
1

An experience modelling
telecommunications systems

using ODP-DLcomp
Bernard Stepien, Kazi Farooqui, Luigi Logrippo

Telecommunications Software Engineering Research Group
Department of Computer Science, University of Ottawa

Ottawa, Ont. Canada, K1N 6N5
(bernard | farooqui | luigi)@csi.uottawa.ca

Abstract. The ODP-DLcomp language is intended to describe systems in the ODP
computational model. It is object-oriented, implementation-independent and its for-
mal semantics are based on LOTOS, thus it is a Formal Description Technique. It sup-
ports specification of interface and object templates, with appropriate creation and
binding operations. An application of the language is demonstrated using the Plain
Old Telephone System example.

Keywords: Open Distributed Processing, OO Languages, Specification, Telephony

0. Introduction
ODP-DLcomp was designed and implemented at GMD-FOKUS by Frank Koch
[Koch94]. The first author participated in the group at the time.

The motivation behind this new language was to offer a more readable and com-
pact alternative to the LOTOS description of the ODP computational model [Vog93] but
also to offer a bridge between Formal Description Techniques and Object Oriented
implementation languages.

In this paper, we show that ODP-DLcomp includes all the essential concepts for
system definition in the ODP computational model. It is high-level and object-based.
One of its important characteristics is that its semantics are defined in terms of the for-
mal language LOTOS[BoBr87][LoFH92]. In fact, the definition is constructive and a pro-
totype compiler from ODP-DLcomp into LOTOS is available. Thus, the language has all
the essential characteristics required of a Formal Description Technique for ODP.
Because of their capability of being compiled into a language that is at least partially exe-
cutable, specifications written in ODP-DLcomp constitute a prototype of the system being
specified. Activities such as validation and test case generation, possible from LOTOS
specifications, therefore are also possible from ODP-DLcomp specifications.

This language is somewhat comparable to TINA ODL [TINAC94], however the
latter is not formal, and does not offer the capability of behavior specification.

A brief introduction to the language is given, followed by an example of its use
for the description of a Plain Old Telephone System.

1. Basic concepts of ODP computational model
The ODP computational viewpoint provides the concepts needed to explain how services
can be programmed in a form suitable for distribution [FLM95]. This viewpoint focuses
on the organization of applications in architecturally conformant ways rather than on the
mechanisms used to distribute or support the applications in the system. The ODP com-

2

putational model is the abstract model to express the concepts of the computational view-
point. It is a framework for describing the structure, specification and execution of the
(components of the) distributed application on the distributed computing platform. It
describes the coarse-grained structure of an application, i.e., the application components
and their interaction at an abstract, system independent level. Each coarse-grained entity
of a distributed application is represented by an object, called computational object, with a
(set of) well defined interface(s), called computational interface(s). The computational
model defines what is required rather than how it is provided, the latter being the respon-
sibility of the engineering model [FaLo95].

The basic elements of the computational model are: computational object, computa-
tional interface, operation invocation at a computational interface, activities that occur
within a computational object, environment constraints on operation invocation, etc.

2. An overview of the ODP-DLcomp language
The language supports the two following concepts of the ODP computational interface
template:

• operation signature: the language allows the specification of multiple termina-
tions along with the operation name.

• behavior: the language supports the specification of the behavior exhibited at
the interfaces. It allows the specification of possible orderings of operations by
using operators able to express sequence, choice and interleaving.

An ODP-DLcomp specification is made up of four components. We present its constructs
via concrete examples. The following example shows the general structure of an ODP
system specification. The keywords used for each section are as follows: op_if_template
for the description of operational-interface templates, and object_template and
system_initalization which are self-explanatory.

odp_system POTS_service ::=

library Boolean, Integer, Setendlib

type Integeris
sorts Int
opns

0 :-> Int
endtype
...
op_if_template admin_control_interface()

...
end
...
object_template administrator(server_network_cntrl_if_id: ident, ...)

...
end
...

system_initialization
...

end_spec

3

2.1 Specification of abstract data types
Abstract Data Types are currently described using ACT ONE as in LOTOS. A tutorial on
this language can be found in [MRV91]. It is planned to include ASN.1 in the future.

2.2 Specification of interface template
This template defines the operations that can be performed over the interface with the
number and type of formal parameters (sometimes called stimuli), and the possible ter-
minations.

