
1

1

Tutorial
Integration Testing of

Composite Applications
using TTCN-3

MCeTech’08 Montréal

Bernard Stepien, Liam Peyton,
Pierre Seguin

2

Motivation

• Large Systems are complex
– Enterprises deploy Composite

Applications that leverage a shared
infrastructure (Services, Components)

– Services and Components are linked
and distributed

– Composite Applications, Services,
Components are deployed and
upgraded independently of each other.

3

Integration Testing is
complex

• An observed fault at the level of
user interaction could be:
– a fault or quality of service issue

(performance, security, scalability, etc.) in the
application or process logic

– a fault or quality of service issue in any of the
components used by the application

– an unintended interaction in combining
components

4

Distributed nature of
composite applications

User

Composite
Application

(Online CD Store)

Product
Catalog
Service

Order
Process
Service

Service
n

HTTP request

HTTP response

…

SOAP requests
and responses

2

5

Traditional testing approach

• Unit testing of application and
components:
– Test the composite application by emulating

user behavior.
– Test the underlying services by emulating the

composite application.
– Test the composite application by emulating

the user and the underlying services.

6

Traditional testing implementations

User emulator
Test Agent

Composite
Application

HTTP Request

HTTP Response

1. Application test
With consumer
emulation

composite
App. emulator

Test Agent

Order
Process
Service

SOAP Request

SOAP Response

2. Unit testing
Of the service

Composite
Application

User
Test Agent

Service
Emulator

Test Agent

Master
Test Agent

3. Application test
With consumer and
Service emulation

7

What needs to be tested?
1.Message correctness

• User receives correct responses to specific
requests.

• Composite application sends correct requests to
services.

• Service produces correct responses to specific
requests from composite application.

• Composite application produces correct
responses to the user relative to specific service
responses.

8

What needs to be tested?
2.Quality of service

• Performance

• Scalability

• Security
• Under multi-user conditions

• Under multi-applications using the same
services conditions

3

9

Deficiencies of unit testing

• individual unit tests can only verify the unit in isolation
(maintenance issue)

– independent of other applications, services and components that
are being upgraded and introduced independently

• when a “unit tested” unit is deployed into a SOA
unintended interactions can result in faults.

(interaction issue)
– Multi-user behavior:

• Competing for resources.
• Application logic mix-ups between different user sessions.

– Caching of messages.
• Unit testing is unable to isolate or diagnose the cause of

an observed fault to specific components within an SOA
(diagnosis issue)

10

Integration testing approach

• Test all messages flowing between all
components of a composite application

• Test both sides of all interactions
(expected requests, expected responses)

11

Proposed integration testing
architecture (grey-box testing)

Composite
Test Agent

Service A

Service
Test Agent

Master test
component

Composite
application

Test Case
Test Case

results

results

http
request

http
response

soap
request

soap
response

Soap request

Soap response

Soap re
quest

Soap re
sponse

12

Integration testing strategy

• Integration testing can be composed by re-
using part or all of unit testing code.

• The additional requirements consists in:
– For a given user action, being able to

correlate events at different interfaces of the
system.

– Coordinate the testing of the various
components.

4

13

What does testing consist of?

1. Test specification
– Specify test data
– Specify test behavior as sequences of events
– Specify test outcome (pass/fail)

2. Perform the test
– Manage communication with SUT
– Invoke test cases
– Code or decode messages

3. Analyzing test results
– Details to understand results (expected vs actual values)
– Tracing of test events
– Produce reports

14

How can we implement a test

• By writing an anti-product using a
conventional programming language
(Java, C, C++, visual-basic, …).

• By using off-the-shelf testing products.
• By using open source Frameworks .

• By using languages specialized for testing
purposes.

15

Purpose of testing tools and
frameworks

• Help designing tests.

• Reduce the coding effort for test
execution.

• Reduce the coding effort for test results
presentation and analysis.

• Help understand the test system.

• Help understand the results of a test.

• Help debugging.
16

Categories of testing tools

• Generic tools and frameworks
• Targeted tools and frameworks (for

specific applications)
– Web testing
– Specific telecom protocols (SIP, SS7, 3GPP)

• Frameworks that address only part of the
testing problem.
– httpUnit: handles only the communication

management and codec of web applications.

