
11 November 23, 1995 4:34 pm

10 November 23, 1995 4:34 pm

- keep entering carriage retunrs to see more actions appearing

example showing gates instantiation

9 November 23, 1995 4:34 pm

should be the same TCP/IP address as with the demon start up command.
At this point you should see the node creation step execute by drawing icons on the

screen:

- ensure your mouse is on the prototype activation window.
- press a cariage return to execute the next available action and display it on the screen

8 November 23, 1995 4:34 pm

- click the rules icon to select the rules file and click on the .dro file that will appear in
the files listbox:

- Click the OK button to exit this window.

- click the view button of the Demon window and you should see a new window where
the visualization will be carried out.

- Click on the network entry of the view listbox.and then on the OK button.
A blank display window will then appear.

- click on the run button of the flow control window (>>) to enable your actions to be
displayed.

4.2 Running your Lotos prototype

In the other window, run your topo prototype of your specification by typing the command:

<spec_name> <work station name> 1444

where <spec_name> is the name of your specification without its radical, and 1444

7 November 23, 1995 4:34 pm

information contained herein without the prior written consent of MARI
Applied Technologies Ltd.

4. Running the animation (visualization)

open two windows and place yourself in the directory where you Lotos specification resides.

4.1 Startin up the Demon server

In the first window start the Demon server using the command:

boot demon ““ ext 1444

where 1444 is used as a TCP/IP port number.

You should see the Demon window:

- click on the flow icon to obtain a tape recorder like window:

6 November 23, 1995 4:34 pm

 idle -u -t$(SPEC).at < $(SPEC).lsf > topo.tmp
 $(MOVE) topo.tmp $@

$(SPEC).ldi: $(SPEC).lsf
 idle -s -r -t$(SPEC).at < $(SPEC).lsf > topo.tmp
 $(MOVE) topo.tmp $@

$(SPEC).ldc.c $(SPEC).ldc.hh: $(SPEC).idl
 d2h < $(SPEC).idl > topo.tmp
 $(MOVE) topo.tmp $(SPEC).ldc.hh
 d2c -p$(SPEC).ldc $(SPEC).ldc.hh < $(SPEC).idl
 touch $@

$(SPEC).lbm: $(SPEC).lsf
 om -f $(SPEC) > topo.tmp
 $(MOVE) topo.tmp $@

$(SPEC).lbc.c: $(SPEC).lbm
 omlbC -i -D $(SPEC).ldc.hh -o $(SPEC).lbc $(SPEC)
 touch $@

$(SPEC).dro:: $(SPEC).drs
 drp $(SPEC).drs

clean:
 $(RM) $(SPEC).dro $(SPEC).lbc.c $(SPEC).lbm $(SPEC).ldc.c $(SPEC).ldc.hh\\p $(SPEC).ldi $(SPEC)
$(OBJS) $(SPEC).lfe $(SPEC).lsa $(SPEC).lss \\p $(SPEC).lsf $(SPEC).lcr $(SPEC).cr $(SPEC).idl $(SPE-
C).lot $(OBJS)

The only value to be modified is the variable SPEC at the top that receives you specification
name. In the above example replace the statement SPEC = xtp by SPEC = <your_spec_name>

Warning: this makefile is for Topo version 3R1 only. Different version of topo have shown that
the makefile varies. Consult your local software support manager to know what makefile to
use.

Also you must ensure that you have a copy of file driver.c and a copy of a Demon
resource file Newdemon in your main directory. Also, if you are using the standard data type
make sure to include the mod_is library in the makefile.

separate compilation of the Demon rules program

enter the command:drp <specname>.drsand you should see the following message:

drp Version 3.0

Copyright and all ancilliary rights of whatever nature are vested in MARI
Applied Technologies LTD whose registered office is situate at MARI House,
Old Town Hall Gateshead, Tyne and Wear, NE8 1HE.

No part of this work may be altered , modified, combined, varied, enhanced
sold, leased licenced, sub-licenced, reproduced or otherwise dealt with in
any form by any means without the prior written permission of MARI Applied
Technologies Ltd.

No software or other program shall be written or developed based on any

5 November 23, 1995 4:34 pm

You should use the following makefile because the Topo compiler requires different
steps in the compilation.