Each interface template has a name. For each operation we specify a name, the
names and types of formal parameters and of terminations. An interface template can
then be used by an object. It is the responsibility of the object to determine the role of
each interface (client or server) and the activities included in an operation.

op_if_template admin_control_interface()

operation createPhone(aNumber: number)
termination phone_created(phone_ctrl_if_id)
termination error(err_msg: CrError)

operation getPhone(aNumber: number)
termination theNumberIs(aPhone: ident)

behaviour

choice(create_phone, getPhone)
end

2.3 Specification of an object template
There are four main sections in an object template. The following example illustrates the
syntax to describe these main concepts.

object_template administrator(server_network_admin_cntrl_if_id, server_network_cntrl_if_id1,
 network_control_if_id_2: ident)

includ_if_tpl : admin_control_interface,
...

refer_object_tpl phone

initialization

let entry_1: phone_entry = nil ;
...
instantiate admin_control_interface()server

return admin_ctrl_if_id : ident ;

instantiate network_admin_control_interface()client
return network_admin_ctrl_if_id : ident ;

associate network_admin_ctrl_if_idwith server_network_cntrl_if_id
...

behaviour

...
end

We now briefly review the components of this object template.First, the list of all inter-
face templates that will be used by the object is declared.

4

includ_if_tpl : admin_control_interface,
...

Here admin_control_interface was defined in the interface template definitions section.
Then we need to indicate the objects that will be used. As part of its activities, an object
can instantiate other objects. This template defines which objects can be instantiated.

refer_object_tpl phone

An object needs to be initialized like in a constructor operation of an object as known in
object-oriented literature [Booch94]. There are two kinds of elements that need to be
declared and instantiated.

• Internal variables that correspond to attributes in traditional object-oriented ter-
minology are declared here and assigned their initial values.

• Instances of interface templates are specified along with their roles within this
object (client or server). There can be many instances of a given type of interface.
For example a network object needs to communicate to various phones through
individual instances of the same phone_network interface template. Each instance
is identified by a unique identifier, which is obtained through the return con-
struct.

initialization

let entry_1: phone_entry = nil ;
...
instantiate admin_control_interface()server

return admin_ctrl_if_id : ident ;

instantiate network_admin_control_interface()client
return network_admin_ctrl_if_id : ident ;

associate network_admin_ctrl_if_idwith server_network_cntrl_if_id
...

Finally the behavior of an object is specified for each of its interfaces. The keywords
SERVER_IFACE or CLIENT_IFACE are used to specify the role of the individual inter-
face. For each interface template there is an interface description block that contains indi-
vidual operations supported by the interface. The behavior of operation signatures is
described as a block of activities.

The most common activities are:
• object creation
• operation invocation on an instance of another interface
• instantiation of new interfaces
• object or interface deletion

An interface is used symmetrically by a client and server object. The activity of an
operation is described in the server object while the evaluation of the termination is
described in the client object.

behavior

SERVER_IFACE admin_control_interface :
{

createPhone(aNumber: number)
{

5

create_object phone(aNumber, server_network_cntrl_if_id)
return phone_control_if_id: ident ;

...
}

...
} ;

CLIENT_IFACE network_admin_control_interface:
{

install:
term_case phone_installed() :
{

state_phone := installed ;
}

...
} ;

...
end

Summary of activities specification

Interface instantiation

instantiate <interfaceTemplateName> <role>
return <interfaceIdentifier>: ident

The above construct instantiates an interface and returns an identifier.

Object creation

create_object network()
return network_admin_control_if_id, network_control_if_id_1,

network_control_if_id_2:ident ;

When an object of a given class is created, a list of instantiated interface identifiers is
automatically created. These are of built-in type ident and can be referenced by interface
instantiations association or operation invocation statements.

Object interfaces binding

associate network_ctrl_if_id with server_network_cntrl_if_id

This statement binds two instances of the same class of interface template.

Operation invocation

invoke called_phone_network_ctrl_if_id->ring()
term_case rung() :
{
phone_status := rung
} ;

The above construct enables a client to invoke an operation on a server interface
specified by its identifier. The constructs allow the evaluation of multiple terminations.