5

17

Advantages/disadvantages

• Generic languages are labor intensive.
• Off-the-shelf tools are limited.
• Off-the-shelf tools depend on the existence of

the vendor.
• Open source frameworks are not necessarily

reliable. (no one feels responsible)
• Standard high-level languages save

considerable work effort and are supported by a
variety of vendors. If one vendor fails, your test
suite will still work on another’s vendors tool.

18

Tool evaluation criteria summary

yeslowlowmediumHigh-level
specialized
programming
language

nolowhighlowOff-the-shelf
tool

yeshighlowhighGeneric
Programming
language

Code
ownership

MaintenanceRiskCoding
effort

Kind of tool

19

Example web page

20

JUnit source of inspiration
single values testing

• JUnit in conjunction with other frameworks
such as HtmlUnit is presented in litterature
as simple, easy to use and understand

example taken from the HtmlUnit Documentation:

public void testHtmlUnitHomePage () throws Exception {
final WebClient webClient = new WebClient();
final URL url = new URL("http://htmlunit.sourceforge.net");
final HtmlPage page = (HtmlPage)webClient.getPage(url);
assertEquals("htmlunit - Welcome to HtmlUnit ", page.getTitleText ());

}

6

21

Testing a web page JUnit
multiple values testing

public void testCategories () {
List urlList = new LinkedList();
String[] theLinkNames = {"Main Page", "Category List", "Shopping Cart",

"Blues", "Classical", "Jazz", "Opera", "Pop", "Rock", "Contact us"};

final WebClient webClient = new WebClient();
assertNotNull(webClient);
try {

final URL url = new URL("file:categories_list.html");
final HtmlPage theCurrentPage = (HtmlPage)webClient.getPage(url);

assertNotNull(theCurrentPage);
assertTrue(theCurrentPage.getWebResponse().getStatusCode() == 200);
assertTrue(theCurrentPage.getTitleText().equals("Category List"));

int textPosition = theCurrentPage.asText().indexOf("Ideal CD Store");
assertTrue (textPosition >= 0);

List theLinks = theCurrentPage.getAnchors();

int n = theLinks.size();

assertEquals(n, 10);

for(int i=0; i<n; i++) {
HtmlAnchor theAnchor = (HtmlAnchor) theLinks.get(i);
assertEquals(theAnchor.asText(), theLinkNames[i]);
urlList.add(theAnchor.getHrefAttribute());

}
} catch(Exception e) {…}

}

22

Testing a web page in TCL
using regular expression feature

package require http 1.0

proc testCategoriesPage {} {
puts “testing categories page test"

set categoriesPage [http_get http://localhost:8080/estore/servlet/Store?action=showCategoryList -query]
set categoriesPageData [http_data $categoriesPage]
set pageStatus [http_status $categoriesPage]

puts $categoriesPageData

puts "---"

if { $pageStatus != "ok" } {
puts "page status not ok - set verdict to fail"
return

}

set textFound [regexp "<html>.* <title>.*Category List.*</title>.*Ideal CD Store.*CSI5380 Project.*<.*\
href=.*>.*Main Page.*<.*href=.*>.*Category List.*<.*href=.*>.*Shopping Cart.*<.*href=.*>.*Blues.*<.*href=.*>.*Classical.*\
<.*href=.*>.*Jazz.*<.*href=.*>.*Opera.*<.*href=.*>.*Pop.*<.*href=.*>.*Rock.*" $categoriesPageData]

if { $textFound == 1 } {
puts "categories page has matched the expectation - verdict pass"

} else {
puts "categories page has NOT matched the expectation - verdict fail"

}
}

testCategoriesPage

23

Test Implementation using TTCN-3
• TTCN-3 is well adapted to the nature of our integration

testing problem:
– Communication ports .
– The template language construct maps to the fine grained

structuring requirements of integration testing.
– The parallel test component language construct (PTC) maps to

the concept of testing agent.
– The complex data type matching mechanism is very powerful

and fully abstracts message validation.
– The set-based matching mechanism is very powerful and

particularly useful for addressing multiple user message flows
– The parametrization of test cases, templates and test

components improves clarity and flexibility.
– Strong typing enables the detection of many errors at design

stage instead of at run time.
– The separation of concerns between the abstract and the

concrete layers enables to focus on the abstract view of the
testing problem. 24

Basic TTCN-3 events

• Send a request to
the SUT

• Receive a
response from the
SUT and match it
to a predefined
template

System Under Test

Abstract Test
Suite

re
qu

es
t

re
sp

on
se

Com_port

System_com_port

7

25

TTCN-3 test environment
Abstract
Test suite

TTCN-3

Compiler tool

Translated
Test suite
(target language:
Java, C, C++…)

TTCN-3 Runtime

Environment tool

Test Adapter

&

Codec

26

TTCN-3 separation of concerns

• Between abstract test suite and adaptation
layer where communication and
coding/decoding takes place.

