
1

1

Testing Service Oriented
Architecture Based Web

Applications

By Bernard Stepien, Liam Peyton,
Pulei Xiong, Pierre Seguin

2

SOA based web applications

WEB
application

Catalog
service

invoice
service

Web formatting
service

User 1

User n

…

2

3

Testing approaches

1. Black box testing from a user’s
perspective

2. Black box testing from a services
perspective (a kind of unit testing)

3. Black box testing from a user and
services perspectives.

4. Grey box testing from an integration
testing perspective (in-process or log-
based)

4

Test purposes

• For a given set of web requests, receive the
correct web responses with appropriate quality
of service.

• If the above fails, in a SOA based system the
cause could be located:
– In the web application logic:

• Wrong processing within the web application.
• Web application sent the wrong request to the service.

– In the service logic:
• Wrong processing within the service

– In the SOA infrastructure
• Unable to respond with appropriate quality of service

3

5

Black box testing
from a user’s perspective

• The SUT is observed only via the web
application.

• The services are not visible to the tester

SUT
WEB

application

TTCN-3 test suite

6

Black box testing
from a services perspective

• The SUT is the collection of services
• The ATS simulates the web application

Catalog
service

invoice
service

Web formatting
service

TTCN-3 test suite

SUT

4

7

First two approaches solutions

• Already covered in previous research:
– Web testing:

• http://www.site.uottawa.ca/~bernard/Testing_a_servlet.pdf

– SOAP application testing:
• http://www.site.uottawa.ca/~bernard/TestingWebServices.pdf

8

Problems with the black box
separate approaches

• With the first approach (web application testing),
if there is a failure we won’t be able to determine
it’s cause accurately:
– In the web application
– In the underlying services

• With the second approach, we may conclude
that the services are OK, but we can not
guarantee that:
– the web application places the correct service

requests.
– the web application processes correctly the service

responses.

5

9

Black box testing from a user and
services perspective

• The SUT is the web application only
• The web application is disconnected from the real services.
• A TTCN-3 parallel test component emulates the services

messaging.

TTCN-3
test suite

TTCN-3
Web

application
Handler

component

TTCN-3
services
Handler

components

SUT
WEB

application

10

Advantages of approach 3

• This approach fully verifies that the web
application sends the correct requests to
the services, but only according to the
tester’s opinion.

• Once this verified, if the web response to
the user is still wrong, we can then
conclude with confidence that the problem
is located in the web application
processing.

6

11

Grey box testing from an
integration testing perspective

• All messages between all components are tested.
• The test suite intercepts the communication between the

web application and the services and verifies them.

TTCN-3
test suite

Web application
Handler component

Catalog service
Handler component

SUT
WEB
server

Catalog
service

invoice
service

Html formatting
service

SUT

Invoice service
Handler component

Html formatting service
Handler component

12

Reasons for integration testing

• Unit testing does not guarantee that components
will work together correctly.

• Multi-user traffic could reveal faults:
– In the web application (mixing client side data

between users)
– In the services (mixing server side data between

responses and time outs due to load)
– Inability of the SOA infrastructure to deliver responses

with an appropriate quality of service

7

13

Re-using unit testing
Test suite elements

• The test suite elements of the two first
approaches can be fully re-used for the
two last approaches.

• The only differences are:
– the test configuration
– merging some behavior.

14

Implementation of Grey box
SOA testing

testcase SOABasedWebTesting() runs on MTCType system SystemComponentType {
var SOAComponentType theSOAComponent;
var UserComponentType theUserComponent[2];

theUserComponent[0] := UserComponentType.create;
theUserComponent[1] := UserComponentType.create;
theSOAComponent := SOAComponentType.create;

// map all ports here …

theSOAComponent.start(serviceEventsTest());

theUserComponent[0].start(User_1_events());
theUserComponent[1].start(User_2_events());

theUserComponent[0].done;
theUserComponent[1].done;

servCoordPort.send("end test");

all component.done;

log("testcase SOABasedWebTesting completed");
}

8

15

User behavior specification
function User_1_behavior() runs on UserComponentType {

var ResponseType theResponse;
timer theTimer;
var integer i;

userWebPort.send(web_req_A);
theTimer.start(5.0);
alt {

[] userWebPort.receive(web_resp_B) {
log("user 1 has received web_resp_B");
theTimer.stop;
setverdict(pass)

}
[] userWebPort.receive(ResponseType:?) -> value theResponse {

log("user 1 has receive wrong response: " & theResponse);
setverdict(fail)

}
[] theTimer.timeout {

log("User 1 timed out");
setverdict(inconc)

}

}
}

16

Testing challenges

• In Web pages, data is mixed with
formatting information.

