Integration Testing of Composite Applications

Liam Peyton
University of Ottawa, S.I.T.E, 800
King Edward Avenue
Ottawa, ON, Canada, KIN6N5

Ipeyton@site.uottawa.ca

Abstract

A service-oriented architecture enables composite
applications that support business processes to be
defined and built dynamically from loosely coupled
and interoperable web services. The testing and
debugging of such applications presents special
challenges in terms of localizing faults within the
architecture, as well as addressing distributed, multi-
user interactions. In this paper we define an
integration test framework for composite applications
based on defining test cases of expected behavior for
composite applications and the web services used. The
test framework is implemented in TTCN-3 using a test
agent architecture that supports coordinated "grey-
box" testing of application behavior and web service
interaction. The essential issues that must be
addressed in implementing such a framework are
identified, and we illustrate how TTCN-3 support for
templates, abstraction levels, set operations, and
pattern matching allow one to address these issues
efficiently and effectively.

1. Introduction

A service-oriented architecture enables composite@PPlication.

Bernard Stepien
University of Ottawa, S.I.T.E,
800 King Edward Avenue,
Ottawa, ON, Canada,K1IN6N5

bernard @site.uottawa.ca

Pierre Seguin
University of Ottawa, S.I.T.E, 800
King Edward Avenue
Ottawa, ON, Canada, KIN6N5

seguin_pierre@yahoo.ca

» a fault or quality of service issue in any of the
services used by the application

 an unintended interaction in combining
services
The situation is further complicated by the

distributed nature of the service oriented architex
and the large volumes of user interactions thatt ioeis
handled simultaneously. As well, individual seedc
may be replaced or updated independently of the
application.

A systematic and comprehensive test framework is
needed in order to successfully deploy and upgrade
applications in such a complex environment. Tl te
framework must be able to simulate the full comtjex
of large volume, multi-user scenarios, and be able
localize faults and quality of service issues to
individual services within the service oriented
architecture while correlating them to user intéoas
and requests originating from within the composite
application. Existing approaches to testing have
focused on unit testing of individual services, ar
verifying the correctness of the choreography and
orchestration of web services used by a composite
Neither of these approaches can

applications that support business processes to b&dequately address quality of service issues thse a

defined and built dynamically from loosely coupksad

interoperable web services. The testing and debggg

of such applications presents special challengés.
defect observed at the level of user interactiat die
application could be

e a fault or quality of service

application or process logic

Permission to make digital or hard copies of alpart of
this work for personal or classroom use is grantétout
fee provided that copies are not made or distribufte
profit or commercial advantage and that copies lbar
notice and the full citation on the first page. Topy
otherwise, or republish, to post on servers ortlistribute
to lists, requires prior specific permission andidee.

Copyright 2018 ACM 1-5811:-00C-0/00/0004...$5.0(

issue
(performance, security, scalability, etc.) in the

when the full system is in use under load. Nor ttay
adequately correlate behavior of individual sersit@
overall system behavior.

In this paper we define an integration test
framework for composite applications that addresses
these issues based on defining test cases of exbect
behavior for composite applications and the web
services used. The test framework is implemented i
TTCN-3 using a test agent architecture that sugport
coordinated "grey-box" testing of application bebav
and web service interaction. The essential isHues
must be addressed in implementing such a framework
are identified, and we illustrate how TTCN-3 suppor
for templates, abstraction levels, set operatiars]
pattern matching allow one to address these issues
efficiently and effectively.

