Automated Testing of XML/SOAP based Web Services

Ina Schieferdecker, FOKUS, Berlin, Germany
Bernard Stepien, University of Ottawa, Canada

Abstract

Web services provide seamless connections from one software application to another over private intranets and
the Internet. The major communication protocol used is SOAP being mainly XML over HTTP. The exchanged
data follow precise format rules in the form of XML Document Type Definitions or more recently the proposed
XML Schemas.

Web service testing considers functionality and load aspects to check how a Web service performs for single
clients and scales as the number of clients accessing it increases. This paper discusses the automated testing of
Web services by use of the Testing and Test Control Notation TTCN-3. A mapping between XML data
descriptions to TTCN-3 data is presented to enable the automated derivation of test data. This is the basis for
functional and load tests of XML interfacesin TTCN-3. The paper describes the mapping rules and prototypical
tools for the development and execution of TTCN-3 tests for XML/SOAP based Web services.

1 Introduction

Web services are more and more used for the realization of distributed applications crossing domain
borders. However, the more Web services are used for central and/or business critical applications,
their functionality, performance and overall quality become key elements for their acceptance and
wide spread use. Consumers of Web services will want assurances that a Web service will not fail to
return aresponse in acertain time period. Even more, systematic testing of Web servicesis essential as
Web services can be very complex and hard to implement: although the syntax of the dataformatsis
described formally with XML, the semantics and possibl e interactions with the Web service and use
scenarios are described textually only. This encompasses the risk of misinterpretation and wrong
implementation. Therefore, testing afinal implementation within its target environment is essential to
assure the correctness and interoperability of a Web service.

Testing asystem is performed in order to assessits quality and to find errorsif existent. An error is
considered to be a discrepancy between observed or measured values provided by the system under
test and the specified or theoretically correct values. Testing isthe process of exercising or evaluating
a system or system component by manual or automated means to check that it satisfies specified
regquirements. Testing approves a quality level of atested system. The need for testing approaches
arose aready within the IT community: so-called interoperability events are used to evaluate and
launch certain XML interface technologies and Web services, to validate the specifications and to
check various implementations for their functionality and performance. However, the tests used at
interoperability events are not uniquely defined, so that one has to question on which basis
implementations are eval uated.

On contrary, there are test-engineering methods and a conformance testing methodology [11] within
telecommunication, which have evolved over years, are widely spread and successfully applied to
assess the correctness of protocol implementations. The standardized test specification language
TTCN-3[12] with its advanced features for test specification is expected to be applied to many testing
applications that were not previously opento TTCN. TTCN-3 has been defined to be applicable for
protocol testing (including mobile and Internet protocols), service testing (including supplementary
services), module testing, testing of CORBA based platforms, API testing etc. TTCN-3is not
restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

The application of TTCN-3 for testing specific target technologies such as for mobile protocol stacks,
CORBA bhased systems or Web service can be made effective by allowing the direct use of the data

definitions of the system to be tested within the TTCN-3 test specification: ASN.1 (Abstract Syntax
Notation One) for protocol stacks, IDL (Interface Definition Language) for CORBA (Common Object
Request Broker Architecture) and XML (Extended Markup Language) for Web services. TTCN-3
predefines a mapping for ASN.1 to TTCN-3 in the standard itself [12]. A mapping for IDL has been
defined in [14]. This paper presents the mapping of XML to TTCN-3 as a basis for automated Web
services tests with TTCN-3.

In Section 1, an overview on Web services, XML and SOAP and a discussion on testing Web services
are given. Automated testing of Web services with TTCN-3 is presented in Section 2. In particular, the
mapping rulesfor XML DTDs (Document Type Definitions) and for XML Schemas are described.
Finally, atool environment for Web service tests is shown in Section 4. Conclusions finish the paper.

2 Web services, XML and SOAP

A Web serviceis a URL-addressable resource returning information in response to client requests.
Web services are integrated into other applications or Web sites, even though they exist on other
servers. So for example, a Web site providing quotes for car insurance could make requests behind the
scenes to a Web service to get the estimated value of a particular car model and to another Web
service to get the current interest rate.

SOAP Request
SOAP Envelope

SOAP Header
(optional)

SOAP Body

o

XML

=

J
&" SOAP Response
@ el SOAP Envelope
= - SOAP Header
Client(s) (optional)
SOAP Body

Figurel. Principa Structure of aWeb service

|

n
t
e
r

n
e
t

A Web service (see Figure 1) can be seen as a Web site that provides a programmatic interface using
the communication protocol SOAP, the Simple Object Access Protocol: operations are called using
HTTP and XML (SOAP) and results are returned using HTTP and XML (SOAP). The operations are
described in XML with the Web Service Description Language (WSDL). Web services can be |located
via the Universal Description, Discovery and Integration (UDDI) based registry of services, which
will not be considered in this paper.

2.1 XML DTDs and Schemas

XML stands for Extensible Markup Language and as its name indicates, the prime purpose of XML
was for the marking up of documents. Marking up a document consist in wrapping specific portions of
text in tags that convey a meaning and thus making it easier to locate them and also manipulating a
document based on these tags or on their attributes. Attributes are special annotations associated to a
tag that can be used to refine a search.

An XML document has with its tags and attributes a self-documenting property that has been rapidly
considered for a number of other applications than document markup. Thisis the case of configuration
files for software but also telecommunication applications for transferring control or application data
like for example to Web pages.

