A non-technical user-oriented display

notation for XACML conditions

Bernard Stepien, Amy Felty, Stan Matwin
University of Ottawa — S.I.T.E., (bernard | afdlstan) @site.uottawa.ca

Abstract. Access control rules are currently administerechighly qualified
personnel. Thus, the technical barrier that speeidlaccess control languages
represent naturally prevents the prime decision and& effectively control
such access. The usability is even worse in thes aafs access control
applications targeting an average consumer, wheseomers who are casual
users are expected to administer their own ruleg, i@ case of financial
services. XACML is one of the most powerful acoesstrol languages because
it allows the definition of complex conditions. dmnder to make XACML usable
in such applications, there is a need for fully #dechnical rule editors. We
propose a notation for XACML rules containing cdiadis that is a
combination of the usual tree properties of logieapressions but with an
accessible natural language like format. Our eaxperience indicates that such
rules can be grasped by non-technical users wistindevelop and control
rules for accessing their own resources.

Keywords. access control, notation, XACML

1. Motivation

The XACML (eXtensible Access Control Markup Langeadl] access control
language (ACL) is naturally precise since it is dthoon an XML schema that
represents the grammar of a given application. tBistvery property puts it out of
reach of non-technical, and especially casual ubetsin some cases could even be
computer illiterate. The main obstacles for a chssar in using XACML are:

e Long XML tags

¢ Long and complex domain references

e Prefix notation for operations

e List oriented notation for conjunction and disjuontoperators

While it is practically impossible for a casual use start coding his rules with a
text editor—this would require full knowledge of Xvand XACML grammars—a
first step toward solving

this problem could be to use an XML editor thatefre the user from this
knowledge up to a certain point, as the supplied>®¢hema enables the selection of
appropriate tags in a context-oriented way.

A number of such tools exist in different syntaesd formats, each trying to
address a specific technical problem. They cardssified into two broad categories:
e Generic XML editors.
e Specialized application oriented XML editors—wh&®CML belongs.

While all of these editors claim to be targetingns#iechnical users, their
documentation indicates that they require at ladsasic knowledge of XML. In fact,
one of the main problems with the XACML notation tisat it requires some
programming skill regardless of the tools used.

Currently, there is a very limited set of XACML teo The UMU editor [2] was
the first attempt to have a general XACML editoth€s have further refined the
specialization. This is the case of the visual Lege hierarchy solution [4] that
exclusively targets RBAC [5] applications. .

Our new approach has been guided mostly by they sifiéxisting editors. There
are a number of open source and commercial XML XAECML editors available
that follow a number of basic principles.

2. Current principlesin XML editors

XML editors are most often based on a tree disgbayciple of an XML
document. The tree display is most natural, mosdgause an XML document is
hierarchical by definition.

XAMLPad [3] is the most commonly used open sourdéoe It offers three
different views of an XML document: the XML plaiext, the grid and the table view.
In addition to these views, a document outline@spnted as a tree is also available.

Let us imagine that we need to create a rule thdtosizes a purchase action if a
specific condition holds. Let us use a simple ctodithat says that a purchase is
permitted if the day is Sunday and the mercharulisehased is food. This condition
would have a document outline as shown in fig kchSan outline mainly shows the
name of the node and the value.

E’ operation (string_equal)
§ % operation (DayOFTheWesk)
: L4 % operation (Manday)
=5 E’ operation {string_equal)
£ operation (Merchandise)
g operation (Food)

Fig. 1. Document outline of a simple condition

The corresponding XML source view is shown in #iglt can be interactively
edited by positioning the cursor in a region, whigggers the appearance of a choice
of actions. Examples of actions include enterimg value of a new attribute if it is
not already present, or appending a new tag. Therealill automatically insert the
attribute or tag selected from a drop down menuwsTiiere, the interesting principle
is that although the user sees only plain text,ettli¢or provides features that waive
the need for in-depth knowledge of the data mod@} or Schema) and thus reduce
the risk of errors such as spelling mistakes oftatte names or forgetting an attribute
altogether. The source view however allows theatlitgping of tags and attributes
and a parser is triggered at every save attemphightights errors.