2. Background used in formal verification. One might imagine

TTCN-3 [5] is a test specification and test employing a mix of both test-case based verificatio
implementation language for testing distributedesyss ~ and formal verification. In this paper, we ideptthe
developed by the European TelecommunicationssSPecial challenges specific to test case driven
Standards Institute (ETSI). It provides powerful verification in a service oriented architecture,dan
abstraction mechanisms for interfacing to differéata highlight how special language features in TTCNa8 ¢
and presentation formats. It also enables one finale be used to address them.
test cases at different levels of abstraction, mash Model-based testing, in which test cases and test

developers use modeling languages to specify theseripts are generated from models is also relevahis
design of a system at different levels of absteacti |55 done in the AGEDIS case studies [4] where

This allows one to define functional tests in terafs T Tpynit and HTMLUNit scripts were generated from
the essential application logic and its managenoént pL models. In [1] User Requirements Notation

information independent of volatile implementatemd (URN), an ITU standard for requirements modeling in
presentation details. It also allows for reuse $€r0 tg|ecommunications was used to generate TTCN-3 test
different levels of test activities [7]. In partien, it scripts. And in [9] evaluations done with JML-JUnit

allows testers to start working in parallel to depers 5eq Junit scripts generated from JML models ofJav
from the same system requirements and specifition |asses. Similar approaches could potentially el u

A composite application is a piece of software that t0 generate test cases (or formal characterizatidns
composes functionality drawn from services within a Protocols) within a test agent framework, but weeha
service oriented architecture to perform operations Not addressed this in this paper. Our focus has be
tasks on behalf of a user, often in the contex ofell issues that have to be addressed in implementation
defined business process. The OASIS organiza€ipn | whether that implementation is manually created or
has developed frameworks and standards to addresgutomatically generated.
issues related to composite applications and bssine
processes beyond the initial set of standardseirice 3. Test Agent Architecturefor Composite
oriented architecture defined by the W3C [11]. Applications

Composite applications support dynamic run-time The purpose of a test agent architecture is to
configuration and collaboration of services. Tiss exploit the architecture of the system being tested
problematic for traditional testing approaches Whic order to integrate test components that can rus sl
assume a static set of components have been prenonjtor behavior. Typically, each component of the
compiled into a single monolithic application. system being tested is paired with a test agentifape

The complexity of composite applications dictates {© that component. A master test component can be
that a systematic test framework [8] reflective af used to coordinate the activities of all test agent
service oriented architecture i_s needed rather than 31 Composite Application
patchwork of tools and test scripts. Several apgres
have focused on supporting formal verification of
services against defined protocols. In [12] formal
verification of web services using TTCN-3 was
presented, while [3] leveraged the UML 2.0 protocol

Figure 1 gives a simple example of a composite
application that is composed of services availabla
service oriented architecture.

state machine to define the expected protocol el w CD Store | €D Store
service conformance. In [10], ebXML dynamic | Consumer(s) Composite
HTTP Application

collaboration protocols from OASIS are extendechwit

temporal logic and timing constraints and showed ho /

a distributed framework of test agents [2] couldibed SOAP I
for dynamically verifying completeness and consiste Y .
of service invocations in compliance with the poato Product Catalog Order Process

Service Service

The approach we describe here differs from formal
verification because we focus on defining test salsat
link expected outcomes at the application levetht®
intermediate results returned by individual sersice In this case, the composite application is an pe-li
However, the test agent architecture we employ iSCD Store. There are several services availableattea
similar to the test agent architectures that hawenb consumed by the composite application including a

Figure 1. Composite application

Product Catalog service that provides informatian o For each service that the Composite application
available products, and an Order Process servige th interacts with, a service test agent is createghtalate

will create and process orders for fulfilment. e€Th the service and validate the interaction of the posite
composite application communicates with these application with it. The environment is configured
services using SOAP requests. For this examplethat the SOAP requests that the composite apmitati
consumer requests to the CD Store compositemakes when calling a web service are redirectatdeo
application are shown as HTTP requests on theappropriate service test agent instead of the real
assumption that consumers are using a simple browseservice. A master test component (MTC) coordinates
interface. In general, though, the format of rexgsie the overall test. The MTC sends test cases for the
handled by the composite application will depend oncomposite test agent to run against the composite
the application and type of consumers targetedr Fo application and it sends a corresponding test dése,
example, the composite application could itselfébe necessary, to the service test agent. The sereste t
service that supported SOAP requests from otheragent test case consists in receiving and matching

applications. expected SOAP requests from the composite
) application and if satisfied sending the corresjmmd
3.2 Black Box Test Agent Architecture responses back to the composite application asctile