XML follows a precise syntax and allows for checking well-formedness and conformance to a
grammar using a Document Type Description (DTD) that could either be interpreted as a BNF like
grammar specification or in some cases as adatatype. A DTD consists of a set of production rulesfor
elements that have a name and describe its content as empty, any, mixed, choice or sequence. An
element can also contain attributes that are declared separately. The four main conceptsin XML DTDs
are

- Thebasic datatypes are CDATA and PCDATA, i.e. pure text and mixed text with marked up
portions of it.

- There are two basic structured types: sequences and choices.
- Thereisthe concept of zero or one, zero or many and one and many elements.
- Thereare attributes that also carry the concept of enumerated type.

While DTDs are appropriate for marking up text, they are very limited for other applications because
the two basic types CDATA and PCDATA are too general for any precise data typing asin other
widely used programming languages. Consequently, the new XML data typing model called Schema
was devel oped.

First of all, XML schemas[3][4] are defined using the same basic XML syntax of tags and end tags
and actually follow awell-defined DTD [7]. Second, XML schemas are true data types and contain
many of the data typing features found in most of the recent high level programming languages. The
central concept of XML schemas is the building block approach by defining components that consist
themselves of type definitions and element declarations. But most important is the fact that XML
Schemas are very flexible and allow to describe the same rules in many different ways depending on
the use of the following structuring concepts:

- Provide for primitive data typing including byte, date, integer, string, ...
- Simple and complex types

- Typeinheritance

- Restrictions and extensions

- Global and local definitions

- Embedded, flat catalog and named type structuring constructs

XML schemas have various primitive data types like string, Boolean, decimal, float, double, duration,
dateTime, time, date, etc. A simple type definition is used to establish a value space, alexical space of
atype and also to name a specific value space. Complex data types are used to specify sequences,
choices and unions.

While XML schemas are close to traditional programming languages data types where a complex type
is defined in terms of field type and field names, they also have two other constructs that are not found
elsewhere, namely type references and local definitions. These constructs allow for three basic waysto
specify a schema: embedded schema, flat catalog, named types. This paper uses aweather service as
an example: the weather is given for alocation being acity in acountry. It is described in terms of the
temperature, the barometric pressure and further, textually described conditions (see Figure 2).

Embedded schema

<schema>
<el ement name="weat her" >
<conpl exType>
<sequence>
<el enent nane="| ocation">
<conpl exType >
<sequence>
<si npl eType nane="city">
<restriction base="string">
<pattern val ue="[a-zA-Z]"/>
</restriction>
</ si npl eType>
<el ement name="country" type="string"/>
</ sequence>
</ conpl exType>
</ el ement >
<el enment name="tenperature" type="integer"/>
<el enent nanme="baronetric_pressure" type="integer"/>
<el ement nane="condi ti ons" type="string"/>
</ sequence>
</ conpl exType>
</ el enent >
</ schema>

Named types

<schema>
<conpl exType nanme="weat her Type" >
<sequence>
<el enent name="| ocation" type="|ocationType"/>
<el enent name="tenperature" type="i nteger”/ >
<el ement name="baronetric_pressure" type="integer"/>
<el ement name="condi tions" type="string"/>
</ sequence>
</ conpl exType>
<conpl exType name="|ocationType" >
<sequence>
<el ement nanme="city" type="cityType"/>
<el ement name="country" type="string"/>
</ sequence>
</ conpl exType>
<si npl eType nane="cityType">
<restriction base="string">
<pattern val ue="[a-zA-Z]"/>
</restriction>
</ si npl eType>
<el enent nanme="weat her" type="weat her Type"/>
</ schema>

Flat catalog

<schema>
<el enent nane="tenperature" type="integer"/>
<el enent nanme="baronetric_pressure" type="integer"/>
<el ement nane="condi tions" type="string"/>
<el enent name="country" type="string"/>
<si npl eType name="city">
<restriction base="string">
<pattern val ue="[a-zA-Z]"/>
</restriction>
</ si npl eType>
<el ement nanme="| ocation">
<conpl exType >
<sequence>
<el ement ref="city"/>
<el enent ref="country"/>
</ sequence>
</ conpl exType>
</ el ement >
<el enent nane="weat her">
<conpl exType>
<sequence>
<el ement ref="location"/>
<el ement ref="tenperature"/>
<el ement ref="baronetric_pressure"/>
<el ement ref="conditions"/>
</ sequence>
</ conpl exType>
</ el ement >
</ schena>

Figure2. XML Schema for the Weather Service

The embedded method derives from the nested tags mechanism of XML itself. In this method,

elements are defined where they are used inside the hierarchy. Consequently there is no need to name

alocal type - it is called an anonymous type. Eventually the leaves of the tree that constitutes an

embedded type definition are composed exclusively of either primitive types or already defined types.
Thisimpliesthat alocal definition can be used only once and that there is no need for reusability in a

specific application. The flat catalog approach uses the concept of substitution. Each element is
defined by areference to another element declaration. Named types are the closest to traditional
computer languages data typing. Each element has a name and a type name and each subtypeis

defined separately.

In addition, XML schemas provide two inheritance mechanisms to restrict and extend types. In Figure

3, weather is extended to EuroWeather with an additional attribute for the EuroLanguage. In the
restriction, two fields are implicitly removed by setting their maximal occurrences to zero.