=] condition.xml | x
<condition> I
<operation name="and":»

“operation name="string egual':
<operation name="DayOfTheleek"/>
<operation name="Monday"/>

</operation>

<gperation nawe="string equal’s
<operation name="Merchandise"/>

[= dhneravion neme="Food"/ >
</operations>
<foperation:
</conditions

]
|2 source || B sridiow | O Tableiew | B Freview

Fig. 2. XML source of the condition shown in Fig. 1

The corresponding Grid view is shown in fig 3. dresponds to a horizontal tree
where each node indicates the tag hames and theé@sponding attributes and also
the related DTD for the current element. Againtdeas similar to those available in
the source view are also available. Here howebher ptesentation of the data model
could actually assist the user in planning his meate.

= condition.xml | =
Hode [¥alue |
o Tl version="1,0" encoding="utf-&"
i By DOCTYPE
1 &3 condition

E!- @& opetation

- BB @namne and
E @a operation {operation)
@name string_equal

@a operation : oy
L. BB @name DavOf Thetweek
@E operation {operation)®

= @name Manday

@a operation {oper ation®

L BB @name string_equal
E}@a operation
B @name Merchandise
E)@a operation (operation)®
b @name - Food

Source HI:I Grid Yiew | O Table Yiew | [Preview

Fig. 3. Grid view of the condition whose XML is ffig. 2

The table view shown in fig. 4 is just another wayepresent the tree of the grid
view, attempting to further reduce the programnskils required of the user. Note
also the attempt to reduce the amount of informmatiothe tree by factoring out the
name of the tag when there are multiple occurren€estag, as in this example for
the arguments of an operation.

=] conditon x|

st version="1 0" encoding="ui1-8"
(=} condition
loperation
= name and
loperation (2)
= name {3 operation
1. string_eouel) operation ()
= name
1 DayOiTheheek
2 Mondey
2 string_eouel) operation (2]
= name
1 Merchandiss
2 Food

@ Source | O diidview |0 Tableview | @ Freview

Fig. 4. Table view of the tree shown in grid viewHig. 3

3. Current principlesin XACML editors

In order to understand the implications of writiaig XACML specification of the
previous simple example, we need to examine theeseptation of the condition of
this example in XACML.

<Condition Functionld="urn:oasis:names:tc:xacml:1. 0:function:and">
<Apply Functionld="urn:oasis:names:tc:xacml:1.0: function:string-
equal">
<Apply

Functionld="urn:oasis:names:tc:xacml:1.0:function:s tring-one-and-only">

<SubjectAttributeDesignator Attributeld="M erchandise”
DataType="http://www.w3.0rg/2001/XMLSchema#string" />
</Apply>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string "
>food</AttributeV alue>

</Apply>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0: function:string-
equal">
<Apply
Functionld="urn:oasis:names:tc:xacml:1.0:function:s tring-one-and-only">
<SubjectAttributeDesignator Attributeld=" DayOfTheWeek"
DataType="http://www.w3.0rg/2001/XMLSchema#string" />
</Apply>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string "
>Monday</Attribu teValue>

</Apply>
</Condition>

The first XACML editor, developed by University dfurcia [2] is shown in fig 5.
It is based on two complementary views, one fordbeument outline and one for the
attribute values and some local overviews.

The first problem this editor has addressed is tomgithe need to type the domain
names. Functions are merely selected from listsgadath their domains.

Conditions are constructed by clicking on a nodethaf tree and selecting an
operator from a list. Again, while this editor regs XACML coding effort
considerably, it requires a strong expertise botKML and XACML.

= UMUXACMI-Editor - policy _examplesm
File Sthema Validator Aot

7 Policy Document il
93 <Policy : SamplePolicy»
« T <Target-
9 £ =Rule LoginRule=
7 <Target
<Condition> H
s ?lj T T List of Applies
[} <Apply - urmos
[=atrinutevalul
o [<Apply : urnioasis
[<Rule FinalRulei=

* Functionid sdexacml 1 -greater-thar

*Required

C —— [[4 i Dl
inalizando fichero:CABSI_ProjectstAC CEPTWACMLUpolicy_example.xm|

<AnySubject- Label nonrecognized
<anyaction= Label nonrecognized
<AnySubject- Label nonrecognized
<AnyResource= Label nanrecognized
Label
Label

Fig. 5. UMU editor representation of the condition

This editor is not easily usable by a non-technitsar, mostly because this kind of
user will not know the XACML condition grammar. Alghe resulting tree is again
reorganizing the terms of a condition in a way tisahot mapped directly on to the
corresponding natural language statement of theliton. For example thend
operator is located at the top of the tree hienaoktead of being in the middle.