In order to compile your application you need three files:
- the Lotos specification (radical “.lot”
- your Demon rules file (radical “.drs”)
- a copy of the driver.c file that contains the main function and the Demon message

encoders and various other visualization auxiliary functions.

MOVE=mv

SPEC=xtp
OBJS= $(SPEC).lbc.o $(SPEC).ldc.o $(SPEC).o

DEMONLIB = /net/jupiter/usr85/SEM/DemonV3.0.1/lib
DEMONINC = /net/jupiter/usr85/SEM/DemonV3.0.1/include

TOPO=/net/jupiter/usr85/SEM/Lite/lite-components/TOPO_3R1
TOPOLIB=$(TOPO)/lib
TOPOINC=$(TOPOLIB)
USELIB=bool_nat

CFLAGS=-g -I$(TOPOINC) -I$(DEMONINC)

$(SPEC): $(OBJS)
 $(CC) -L$(TOPOLIB) -L$(DEMONLIB) -o $@ $(OBJS) -lotos -lkaos -lkaos -lmes

$(OBJS): $(SPEC).ldc.c $(SPEC).lbc.c $(SPEC).c

$(SPEC).lot: $(SPEC).sdt
 sdt2ao $(SPEC).sdt -g

$(SPEC).lfe: $(SPEC).lot
 lfe $(SPEC).lot > topo.tmp
 $(MOVE) topo.tmp $@

$(SPEC).lsa: $(SPEC).lfe # $(TOPO)/stdlib/ditupm.lsa
 lsa -l $(TOPO)/stdlib/ditupm < $(SPEC).lfe > topo.tmp
 $(MOVE) topo.tmp $@

$(SPEC).lss: $(SPEC).lfe # $(TOPO)/stdlib/ditupm.lsa
 lsa -s < $(SPEC).lfe > topo.tmp
 $(MOVE) topo.tmp $@

$(SPEC).lsf: $(SPEC).lfe # $(TOPO)/stdlib/ditupm.lsa
 lsa -l $(TOPO)/stdlib/$(USELIB) -f -C < $(SPEC).lfe > topo.tmp
 $(MOVE) topo.tmp $@

$(SPEC).lcr: $(SPEC).lfe $(SPEC)
 lsa -c < $(SPEC).lfe > topo.tmp
 $(MOVE) topo.tmp $(SPEC).lsa

$(SPEC).cr: $(SPEC).lcr
 ast2cr -n$(SPEC) > topo.tmp
 $(MOVE) topo.tmp $@

$(SPEC).idl: $(SPEC).lsf

4 November 23, 1995 4:34 pm

Exemple:

 process complete_connection[n](PN,C:number):noexit:=
 (*# region 9 instance_parms 2 instantiated_gates #*)

 n ! C ! ring
 ; n ! C ! connect
 ; n ! PN ! connect
 ; stop

 endproc

 will generate the name complete_connection_1_2 for instance complete_connection[n](1,2).

2.0 Generating the annotated Lotos specification

Run the program Lotos_vis_gen as follows:

lotos_vis_gen <spec_name> -g

where <spec_name> should have a radical other than “.lot”.

Warning : We recommend the use of the radical “.sdt” or “ .vis”. This is because the output is
saved by default in a file with a radical “.lot”.

and you should see the following messages:

 Gesellschaft fuer Mathematik und Datenverarbeitung
 Forschungszemtrum fuer Offene Kommunikationssysteme
 Standard Data Type to Act One Translator

 (C) 1993

 Translation of file: phone.sdt starts !

 Parsing and syntax checking start !
 Parsing and syntax ckecking were successful !

 Visualization: annotations generation starts
 Visualization: Generation was successful !

 Unparsing starts !
Output is written to file: ’phone.lot’

 Unparsing successful !

 Translation of Standard Data Types was completely successful !!!

You have generated two files, one that contains the lotos annotated specification and the other
is a Demon rules files that will have the same name as you input file but with the radical
“ .drs”.