<conpl exType name="Eur oVeat her" >
<si npl eCont ent >
<extensi on base="weat her">

</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

<attribute nane="| anguage" type="EurolLanguages”/ >

<conpl exType name="| ocati onWeat her">
<conpl exCont ent >
<restriction base="Eur oWeat her">
<sequence>
<el enent nane="city" type="string" nmaxCccurs="0"/>
<el ement nanme="country" type="string" maxCccurs="0"/>
</ sequence>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Figure3. Extension and restriction for the Weather Service

2.2 SOAP

SOAP is asimple mechanism for exchanging structured and typed information between peersin a
decentralized distributed environment using XML [3][9][8]. SOAP as anew technology to support
server-to-server communication competes with other distributed computing technologies including
DCOM, Corba, RMI, and EDI. Its advantages are a light-weight implementation, simplicity, open-
standards origins and platform independence.

The protocol consists only of asingle HTTP request and a corresponding response between a sender
and areceiver but that can optionally follow a path of relays called nodes that each can play arole that
is specified in the SOAP envelope. A Soap request isan HTTP POST request. The data part consists
of:

- the SOAP envelope
- the SOAP binding framework
- the SOAP encoding rules
- the SOAP RPC representation called the body
The SOAP part is encoded again as an XML document like in Figure 4.

<Body>
<get Weat her >
<l ocati on>
<city> Berlin </city>
<country> Germany </country>
</l ocation>
<ti mef rame>
<dat e> 24.12.2001 </date>
<frone 12: 00 </from>
<to> 20:00 </to>
</tineframe>
</ get W\eat her >
</ Body>

Figure4. A Weather Service request

2.3 Testing of Web services

Testing of Web services (as for any other technology or system) is useful to prevent late detection of
errors (possibly by dissatisfied users), what typically requires complex and costly repairs. Testing
enables the detection of errors and the evaluation and approval of system qualities beforehand. An
automated test approach helpsin particular to efficiently repeat tests whenever needed for new system
releases in order to assure the fulfilment of established system featuresin the new release. First
approaches towards automated testing with proprietary test solutions exist [15], however, with such
tools oneis bound to the specific tool and its features and capabilities.

Specification-based automated testing, where abstract test specifications independent of the concrete
system to be tested and independent of the test platform are used, are superior to proprietary
technigues: they improve the transparency of the test process, increase the objectiveness of the tests,
and make test results comparable. Thisis mainly due to the fact that abstract test specifications are
defined in an unambiguous, standardized notation, which is easier to understand, document,
communicate and to discuss.

However, we go beyond “classical” approaches towards specification-based automated testing, which
till now mainly concentrate on the automated test implementation and execution: we consider test
generation aspects as well as the efficient reuse of test proceduresin ahierarchy of tests.

Testing of Web services has to target three aspects: the discovery of Web services (i.e. UDDI being
not considered here), the data format exchanged (i.e. WSDL), and request/response mechanisms (i.e.
SOAP). The data format and request/response mechanisms can be tested within one test approach: by
invoking requests and observing responses with test data representing valid and invalid data formats.

Since a Web service is aremote application, which will be accessed by multiple users, not only
functionality in terms of sequences of request/response and performance in terms of response time, but
also scalability in terms of functionality and performance under load conditions matters. Therefore we
have developed a hierarchy of test settings starting with separate functional tests for the individual
services of aWeb service, to a service interaction test checking the simultaneous request of different

services, to a separate load tests for the individual services up to a combined load test for a mixture of
requests for different services (see Figure 5). All the tests return not only atest verdict but also the
response times for the individual requests.

Separate Service
Functional Tests Interaction Test
(ﬁ Weather
&g}) <: > Test Weather
< Test

(\ Euro (\

<

N Weather
Location

)%
po e

Euro
Weather
Location
Test

Separate Service Mixture
Load Tests Load Test
&
£B = [=
9’ ' Mo
) P & “
£ wengor

Euro
Weather
ocation
Weather
Test

),
&2 || [
Test

Figure5. Test hierarchy for Web services

3 Test automation with TTCN-3

Our means to automate Web service testing is the Testing and Test Control Notation TTCN-3 [11],
which has been devel oped by the European Telecommunication Standards Institute ETSI not only for
telecommunication but also for software and data communication systems. Like any other
communication-based system, Web services are natural candidates for testing using TTCN-3.

3.1 Overview on TTCN-3

TTCN-3 is alanguage to define test procedures to be used for black-box testing of distributed systems.
Stimuli are given to the system under test (SUT), its reactions are observed and compared with the
expected ones. On the basis of this comparison, the subsequent test behaviour is determined or the test
verdict is assigned. If expected and observed responses differ, then afault has been discovered which
isindicated by atest verdict fail. A successful test isindicated by atest verdict pass.

TTCN-3 alows an easy and efficient description of complex distributed test behaviour in terms of
sequences, aternatives, loops and parallel stimuli and responses. Stimuli and responses are exchanged
at the interfaces of the system under test, which are defined as a collection of ports. The test system
can use a number of test components to perform test proceduresin parallel. Likewise to the interfaces
of the system under test, the interfaces of the test components are described as ports.