Object deletion
An object or an interface can be destroyed by using the keywords stop_obj and

6

stop_interface along with the object and interface identifiers.

stop_obj phone

2.4 System initialization specification
The initial configuration of a system includes the definition and initialization of variables
and the creation of new objects. However an object can also be created as an activity of
operations at interfaces. Each instantiated object returns identifiers of its server inter-
faces. These identifiers can themselves be passed as arguments of another object creation
as in the following example, where the administrator needs to know the identity of the
network object server interfaces to communicate with them.

system_initialization

let max_calls: Int = 0;

create_object network()
return network_admin_control_if_id:ident, network_control_if_id1:ident,

network_control_if_id2:ident ;

create_object administrator(network_admin_control_if_id,network_control_if_id1,
network_control_if_id2)

return admin_control_if_id:ident ;
...

3. Specifying telephone systems using ODP-DLcomp
As an example of use of the language, the well known POTS (Plain Old Telephone Sys-
tem) [FaLS91] application is presented. First, the general architecture is discussed and it
is shown how the concepts of objects and interfaces apply to this example. The flow of
operation invocations is then discussed.

3.1 General architecture
The system is composed of four kinds of objects (Fig 1):

•the network object
•the administrator object
• the phone objects
•the user objects

These objects communicate through five kinds of interfaces:
• the phone control interface (phone_ctrl_if) where user requests take place.
•the network control interface (network_ctrl_if) where phone requests take place.
•the administration control interface (admin_ctrl_if) where administration

requests take place.
• the phone network control interface (ph_ntw_ctrl_if) where network requests to

a phone take place.
• the network administration control interface (network_admin_ctrl_if) where

administration requests to the network take place.

Once the objects and their interfaces are identified, we need to describe the initial
configuration of the system and the dynamic object creations that take place.

Initially, the system is composed of three known categories of components. The

7

network, the administrator and the users need to exist and need to know how to com-
municate. The phones, however, do not exist. They need to be installed by the adminis-
trator on requests from the users. At this time, the users will consult the administrator to
associate themselves with a particular instance of a phone using the directory function.
The full specification of the POTS system initialization is as follows:

system_initialization

create_object network()
return network_admin_control_if_id:ident, network_control_if_id1:ident,

network_control_if_id2:ident ;

create_object administrator(network_admin_control_if_id,network_control_if_id1,
network_control_if_id2)

return admin_control_if_id:ident ;

create_object user(admin_control_if_id)
return client1_phone_if_id:ident ;

create_object user(admin_control_if_id)
return client2_phone_if_id:ident

3.2 Specification of the interfaces
The operations that can be performed at each interface, the semantics of their various ter-
minations, and the orderings of these operations at this interface need to be identified.
These operations are summarized in Fig.1. Each interface is represented by a box with a
header containing the name of the interface and a body containing the list of available
operations.

The following example describes the phone control interface where users invoke
operations as requests to a given instance of a phone.

op_if_template phone_control_interface()

operation offHook()
termination tone_obtained()
termination tone_absent()

operation onHook()
termination on_hook_performed()

operation dial(phone_if : ident)
termination dial_performed()
termination busy()

operation talk()
termination talking()

behaviour

choice(seq(offHook,dial,talk,onHook), seq(offHook,onHook))

end

8

Most operations are described as having only one termination. The dial() operation is an
exception that illustrates the principle of multiple terminations. When a user dials a
number, two things can happen. Either this user gets connected or she hears a busy sig-
nal. Consequently the dial operation has been specified as having two terminations: con-
nected() and busy().

Another aspect of the termination statement is the parameter list as in the create-
Phone() operation of the administration control interface (admin_ctrl_if).

operation createPhone(aNumber: number)
termination phone_created(phone_ctrl_if_id:ident)

The above operation returns the identifier phone_ctrl_if_id of the server interface of the
newly created phone (denoted by S on Fig. 1). The user needs to perform an associate
statement using this identifier in order to be able to communicate with this phone on this
interface.

aPhone

aUser

Administrator aNetwork

Fig.1 General architecture and interface model

C

S

C

S C

S

phone_ctrl_if

off_hook()
dial(number)
answer()
talk()

ph_ntw_ctrl_if

ring()
connect()

network_ctrl_if

conreq(N,C)
off_hook()

network_admin_

install(N,SP)

ctrl_if

admin_ctrl_if

createPhone(N)
getPhone(N)

C

S

C S

on_hook()

on_hook() disconnect()

9

3.3 Specification of objects
The specification of objects consists in instantiating interfaces and describing the behav-
ior for each operation at these interfaces.