The simplest approach to testing a compositeservice would do. At the end of a test campaibe, t

application is to simulate the behavior of a consum MTC correlates the test verdicts it receives framote
interacting with the composite application as ackla of the underlying test agents.

box. Figure 2 below shows a composite test admit t

emulates the behavior of a composite application
consumer, communicating with the composite
application via HTTP requests and responses. The
composite test agent not only emulates a consumeér, Test Cases
it also verifies the responses received based en pr
defined test cases. This enables one to testcivala

flow of composite application responses and their
presentation elements. It also stresses the dveral

Master Test
Component

Test Cases

Test Results

Test Results

system under the actual combination (orchestratith ‘) < m .
choreography) of web service calls that the system (Composite e Order Service
Test Agent Application Test Agent
employs. =
Response Response
Composite HTTP Request Com.pos.ite Figure 3 - Application test with service emulation
Test Agent Application . o .
estagent J2 e Response This approach verifies that the composite
application sends the expected requests to thécssrv
Figure 2 - Application test with consumer Once this is verified, if the response to the uiser
emulation incorrect, one can conclude with confidence that th

problem is located in the web application processis
allow one to pinpoint the reasons for a failurehwit long as each service test agent is accurately émyila

precision, because all the messages between the wep® S€'VICE- The problem is that each of the ses/in

application and the underlying services are nablés t e service oriented archlte_zcture may be evolving
There are also complications in that the expected'ndepemiently of the composite application so wedne

response from the composite application will some mechanism of integrating verification of the

incorporate many volatile presentation and formatti composite application with verification of eachiee.
details related to the browser interface [13]. Figure 4 shows an example of how each service
can have its own black box test in which a servis
agent emulates the behavior of the composite
application by sending SOAP requests and receiving
SOAP responses that one would expect a composite
application to send/receive when orchestrating an
interaction with the services in the SOA.

This is the most natural approach but it does not

A more complete black box test of the composite
application, shown in figure 3 below, consistsesziting
both the composite application’s interaction witte t
consumer and the flow of messages that are ocgurrin
between the composite application and the web
services.

SOAP Request Order Process

Service
Test Agent

Service

SOAP Response

Figure 4 - Service Test with Application Emulation

Note, however, that this service agent is
completely different from the service test agent in
Figure 3 and completely independent of the black bo
text of the composite application in Figure 2. It
provides a simple unit test of the service narrowly
focused on the perspective of the composite agjdita
(ignoring the types of interactions other composite
applications may invoke) and completely ignoringy an
possible interactions or
services.
designed and pass tests but fail in combinatiom wit
other web service calls in the full application.efé&

stil needs to be some mechanism of integrating

verification of the composite application with

verification of each service.

3.3 Grey Box Test Agent Architecture
In the black box test agent architecture, the

composite application and each service used is unit
tested as a separate "black box" in which only the

inputs and outputs of the black box are testedigime
3, the requests made by the composite application t
each service are treated as outputs). This acthite

dependencies with other
The web service call may function as

where faults are occurring and it also stresses the
overall system under the actual combination
(orchestration and choreography) of web servicés cal
that the system must support, testing the actual
responses that are returned by each service. WLaref
design of the service test agents should also ritake
possible for them to be implemented in such a way t
they are completely reusable by any composite
application.

Master Test
Component
Test
Test z Results
Cases Test Test Test Test
aults Cases y_| Results Cages

Order Service
Test Agent

Catalog Service
Test Agent

Composite Test
Agent

. «
Expected " « 4

Requests & * Requests &,/
Responses ,* Responses I/
7’ ’ ’

Va4 ’

Expected [

7 s

CD Store
Composite
Application

Order Process
Service

Product Catalog
Service

Figure 5 - Grey Box Test Agent Architecture

However, there are some significant

does not address how the various test agents and tejplementation challenges associated with this test
cases are kept in synch as the different componentggent architecture, especially if the compositeagent

evolve independently. It also does not addressnibet
difficult aspect of integration testing which iseth

is simulating many users making multiple simultareo
requests to the composite application. Two impurta

possible interaction between web services as thechallenges are:

composite application choreographs and orchestitates
use of the web services.