TTCN-3isamodular language and has a similar look and feel to atypical programming language.
However, in addition to the typical programming constructs, it contains all the important features
necessary to specify test procedures and campaigns for functional, conformance, interoperability, load
and scalability tests like test verdicts, matching mechanisms to compare the reactions of the SUT with
the expected range of values, timer handling, distributed test components, ability to specify encoding
information, synchronous and asynchronous communication, and monitoring.

A TTCN-3 test specification consists of four main parts:

- typedefinitions for test data structures

- templates definitions for concrete test data

- function and test case definitions for test behavior
control definitions for the execution of test cases

The data type definitions are generated from the corresponding XML schema of the Web service to be
tested. The templates are based on the corresponding data types and the behaviour of the service being
tested that consist of sequences of requests and responses.

(2) Generation of

XML (1) Generation of

e drasuetre <. (3) Genration of
test behavior

(5) Adaptor o
acc. to the (4) Compilation
mapping rules to Executable Tests

- é Test
Component
£ A i
-
T
Web o}
Service R Test
System

Figure6. Testing of Web serviceswith TTCN-3

An approach towards automated testing of Web services with TTCN-3 requires therefore the
following steps (see Figure 6).

(1) The structure of thetest datais derived from the XML definition (see Section 3.2).

(2) Test data(i.e. the concrete values for test stimuli and observations) is generated (see
Section 3.4).

(3) Test behaviour (i.e. the sequences of test stimuli and observations) is generated (see
Section 3.5).

(4) Theresulting TTCN-3 module is compiled to executable code.

(5) Thetests are performed using atest adaptor, which follows the mapping rules for test
data structure to encode and decode the Web service requests and replies.

Currently, steps (1) and (4) can be automated with the help of tools as described in Section 4. The
automation for step (2) and (3) requires further work: for this step mainly test generation approaches
based on finite state machines or labelled transition systems will be used. The test adaptor for step (5)
has to be developed only once, so that it can be used for any Web service and TTCN-3 test following
the mapping rules from step (1).

3.2 Generating Test Data Structure: Mapping XML to TTCN-3

The target of the mapping of XML to TTCN-3 isthe integral type system of TTCN-3, which issimilar
to ASN.1 in terms of availability of basic and structured types. The type system contains basic types
(integer, float, boolean), basic string types (bitstring, hexstring, octetstring, charstring, universal
charstring) and user-defined structured types (record, record of, set, set of, enumerated, union). XML
and TTCN-3 data types are somewhat similar conceptually but because of their differences in purpose
and structure the actual mappings require some transformations that are more than pro-format
trandations. While DTDs and Schemas have common concepts, there are basic differences that need
to be addressed separately when defining the mapping.

3.2.1 Mapping XML DTDs

Using data typing concepts, we can divide the mapping problem between mapping predefined and user
defined structured data types. Then, when handling user defined data types we can further divide the
mapping into mapping attributes and mapping elements. Finally, we need to address the problem of
the influence of attributes on the mapping of elements.

The limited set of predefined typesin DTDs, i.e. CDATA, PCDATA, and token types, map directly to
TTCN-3 string types and enumerations.

XML attributes can be mapped directly into fields of TTCN-3 record types (see Figure 7). The actual
attribute name becomes the field name, while the attribute definition part can be handled in two
different ways depending on the nature of the definition, which can either be of the string type or the
enumerated type. For string type, we merely used the charstring type while for enumerations we must
generate a type name using the attribute name and then create a separate TTCN-3 enumerated type
using that name.

type record | ocation_type

charstring city,
country_type country

<! ELEMENT | ocation (EMPTY)> }

<! ATTLI ST | ocati on
city #CDATA type enunerated country_type
country (germany, france, canada) > {

ger many,
france,
canada

Figure7. Mapping XML attributes

Another consideration is the fact that XML attributes can contain any values including white space.
Sincethisisnot allowed in TTCN-3 white space or illegal characters need to be converted to some
legal characters such as underscores or some explicit name.

The mapping of DTDs Element declarations for User defined types to TTCN-3 data types needs to
address the following problems:

- What is the meaning of an element?

- How do we interpret the children (sequence and choice) of the content specification?
- What is the meaning of a name in the content specification?

- Theimpact of attributes on the mapping of the DTD choice construct.

Element declarations can be mapped to types while the content specification corresponds to field
declarationsin a TTCN-3 data type. However, the basic difference between the two representationsis
that in TTCN-3 field declarations consist of field type-field name pairs while for DTDs the names
found in the content specifications consists only of one name that needs to be interpreted either asa
field name or field type but obviously not both at the same time. Thus we have decided to retain the
content names as field name and to generate a type name by appending the string “_type” to afield
name. However, when the content specification of an element consists only of a predefined type we
will not generate a type name using the field name but use directly the predefined type name to
construct the type name — field name tuple. Also, sincethe DTD PCDATA and CDATA types are too
imprecise, we heed to choose more appropriate predefined types for each field.