Each object needs a number of attributes and instances of interfaces. The user,
phone and administrator objects have a fixed number of attributes and interfaces as
shown in Fig. 1. However the network, in order to communicate with a variable number
of phones, needs a variable number of interfaces as shown in Fig. 2. For the purpose of
this example, we have used two instances of phones with the corresponding interfaces.

The main role of the network is to perform connections. For this purpose, when a
new connection request comes in, the network needs to remember where it came from,
where it is going to and, since many operations are required to complete the connection,
a connection state attribute. These attributes will contain references to interface
instances.

The following is an example of the network attributes and interfaces require-
ments:

object_template network()
...
initialization

let connection_state : state =nil ;
let caller_control_interface:ident = nil;
let called_control_interfac:ident = nil ;

instantiate phone_network_control_interface()client
return phone_network_ctrl_if_id1 : ident ;

instantiate phone_network_control_interface()client
return phone_network_ctrl_if_id2 : ident ;

instantiate network_control_interface()server
return network_ctrl_if_id1 : ident ;

instantiate network_control_interface()server
return network_ctrl_if_id2 : ident ;

instantiate network_admin_control_interface()server
return network_admin_ctrl_if_id1 : ident

Phone 1

aNetwork

S

C

S C

S

S
Phone 2

S

CS
C S

ph_ntw_ctrl_if

ring()
connect()
disconnect()

network_ctrl_if

conreq(N,C)
off_hook()
on_hook()

Fig.2 Multiple instances of interfaces of the network object

10

In the next sections, specific aspects of interface association mechanism of ODP-
DLcomp and operation invocations are addressed.

3.3.1 The interface association mechanism
Static association
As already mentioned, at system initialization time, only the network, the administrator
and the users exist. The association of their interfaces is straightforward since the objects
involved play only one role at a time in pairs, i.e. the user is always a client to the admin-
istrator server and the administrator is always a client to the network server. This simple
relationship can be described as part of the object initializations. For example the user to
administrator interface is described by the following objects:

object_template administrator(server_network_admin_cntrl_if_id,
server_network_cntrl_if_id1, server_network_cntrl_if_id2: ident)

...
initialization

instantiate admin_control_interface()server
return admin_ctrl_if_id : ident ;

...
end

object_template user(server_admin_cntrl_if_id: ident)
...
initialization

instantiate admin_control_interface()client
return admin_ctrl_if_id : ident ;

associate admin_ctrl_if_idwith server_admin_cntrl_if_id
...

end

The glue between these two object template instantiations is achieved by the fol-
lowing system initialization statements. One observes that the interface identifier
admin_control_if_id returned from the instantiation of the administrator object is a param-
eter of the user object constructor:

system_initialization

create_object administrator(network_admin_control_if_id,network_control_if_id1,
network_control_if_id2)

return admin_control_if_id:ident ;

create_object user(admin_control_if_id)
return client1_phone_if_id:ident ;

Note that the identifier admin_control_if_id is given as returned by the created object
administrator, and therefore it actualizes admin_ctrl_if_id defined in the template of the
object. This identifier then is used as formal parameter of the created object user. As such
it actualizes server_admin_ctrl_if_id.

Dynamic association
However, the associations between users and phones or phones and network are
dynamic, i.e. they occur as results of operation invocation. The following excerpts of the
user, administrator and phone objects will illustrate this concept.

11

object_template user(server_admin_cntrl_if_id:ident)
...
initialization

instantiate phone_control_interface()client
return phone_ctrl_if_id :ident

...
behavior

...
CLIENT_IFACE admin_control_interface :
{

createPhone :
term_case phoneCreated(aPhone_ctrl_if_id:ident) :
{

associate phone_ctrl_if_idwith aPhone_ctrl_if_id
}

}
...

end

object_template administrator(server_network_admin_ctrl_if_id, server_network_cntrl_if_id1,
server_network_cntrl_if_id2: ident)

...
initialization

...
instantiate admin_control_interface()server

return admin_ctrl_if_id : ident ;
...

behaviour

SERVER_IFACE admin_control_interface :
{

createPhone(aNumber: number)
{

if aNumbereq num1 then
create_object phone(aNumber, server_network_cntrl_if_id1)

return phone_control_if_id: ident
else

... ;
...
terminate phone_created(phone_control_if_id)

}
...