More recently the XACML Studio editor tried to allate some of the difficulties
of use mentioned about the UMU editor [7] but witbst of the same functionalities.

One principle is important in both general purpcmed specialized editors
presented so far. All editors provide the capabtiit hide or expand portions of the
tree in their various views except the source vighis feature allows the user to
focus on a portion of the tree and thus avoidscthgering that naturally results from
the presentation of large amounts of informatiohisTfeature has, however, an
important side effect. It prevents the user fronvitig an overview of the entire
condition he is trying to assemble. This makesrgasoning about the logic of the
expression being built very difficult and couldde@® errors.

4. Our proposed notation

Our proposed notation is only a display notatioris heither a new language nor a
replacement for XACML. However, it bears some fofmgaalities that we have
chosen mostly to facilitate its use in interactdgbtors that allow a non-technical user
either to create a new policy or to modify an emigtone. Effectively, if we had
followed only the consideration to make the poBcand rules understandable by a
non-technical user we could have merely transléted into plain English but we
quickly realized that plain English would have beenhallenge to manipulate in an
editor. Thus, we came up with the idea to use tteagpresent logical expressions
but again after realizing that a casual user maty grasp abstract mathematical
concepts we decided to create a hybrid betweenal@m and plain English. This
concept has already been mentioned as a goal &éorXthCML community by
Vullings [8] but no formal paper seems to have bpeblished yet showing evidence
of results in that research area..

Furthermore, we came to the conclusion that anfoifi-technical representation of
XACML is not really possible, mostly because XACN4La strongly typed language.
Typing is not a concept that the casual user caspgbeyond the basic types, like
numeric or alpha-numeric. Effectively, the nuanctdata storage considerations that
further divide numeric types into various levels wEcision such as integer, float,
double, etc. can only be knowingly manipulated bghnhical users. However, the
actual display of a XACML condition has no real riier of this kind, and can be
considered user-friendly.

Consequently, we propose a separation of conceetsekn the data typing
definitions that should remain in the hands of klealgeable IT technicians, and the
policy editing including its logical expression abruction that can be delegated to
the non-technical user.

This approach is appropriate mostly because ansaccentrol application is
available within a context where there is an inftacture organized by the provider
of the service. This infrastructure naturally irdds the definition of variables along
with their types and potential allowed values. Example, an eStore will define what

products it will sell along with the necessary paeters such as product identifiers or
codes, units types to express their quantitiesredjestc.

Data typing is thus relegated to another docuntattwe also decided to structure
using XML, where variables used in a given appiaragre defined along with their
data types and potential lists of allowed values.

Our notation is based on the following basic piptes:

e Stay as close as possible to the user’s naturglubge by avoiding any
technical terminology for operators and maintairtimg overall structure of a
natural language.

e Offer an implicit structuring by organizing the nedl language into a tree.

e Organize the tree so as to make it consistent with natural language
statement of the condition by using an infix repreation for conjunction
and disjunction operators.

¢ Maintain XACML’s natural non-binary nature of congtion and
disjunction operators but eliminate its originat liepresentation.

* Use a different, yet still casual terminology famjunction and disjunction
operators depending on their position in the tieeanchy.

« Ensure a full graphical overview of the expresdiming built at all times
regardless of its complexity. This implies no cdligbto collapse portions
of the tree.

Thus, our notation is very close to a natural laggustatement of the condition. It
is actually an improvement over it, as it shows Ithgical structure of the condition.
This will prove very important when building complexpressions requiring the
concept of operator precedence. A casual useldinot have to be concerned with
representing operator precedence.

Our previous example augmented with an additionahjunction would be
represented in our notation as follows:

DayOfTheWeek is Monday
and

Merchandise is Food
and

BalanceOfAccount over 500

The simple example above has a very shallow délptlo additional techniques
can be used to express more complex conditions:
e Allowing multiple values for a given variable.
* Allowing sub-constraints on a value for a variable

The first principle is illustrated in the next exalen where the condition is
extended to two different days of the week and ww tdifferent kinds of
merchandises:

DayOfTheWeek is one of Monday, Friday

and

Merchandise is one of Food, Travel
and

BalanceOfAccount over 500

The above example also illustrates that our rmtas not relying on a one-to-one
mapping to XACML. For example, in our notation weo® only one occurance of
the variable name DayOfTheWeek. In XACML this woublel represented instead by
a disjunction operation on two sub-expressions hef kind — DayOftheWeek is
Monday or DayOftheWeek is Tuesday, both using tA€XIL string_equal operator.
However, when the user saves this expression, fillig translated in a XACML

syntax and grammar oriented style where the variablrepeated for each sub-
expression.