• Between behavior and conditions
governing behavior (behavior tree and
templates).

• Between test behavior and test
coordination (parallel test components that
represent test agents)

27

Modeling a web page
with data types

type record WebResponseType {
integer statusCode ,
charstring title ,
charstring content ,
linkListType links optional,
formSetType forms optional,
TableSetType tables optional

}

type record linkType {
charstring text,
charstring link

}

type set of linkType linkListType ;

type set of charstring RowCellSetType;

type record tableRowType {
RowCellSetType cells

}

type set of tableRowType tableRowSetType;

type record TableType {
tableRowSetType rows

}

type set of TableType TableSetType ;

28

TTCN-3 template concept
is a test oracle

• Based on data types (has field names).
• Looks like an assignment of values but also provides the

capability of specifying matching rules.
• Allows re-usability among templates (building blocks).
• Doesn’t require complex if-then-else constructs. The

TTCN-3 receive() construct and the underlying matching
mechanism handles the verification of the oracle without
any programming efforts.

• Is a kind of function, thus parametric.
• Has a useful modifies features that enables to build a

new template derived from an existing one.

8

29

TTCN-3 template example
template WebResponseType categoriesPageResponse := {

statusCode := 200,
title := " Category List ",
content := pattern "*Ideal CD Store*(CSI5380 Project)*",
links := categoriesPageLinks(“Main Page”),
forms := omit,
tables:= omit

}

template linkSet categoriesPageLinks(charstring myText) := {
{ text := myText , URL := (url_1, url_2) },
{"Category List", ?},
{"Shopping Cart", ?}, {"Contact us", ?}
{"Blues", ?}, {"Jazz", ?}, {"Classical", ?},
{"Opera", ?}, {"Pop", ?}, {"Rock", ?}

}

template charstring url_1 := “http://www.mycompany.com/mylink.html” 30

TTCN-3 matching mechanism

• Specify that an incoming message must match a
template.

• No detailed coding of the matching of complex
messages is required. That was the role of the template.

• Matching is specified on a named communication port.

web_port.receive (categoriesPageResponse) { … }

In TTCN-3, the receive statement means both receive data from the communication media
and match it against the template

31

TTCN-3 behavior tree concept
• A behavior tree is composed of nested alternate

responses to given requests.
• Requests and responses are abstracted using TTCN-3

templates.
• Alternatives can be abstracted into functions called

altsteps.

alt {
[] webApplPort.receive (checkStockRequest) {

servicePort.send (checkStockRequest); …
alt {

[] servicePort.receive (productDetailsConfirmation) { }
[] servicePort.receive (outofStockNotification) { }
[] servicePort.receive { setverdict(fail) } // unexpected request
[] serviceTimer.timeout { setverdict(fail) }

}
}
[] webApplPort.receive { setverdict(fail) } // unexpected request

}

32

TTCN-3 Test agents configuration

• A Master test
component
orchestrates all test
agents behavior.

• A test agent is
mapped to a
TTCN-3 parallel
test component.

• A test component
is started with a
specific test case
as parameter.

• Behavior of various
test agents can be
coordinated.

testcase CompositeWebApplicationTesting() runs on MTCType … {
var ServiceComponentType theServiceComponent;
var UserComponentType theUserComponent[2];

theUserComponent[0] := UserComponentType.create ;
theUserComponent[1] := UserComponentType.create ;
theServiceComponent := ServiceComponentType.create ;

// map all ports here …

theServiceComponent.start(
serviceEventsTest (expectedMsgTemplate));

theUserComponent[0].start(User_1_events());
theUserComponent[1].start(User_2_events());

theUserComponent[0].done ;
theUserComponent[1].done ;

servCoordPort.send ("end test");

all component .done ;

log ("testcase SOABasedWebTesting completed");
}

9

33

TTCN-3 Verdicts

• Kinds of verdicts:
– Pass
– Fail
– Inconclusive

• TTCN-3 records both passed and failed
tests

• JUnit shows only failed tests.
• TTCN-3 is better for tracing because it is

based on event tracing.
34

The TTCN-3 adaptation layer
handling communication with SUT

public class WebTesting_TestAdapter extends TestAdapter
implements TriCommunicationSA, TriPlatformPA, TciEncoding {

