condition as
shown on fig 6.

Fig. 6. Our XACML policy interface

A modification is achieved by first double clicking a word in a condition and then

invoking the requested modification by clicking one of the tool bar buttons, which
allow operations such as modifying a value, adding, modifying or deleting a
constraint or inserting an additional value. The insertion or modification of a value is
achieved via a value selection interface show in figure 7. In fig. 6, clicking the value
food is sufficient to obtain all the possible values of the Merchandise variable. The
internal representation, which is a tree that is mapped exactly onto the XACML
structure, enables the editor to determine which variable a clicked value corresponds
to, and thus provide the appropriate value selection interface. A value node is a leaf of
an operation node such as string_equal. Walking the tree to the parent of the value
and then descending from the parent to the leaf that contains the variable makes this
process possible. Once the appropriate selection is done in the value selection
interface of fig 7, the resulting tree is redrawn along with all the internal references to
type definitions.

Fig. 7. Policy value modification using our editor

6. Our notation beyond XACML

While our efforts have concentrated on XACML, we have applied the same

principles to other access control languages such as Cisco IOS [6]. This has been
made particularly easy by the architecture of our editor, where the internal
representation of a policy is independent of the XACML language itself. Our internal
representation, however, provides the structure of XACML, but without reference to
its tag names or types. Thus the XACML language structure is used as a common
denominator for handling all other Access Control languages. Our editor has a policy
connector component that can handle an unlimited number of languages provided that
parsers for these languages are built. Another benefit of this language independent
internal representation is that the editor can be used to translate one language into
another language. This requires adding the appropriate code generators that all
operate on the language agnostic internal representation.

The following example shows a Cisco IOS rule and its corresponding
representation in our notation. The variable names are defined by the translator as
they are not part of the original syntax of Cisco IOS.

access-list 101 deny tcp host 148.22.33.44 host 192 .168.0.0 eq 3500

is displayed in our notation as follows:

 protocol is tcp
and
 srcIP is 148.22.33.44
and
 dstIP is 192.168.0.0
and
 dstPort is 3500

7. Conclusion

 XACML editors can be an effective and highly desirable tool, assisting non-
technical users in specifying complex XACML rules, e.g. for access and resource
control. We have proposed here a simple yet powerful, implemented notation that
allows users to perform this task by providing him a representation that is very close
to natural language. Also, due to its high compactness, it provides a rare overview
quality that is an important factor in reducing errors, thus helping to ensure the
commercial success of the application.

 Our early experience with several non-technical users confirms that our goal of

empowering non-technical users with a tool giving them control of their resources can
be met with the proposed notation. We need to perform a more thorough evaluation of
how well this goal is realized, and collect more experience in representing a variety of
resource access specifications using the approach and the editor described in this
paper.

Our editor based on our notation is not intended to be a replacement for any
XACML editor when the user is fully technically qualified. However, while our initial
goal was to address the needs of casual, non-technical users, an additional benefit of
this approach is that even technical users can easily specify very complex conditions,
something that was stated as important to avoid in the past in the XACML user
community. This has an important consequence of avoiding the splitting of complex
rules into numerous rules with narrower targets, which produces large rule bases that
become rapidly unmanageable.

References

[1] XACML, OASIS standard,
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
[2] University of Murcia XACML Policy Editor, http://xacml.dif.um.es/
[3] XMLPad, open source,
http://www.wmhelp.com/xmlpad3.htm
[4] M. Giordano, G. Polese, G. Scanniello, and G. Tortora, Visual Modelling of Role-Based

Security Policies in Distributed Multimedia Applications, Proceedings of the IEEE Sixth
International Symposium on Multimedia Software Engineering, IEEE Press, 2004.

[5] XACML Profile for Role Based Access Control (RBAC), 2004, http://docs.oasis-
open.org/xacml/cd-xacml-rbac-profile-01.pdf

[6] J. Boney, Cisco IOS in a nutshell, O’Reilly, 1st edition, 2001.
[7] XACML studio, http://xacml-studio.sourceforge.net/
[8] E. Vullings, Implementing Authorized Access,
http://www.apsr.edu.au/Open_Repositories_2006/erik_vullings.ppt#256,1,Implementing

Authorised Access.