Figure 5 shows a grey box test agent architecture i
which the application test from Figure 3 is combine
with the service tests from Figure 4 into a single
integrated test framework. We refer to this as ygre
box" testing because the system we are testing is i
effect the overall service oriented architecturd are
do not treat it as a black box, rather we treasita
"grey" box in which we are aware of all of its
components and can monitor and test the interaction
between these components.
emulates its service by forwarding the request fthen
composite application on to the service itself.déing
so, however, it both validates that it is an expéct
request from the composite application and verified
the response from the service is the expected nsspo
The master test component is able to correlatdgaigc

Each service test agent

Caching: Previous responses from an
underlying service may be cached so that
identical requests to the composite application
may not result in the same requests to
underlying services, even when performed on
behalf of different users. .

Correlation Gap: The sequencing and
interleaving of requests and responses may
vary significantly making it difficult to
correlate service requests and responses to the
particular user request made to the composite
application.

Composite applications that consume services
often cache responses from services for futureTuss.
usually happens when the response is known to ik va
across a certain time interval or for a consumer’s
session. It is important that the caching mechanism

should be well documented by the composite Composite Service

application designers since it typically is based o User2 Userl Application Test Agent Service
assumptions of how the service it is using behavas. Request | request 1A
order to test caching, we need to verify that an{no Requekst 2 TP »_request 1A
event) has occurred. If a request to a servicestiaald » request2B |
be cached does not occur, the test can pass, and if request 2B >
does occur, the_ test should fail. T_his requiresedhr response 2B | Tesponse 2B
mechanisms (which we demonstrate in section 4): | Response 2 —= <

* A mechanism for representing a caching _response 1A

mechanism &Sseonse 1A [F
_ Response I [
* A mechanism for representing the non-event

detection Figure 6 — Correlation Gap for Multi-user Requests

* A mechanism to distinguish messages that are The master test component tells the service handler
subject to caching from others that never canyhat requests to expect based on some internat logi
be cached because they contain only one timegathered from the user test components, but not the
user data such as invoice content. order in which they will be received. At the endtoé

The correlation gap is a temporal ordering test, the service handler checks if the set of agessit

problem. The composite application may place itswas told to expect by the master test component
requests to the service in a different order frolatv ~ matches the set of actually received messages.

was received from the users. Similarly, servicey ma 4 1mpl tation Consideration
return responses in a different order from the oide ' plementalio onsigerations

which it receives requests. Figure 6 shows an. The grey bO_X test agent architecture in_f_igur_eswa
interaction diagram of two users (simulated by the !mplementeo_l using the TTCN-3 tes_t speC|f|cat|or_1 and
composite test agent) interacting with a composite/T'Plementation language and applied to a basic CD

application. Request 1 is submitted first by User1 Storé composite application.

however Request2 from User2 is fulfilled first byet 4.1 Basic concepts of TTCN-3

composite application. The interleaving of requests TTCN-3 is based on the concept of sending a
responses makes it so that requests cannot sineply bmessage to a system under test and receiving anesp
correlated by their order of arrival/departure freime that it will attempt to match against a very fldyib
test agents. Ideally there would be unique IDS gtryctured template that serves as an oracle toedef
associated with requests associating them withthe possible outcomes. The central concept of the
particular users. However, when services are ndetu TTCN-3 testing language is a separation of concierns
control of the development team this will often et the architecture of a test framework. This sepanatif

the case. Therefore, in the general case of comeposi concerns is performed at two different levels:
applications, simple end to end tracking does rarkw » First, TTCN-3 defines an Abstract Test Suite