DTD children can be mapped directly: a DTD sequence can be mapped to a TTCN-3 record type while
a choice can be mapped to a TTCN-3 union. However, the later mapping must be further decomposed
if the element has also attributes as will be explained in a section further down.

type record weather_type

<! ELEMENT weat her (location, tenperature,
baroneti c_pressure, conditions)> { | ti t | ti
<! ELEMENT | ocati on (EMPTY)> f?gzt ! ?2— ngt u?ga ron,
<! ELEMENT tenperature (#PCATA)> f1 oat ba?gmet ic p’ressure
<! ELEMENT baronetric_pressure (#PCDATA)> charstring conditions ’
<! ELEMENT condi tions (#PCATA) > }

Figure8. Mapping XML elements

Please note that an element that is defined as a choice of elements cannot always be mapped directly to
a TTCN-3 union. This depends whether the element contains also an attribute list. The attribute list
can be mapped only to a TTCN-3 record type. Consequently the only way to resolve this conflict isto
remove the choice definition and create a separate data type for the choice part of the element
declaration. The name of this data type will need to be made up since there is no corresponding name
to befoundinthe DTD itself.

type record food_type
{

float price,
choice_type_1 choice_field_1
<I ELEMENT food (vegetables, neat, %ype uni on choi ce_type_1
dai ry_products) > { - -
<! ATTLI ST food price > veget abl e_type vegetabl es,

nmeat _type neat,
dai ry_products_type
dai ry_products

Figure9. Specific mapping for XML choice elements with attributes

3.2.2 Mapping XML Schemas

Mapping XML schemas to TTCN-3 is different to the mapping of DTDs because in schemas thereis
an explicit concept of types and there are extension and restriction mechanisms for types. In addition,
XML schemas are defined with different approaches (e.g. embedded, flat catalog and named types)
that have no equivalent in DTDs.

XML schemas have awide variety of predefined types and subtypes. For example, Schemas have an
integer type but also countless variations about integers such as positive integers and negative integers,
etc. These map mainly to TTCN-3 basic types together with additional attributes to reflect the specific
variation of abasic type, e.g. an attribute to indicate positive or negative integers. Further, some
primitive types such as Time and Date are mapped to TTCN-3 records.

Smple types are map to TTCN-3 basic types with the respective lexical restrictions represented by a
range of values. The XML list construct is mapped to a TTCN-3 array and enumerations to
enumerated types with the same restrictions as for the mapping of DTD enumerations.

Since there is no inheritance mechanism in TTCN-3 data types, XML extensions and restriction
constructs must be mapped to a duplication of the definition of the inherited type and the potential
conversion of its complex kind in the case of choice constructs. This means that if the current type
being defined is a sequence and the inherited type is a choice, we need to create a new field with
inherited type while if the inherited type is a sequence as well, we merely concatenate the fields of the
inherited type with those of the target type. The same situation applies to the case of a defined choice
type that inherits a sequence type. The restriction mechanism consists in removing fields in the
inheriting type to be mapped.

The named type approach has a one to one mapping with TTCN-3 data types since both have the
concept of field name and field type name. The element name becomes the field name and the element
type becomes the field type name.

<schema>
<conpl exType name="|ocati onType" >
<sequence>
<el ement nanme="city" type="cityType"/>
<el ement nanme="country" type="string"/>
</ sequence>
</ conpl exType>
</ schema>

—

type record | ocationType
{
cityType city,
charstring country

}

Figure 10. Mapping for named type XML schema

The main construct of XML schema embedded type approach isthe local type definition. Thereisno
corresponding construct in TTCN-3. Consequently, the local definition must be taken out of the type
definition to be defined separately with a new generated type name that is al'so used as afield type

name for the element being mapped to.

<schena>
<el ement name="weat her ">
<conpl exType>
<sequence>
<el ement name="| ocation">
<conpl exType >
<sequence>
<si npl eType name="city">
<restriction base="string">
<pattern value="[a-zA-Z]"/>
</restriction>
</ si npl eType>
<el ement name="country" type="string"/>
</ sequence>
</ conpl exType>
</ el enent >
<el ement name="t enperature" type="integer"/>
<el ement name="baronetric_pressure" type="integer"/>
<el ement name="conditions" type="string"/>
</ sequence>
</ conpl exType>
</ el enent >
</ schema>

type record weat her

| ocation_Type | ocation,
integer tenperature,

integer baronetric_pressure,
charstring conditions

type record |l ocation_Type

{

charstring country

charstring city ("a".."z","A".."

z'),

Figure 11. Mapping for enbedded XML schema

The flat catalogue approach consists in type substitution. Thisis different from named typesand in a
way issimilar to the DTD approach where each name found in the content specification refersto a
separate element declaration. The difference is however that the referenced separate element
declaration may be further defined using one of the three different approaches. Consequently, if the
separate element declaration is using a named type approach we merely use its type for our current
field type name, but if the referenced element uses the flat catalogue or the embedded style we need

again to generate a type name.

<schema>

<el ement nane="weat her">
<conpl exType>

</ el enent >
</ schema>

<sequence>
<el ement ref="location"/>
<el ement ref="tenperature"/>
<el ement ref="barometric_pressure"/>
<el ement ref="conditions"/>

</ sequence>
</ conpl exType>

—

type record weat her

| ocati on_Type | ocati on,
integer tenperature,

integer baronetric_pressure,
charstring conditions

Figure 12. Mapping for flat catalogue XML schema

3.3 Generating test configuration

In addition to the structure of the test data, the test configuration in terms of test components and ports
have to be generated (see Figure 13). We use a message port to access a Web service. This port can
transfer request and response messages. Furthermore, we use avarying set of parallel test components
(PTC) to represent separate functional tests, service interaction tests, separate |oad tests and load tests
for service mixtures. Every PTC like the SUT has a port to represent the Web service interface. The
PTCs use the same basic test functions to stimuli requests and observe responses. The main test
component (MTC) controls the dynamic creation of the test components according to the kind of tests.
The tests with several components are parameterized, so that the actual number of test components
emulating the use of a certain service vary depending on the current value of the parameters.