• Caching: Requests to the web application
do not produce always a request to an
underlying service.

• Service messages can not always be
correlated directly to a specific user’s web
applications messages.

9

17

Testing caching

• Caching in the web application results in a
non event at the service level.

• How can we test that an event has not
occurred?

• Answer: check if the cached event occurs,
and if yes, set the verdict to fail. This
requires a TTCN-3 implementation for:
– Representing a caching mechanism
– Representing the non-event detection

18

Caching testing implementation
type component SOAComponentType {

integer nbRequests = 0;
var RequestsType cachedRequests := {};
…

}

function serviceEventsTest() runs on SOAComponentType {

alt {
[] soaWebPort.receive(service_req_A) -> value incomingMsg {

if(isNotCached(incomingMsg.theRequest)) {
updateCache(theRequest);
servicePort.send(incomingMsg.theRequest);
chek_for_response_B(incomingMsg.theSessionId);
serviceEventsTest()

}
else {

log("has received a cached message_A");
setverdict(fail);
stop

}
[] …

}

10

19

TTCN-3 features for caching
• Caching is very easy to implement in TTCN-3

because:
– Easy building of lists or sets containing cached

complex messages.
– Easy lookup of the cache due to the powerful TTCN-3

matching mechanism for complex types.
– Possibility to select messages subject to caching.

function isNotCached(RequestType theRequest) runs on SOAComponentType return boolean {
var integer i;

for(i:=0; i < nbRequests; i:=i+1) {
if(match(theRequest, cachedRequests[i])) {

return false;
}

}

return true;
}

20

Correlation gap handling

• Temporal ordering problem. The web
application may place its requests to the
service in a different order as received
from the users.

• Potential lack of indicators to assign a
service request to a specific user.

• End-to-end tracking may work for a single
user, but does not work in the case of
multiple users.

11

21

Single user end to end tracking
message flow

User 1
Web

application service

Web request A

service request A

service response B

Web response B

22

Single user end to end tracking
testing architecture

TTCN-3
User 1 test
component

Web
application service

Web request A

service request A

service response B

Web response B

TTCN-3
Service test
component

service request A

service response B

12

23

Single user
TTCN-3 behavior implementation

• Simplified behavior using only the MTC

userWebPort.send(web_req_A);

soaWebPort.receive(service_req_A) -> value incomingMsg {

servicePort.send(incomingMsg.theRequest); //service req A

servicePort.receive(service_resp_B)

soaWebPort.send(service_resp_B) to incomingMsg.theSessionId

userWebPort.receive(web_resp_B) {

setverdict(pass)

24

Multiple user message flow
ideal case

TTCN-3
User 2 test
component

Web
application service

Web request A

service request A

service response B

Web response B

TTCN-3
Service test
component

service request A

service response B

TTCN-3
User 1 test
component

Web request C

service request C

service response D

Web response D

service request C

service response D

13

25

Multiple user message flow
one of many realistic cases

TTCN-3
User 2 test
component

Web
application service

Web request A

service request A

service response B

Web response B

TTCN-3
Service test
component

service request A

service response B

TTCN-3
User 1 test
component

Web request C

service request C

service response D

Web response D

service request C

service response D

26

Multiple user handling
• Each user is portrayed by a TTCN-3 parallel test component.
• The service handler is portrayed by a single TTCN-3 parallel test component.
• For each service request received the service handler performs two kinds of

checking:
– It checks if such a message was expected, if yes, then forwards it to the service
– It enforces the expected response from the service and if successful forwards

the service response to the web application.

• The MTC tells to the service handler what requests to expect but not in which order.
This is handled in a template:

template RequestsType expectedRequests :=
{ "service_req_A", "service_req_C"};

• At the end of the test, the service handler checks if the set of messages it was told to
expect by the MTC matches the set of actually received messages.

if(match(expectedRequests, receivedRequests)) {
setverdict(pass);

}
else {

setverdict(fail);
};

14

27

Service test component re-usability

• There are two ways to implement this
architecture:
– Hard code the service component with each

expected alternative message in a function.
– Make a generic service message handler that

checks if a received message is present in the
expected messages list.