…
public TriStatus triSend (TriComponentId componentId, TriPortId tsiPortId, TriAddress address,

TriMessage sendMessage) {

Byte [] mesg = sendMessage.getEncodedMessage();
String String theUrlStr = new String(mesg);

if(tsiPortId.getPortName ().equals("systemUserWebPort ")) {

final WebClient webClient = new WebClient();

try {
final URL url = new URL(theUrlStr);

theCurrentPage = (HtmlPage) webClient.getPage (url);

TriMessageImpl rcvMessage = new TriMessageImpl(theCurrentPage.asText().getBytes());

myCte.triEnqueueMsg (tsiPortId, new TriAddressImpl(new byte[] {}), componentId, rcvMessage);
} catch (…) { … }

…
}

…
}

35

Principles of the codec

• Extract a value from the input stream.

• Build an internal representation of this
value using the tools API.

• Return it to the abstract layer.
• A TTCN-3 codec is type driven.

36

Translation API
Raw input message
(HTML web page)

Message parsing

Field values
Translation to
Abstract
representation

Use of abstract
values in the
Abstract Test Suite

TTCN-3

Translation example:

String theString = …; //extracted value from a stream

CharstringValue cv = (CharstringValue)
charstringType.newInstance();

cv.setString(theString);

return (Value) cv ;

Abstract test suite statement:

webPort.receive (titlePage) { setverdict(pass) }

10

37

Complex types Codec example

RecordValue theWeatherResponseValue = (RecordValue) type.newInstance ();

For each field:

IntegerValue theTemperatureValue = (IntegerValue) integerType.newInstance();

theTemperatureValue.setInt (-25);

theWeatherResponseValue.setField ("temperature", theTemperatureValue);

Abstract type definition:

type record weatherResponse {
charstring location,
charstring date,
charstring kind,
integer temperature ,
integer windVelocity,
charstring conditions

}

38

Test Adapter use of
external Frameworks

• Test campaign is
specified at the abstract
layer level

• Codecs are used to
translate between
concrete data structures
and abstract ones

• Adapters are used to
communicate with the
SUT or CUT

• Codecs and adapters use
HttpUnit for
communication with the
SUT or CUT

39

TTCN-3 test adapter and codecs
coding effort

• Writing a test adapter for TTCN-3 is a fixed effort that
is not repeated for subsequent testing using the same
data types.

• Nokia has reported at T3UC’06 that the adapter
represented only 25% of the coding effort in a large
test application, while the abstract layer represents
75%

• Adapters can be efficiently structured and their
components re-usable among different testing projects.

• Thus, test adapter writing efforts largely depend on
classic software development structuring techniques
and management.

40

TTCN-3 tools

• About 7 vendors.

• Some academic Open Source versions.

• Compilers and runtime environments.
• Runtime GUIs, APIs.

• Features

• Off-the-shelf codecs.

• Abstract types libraries (XML, IDL, WSDL)

11

41

Reducing coding efforts

• How to measure coding effort?
– Number of lines of code.
– Error detection (design time or runtime?)

42

Web page testing example
tools comparison statistics

• JUnit: 43 lines

• TCL/TK: 30 lines

• TTCN-3:
– Abstract test suite : 63 lines
– Adaptation layer: 200 lines
– Codec: 300 lines
– Total lines: 563 lines

43

TTCN-3 coding effort comparison

Fixed coding effort:

type definitions: 26 lines
Behavior definitions: 20 lines
module/control 4 lines
Test adapter: 200 lines
Codec: 300 lines

Total fixed part: 550 lines

Variable coding effort:

Templates definitions: 12 lines
Control part: 1 line

Total variable part: 13 lines

Total for one page: 563 lines

Li
ne

s
of

 c
od

e

563

Number of web pages tested
1 1000

TTCN-3

TCL

30

33

JUnit

43

19

44

Important remark about fixed and
variable parts of code

• All three approaches can be decomposed
into fixed and variable code parts in a
similar way with similar coding effort
savings.