3. Compiling the lotos annotated specification and the Demon rules file.

3 November 23, 1995 4:34 pm

value of the first offer of an action:

example:

 u ! 222 ! offhook

will generate an instantiated gate “u_222”

Syntax: instantiated_gates

Example:

 process user_caller[u](PN,C:number):noexit:=
 (*# region 1 instantiated_gates #*)

 u ! PN ! offhook
 ; u ! PN ! dial ! C
 ; u ! PN ! talk
 ; stop

 endproc

1.3 Process instantiation names

The names of process instances are constructed by default using the name of the proc-
ess and the first leftmost formal parameter value if any. Both the basic name and the number of
parameters used can be changed by the user.

1.3.1 changing the basic process instance name

syntax: node_name <selected name>

example:

 process connect_responder[u,n](PN:number):noexit:=
 (*# node_name call_responder_role
 instantiated_gates
 region 7 #*)

 n ! PN ! connect
 ; u ! PN ! talk
 ; stop

 endproc

1.3.2 changing the number of formal parameters used

The exact number of formal parameters to be used is selected via the instance_parms
graphic annotation.

Syntax: instance_parms <number of leftmost formal parms>

2 November 23, 1995 4:34 pm

tions.
Use the keywordsdefault_region_definitions or region_definitions followed by the

Demon looking region definitions as show above.

1.2 Gates and processes region assignments

gates region assignments

Each gate declared in the high-level behavior either via the specification gate list or a
hide operator in the high-level behavior expression should have a region assigment visualiza-
tion annotation immediatly after the gate name. The format of the annotation is the keword
region plus an integer number representing the region number.

specification phone_spec[u (*# region 4 #*) ,
n (*# region 5 #*)
]:noexit

...
behavior

hide g1 (*# region 6 #*) ,
g2 (*# region 7 #*) in

...

Each region must correspond to a region declared in the region_definitions annotation or be
part of the default regions.

process region assignment

A process will correspond a node on the graph and must have a region assignment
annotation. This annotation shall be place immediatly after the process definition header (after
the functionality.The format of the annotation is the keword region plus an integer number
representing the region number.

 process network[n]:noexit:=
(*# region 3 #*)

 n ? PN:number ! conreq ? C:number
;
 (
 (
 complete_connection[n](PN,C)
 []
 detect_busy_signal[n](PN,C)
)
 |||
 network[n]
)

 endproc

1.3 Gates instance differentiating

Lotos syntax doesnot allow to intantiate gates. A way around this problem is to use the

1 November 23, 1995 4:34 pm

How to visualize a Lotos specification

By Bernard Stepien
GMD-FOKUS, Berlin

This short manual will indicate you the steps you have to go through to animate a
Lotos specification.

1. Lotos specification visualization annotations

The are a number of mandatory and optional information that has to be inserted into
your Lotos specification to enable its visualization. This is information that can not be auto-
matically derived from the Lotos specification.

A visualization annotation must be enclosed between the two following delimiters:

(*# ... #*)

1.1 icons representation option and region definition option annotation

These options shall be inserted immediatly after the specification header (after the
functionality definitions) and before any library, datatype or behavior expressions. They will
work only in that location:

specification phone_spec[u (*# region 4 #*) , n (*# region 5 #*)]:noexit

(*# user_defined_icons
region_definitions
GRID R1 30 700 8 8 1.3; # Users
GRID R2 30 450 8 8 1.3; # Phones
 GRID R3 140 100 8 8 0.8; # Network
 GRID R4 155 570 8 8 0.3; # User_gate
 GRID R5 155 245 8 8 0.3; # Network_gate
 GRID R6 30 420 8 8 1.3; # Cinit & Cresp
 GRID R7 30 380 8 8 1.3; # ConEst & ConResp
GRID R8 30 340 8 8 1.3; # Busy
GRID R9 180 70 8 8 1.0; # CompCon & DBusy
 GRID R10 90 750 8 8 1.3; # test_sequence
 #*)

 type number is
 sorts number
 opns 1,2,3,4:-> number
 endtype

You have the choice to use default icons or user supplied icons.

use the keywordsdefault_icons or user_defined_icons as shown in the above exam-
ple.

The region definitions relate to the way Demon defines regions where nodes are dis-
played. (see Demon reference manual for details). You have a choice to use a default definition
of 10 regions that are organized into horizontal layers or to specify your own region defini-

