
1

 PerfTTCN, a TTCN language extension
for performance testing

by Ina Schieferdecker, Bernard Stepien1, Axel Rennoch

GMD-FOKUS, STEP Group

Hardenbergplatz 2, D-10623 Berlin, Germany

http://www.fokus.gmd.de/step

Abstract
This paper presents a new approach to test the performance of protocols, services, or application

implementations (IUT) under normal and overload situations, to identify performance levels of the IUT
for ranges of parameter settings and to assess the measured performance. A performance test describes
precisely the configuration of the IUT, the configuration of the network, and the load characteristics (the
so called performance test configuration). PerfTTCN - an extension of TTCN with notions of time,
measurements, and performance - is a formalism to describe performance tests in an understandable,
unambiguous and re-usable way with the benefit to make the test results comparable.

1. Motivation

Different approaches for guaranteeing the end user certain levels of QoS were developed, since
the non-functional aspects, in particular Quality-of-Service (QoS) aspects of distributed tele-
communication services (e.g. multimedia collaboration, tele-teaching, etc.) are as important as
functional aspects. They include approaches for QoS negotiation between peer user and service
and network provider, QoS guarantees of communication services, QoS monitoring and
management including self-adapting applications.

This proposal considers QoS in the area of testing. In general, testing is a method to check
whether an implementation meets certain requirements that are described in a specification.
QoS testing checks the end-to-end quality of a service implementation against the QoS
requirements. A specific class of QoS is that of performance-oriented QoS including delays
(e.g. of a response), throughputs (e.g. for bulk data), and rates (e.g. of errors). We concentrate
exclusively on performance-oriented QoS, other classes of QoS are out of the scope.
Subsequently, we use the term performance instead of QoS and consequently performance
testing instead of QoS testing.

One of the well-established methods in testing is that of conformance testing, which is used to
check that an implementation meets its functional requirements. Since conformance testing is
aimed at checking purely the functional behaviour of system implementations, it lacks in
concepts of time and performance. Timers are the only way to require certain time periods for
test events to occur. They are used to determine whether test events occur too early, too late or
not at all.

While traditionally the temporal ordering and type of PDUs/ASPs have been the main target of
conformance testing, we attempt here to introduce performance measurements and Quality of
Service (QoS) requirements in the conformance testing. Performance measurements in a

1. Guest researcher from the University of Ottawa, Canada

2

network traditionally consists in sending time stamped packets through a network and record
delays and throughput. Once such data has been collected a number of statistics can be
computed and displayed. However these statistics can sometime be meaningless when the
actual conditions in which these measurements have been performed are unknown. Different
strategies can be used to study operational conditions of a network. One consists in attempting
to analyse real network traffic load and correlate it with the test results and the other method
consists in creating artificially specific network traffic load and correlate it directly to specific
behaviours observed in the performance test. The first method enables to study performance
under real traffic conditions and confront unexpected behaviours while the second method
enables more precise scientific measurements because the conditions of an experiment are fully
known and controllable and correlations with observed performance are less fuzzy as with real
traffic. Both methods are actually useful and somewhat complementary and a testing cycle
involving both methods can be considered by exploring new behaviours with real traffic load
and then attempting to reproduce them artificially to further refine their understanding with the
help of the second method. The presented approach to performance testing attempts to address
both methods.

Although this method is quite general, one of its primary goals is for the study of ATM network
performance at the application layer. The approach used in this work is in line with the ATM
Forum performance benchmarking specifications [ATM96] that are also interested to measure
performance not at the ATM cell level but by frame-level performance and performance
perceived at higher layers.

The goals of performance testing can be achieved with a variety of existing languages and tools.
TTCN[CMTF, TTCN] is the only standardized, well known and widely used notation for the
description of conformance tests, for which a number of tools are available. We decided to base
our work on TTCN due to its wide acceptance. We define an extension of the TTCN language
to handle performance testing and explore the integration of traffic load models into the TTCN
language. In both cases there are limited additional declaration constructs necessary to achieve
this goal.