To handle the correlation gap, we must use sets of separate from the concrete implementation of
requests/responses to handle the verification of coding and decoding of requests and
messages agnostic of arrival time. For each servic responses and all related communication with
request received, the service test agent perfowos t the system under test.

kinds of checking:
9 Second, TTCN-3 presents an Abstract Test

* Itchecks if such a message was expected for a Suite as a system behavior tree that displays
specific _test campaign, if yes, it forwards it to sequences of requests to and alternative
the service. responses from the system under test. The

« It enforces the expected response from the switching of paths through that tree is
service and if successful forwards the service achieved via templates that are combinations
response to the web application. of test data and matching rules. Thus, the tree

and templates represent a separation of
concerns between behavior and conditions
governing behavior.

Test behavior is displayed using the concept of a
hierarchal tree where the child nodes indicate

branching. The tree specifies the sequence of stgjue Tesgﬁse CompositeAppTesting1() runs on

: : i ype
and responses to the various services composing o system SystemComponentType {
system. The tree shows all the possible alternative var ServiceAgentType theOrderServiceTest;
behavior paths a system can follow during a specifi ~var CompositeAgentType theUserTest [2];
test. TTCN-3 templates are used to determine which theuserTest [0] :=

alternative path the system takes. It is by matgtan heUserTest 1] CompositeAgentType.create;
H H H H theUserTest =
given template against an incoming response theat th CompositeAgentType create:
test execution tool can determine which path ttodal theOrderServiceTest:=
Eventually, a path will lead to a leaf where thstte ServiceAgentType.create;
verdict is set according to the tester’s test psepo ther der Ser vi ceTest . start (
A test case consists of a sequence of requests and servi ceEvent sTest (
. . t heExpect edOr der Request s)) ;
responses encoded as a tree as described previdusly
test case can be parameterized to make it re-uséthle theUser Test[0] . start(User _1_behavior());
different test data templates. A test case is away theUserTest[1].start(User_2_behavior());
declared to run on a specific test component astésy theUserTest[0].done;

test component. Normal computations can be inserted theUserTest[1].done;
anywhere in the behavior tree.

TTCN-3's main characteristic is to separate the
abstract test suite from lower level activitiestsas the
communication management and the coding and
decoding of messages. For example, HTTP requests
arrive in the form of text that needs to be decotted The structure of the test case shown in figurenfaras
obtain the relevant information for a test. Howevkis ~ the same for different tests. The only differenseni
coding/decoding activity is of no interest at thstaact ~ the use of the appropriate test behavior functitoms
specification of behavior. Consequently it is an the different components. The test case is buitivo
advantage to separate it from the abstract layeraéin ~ Steps:
we need is some mechanism to populate the abstract .« First, build each individual user behavior that
data structures with the values obtained from the depicts their interaction with the composite
messages. This adaptation layer is most efficiently application only.
programmed using a traditional programming language
and depends mostly of the APIs provided by TTCN-3
test execution tools. Our implementation usesShe
Java programming language for our adaptation layer
and more specifically the htmlUnit libraries that
support low level message parsing.

4.2 Test Case Definitions
Individual test cases that define expected behavior

servCoordPort.send("end test");

all component.done;

Figure 7 — Activation of test agents

* Second, build individual behavior trees for
each kind of request/response expected at a
given service test agent. Then compose a
behavior tree with these individually defined
request/response behavior trees.