type port \eather Service message {
out weat her Request ;
in weather Response;

}

type conponent SUTType {
port Weat her Servi ce weat herservice_port;

}

type conponent PTCType {
port Weat her Servi ce weat herservi ce_port;
tinmer T_wait := 1.0;

}
type conponent MICType {
}

Figure 13. Test components

For the main kinds of tests shown in Figure 5 afixed test case definition being independent of the
concrete Web service to be tested can be defined. They follow all the same procedure: the MTC
creates PTCs according to the services to be tested and according to the load to be generated. Every
PTC gets a concrete test function assigned and is started. Afterwards, the MTC awaits the termination
of all PTCs. The overall test verdict is the accumulated test verdict of all the PTCs.

testcase ServicelnteractionTest
(intarray Service)

testcase Separat eFuncti onal Test runs on MICType system SUTType
(integer Service) { var integer serviceno:= sizeof(Service);
Euns on MICType system SUTType var PTCType PT(serviceno];
var PTCType PTC = PTCType. creat e; Eor (var integer j:=1; j<= serviceno; j:= j+1)

PTC. start (Separ at eFuncti onal (Service));

al| conponent . done PTC[j]:= PTCType. create;

PTCj].start(SeparateFunctional (Service[j]));

al | conponent. done

}

test case M xedServi ceLoadTest
(intarray Service, Load)

test case Separat eLoadTest runs on MICType system SUTType
(integer Service, integer Load) {
runs on MICType system SUTType var integer serviceno:= sizeof(Service);
for (var integer j:=1; j<= serviceno; j:= j+1)
var PTCType PT(Load]; {
for (var integer j:=1; j<= Load; j:=j+1) var PTCType PT(Load[j]];
{) for (var integer k:=1; k<= Load[j]; k:= k+1)
PTC[j]:= PTCType. create; {
PTC[j].start (SeparateFunctional (Service)); PTC k] : = PTCType. creat e;

PTC k] . start (Separ at eFunctional (Service[j]));
al | conponent. done }

al | conponent. done

Figure 14. Test casesfor the different kinds of tests— the Test Framework

The generic test cases can be controlled with a general test case control mechanism like shown in
Figure 15.

nodul e Test FrameWork {
type record ServicelLoad {

i nteger Service, /'l the service to be tested

integer Load /1 the maximal load for the service
external const ServicelLoad Services[]; /1 array of services to be tested
external const integer increase; /'l load increase for the load tests
control {

var integer serviceno:= sizeof (Services);

var verdi cttype ServicesResul t[serviceno]; I/ test result per service

for (var integer j:=1; j<=serviceno; j:=j+1) { /1 functional test per service

ServicesResul t[j]: = execute(SeparateFunctional Test(Services[j].Service));

for (var integer j:=1; j<=serviceno; j:=j+1) { /1l load test per service
if (ServicesResult[j] == pass) {
for (var integer k:= increase; k <= Services[j].Load; j:= j+increase) {

I/ load tests with increasing | oad
if (ServicesResult[j] == pass) {
ServicesResul t[j]:= execut e(SeparatelLoadTest (Services[j].Service, k));

Py oo o}

var verdicttype ServicesM xResul t[serviceno][serviceno]; /'l test result per service pair

for (var integer j:=1; j<=serviceno; j:=j+1) { /1 service interaction test per service pair
if (ServicesResult[j] == pass) {

for (var integer k:=1; k<=serviceno; k:=k+1) {
if (ServicesResult[k] == pass) {
const integer ServicePair[2]:= {Services[j].Service, Services[k].Service };
Servi cesM xResul t[j][k]: = execute(ServicelnteractionTest(ServicePair));

Py}

for (var integer j:=1; j<=serviceno; j:=j+1) { /1 mxture |oad test per service pair
for (var integer k:=1; k<=serviceno; k:=k+1) {
if (ServicesMxResult[j][k] == pass) {
const integer ServicePair[2]:= {Services[j].Service, Services[k].Service };
for (var integer |:= increase; | <= Services[j].Load; |:=1+increase) {
I/ load tests with increasing | oad
for (var integer m= increase; m<= Services[k].Load; m = mtincrease) {

const integer PairLoad[2]:={ |, m};
Servi cesM xResul t[j][k]: = execut e(M xedSer vi ceLoadTest (Servi cePair, PairLoad));

Py r oy}

Figure 15. Execution Control for the Test Framework

With the control part at first, the functionality of each service offered by aWeb serviceistested. Then,
load tests for the successfully tested services are performed with an increasing load. Afterwards,
service pairs are taken in order to test for service interaction. Finally, the successfully tested service
pairs are tested for increasing load. Both, the services to be tested, the maximal load for a service test
and the increase for the load tests have to be determined by test execution only — these values are
declared as external constants to the TTCN-3 modul e representing the Test Framework. The control
part can be enhanced to reflect other test combinations for e.g. not only tests for service pairs but
service sets.

3.4 Generating test data

Templates are used to define the concrete test data to be used for requests to and responses from the
Web service. Figure 16 contains example templates to request the weather in Berlin and London and
to receive respective responses. The response template uses patterns to indicate ranges of acceptable
values. For example, the temperature should be given in the response, but the concrete value is open.