Our proposal introduces a new consideration of time within the TTCN language. So far, the
current standard considers time exclusively in timers where the execution of a test can be
branched out to an alternative path if a given timer expires. New proposals by [KIV97]
introduce concepts of local and global time constraints during the execution of a dynamic
behaviour. Our proposal consists in gathering substantial samples of time measurements
between selected test events and compute various statistics on determined sample sizes to be
used in the evaluation of performance characteristics. These characteristics are then used to
verify their conformance to performance constraints based on QoS criteria. In contrast to current
TTCN, a performance constraint evaluation is based on repeated occurrences of pairs of events
rather than the evaluation of a single event.

In this paper, we first introduce the objectives, main concepts, and architecture of performance
testing, next we present the language features to describe the new concepts in TTCN, and finally
we present some results of experiments on an example handling queries to an HTTP server
using a modified test generator of some well known TTCN design tool.

3

2. Introduction to performance testing

2.1. Objectives of performance testing

The primary goal of performance testing is to test the performance of an implementation under
normal and overload situations. The normal and overload situations are described with a
performance test configuration, which identifies the configuration of the IUT, the configuration
of the network, and the load characteristics.

A notation for the description of performance tests is needed, that should have a well-defined
syntax and an operational semantics in order to reduce the possibilities of misinterpretations.
That notation for performance tests is a precondition to make performance tests understandable,
unambiguous and re-usable.

The main advantage of our method is to make the test results comparable.This is in contrast with
informal methods where test measurement results are provided only with a vague description of
the measurement configuration, so that it is difficult to re-demonstrate and to compare the
results precisely. Once more it has to be noted that the mere fact that these tests are described
formally ensures unambiguity and re-usability.

Another goal of performance testing is to identify performance levels of the IUT for ranges of
parameter settings. Several performance tests will be executed with different parameter settings.
The testing results are then interpolated in order to adjust that range of parameter value where
the IUT shows a certain performance level.

For performance testing, the conformance of the IUT is assumed. However, since overload may
degrade the functional behaviour of the IUT to be faulty, care has to be taken to capture
erroneous functional behaviour in the process of performance testing as it is done in
conformance testing.

Finally, if performance requirements for the IUT are given, performance testing should result
in an assessment of the measured performance, i.e. does the implementation under test meet the
performance requirements or not.

2.2. Concepts of performance testing

This section discusses the basic concepts of the performance test approach. The concepts are
separated w.r.t. the test configuration, measurements and analysis, and test behaviour.

2.2.1.Test Components

A performance testconsists of several, possibly distributed foreground and background test
components. They are coordinated by a main tester (control component).

A foreground test component realizes the communication with the IUT. It directly influences
the IUT. The foreground tester uses discrete test events, which are the same test events that are
used in conformance testing, in order to drive the IUT into specific states in which the
performance measurements are executed. Once the IUT is in a state that is under consideration
for performance testing, the foreground tester issues a continuous stream of data packets to
emulate the foreground load for the IUT. The foreground load is also called foreground traffic.
It is described by means of traffic models.

4

A background test componentgenerates continuous streams of data in order to emulate the load
of the IUT. A background tester does not directly communicate with the IUT. It only implicitly
influences the IUT as it brings the IUT into minimal, normal, or overload situations. The
background traffic is also described by means of traffic models.

Traffic models describe the communication data as a stochastic stream of data packets with
varying interarrival times and varying packet length. An often used model for the description of
traffic is that of Markov Modulated Poison Processes (MMPP[ONV94]). We selected this
model for traffic description due to its generosity (e.g. a number of different multimedia streams
such as audio and video have been described as MMPPs) and efficiency (e.g. efficient random
number generator and an efficient finite state machine logic are needed only). Nonetheless, the
performance testing approach is open to other kinds of traffic models.

Points of Control and Observation (PCOs) are the access points for the foreground and
background test components to the interface of the IUT. They offer means to exchange SDUs
or PDUs with the IUT and to monitor the occurrence of test events (i.e. to collect the time
stamps of test events).