The test behavior of the userfser_1 behavior(),
User 2 behavior() above) and expected responses is
_ : - APS relatively straight forward to implement for the
in the test agent architecture shown in figure b loa composite test agent processing. However, thecgerv
coded directly at an abstract level into TTCN-3e@od {oq¢ agent processing is more complex. First fgiven
The example in Figure 7 shows how we create andegt campaign, it must check both that correct estu

activate a service test agent and two composite t€Spaye heen sent and that the corresponding expected
agents simulating users performing different betwvi response has been received. Due to the interpafin

that are coded in separate functions and thus €aB-D g ests among several users, the behavior of the
used for various tests. The test case is defioadin service test agent can not be a simple sequence of

on the master test componenurs on MTCTYpe equests and response as in the user behavismibre
below). The three test agent processes are craattd 5 recyrsive machine that receives one requestiaiea

started. ~TheOrderService test agent is passed the |gjavs it to the service and expects and enforces a
expected order_requests that it will validate, aadh response. Since the order of service request is
user test agent is passed the user requests @uNses o redictable, the only solution is to use a choice

it will simulate and validate User_1_behavior(), construct that in TTCN-3 is called an alternatiach
User_2_behavior below). alternate behavior is composed of a pair of reqaest
corresponding response or even several alternative

responses to the same request, thus forming a ioehav e Encounter a timeout and set the test verdict to
tree. These alternatives can be structured effigien fail.

using the TTCN-3 altstep construct which is a pduter
alternatives composition construct. The different
alternatives can be defined as a pool of potential
behaviors described individually in an altstep vahis

a type of function. Then, the appropriate serviest t
behavior for a given test campaign can be assenibled
a TTCN-3 alt construct where the different alteives

are a selection of the individual altsteps previpus function — serviceEvent sTest (RequestType
defined expectedRequests) runs on
€nnea. SOAComponentType {

Figure 8 shows the behavior of the service test ng{er theCompositeApplicationTimer,

agent in relation to a request, B2, and its coordjng 0 Al_behavi or (expectedRequests) {}
response and shows how request B2 can be

Once individual behavior trees have been defined fo
each type of service request message, preferabdy in
separate module, they can be assembled into an
expected overall behavior for a given test campaign
shown in figure 9 by selecting the appropriate ones

encapsulated in an altstep named B2_behavior. Once U (] Sggﬁgﬁgﬁ‘r”t0:gacx‘fie\fteed{ie‘ac‘t“\/e::sgi{}ct(fai)
this behavior tree has been processed a recursive [1 endTest Behavi or (expect edRequest s)
invocation of the serviceEventsTest() function will }
ensure that the next request from the composite Figure 9 — Abstract service test agent behavior for
application is handled. all expected requests
In the function shown in figure 9 there are two
altstep B2_behavi or (RequestsType more alternatives in addition to all the predicted
expectedRequests) request/response pairs. One is a catch all receive
runs on SOAComponentType
construct for messages that are not on the expected
var ServiceRequestWrapperType incomingMsg; messages list. This means that an incoming message

timer theServiceTimer, could not be matched against any of the alsteps

assembled for a given test campaign. This is a tway

[l soawebPort. recei ve(request _2B) ->value catch an incorrect request from the composite
servicePort send(incomingMsg { application and thus set the test verdict to fihally
incomingMsg. t heRequest); there is an additional altstep that catches the
tr;teServiceTimer-start(S-O): coordination message from the MTC that signals the
ait{ [servicePort.recei ve(response_2B) { end of a test campaign_. This is W_here potentiakimis
theServiceTimer.stop; messages are determined. A missing message would
soaWebPort. send(response_2B) indicate that the composite application has produxe
} o response to a user without consulting a servideeeit
servi cePort. receive { because it produced an incorrect caching operatidn
setverdict(fail); stop has some fault in its logic. This is explained liertin

[theServiceTimer.timeout { the correlation discussion section below.

setverdict(fail); stop

}

} 4.3 Caching
servi ceEvent sTest (expectedRequests) To handle caching, the service test agent must
} check if the cached event occurs, and if it doesthe

verdict to fail. This requires a TTCN-3 implemeitat
to represent a caching mechanism and detect a non-
event. Our approach is to store received messates i
The behavior subtree shown in figure 8 describesy set of cached messagear (cachedRequests in figure
one alternative that consists in receiving and hia 10) and verify that a subsequent message does not
message request B2 and then after relaying thepelong to that set. Due to the principle of sepanabf
incoming message to the service it will wait for a concerns, in TTCN-3 this can be implemented in a
response where three possible behaviors could occur concise way. First the entire code that handles the
« Receive the correct response response_2B receiving of a message and its decoding is reldgate
, , the adaptation layer and thus not visible at thetrabt
* Receive an incorrect response (catch all |5 0r Here we merely specify that whatever message
receive) and set the test verdict to fail. received at the adaptation layer must match our