• However, the main difference between
TTCN-3 and JUnit or TCL is that with
TTCN-3 there is a model that forces the
tester to decompose the problem that way.

12

45

Separation of concern
A post mortem example

• A company spent two person/years to develop a test
suite for a web application using JUnit and httpUnit.

• The test suite was hard to maintain due to the intensive
use of httpUnit methods buried deep in the code.

• A number of items could not be tested because httpUnit
did not provide appropriate features for that purpose.

• Converting to more appropriate htmlUnit would have
required massive changes (80% of the code consisted in
invocations to httpUnit methods).

• The test suite was merely scrapped and thus never
used.

46

Separation of concerns example

final URL url = new URL("http://htmlunit.sourceforge.net");
final HtmlPage page = (HtmlPage) webClient.getPage (url);
assertEquals("htmlunit - Welcome to HtmlUnit", page.getTitleText());

final URL url = new URL("http://anotherpage.com");
final HtmlPage page = (HtmlPage) webClient.getPage (url);
assertEquals("htmlunit - Welcome to another page", page.getTitleText());

Web_port.send(“http://htmlunit.sourceforge.net”);
Web_port.receive(“htmlunit - Welcome to HtmlUnit”) { setverdict(pass) }

Web_port.send(“http://htmlunit.sourceforge.net”);
Web_port.receive(“htmlunit - Welcome to HtmlUnit”) { setverdict(pass) }

JUnit

TTCN-3

47

Differences JUnit/TTCN-3

• In the JUnit version, there are 6 lines of
code.

• In the JUnit version every line is invoking a
method of the HttpUnit framework.

• In the TTCN-3 version, the abstract layer
has only 4 lines of code.

• In the TTCN-3 version, there is no
reference to the HttpUnit framework at all.

48

consequences of the TTCN-3
separation of concerns

• If you were to re-write the preceding code
using a different framework, like htmlUnit:
– With JUnit you would have to rewrite all of the

6 lines of codes.
– With TTCN-3 you would have to re-write only

the codec that is common to both URL
invocations.

• With TTCN-3 you could save 33% of lines
of code.

• The TTCN-3 abstract code can be fully re-
usable regardless of the framework used.

13

49

Advantages of TTCN-3

• TTCN-3 is a standard, thus a test suite
can be circulated among users practically
without documentation.

• TTCN-3’s separation of concern improves
clarity and imposes an efficient
programming style.

50

Problems with SOA testing

• Correlation gap
– With multiple users
– With multiple concurrent composite

applications accessing the same services

• Cached messages
• performance

51

Composite system use case
message flow example

User 1
composite
application Service A

Web request A

service request A

service response B

Web response B

52

Test agent architecture
corresponding message flow

User
Test
Agent

composite
application Service A

Web request A

service request A

service response B

Web response B

Service
Test
Agent

service request A

service response B

14

53

Test scripting

• For a single user, end-to-end testing
of a use case may look like a simple
linear sequence of events to be
verified:
– The user test agent sends a request
– The service test agent receives a service

request and forwards it to the service
– The service test agent receives a service

response and forwards it to the
composite application.

– The user test agent receives the
response

User agent
send request A

Service agent
receive service

request A

Service agent
send service

request A

Service agent
receive service

response B

Service agent
send service
response B

User agent
receive response B

54

Multiple user message flow
ideal case

User 2
Test agent composite

application service

Web request A

service request A

service response B

Web response B

Service
Test agent

service request A

service response B

User 1
Test agent

Web request C

service request C

service response D

Web response D

service request C

service response D

55

Correlation gap
Multi-user problem

• The well separated end-to-end message flows
for each user are only an ideal case.

• Both composite application and service
applications may disturb this idealistic view of
the problem.

• Messages may be interleaved. Therefore, the
order of arrival and departure of messages at
underlying services can no longer be correlated
with the order of initial requests.