The second principle is illustrated by introducisgb-constraints on values by
saying that travel is allowed only on Friday anddgurchases only on Monday or
Tuesday. Here, the conjunction operadod has been represented by {revided
that terminology that is more natural since it is ie ttontext of a disjunction.

Merchandise is one of
Food

Provided that DayOfTheWeek is one of Monday, Tu esday
Travel
provided that DayOfTheWeek is Friday
and
BalanceOfAccount over 500

The above expression corresponds to the followitgnpnatural language
representation:

“It is permitted to purchase food on a Monday oruesday or travel on a Friday
provided that the balance of the account is ovéF.50

As we can see from this example, the order of titec®nstraint in the pure natural
language version is strictly the same as in ouatimt. The only difference is the
graphical structuring of the tree appearance. Ipshelarify the rule in its natural
language form, where putting various sub-constsdaimtheir appropriate context

requires mental effort from the user.

Another advantage of the tree notation we are miogois that it avoids the
ambiguity of the scope of the disjunction operatohs the natural language
representation above it is hard to understand xiaetescope of ther operator that
applies to food or travel because of the presericéhe other disjunction about
Monday or Tuesday. In our tree like notation thisbéguity disappears entirely. It is a
well known fact that this kind of scoping problesmthe prime source of ambiguities
in interpreting statements in natural language fatit, with traditional non XACML
notation for logical expression, the only way teake these ambiguities would be to
use parentheses as follows:

((Merchandise == Food) and ((DayOfTheWeek == Monday) or (DayOfTheWeek
== Tuesday))) or ((Merchandise == Travel) and (DayO fTheWeek == Friday))
and (BalanceOfAccount > 500)

As already mentioned, our notation is not intentlede formal even if it looks
formal. One of the main features of this notatienthat we do not represent
conjunction and disjunction operators with a singtgiivalent. This is to follow the
principles where for example a conjunction is repreged either with the woiahd or
a paraphrase such as “provided that” that implies ¢onjunction but is more
conceptually precise in the context of a disjunttitius in a way naturally resolving
the ambiguities that a mix of conjunction and disfion operators would
unavoidably yield. We further resolve the ambigstusing indentation.

Another consideration is that we do not intend ¢wer the entire capabilities
provided by the XACML grammar. This is mostly duethe fact that as pointed out
already in the XACML standard, logical expressi@hiould remain simple. to be
understandable not to mention the fact that compbepressions in XACML are
extremely hard to read in the first place. Theygmbblem is that our notation allows
to compose complex logical expressions withoutiggtiost and thus may call for a
full support of the XACML grammar.

We also support the XACML negation operator notnimrely integrating it in the
natural language representation as follows:

Merchandise is not Food

We also support the concept of XACML variables tbansist in factoring out a
portion of logical expression such for example esating a variable for week days
which would be either a disjunction between eqigalifor each day or a member of
construct also provided by XACML.

5. Our notation in the context of an editor

We have developed a XACML editor as a series @frfates in which our notation
is used in all cases where an expression is rafjisteh as in target subjects,
resources and action specifications, and in thelitons of rules.

Our XACML editor reads a configuration file whicpexifies the names, data type
and potentially allowed values from an XML file iashe following example:

<Variable name="DayOfTheWeek" type="String">
<Values>
<Value name="Monday"/>
<Value name="Tuesday"/>
<Value name="Wednesday"/>
<Value name="Thursday"/>
<Value name="Friday"/>

<Value name="Saturday"/>
<Value name="Sunday"/>
</Values>
</Variable>

The XACML policy interface allows the user to creair modify a policy. The
rule interface allows creating or modifying a rded especially its condition as
shown on fig 6.