A specific use of PCOs are their use for monitoring purposes only. Monitoring only is needed
to observe for example the artificial load of the background test components, the load of real
network components that are not controlled by the performance test or to observe the test events
of the foreground test component.

To sum up, aperformance testsuses an ensemble of foreground and background tester with the
used traffic models and points of control and observation, and points of measurements. The
performance test configuration describes unambiguously the conditions under which the
measurements are executed. It is the description of the performance test configuration that
makes performance test experiments re-usable and performance test measurements comparable.

2.2.2.Performance test configurations

The test components of a performance test may be distributed in the communication network
and may use load generators to generate background traffic and monitors to collect time stamps
and to execute measurements. A main tester is used to coordinate the test activities of the tester.

One can identify differentclasses of performance test configurations in dependence of the type
of the implementation under test. For example in the case of performance testing in
communication networks, we distinguish between performance testing the implementation
(either in hardware, software, or both) of

• an application,
• an end-to-end transmission service, and
• a protocol.

The test configurations for these three types of performance tests are given in Figure 1, 2, and
3. The notion System Under Test (SUT) comprises all IUT and network components. For
simplification, we omit the inclusion of a main tester in the figures.The test configurations differ
only in the use of foreground tester. The usage of background tester to generate artificial load
to the network, i.e. to bring the network into normal load or overload situations, and
measurements on the actual real load in the network, i.e. to monitor the load of real network

5

applications (as opposed to the artificial background tester), is the same in each of the test
configurations.

In the case of performance testing of a server (Fig. 1), foreground tester emulate the clients.

Fig. 1: Performance test configuration for a server

That test configuration for an end-to-end service (Fig. 2) includes foreground tester at both ends
of the end-to-end service, which emulate the service user.

Fig. 2: Performance test configuration for an end-to-end service

Performance testing of a protocol (Fig. 3) with a distributed test method (please refer to [CTMF]
for other test methods) includes foreground tester at the upper service access point to the
protocol under test and at the lower service access point. The service access points are reflected
by points of control and observation.

2.2.3.Measurements and Analysis

A measurement is based on the collection of time stamps of events. One has to describe
precisely the format of each event that belongs to a measurement, so that the time stamp can be
collected whenever an event at a certain PCO matches that format. A measurement is started
once and continues until it is explicitly cancelled or reaches the time duration.

FT1

FTn

M1 Mk

Sl

BTmBT1

FT - Foreground Tester for Emulated Clients
BT - Background Tester
M - Monitors of Real Network Load
S - Tested Servers

PCO

PCO, but measurements only

Network

Performance Test Components

SUT Components

S1

FT1a

FTna

BTmBT1

FT - Foreground Tester for Emulated Service User
BT - Background Tester
M - Monitors of Real Network Load
SE - Tested Service Entities

Points of Control and Observation

Measurement Points

Network
SEa

FT1b

FTnb

SEb

Performance Test Components

SUT Components

M1 Mk

6

Based on the measurements, more elaborated performance characteristics such as mean,
standard deviation, maximum and minimum as well as the distribution functions can be
evaluated. These are supported by so calledmetrics.

The evaluation of performance characteristics is supported either by an on-line analysis (i.e.
during test execution) or in an off-line analysis (i.e. after the test finishes and all samples have
been collected). On-line analysis is in particular needed forperformance constraints that allow
one to describe requirements on the observed performance so that either a pass or a fail verdict
can be assigned.

2.2.4.Performance Test Behavior

A foreground test components has to offer features on starting and cancelling background test
components, on starting and cancelling measurements, on generating controlled load to the IUT,
and on accessing the recent measurements via performance constraints. Finally, performance
verdicts should be assigned so that they do not only assess the observed behaviour and
performance of the IUT to be true or false, but also that give back the measured performance
characteristics being of importance for the test report.