• Caching may remove some messages. (not
addressed in these slides, see paper)

56

Multiple user message flow
one of many realistic cases

User 2
Test agent composite

application service

Web request A

service request A

service response B

Web response B

Service
Test agent

service request A

service response B

User 1
Test agent

Web request C

service request C

service response D

Web response D

service request C

service response D

15

57

Multiple composite applications
accessing the same services

User 1

Composite
Application

CA 1

Service A

HTTP
request

HTTP
response

User 2

Composite
Application

CA 2

HTTP
request

HTTP
response

SOAP
request

SOAP
response

SOAP
request SOAP

response

58

Service test agents

• Is where the correlation gap must be handled.
• The solution is to specify the service agent as a kind of

case statement that can handle any request at any time.
• Once a request has arrived, the sequence of events

resulting from it are processed sequentially.
• This explains it’s recursive nature. (handle one request

at a time and move on to the next)
• Two levels of processing:

– Validate an incoming request
– Validate the corresponding response (see slide 22)

59

Service agent example
• One altstep

function per
message
received from
composite
application that
encapsulates a
behavior tree.

• A catch all
receive for
undesired
messages.

• One
coordination
function to end
the test agent
process.

function serviceEventsTest (
RequestType expectedRequests,
ResponseType expectedResponses) … {

…
alt {

[] A1_behavior () { … }
…
[] B2_behavior () { … }
[] soaWebPort.receive { setverdict(fail) }
[] endTestBehavior(expectedRequests)

}
}

60

altstep A1_behavior () runs on SOAComponentType {
…

[] webApplPort.receive (checkStockRequest) -> incomingRequest {
checkIfCached (incomingRequest);
updateReceivedRequests (incomingRequest);

servicePort.send (checkStockRequest); …
alt {

[] servicePort.receive (productDetailsConfirmation) -> incomingResponse {
updateReceivedResponses (incomingResponse)

}
[] servicePort.receive (outofStockNotification) -> incomingResponse {

updateReceivedResponses (incomingResponse)
}

[] servicePort.receive { setverdict(fail) } // unexpected request
[] serviceTimer.timeout { setverdict(fail) }

};
repeat

}
}

Individual service
request-response behaviors

16

61

Verifying test completeness
• So far we have checked that when a message has been

received from a composite application, it was indeed
expected.

• Now, we need to verify that all expected messages have
been received. Only then can we set the test verdict to
pass.

altstep endTestBehavior (RequestType expectedRequests,
ResponseType expectedResponses) … {

[] serviceCoordPort.receive (“end of test ”) {
if(match(expectedRequests, receivedRequests)

&& match(expectedResponses, receivedResponses)) {
setverdict(pass);

}
else {

setverdict(fail);
};

evaluateQOS ()
}

}
62

Completeness checking and
alternative behaviors

• When users compete for resources, some
will be able to fulfill their requests, other
will not.

• Thus, sets of expected requests and
expected responses are necessary to
determine correctness in the case of
alternative responses (check stock
example).

63

Tool results inspection features
comparison

64

JUnit tool features
Failure traces

junit.framework.ComparisonFailure: expected:<...> but was:<...XXX>
at junit.framework.Assert.assertEquals(Assert.java:81)
at junit.framework.Assert.assertEquals(Assert.java:87)
at MainPageTesting.matchWebPage(MainPageTesting.java:127)
at MainPageTesting.testCategoriesPage(MainPageTesting.java:101)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:585)
at junit.framework.TestCase.runTest(TestCase.java:154)
at junit.framework.TestCase.runBare(TestCase.java:127)
at junit.framework.TestResult$1.protect(TestResult.java:106)
at junit.framework.TestResult.runProtected(TestResult.java:124)
at junit.framework.TestResult.run(TestResult.java:109)
at junit.framework.TestCase.run(TestCase.java:118)
at junit.framework.TestSuite.runTest(TestSuite.java:208)
at junit.framework.TestSuite.run(TestSuite.java:203)
at org.eclipse.jdt.internal.junit.runner.junit3.JUnit3TestReference.run(JUnit3TestReference.java:128)
at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:38)
at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:460)
at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:673)
at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:386)
at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:196)

17

65

JUnit mismatch display feature

• JUnit shows only what did not match

• It shows only the first mismatch

• Usable only for assertEquals() assertions
• Does not help for assertTrue() assertions

public void testAssertTrue(){

int X = 10;
assertTrue(X == 5);

}

In the above, JUnit does not display
The value of the variable X

assertEquals(X, “Classical”);

66

TCL/TK results analysis features

• Basically there are none

• However, because of TK, it is easy to
create a custom GUI to display results and
improve results analysis

• With TK, GUIs for displaying results can
be considered as very flexible. Other tools
have only fixed features that a user can
not modify.

67

TTCN-3 tools features

• Matching mechanism overview : in case of
mismatch, the values of all the fields that caused
the mismatch can be viewed along with the
correct values for other fields.