We work on approaches towards the automated generation of test data by using the classification tree
method [16] being implemented in the CTE tool. This method enables the generation of exhaustive
templates for requests, however, needs to be extended to enable the generation of response templates
with patterns as well.

tenpl at e weat her Request get WatherBerlin : =

{
location := {city := "berlin", country := "germany"},
tineframe : = { dateWather := today,
fronli me : = noon,
toTi ne : = m dni ght
}
b
tenpl at e weat her Request get Weat her London nodi fi es get WatherBerlin : =
{
location := {city := "london", country := "england"}
b
tenpl at e weat her Response get _response(charstring theCity, charstring theCountry) :
{
location := {city := theCty, country := theCountry},
tineframe := 2,
tenmperature := ?,
conditions := ?,
baronetric_pressure := ?
b

Figure16. Test datafor the Weather service

3.5 Basic test function for the weather service
The basic test function for the weather serviceis depicted in Figure 17.

function SeparateFunctional (i nteger Service)
runs on PTCType {
map(sel f: weatherservice_port, system weatherservice_port);
if (Service == 1) //nornal weather service
{
weat her servi ce_port. send(get Weat her London) ;
| og(get Weat her London); T_wait.start;
alt
[1 weatherservice_port.receive(get_response("london", "england"))
| og(get _response(”l ondon", "england")); verdict.set(pass)
[1 weatherservice_port.receive //unexpected response
{
| og(“unexpect ed response”); verdict.set(fail)
[1 T_wait.timeout //no response
{
log(“tinmeout”); verdict.set(fail)
}
}
else ...
stop;
}

Figure17. Basic test function for the Weather service

It consists mainly of apair of request and response to the Weather service. If the expected responseis
received, apassis assigned. In addition, unexpected and no response are handled — these cases |ead to
fail. The log information logs received response or the timeout and the respective time stamp.

The map operation at the beginning enables the communication of the PTC to the Weather service.

Theif statement allows to differentiate the test behaviour according to the service to be tested.
This basic test function is specific to the Web service to be tested, but has to be developed once and

can then be reused for the various types of tests presented above.

4 The tool environment for Web service tests with TTCN-3

Thetool environment for automated testing of Web services with TTCN-3 uses the TTCN-3 to Java
compiler TTthree[17], an XML to TTCN-3 conversion tool and atest adaptor for XML/SOAP
interfaces.

Since there are both XML DTDs and XML schemas it would appear that we would have to build two
separate tools to handle the automated mapping of XML type definitions. However, there are at least
three reasons to avoid this duplication:

- Thereexist dready DTD to Schema conversion tools [6]

- Most of XML applications where TTCN-3 can be useful as atesting tool use only XML
schemas. Thisisthe case for the Simple Object Access Protocol.

- XML schemas can be parsed directly using off the shelf parsers like DOM because an XML
schemais defined with the same principle of tags and attributes of XML documents[5].

We have therefore devel oped a conversion tool using the XML Document Object Model (DOM). The
parsing step can be reduced to the following few statements when using the Xerces API:

DOVPar ser parser = new DOWPar ser () ;
par ser . par se(XM_schenaFi | eNan®) ;
Docunent | npl docunent = (Docunent!| npl) parser. get Docurent () ;

The resulting parse tree can be walked through using the Node cl ass:

Node n;
for(n=rootDoc.getFirstChild(); n !'= null; n=n.getNextSibling())
{
i f(1sASchemaEl emrent (n. get NodeNane()))
ProcessEl enent (n, kind, rootDoc);
el se if (I sASchemaConpl exType(n. get NodeNare()))
ProcessConpl exType(n, null, kind, rootDoc);
el se if(1sASchemaSi npl eType(n. get NodeNane()))
ProcessSi npl eType(n, Kind);
el se if(IsASchenmaAttribute(n. get NodeNanme()))
ProcessAttri bute(n, kind, rootDoc);

}

where the methods | sA...consist merely in locating the node that has the appropriate tag name like for
example:

stati c bool ean | sASchenaEl enent (String theNane)

{
i f(StripDonai n(theNane). equal s("el enent"))
return true;
return fal se;
}

For each type of XML schema construct there is a corresponding processing method like for example
ProcessEl enent (..) that consistsin two main activities: getting the value of attributes and further
processing the subtree for more tags:

voi d ProcessEl enent (Node n, int kind, Node theResultNode)
{

int nbAttribs;

Node anAttrib;

String theFi el dNane = Get Attri buteVal ue(n, "name");
String theTypeName = Get Attri buteValue(n, "type");
String theRef Name = Get AttributeVal ue(n, "ref");

ProcessChil dren(n, theFiel dNane+"_Type", TOP_LEVEL, root);

Dueto the fact that a number of types have to be extracted from the body of elements in the case of
local definitions or mixed sequence/choice constructs that result from the interference of attributes, the
conversion to TTCN-3 is performed in two steps: (1) type extraction and (2) type translation. DOM
enables to construct a new tree of XML definitions. This tree can then then be parsed for the
trandlation step.