3. PerfTTCN - a performance extension of TTCN

The enhancement of conformance testing to performance testing leads also to particular
extensions of TTCN. A number of new language constructs have been created to handle

• background traffic declarations
• performance measurement declarations and performance constraints
• control of background test components, measurements, performance constraints and ver-

dicts

UFT1

UFTn

BTmBT1

UFT - Foreground Tester for Emulated Protocol User
LFT - Foreground Tester for Emulated Peer-to-Peer Protocol Entity
BT - Background Tester
M - Monitors of Real Network Load
SE - Tested Protocol Entity

Points of Control and Observation

Measurement Points

Network
PE

LFT1

LFTnb

Performance Test Components

SUT Components

M1 Mk

Fig. 3: Performance test configuration for a protocol

7

3.1. Performance test configurations

Since background test traffic depends on a particular test configuration its localization and
orientation is to be added to a test component configuration declaration (Table 1).

For each background test traffic instance PCOs should be defined to identify the location for the
test generation (left side) and its destination (right side). In addition, PCO lists are foreseen to
integrate multipoint transmissions. The related coordination points are necessary for the control
of the traffic generator and any traffic monitor. These components are controlled by
coordination messages within the dynamic test behaviour. The qualities of the background
traffic are defined by traffic models which are referred in Background Traffic Stream
Declarations (see next section). Specific details on e.g. connection information such as VPI/VCI
for an ATM connection are subject to the PCO PIXIT document information.

3.2. Traffic models

The purpose of the background traffic is to create load on a network that will be traversed by
the communication links of the system under test. The background traffic is a constant
uninterrupted and predictable stream of packets following a given stochastic pattern of
transmission times.

One of the main characteristics of the background traffic is to follow specific rate patterns that
follow stochastic laws. The purpose of these patterns is to simulate the traffic associated with
different kinds of applications.

The two essential components of a traffic load are the dataflow configuration and the stochastic
models declarations. These two components are then combined in the background traffic stream
declarations using as many instances of dataflow/stochastic models combinations as necessary
to produce significant load.

This consists in selecting the number of instances of each dataflow/model type combination.
Each of these traffic streams is identified by a name that can be used in the dynamic behaviour
part to start the appropriate traffic load.

The traffic model declaration is used to select stochastic models and set their corresponding

Test Component Configuration Declaration

Configuration name: CONFIG_2

Components Used PCOs Used CPs Used Comments

MTC PCO_1 CP1,

PTC1 PCO_2 MCP2, CP1

Background Test Component

Identifier PCOs Used CPs Used Comments

traffic1 (PCO_B1) -> (PCO_B2) BCP1, BCP2 Point to Point

traffic2 (PCO_B1) -> (PCO_B4) BCP1, BCP2 Point to Point

Table 1: Integration of Background Test Components

8

parameters. Each model type has a variety of number and kind of parameters. Thus the text
version of PerfTTCN has different grammatical constructs for each type of models. Each model
selection has also a name so that it can be referenced later in the traffic configuration
declarations. The following Tables 3 and 4 illustrate the table format of an MMPP and CBR
model, respectively.

3.3. Measurements and Analysis

The introduction of performance measurements comprises new tables for declaration and
constraints as well as additional operations within the behaviour description of test cases and
test steps.

Any measurement declaration (Table 5) is defined by a metric and combined with two test
events (and related constraints) to indicate the start and termination of the measurement. We
propose to introduce standard metrics like counter, delay, jitter, frequency, throughput with a
predefined semantics (e.g. DELAY with time between first bit send and last bit arrived
semantics2). Also, user defined metrics (implemented with test suite operations) should be

Background Traffic Stream Declaration

Traffic Name Background Test Component Model Name Number of Instances

Load1 traffic_1 on_off 6

Load2 traffic_1 const1 2

Load3 traffic_2 const1 8

Table 2: Background Traffic Stream Declaration

Traffic Model Declaration

Name: on_off
Type: MMPP
Comments:

Length S1 10

Length S2 1000

Rate S1 2

Rate S2 10

Transition S1, S2 3

Transition S2, S1 5

Table 3: MMPP Traffic Model Declaration

Traffic Model Declaration

Name: const1
Type: CBR
Comments:

PCR 10 MBit/s

Table 4: CBR Traffic Model Declaration

9

allowed.