Target Help

mod add med | del ine g save | came
WiICcjCje v ‘xR R

[FEffec:

"rule_l
() Permit () Dery
Target
| Subjects:
: Resources:
Actions:

Condition

Merchandise is
and
DayOf Theweek is Monday

Fig. 6. Our XACML policy interface

A modification is achieved by first double clickirgword in a condition and then
invoking the requested modification by clicking ookthe tool bar buttons, which
allow operations such as modifying a value, addimmpdifying or deleting a
constraint or inserting an additional value. Theemion or modification of a value is
achieved via a value selection interface showduarg 7. In fig. 6, clicking the value
food is sufficient to obtain all the possible vauef the Merchandise variable. The
internal representation, which is a tree that ipeal exactly onto the XACML
structure, enables the editor to determine whiafabée a clicked value corresponds
to, and thus provide the appropriate value seleétiterface. A value node is a leaf of
an operation node such gsing_equal. Walking the tree to the parent of the value
and then descending from the parent to the ledfdbatains the variable makes this
process possible. Once the appropriate selectiodoige in the value selection
interface of fig 7, the resulting tree is redraviong with all the internal references to
type definitions.

Ml (reating anew constramt

Merchandise |

[clathing
[food
[Jalcohal

D concert
[sport

[poal room

Save

Fig. 7. Policy value modification using our editor

6. Our notation beyond XACML

While our efforts have concentrated on XACML, wevdaapplied the same
principles to other access control languages sscRiaco IOS [6]. This has been
made particularly easy by the architecture of oditoe, where the internal
representation of a policy is independent of theCRM language itself. Our internal
representation, however, provides the structurEACML, but without reference to
its tag names or types. Thus the XACML languagecsire is used as a common
denominator for handling all other Access Contamiguages. Our editor has a policy
connector component that can handle an unlimitexdbau of languages provided that
parsers for these languages are built. Another flhesfethis language independent
internal representation is that the editor can seduto translate one language into
another language. This requires adding the appieprcode generators that all
operate on the language agnostic internal repratemt

The following example shows a Cisco IOS rule and iorresponding
representation in our notation. The variable naaresdefined by the translator as
they are not part of the original syntax of CisGsl|

access-list 101 deny tcp host 148.22.33.44 host 192 .168.0.0 eq 3500

is displayed in our notation as follows:

protocol is tcp
and

srclP is 148.22.33.44
and

dstIP is 192.168.0.0
and

dstPort is 3500

7. Conclusion

XACML editors can be an effective and highly dable tool, assisting non-
technical users in specifying complex XACML rulesg. for access and resource
control. We have proposed here a simple yet poweirfiplemented notation that
allows users to perform this task by providing lamepresentation that is very close
to natural language. Also, due to its high compassnit provides a rare overview
quality that is an important factor in reducingces; thus helping to ensure the
commercial success of the application.

Our early experience with several non-technicarsiconfirms that our goal of
empowering non-technical users with a tool givingrh control of their resources can
be met with the proposed notation. We need to parfomore thorough evaluation of
how well this goal is realized, and collect mor@e&xence in representing a variety of
resource access specifications using the approadhtte editor described in this
paper.

Our editor based on our notation is not intendecb@oa replacement for any
XACML editor when the user is fully technically dified. However, while our initial
goal was to address the needs of casual, non-tethrsers, an additional benefit of
this approach is that even technical users catyesgsecify very complex conditions,
something that was stated as important to avoithénpast in the XACML user
community. This has an important consequence ofdavg the splitting of complex
rules into numerous rules with narrower targetsictviproduces large rule bases that
become rapidly unmanageable.

References

[1] XACML, OASIS standard,

http://www.oasis-open.org/committees/tc_home.phpakbgrev=xacml

[2] University of Murcia XACML Policy Editor, httgixacml.dif.um.es/

[3] XMLPad, open source,

http://www.wmhelp.com/xmlpad3.htm

[4] M. Giordano, G. Polese, G. Scanniello, and Grtdra, Visual Modelling of Role-Based
Security Policies in Distributed Multimedia Applitans, Proceedings of the IEEE Sixth
International Symposium on Multimedia Software HEregiring, IEEE Press, 2004.

[5] XACML Profile for Role Based Access Control (RB), 2004, http://docs.oasis-
open.org/xacml/cd-xacml-rbac-profile-01.pdf

[6] J. Boney, Cisco 10S in a nutshell, O'Reilly" &dition, 2001.

[7] XACML studio, http://xacml-studio.sourceforgeth

[8] E. Vullings, Implementing Authorized Access,

http://www.apsr.edu.au/Open_Repositories_2006/eukings.ppt#256,1,Implementing
Authorised Access.