end

object_template phone(number: number, server_network_if_id: ident)
...
initialization

instantiate phone_control_interface() server
return phone_ctrl_if_id : ident;

...
behavior

...
end

When a user requests a phone to be created by the administrator via the createPhone oper-
ation, the administrator creates the object and obtains in return an identifier
phone_control_if_id. This identifier is created as a result of the instantiation of the
phone_control_interface that returns the identifier phone_ctrl_if_id. Finally when the opera-
tion createPhone terminates successfully, it returns the result phone_created that carries the
identifier phone_control_if_id. The latter is then used in the user object (term_case
phone_created(...)) to perform the association between the client and server instances of

12

the phone_control_interface. The associations between the instances of the network control
interface and the phone network control interface, that were also unknown to both the
phone and the network before the phone object was created, are not shown.

3.3.2 Specifying the behavior as operation invocations
Busy signal specification
In POTS a phone is busy when its state is not idle. idle is the initial state, when the phone
object is created or when an on hook operation has been invoked.In order to specify the
busy signal a phone object needs a state attribute and two possible terminations of its
ring() operation. The state variable is updated as different operations are performed on
this object. For example, an off hook operation changes the state variable from idle to
off_hook. This is shown in the following example:

object_template phone(number: number, server_network_if_id: ident)
...
initialization

let state : state_sort = idle ;
...

behavior

SERVER_IFACE phone_network_control_interface :
{

ring()
{

if state eq idlethen
{

state := rung ;
terminate rung()

}
else

terminate busy()
}
...

};
...

end

The ring operation has an if-then-else statement that controls the nature of the termina-
tion value rung() or busy(). In the first case the phone object’s state is changed to rung and
in the second case it remains unchanged, because this phone is already engaged in
another connection hence its state must stay unchanged. On the network client side the
termination case statement is used to control the next transition.

So far, we have described the operation ring from the server side. We now show
how it is invoked by the client network. The following is an excerpt of the network tem-
plate.

object_template network()
...
behaviour

SERVER_IFACE network_control_interface :
{

conreq(caller_number, called_number: number)
{

if called_number eq num1then
caller_phone_network_ctrl_if_id := phone_network_ctrl_if_id1

else

13

called_phone_network_ctrl_if_id := phone_network_ctrl_if_id2 ;

invoke called_phone_network_ctrl_if_id->ring()
term_case rung() :
{

terminate ring_back()
}
term_case busy() :
{

terminate busy_tone()
}

}
...

}
...

end

Observe that when a connection request operation is invoked by a phone, the network
will attempt to ring the requested number. In order to do this it is necessary to determine
first the appropriate instance of the phone network control interface. Then, once the ring
operation has been invoked on this selected interface, there are two cases: on the termi-
nation case rung, the network delivers a ring back to the phone, while in the termination
case busy, it delivers a busy tone.

Call termination specification
The requirement is that when any one of the phones involved in a connection goes on
hook, the network should stop performing the normal sequence of operations and start
disconnecting the phones involved.

The phone objects have two different behaviors depending on whether they are
the call termination initiator or the passive disconnected party. In the first case the
sequence of actions is to place the phone on hook and invoke a disconnection to the net-
work, in the second case it is to receive a disconnection from the network and then per-
form an on hook. Consequently, an onHook operation at the phone control interface
(invoked by a user) has to be processed differently in the two cases. In the first case, the
phone invokes a disconnection to the network only if it was not already disconnected. In
this case it receives back a disconnected() termination from the network, and the state is
returned to idle. But if a phone becomes disconnected due to a passive termination it
goes back directly to idle state.

object_template phone(number: number, server_network_if_id: ident)
...
initialization

let state : state_sort = idle ;
let dialed_number: number = nil ;
...

behavior

SERVER_IFACE phone_control_interface :
{

onHook()
{

if state ne disconnected then
{

invoke network_ctrl_if_id->onHook()
term_case disconnected() :
{

state := idle

14

}
}

else
state := idle ;

terminate on_hook_performed()
}

...
};

SERVER_IFACE phone_network_control_interface :
{

disconnect()
{

state := disconnected
}
...