In order to be statistically significant, a measurement needs to be repeated several times.
Measurements can be most effectively evaluated with the use of statistical indicators such as
means, frequency distributions, maximum, minimums, etc. We propose the declaration of
performance characteristics (Table 6) which refer to single measurement declarations. It is
possible to define a number of measurements or a time duration for the calculation of a
performance characteristic.

3.4. Performance constraints and verdicts

In PerfTTCN, measurements are performed for the purpose of conformance testing in addition
to general performance evaluation. This means that if performance falls below some set limits,
the verdict should be set to fail.

Therefore, we distinguish between functional verdicts based on PDU and ASP value matching
(that are the traditional constraints in TTCN) and measurement related verdicts. A separate
measurement related verdict shall be provided. The performance constraint declaration (Table
7) consists of a name and a logical combination of expressions, where an expression consists of
performance characteristics with individual thresholds.More than one performance
characterisitic can be used in a performance constraint (e.g. p_resp in Table 7).

2. In general, four different semantics can be given to a delay measurement: FILO = first bit in, last bit
out, FIFO = first bit in, first bit out, LIFO = last bit in, first bit out, and LILO = last bit in, last bit out.

Measurement Declaration

Name Metric Unit event 1 constraint 1 event 2 constraint 2 Comments

response_delay DELAY ms Request s_req_spc Response r_resp_spc

Table 5: Declaration of measurements

Performance Characteristics Declaration

Name Calculation Measurement Sample size Duration Comments

res_delay_mean MEAN response_delay 20

res_delay_max MAX response_delay 1 min

Table 6: Calculation of performance characteristics

Performance Constraint Declaration

Name Constraint Value Expression Comments

p_resp (res_delay_mean < 5) AND (res_delay_max < 10)

n_p_resp NOT (p_res)

Table 7: Declaration of performance constraints

10

While functional constraints are practically specified for each event line of a dynamic behaviour
description, performance constraints are not because they apply only to the lines where
measurements are performed.

The main difference between functional and a performance constraint is that a performance
constraint is not based on a single event but a repeated sample of the same event. This sampling
can be achieved by repeated measurement within a single test case. This is when an event can
occur several times because it is located within a loop using a goto construct. This also implies
that different measurement entities could be found within the scope of a same loop but also that
they could belong to different and also overlapping loops with different boundary sizes that
would generate different sample sizes.

3.5. Performance Test Behaviour

The control of performance measurements is specified in the behaviour description of test cases
or test steps, similar to the control of test timers. Predefined measurements will be executed only
if it is stated explicitly in a behaviour description. Furthermore the related “constraint 1” must
be valid (see Table 5). Normally the measurement terminates automatically when “event 2”
with “constraint 2” occurs. In some (error) situations, measurements could be cancelled too.

Performance constraints are indicated in the constraint reference column. Performance con-

straints are however evaluated differently from functional constraints because of the sample

size required for statistical significance and/or the type of metrics used where more than one

observation is required to compute the metric (mean, standard deviation, etc...). Whenever the

sample size to evaluate the constraint has not yet been reached, the performance constraint is

implicitly evaluated to “true”. However as soon as, through repeated sampling, this sample size

is reached, if the performance constraint is evaluated to “false”, the related event is consequent-

ly not accepted. Both a functional (standard) and a performance constraints can be entered for

a same line. Performance constraints are meaningful and could be used in qualifiers, too.

Table 8 provides an example of a test case behaviour which includes a background test traffic
identified by ‘Load2’, i.e. according to Table 2 it is a constant bit rate. After the background
traffic has started (line 1) a series of ‘Requests’ occurs at PCO_1 (line 2). The test system awaits
from the SUT a ‘Response’ primitive (line 3 or 5). Due to the response_delay declaration of
Table 5 delay measurements occur to determine the time between ‘Request’ and ‘Response’.
There are two possibilities to accept ‘Response’, which are distinguished by the different
performance constraints ‘p_resp’ (line 3) and ‘n_p_resp’ (line 5). The outcoming preliminary
test verdict ‘pass’ or ‘inconclusive’ depends on these performance constraints. The test cases
finishes when the timer T_response_delay timeouts (line 7). In that case a final verdict is
assigned. The reception of an event other than ‘Response’ terminates the test case (line 8) and
measurements, timer, and background traffic are stopped.