28

Hard coded Service handler
function serviceEventsTest(RequestsType expectedRequests) runs on SOAComponentType {

var ServiceRequestWrapperType incomingMsg;

alt {
[] soaWebPort.receive(service_req_A) -> value incomingMsg {

servicePort.send(incomingMsg.theRequest);
check_response_B(incomingMsg.theSessionId);
serviceEventsTest(expectedRequests)

}
[] soaWebPort.receive(service_req_C) -> value incomingMsg {

servicePort.send(incomingMsg.theRequest);
check_response_D(incomingMsg.theSessionId);
serviceEventsTest(expectedRequests)

}
[] servCoordPort.receive("end test") {

if(match(expectedRequests, receivedRequests)) {
log("the expected service requests set does match the actual received requests");
setverdict(pass);

}
else {

log("the expected service requests set does NOT match the actual received requests");
setverdict(fail);

};
stop

} …

15

29

Generic Service handler
function serviceEventsTest(RequestsType expectedRequestResponses) runs on SOAComponentType {

var ServiceRequestWrapperType incomingMsg;
var ServiceResponse correspondingResponse;

alt {
[] soaWebPort.receive(?:ServiceRequestType) -> value incomingMsg {

if(wasExpected(incomingMsg.theRequest, expectedRequestResponses) {
servicePort.send(incomingMsg.theRequest);
correspondingResponse := getCorrespondingResponse(incomingMsg.theRequest,

expectedRequestResponses);
servicePort.receive(correspondingResponse);
serviceEventsTest(expectedRequestResponses)

}
[] servCoordPort.receive("end test") {

if(match(extractRequests(expectedRequestResponses), receivedRequests)) {
log("the expected service requests set does match the actual received requests");
setverdict(pass);

}
else {

log("the expected service requests set does NOT match the actual received requests");
setverdict(fail);

};
stop

}
}

}

30

Testcase re-usability
testcase SOABasedWebTesting() runs on MTCType system SystemComponentType {

var SOAComponentType theSOAComponent;
var UserComponentType theUserComponent[2];

theUserComponent[0] := UserComponentType.create;
theUserComponent[1] := UserComponentType.create;
theSOAComponent := SOAComponentType.create;

// map all ports here …

theSOAComponent.start(serviceEventsTest(theExpectedServiceRequests));

theUserComponent[0].start(User_1_behavior());
theUserComponent[1].start(User_2_behavior());

theUserComponent[0].done;
theUserComponent[1].done;

servCoordPort.send("end test");

all component.done;

log("testcase SOABasedWebTesting completed");
}

16

31

Advantages of the generic
service handler

• The service handler does not need to be
rewritten for each test campaign.

• Expected tuples of service requests/responses
can be implemented with:
– Templates for the sets of request/response tuples.
– Parametric functions that take the expected

Request/Response tuples sets.

• All of this thanks to the powerful TTCN-3
matching mechanism.

32

Using TTCN-3 to verify log files

• Perform the black box testing of the web
application from a user’s point of view.

• Use the services log files as part of the SUT:
– Decode the log files
– Create a TTCN-3 function containing a behavior to

verify log files automatically

• This approach moves the status of log files from
post-mortem analysis to a fully active status

• Advantages: it does not disturb the normal
operation of the SUT.

17

33

Use of log files in testing

WEB
server

TTCN-3 test suite

Web
Application

Test
component

service
Log
file

Service
Log file

Test
component

34

Conclusions

• Service Oriented Architecture presents
challenges and opportunities to accurately
pinpoint precise location of faults and quality
issues

• TTCN-3 matching mechanism and control
enables:
– Scalable multi-user matching of request/responses
– Precise detection and location of faults and quality of

service issues
– Reusable service-based test sets that can be

leveraged across disparate web applications
– In-process or log-based fault analysis

18

35

Contact information

• E-mail:
– bernard@site.uottawa.ca
– lpeyton@site.uottawa.ca
– xiong@site.uottawa.ca

• Further reading:
– http://www.site.uottawa.ca/~bernard/ttcn.html
– http://www.site.uottawa.ca/~lpeyton/