};
...

end

On the network object side a call termination occurs when the disconnection
operation is invoked on the network object. This operation changes the connection state
attribute maintained by the network to disconnected, returns the termination discon-
nected() to the invoking phone and invokes a disconnection request on the called phone
network interface if it was already involved. Due to multi-threading, it is possible that
the network was already in the process of invoking other operations as part of a connec-
tion establishment procedure. In this case, any operation invocation should be guarded
by a test on the connection state variable.

object_template network()
...
initialization

...
behaviour

SERVER_IFACE network_control_interface :
{

conreq(caller_number, called_number: number)
{

if called_numbereq num1 then
called_control_interface := phone_network_ctrl_if_id1

else
called_control_interface := phone_network_ctrl_if_id2 ;

if connection_state ne disconnectedthen
{

invoke called_phone_network_ctrl_if_id->ring()
term_case rung() :
{

connection_state := ringing
terminate conreq_performed()

} ;
term_case busy():
{

connection_state := aborting
invoke caller_control_interface->disconnect()

term_case disconnected():
{

connection_state := disconnected
}

}
}

};

15

disconnect_request()
{

if connection_state ne disconnectedthen
{

invoke called_phone_network_ctrl_if_id->disconnect()
term_case disconnected() :
{

connection_state:= disconnected
}

}
terminate disconnected()

};
...
};

...
end

The reader should note the handling of disconnection collisions. The disconnect opera-
tion of a phone is invoked only if the connection has not already been interrupted by an
on hook operation of the called party. This is the case where both parties go on hook at
the same time without any disconnection from the other side.

4. Conclusions
It has been shown that the language ODP-DLcomp provides support for the formal spec-
ification of Open Distributed Processing concepts of object template, interface template
(including multiple terminations), operation signature, object behavior, and others.
These capabilities were demonstrated by using a Plain Old Telephone System example.
One of the main assets of the language is the visibility of interfaces which make it possi-
ble to specify the links between objects. On the other hand, the language’s weakness
resides in the expression of behavior. The C-like operation invocation seems to be an ad
hoc solution, while it appears that the TINA-C recommendation of specifying behavior
using LOTOS or SDL is a better solution. Further work will deal with improving the lan-
guage constructs, given the insight provided by this experience.

Acknowledgments
We would like to thank Jan de Meer of GMD-FOKUS for giving us the opportunity to
work on the implementation of this language, especially on the exploration of visual ani-
mation and programming. This research was partially supported by a grant from Motor-
ola ARRC and a Going Global grant from the Ministry of External Affairs.

References
[BoBr87] Bolognesi, B., and Brinksma, E. Introduction to the ISO Specification Language

LOTOS. Computer Networks and ISDN Systems 14 (1987) 25-59.
[Booch94] Booch, G. Object Oriented Design with Applications, Benjamin/Cummings,

1994.
[FaLS91] Faci, M. , Logrippo, L., and Stepien, B. Formal Specifications of Telephone

Systems in LOTOS: The Constraint-Oriented Style Approach, Computer
Networks and ISDN Systems 21 (1991), 52- 67.

[FaLo95] Farooqui, K., and Logrippo, L. Architecture for Open Distributed Software
Systems. In: A. Zomaya (ed.) Parallel And Distributed Computing

16

Handbook. McGraw-Hill, 1996. Chapter 11, 303-329.
[Koch94]Koch. F. Spezifizierung offener Verteilter Systeme aus Sicht des ODP

Computational Viewpoint, Gesellschaft fuer Mathematik und
Datenverarbeitung, GMD-Studien Nr. 243, October 1994.

[MRV91] deMeer, J., Roth, R., and Vuong, S. Introduction to Algebraic Specifications
Based on the Language ACT ONE. Computer Networks and ISDN Systems,
23 (1992) 362-392.

[LoFH92] Logrippo, L., Faci, M. and Haj-Hussein, M. An Introduction to LOTOS:
Learning by Examples, Computer Networks and ISDN Systems, 23 (1992)
325-342.

[TINAC94] Kitson, B., Leydekkers, P., Mercouroff, N., Ruano, F, et al. TINA Object
Definition Language (TINA-ODL) Manual, TINA Consortium, 1995.

[Vog93] A.Vogel On ODP’sArchitectural Semantics using LOTOS:
In: J.de Meer, B. Mahr, O. Spaniol(Editors): Proceedings of the International
Conference on Open Distributed Processing. Berlin, September 1993

[FLM95] Farooqui, K., Logrippo, L., deMeer, J. The ISO Reference Model for Open
Distributed Processing: an introduction in Computer Networks and ISDN
Systems 27 (1995) 1215-1229