3.6. Comparison with TTCN

Concurrent TTCN has been designed as a test description language for conformance tests, only.
It uses discrete test events such as sending and receiving of protocol data units and abstract
service primitives. Conformance test suite and IUT interact with each other by sending test
events to and receiving test events from the opposite side. A test continues until the tester

11

assigns a test verdict saying that the observed behaviour of the implementation conforms (pass)
or does not conform (fail) to the specification. In the case that the observer behaviour can
neither be assessed to be conformant or non-conformant, the inconclusive verdict is assigned.
The basis for the development of a conformance test suite is the functional protocol
specification only.

The development of a performance test suite is based on a QoS requirement specification that
is combined with the functional specification of the implementation under test. The QoS
requirements may include requirements on delays, throughputs, and rates of certain test events.
A performance test uses not only discrete test events (those may be used to bring the IUT in a
controlled manner into a well-defined state), but uses also a bulk data transfer from the tester to
the IUT. Bulk data transfer is realized by continuous streams of test events and emulates
different load situations for the IUT. A performance test assigns not only pass, fail or
inconclusive, but also assigns the measured performance characteristics that are the basis for an

Note a. Please note, that in the next version of PerfTTCN it is planned to return the measured performance
characteristics together with the verdicts in order to support an in-depth result analysis.

Test Case Dynamic Behaviour

Test Case Name:www_Get
Group:
Purpose:
Configuration: CONFIG_2
Default:
Comments:

Nr Label Behaviour Description Constraints Ref Verdicts Comments

1 BCP1 ! Start(Load2) start background
traffic ‘Load2‘

2 top PCO_1 ! Request
START response_delay
START T_response_delay

s_resp start measurements

3 PCO_1 ? Response p_resp (PASS) acceptable
performance

4 GOTO top

5 PCO_1 ? Response n_p_resp (I) unacceptable
performance

6 GOTO top

7 ? T_response_delay
CANCEL response_delay

measurement
terminates

8 BCP1 ! Stop(Load2) Ra stop background
traffic

9 PCO_1 ? OTHERWISE
CANCEL response_delay
CANCEL T_response_delay

(FAIL) unexpected event,
stop measurements

10 BCP1 ! Stop(Load2) R stop background
traffic

Detailed Comments:

Table 8: Usage of new performance features in behaviour description

12

in-depth analysis of the test results.

The new concepts of PerfTTCN have been introduced in Section 3. The existence of a mapping
from PerfTTCN to ConcurrentTTCN would allow us to model performance tests on a level of
abstraction that has been specifically defined for performance tests, and would enable us to re-
use existing tools for Concurrent TTCN for the execution of performance tests. However, it
turned out that some of the new concepts (in particular, traffic models, background tester,
measurements, performance constraints) with their semantics can only hardly be represented in
Concurrent TTCN. Predefined test suite operations with a given semantics seem to be an easy
possibility to include the new concepts. Further study is needed in that area.

4. Performance test examples

Two studies were performed to show the feasibility of PerfTTCN: performance tests for a
SMTP and a HTTP server has been implemented. The experiments were implemented using the
Generic Code Interface of the TTCN compiler of ITEX 3.1. [GCI] - and a distributed traffic
generator with MMPPs as traffic models [VEGA]. VEGA is a traffic generator software that
enables to generate traffic between a potentially large number of computer pairs using TCP/
UDP over IP communication protocols. It also has the capability to use ATM native transport
protocols such as these provided by FORE for the SBA200 ATM adaptors cards. The traffic
generated by VEGA is purely stochastic driven.

The C-code for the executable test suite was first automatically derived from TTCN by ITEX
GCI and than manually extended to instantiate sender/receiver pairs for background traffic, to
evaluate inter-arrival times for foreground data packets, and to locally measure delays. In figure
4 we illustrate this technical approach: the derivation of the executable test suite and the
performance test configuration. We include a foreground tester and several send/receive
components of VEGA.