The adaptor for XML/SOAP interfaces realizes the functions of the TTCN-3 runtime interface (TRI
[18]) and the TTCN-3 control interfaces (TCI [19]). It is derived from the basic adaptor provided with
the runtime environment belonging to TTthree. The adaptor performs the adaptation of the compiled
TTCN-3 code to the target test device (in our case a Solaris workstation, Windows or Linux PC) and
covers the test system user interface, test execution control, test event logging, as well as
communication with the SUT and timer implementation. For the communication with the SUT, i.e. the
Web service, SOAP request messages are encoded from and SOAP response messages are decoded to
TTCN-3 data used in the test specification. The adaptor is generic and enables the testing of any Web
service using XML/SOAP interfaces. In order to use this adaptor the mapping rules provided in
Section 3.2 have to be respected by the tests being defined in TTCN-3.

5 Conclusion

Testing Web services presents a variety of new and interesting challenges. In particular, test
automation will be essential to a sound and efficient Web service development process, for the
assessment of the functionality, performance and scalability of Web services as well asfor the
approval and acceptance of Web services devel oped by application providers.

This paper presents aflexible test framework for Web services using the Testing and Test Control
Notation TTCN-3. The test framework is developed for Web services with XML/SOAP interfaces and
provides functional, service interaction, and load tests with flexible test configurations and varying
load.

The provided test hierarchy of predefined kinds of testsis generic asit can be used for arbitrary Web
services. The specifics of aconcrete Web service are handled within basic test functions emulating the
use of the services offered by a Web service. These basic test functions are reused by the kinds of tests
provided in the test hierarchy.

A further key element of the test framework is the automated tranglation of XML datato TTCN-3, so
that test skeletons can be generated directly from the specification of the Web service. For that, XML
DTDs and Schemas have been analysed and mapping rules have been developed. These rules are
realized by a conversion tool from XML to TTCN-3. The conversion tool together with the TTCN-3
compiler and execution environment T Tthree provides us a complete tool chain for test data type
generation, test development, implementation and execution. The test framework has already been
used successfully for selected Web services.

Future work will further elaborate methods for test data generation. In particular, the classification tree
method will be investigated for potential extension towards the generation of templates for SOAP
responses. In addition, the test framework will be enhanced to deal with further elements of Web
services like the specifics of WSDL and UDDI.

References

[1] WB3C: Extensible Markup Language (XML) 1.0, W3C Recommendation, 6 October 2000,
http://mww.w3.org/ TR/2000/REC-xml-20001006

[2] WB3C: XML Schema Part 0: Primer, W3C Recommendations, 2 May 2001, http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502

[3] WB3C: XML Schema Part 1: Sructures, W3C Recommendation 2 May 2001 http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/

[4] WB3C: XML Schema Part 2: Datatypes, W3C Recommendation 02 May 2001 http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/

[5] R. Jdiffe: The XML Schema Specification in Context http://www.ascc.net/~ricko/X ML Schemal nContext.html

[6] WB3C: A Conversion Tool from DTD to XML Schema, http://www.w3.0rg/2000/04/schema_hack/

[7] WB3C: XML Schema DTD : DTD for Schemas (non-normative) http://www.w3.org/TR/2001/PR-xml schema: 1-
20010316/#nonnormative-schemaDTD

[8] WB3C: Smple abject Access Protocol (SOAP) 1.1, W3C Note 08 May 2000, http://www.w3.0rg/TR/SOAP

[9] B.McLaughlin: Java & XML, 2nd edition, O'Reilly, Chapter 12: SOAP.

[10] Don Box MSDN magazine on the Web: A Young person's guide tot the simple object access protocol: SOAP
increases interoperability accross platforms and languages,
http://msdn.microsoft.com/msdnmag/nettop.asp?page=/msdnmagy/i ssues/0300/soap/soap.asp& ad=ads.ddj .com/msd
nmag/premium.htm

[11] ISO/IEC 9646-3 (1998): “Information technology - Open systems interconnection - Conformance testing
methodology and framework - Part 3: The Tree and Tabular combined Notation (TTCN)”

[12] ETSI MTS: The Testing and Test Control Notation TTCN-3, Part 1: TTCN-3 Core Language/ ETSI ES 201873-1
V2.0.0 (2001-03), http://www.etsi.org

[13] 1. Schieferdecker, S. Pietsch, T. Vassiliou-Gioles: Systematic Testing of Internet Protocols - First Experiencesin
Using TTCN-3 for SP. 5th IFIP Africom Conference on Communication Systems, Cape Town, South Africa, May
2001.

[14] M. Ebner, A. Yin, M. Li: Definition and Utilisation of OMG IDL to TTCN-3 Mapping. — 16" Intern. IFIP
Conference on Testing Communicating Systems (TestCom 2002), Berlin, March 2002.

[15] ANTS (Advanced .NET Testing System), Red Gate Software, http://www.red-gate.com/ants.htm.

[16] Grochtmann, M., J. Wegener and K. Grimm: Test Case Design Using Classification Trees and the Classification-
Tree Editor CTE. Proc. of 8th International Software Quality Week, SanFrancisco, California, USA, pp. 4-A-4/1-
11, 1995.

[17] TTthree (TTCN-3 to Javacompiler), Testing Technologies IST GmbH, http://www.testingtech.de.

[18] ETSI: The TTCN-3 Runtime Interface TRI, Technical Report, Sophia Antipolis, Sept. 2001.

[19] ETSI: The TTCN-3 Control Interfaces TCI, Draft Technical Report, Sophia Antipolis, June 2002.