• Logging : each event gets logged and thus the
sequence of events can be thoroughly
inspected. Thus tracing without the need of a
classical debugger.

• Event traceability : Logs are not limited to
display failures, they show successful events
too. This improves traceability.

68

A TTCN-3 Tool editor/compiler

18

69

Matching mechanism overview

70

Logging (graphical/textual)

71

SOA test case log

72

JUnit stack dump

• Shows only the points of method
invocation.

• Doesn’t show the sequence of events that
led to a point of failure or success.

• JUnit is good for software testing where
nested method calls are the basic events.

• JUnit is not good for discrete events
sequences.

19

73

Web testing vendor features
from Testing Tech

• Instant access to WSDL/SOAP based web
services

• Automatic import of WSDL specifications into
TTCN-3 that are translated into TTCN-3 data
types.

• Zero-coding efforts (codec/adapter)

• Seamless usability within any TTCN-3 test
application

• Multiple test components and multiple port
mapping

• W3C Web Service Description Language
(WSDL) v1.1

• W3C SOAP v1.1 and v1.2 Candidate
Recommendation 74

Zero-coding-effort?
• Automated transformation of WSDL to

TTCN-3 types

• Automated transformation of WSDL to
TTCN-3 test components and ports

• Automated generation of the CODEC.

Your coding effort:

• Templates containing test data.
• Test behavior containing sequences of events
and alternate events trees

75

WSDL
complex type example

<xsd:complexType name="PlaceFinderOptions">
<xsd:sequence>

<xsd:element name="dataSource" nillable="true“ type="xsd:string" />
<xsd:element name="filterCountry" nillable="true“ type="xsd:string" />
<xsd:element name="filterExtent" nillable="true“ type="ns3:Envelope" />
<xsd:element name="filterType" nillable="true“ type="xsd:string" />
<xsd:element name="resultSetRange" nillable="true“ type="ns1:ResultSetRange" />
<xsd:element name="searchType" nillable="true“ type="xsd:string" />

</xsd:sequence>
</xsd:complexType>

type record PlaceFinderOptions {
String dataSource optional,
String filterCountry optional,
Envelope filterExtent optional,
String filterType optional,
ResultSetRange resultSetRange optional,
String searchType optional

}

WSDL to TTCN-3
tool

76

Your template
(test data)

template PlaceFinderOptions findPlaceOptionsStrictRequest := {
dataSource := "ArcWeb:ESRI.Gazetteer.World",
filterCountry := "US",
filterExtent := {

coordSys := { datumTransformation := "dx", projection := "4326" },
maxX := -116.0,
maxY := 36.0,
minX := -118.0,
minY := -20.0 },

filterType := "",
resultSetRange := { count := 5, startIndex := 0 },
searchType := "exactMatch"

}

20

77

Your test case
testcase tcFindStrictPlace () runs on ptcType

system PlaceFinderSampleHttpPort_COMPONENT {
map (mtc: PlaceFinderSampleHttpPort_PORT, system: PlaceFinderSampleHttpPort_PORT);

PlaceFinderSampleHttpPort_PORT.call (findPlace_op : {
placeStrictReq, findPlaceOptionsStrictRequest }, localTimerValue) {
[] PlaceFinderSampleHttpPort_PORT.getreply (findPlace_op: {-, - }

value tStrictResponse) { // this is the expected result
setverdict (pass);

}
[] PlaceFinderSampleHttpPort_PORT.getreply (findPlace_op: { -, - }

value ?) { // in any other case this is not good
setverdict (fail);

}
[] PlaceFinderSampleHttpPort_PORT.catch (timeout) {

// and if the SUT does not return this is not good either
setverdict (fail);

}
}

}
78

References

• TTCN-3 standards:
– http://www.ttcn-3.org/StandardSuite.htm

• Papers and tutorials:
– http://www.ttcn-3.org/Tutorials.htm
– http://www.site.uottawa.ca/~bernard/ttcn.html

• Tools:
– Testing Tech: http://www.testingtech.de
– Telelogic: http://www.telelogic.com
– OpenTTCN: http://www.openttcn.com
– TRex: http://www.trex.informatik.uni-goettingen.de/trac

79

Conclusions

• TTCN-3 provides the tools and framework
for addressing the complexities of
enterprise applications and SOA.