At this point our initial experimentations were performed using performance test configurations
of the network, the end system, and of the background traffic only. Other aspects such as
measurements for real network load, performance constraints and verdicts will be implemented
in the next version.

4.1. A performance test for an HTTP server

This simple example consists in connecting to Web server using the HTTP protocol and send-

ing a request to obtain the index.html URL. If the query is correct we should receive a result

PDU containing the text of this URL. If this URL is not found either because the queried site

does not have a URL of that name or if the name was incorrect we may receive an error PDU

reply, otherwise we might receive unexpected replies and decide that our test has failed.

We have defined a PDU SendGet that encodes our request as:GET /index.html HTTP/1.0
defined in constraint SGETC and we have defined a ReceiveResult PDU that decodes the reply
to our request and matches on the first status line and on “?” for the returned body of the URL:
HTTP/1.0 200 OKthat is followed by the body of the URL response defined in constraint
RRESULTC.

13

We have modified the original TTCN test suite to perform a measurement of the response time
of a Web server to an HTTP Get operation. We have declared a measurement entity named
“MeasGet” in the declaration part that measures the delay between the two events SendGet and
ReceiveResults as shown in Table 9.

Table 9: HTTP measurement declaration
The repeated sampling has been implemented using a classic TTCN loop construct to make this
operation more visible in this example. In this case the sampling size has been set to 10.

Measurement Declaration

Name Metric unit event 1 constraint 1 event 2 constraint 2 Comments

MeasGet DELAY ms SendGet SGETC ReceiveR-
esults

RRESULTC

Test Case Dynamic Behaviour

Test Case:www_Get
Group:
Purpose:
Configuration:
Default:
Comments:

Nr Label Behaviour Description Constraints Ref Verdicts Comments

1 Top N ! Connect (NumTimes := 0) CONNECTC

Table 10: Performance test case for the HTTP example

TTCN

C Code

GCI

modified
C Code

timestamp
storage

tester

V(s)

V(r) V(r)

V(s): VEGA send component
V(r): VEGA receive componnent

Fig 4: Technical Approach of the experiment

SUT

V(s)

automatical

manual

14

The location of the points of measurements of entity MeasGet in the dynamic behaviour are
revealed in the comments column of Table 10. It consists in associating a start measurement
with the SendGet event and an end measurement with the ReceiveResult event as declared in
table 9. The delay between these two measurements will give us the response time to our
request, which includes both network transmission delays and server processing delays.

The main program of the HTTP performance test is shown in Figure 5. The GCI TTCN code of
the performance test case is initiated in Line 2. Line 3 instantiates a measurement entity to
collect time stamps. The co-working between TTCN GCI and VEGA is initiated by
vegaTtcnBridge (Line 4). Models for background traffic are declared and defined on Line 5-7.
Background traffic components are declared on Line 8-9. Finally, lines 10-12 define and start
the background traffic streams consisting of a background traffic component, a traffic model,
and a number of instances. Line 13 starts the performance test case that controls the execution
of the test and accesses the measurement entity. The test cases finishes with reporting the
measured delays (Line 14). An example of the statistics with and without network load is shown
in Figure 6.

This experiment has been performed on an ATM network using Sun workstations and TCP/IP
over ATM layers protocols. The graph on the left of Figure 6 shows delay measurement under
no traffic load conditions while the graph to the right shows results achieved with six different
kinds of CBR and three different kinds of Poisson traffic flows between two pairs of machines
communicating over the same segment as the HTTP client machines3.

3. Due to lack of space, we have no included the complete performance test suite into the paper. However,
it is available on request.

2 N ! SendGet
START T_Receive
START MeasGet

SGETC start measurement,
begin delay sample

3 N ? ReceiveResult
(NumTimes :=
NumTimes+1)
CANCEL T_Receive

RRESULTC (P) acceptable
response,
end delay sample

4 [NumTimes < 10]
GOTO Top

5 [NumTimes >= 10]
CANCEL MeasGet

R measurement
terminates

6 N ? ReceiveError
CANCEL T_Receive
CANCEL MeasGet

RERRORC I incorrect response

7 ? T_Receive
CANCEL MeasGet

F no response

8 N ? OTHERWISE
CANCEL T_Receive

F unexpected
response

Detailed Comments:

Table 10: Performance test case for the HTTP example

15

Fig. 6: Performance test result of the HTTP example

1 int main(char* argc, int argv) { ...

2 GciInit(); CreatePCOsAndTimers();

3 WWWResponseEnt = new MeasurementEntity(“GetWWW”); ...

4 vegaTtcnBridgeInit(argc,argv);

5 backgroungtraffic = new backGroundTraffic();

6 aModel = new vegaModel(“cbr_slow”, “cbr”,10, 0.1, 0);

7 backgroungtraffic->addAModel(aModel); ...

8

aBackGroundDataflow=new BackGroundDataflow(“traffic_1”,”kirk”,”clyde”,”

udp”);

9 backgroungtraffic->addABGDataflow(aBackGroundDataflow); ...

10 aBackGroundTrafficLoad= new BackGroundTrafficLoad(“traffic_1”,

“cbr_slow”, 3);

11 backgroungtraffic->addABGBackGroundTrafficLoad(aBackGroundTrafficLoad);

12 backgroungtraffic->SetupBGTraffic(); ...

13 GciStartTestCase(“www_GET”); ...

14 WWWResponseEnt->printStatistics(); ... }

Fig. 5: Performance test configuration for an end-to-end service

0.05

0.10

0.15

0.20

measurements

time

0.05

0.10

0.15

0.20

measurements

time

without load with load

1 5 10 1 5 10

mean

mean

16

5. Conclusions

The importance of Quality-of-Service aspects in multimedia communication environments and
the lack of conformance testing to check performance oriented QoS requirements lead us to the
development of a performance testing framework. The paper presents a first approach to extend
Concurrent TTCN with performance features.

The main emphasis of our work is the identification and definition of basic concepts for perfor-

mance testing, the re-usable formulation of performance tests and the development of a perfor-

mance test run time environment. Therefore, the concrete syntax in PerfTTCN is a minor

concern, but also the basis for ongoing work. An initial feasibility study of the approach on

performance testing has been conducted using the SMTP and the HTTP protocols as examples.

The usability of this approach has to be demonstrated on a more complex example such as he

definition of a performance test suite for the ATM Adaptation Layer 5 (AAL5) that we are cur-

rently working on.

In parallel, we are further exploring the possibility of re-using existing TTCN tools in a
performance test execution environment. Therefore, we are working on a set of test suite
operations (reflecting the new performance concepts) and on a mapping from PerfTTCN to
TTCN by using these special test suite operations. The operational semantics for PerfTTCN will
be defined next.

References
[ATM96] The ATM Forum Technical Committee: Introduction to ATM Forum Performance Benchmarking

Specifications, af-test-00, May, 1996.

[CTMF] ISO/IEC 9646-1 „Information Technology - Open Systems Interconnection -
Conformance testing methodology and framework - Part 1: General Concepts“, 1991.

[GCI] Telelogic: ITEX 3.1 User Manual. Dec. 1996.

[JAIN91] Raj Jain: The Art of Computer Systems Performance Analysis, John Wiley & Sons, Inc.
Publisher, 1996.

[ONV94] Raif O. Onvural: Asynchronous Transfer Mode Networks: Performance Issues. Artech
House Inc., 1994.

[PCF9646] Keith G Knightson: OSI Protocol Conformance Testing, IS9646 explained

[TTCN] ISO/IEC 9646-3 „Information Technology - Open Systems Interconnection -
Conformance testing methodology and framework - Part 3: The tree and tabular combined
notation“, 1991.

[VEGA96] Peter Kanzow: Konzepte fur Generatoren zur Erzeugung von Verkehrslasten bei ATM-
Netzen. MSc-thesis, Technical University Berlin, 1994 (german only).

[WAL97] Thomas Walter and Jens Grabowski: A Proposal for a Real-Time Extension of TTCN,
KIVS’97.