Figure 8 — Service test agent behavior for an
example request.

specification. For example, in the altstep B2_bérav relegates the processing of the comparison of two
presented in figure 8 we should specify that if we complex messages to the tool, thus potentiallyrgavi
receive a particular message, say request 2B, weonsiderable coding and debugging effort as shown i
should first check the cache using a user definedfigure 12.

function and, if satisfied, we should update thehea

Otherm_nse we should set the v_erd|ct to fail a_\n(psttm function cacheChecki ng(ServiceRequestType

execution of the test case. This has been implezdent theRequest) runs on SOAComponentType

in two steps via two separate functions. The finst, o return boolean {
cacheChecking() can be concisely inserted in any of the Lgégtzggggﬁ:&géuﬁ?queSt) A
behavior trees and basically handles the settinthef return true; ’

test verdict. The second ond)otCached() handles the Llse{

lower level cache lookup. log("has received a cached message:_"

. . & theRequest);
In figure 10 we show the definition of a component setverdict(fail):

type where variables are declared for the cache stop

mechanism: y }

) Figure 12 — Checking the cache
type component ServiceAgentType {

integer nbRequests = 0;

var RequestsType cachedRequests := {}: function isNotCached(RequestType theRequest)

runs on ServiceAgentType return boolean {
var integer i;
for(i:=0; i < nbRequests; i:=i+1) {
i f(match(theRequest, cachedRequests[i]))
{ return false; }

}

return true

Figure 10 — Declaring cache variables for service
test agent

Then, in figure 11 we present a modified version of
the B2 behavior() altstep which includes the cache
verification. Note that this approach naturallyoalé us
to separate the messages that are subject to gamhin }
not. For a non-cached message, one just needsito omFigure 13 — Checking if a message is cached or not

the invocation to theacheChecking() function. Finally, it is to be noted that in the special case
where all messages could be subject to cachingsehe
altstep B2_behavior(RequestsType of received messages that is dynamically updated as
expectedRequests) messages arrive at the service test agent really ca
runs on SOAComponentType { fulfill two functionalities simultaneously; one

throughout the test to enable the cache checking
[] soaWebPort receive(request_28) -> mechanism by verifying that a newly arrived message
' - . not already in the cache, the other at the verycérnde
Value incomingMsg { .
cacheChecki ng(incomingMsg. t heRequest) ; test when we compare the expected versus the egteiv
messages for completeness checking. Consequently fo
this special case, it may be more appropriate ¢ocome
common variable for both types of checking.

alt {

Figure 11 — Incorporating caching into service
agent test 4.4 Correlation Gap
The cacheChecking() function shown in figure 12 To handle the correlation gap, the master test
is trivial. It merely invokes another function component must tell the service test agent what
isNotCached(), shown in figure 13, that performs a requests to expect but not in which order. This is
lookup of the cache. If this lookup returns false w handled in a template represented as a set of gesssa
merely update the cache with this incoming messageJsing the powerful set matching mechanisms in TTCN-

and if it is positive we set the verdict to fail. 3 we can verify that the proper set of messages has
been received without worrying about the orderheirt

While so far, the cache update could have beenreception.

achieved in any conventional programming language, i .
in TTCN-3 the cache checking is considerably TWo considerations need to be addressed:
simplified using the TTCN-3 matching mechanism. It

« Check if a request arriving at the service test individual web services correlated to user intécast
agent was expected for a given test case. The framework also complements more formal
» Check if all requests that are expected for anLethOdS %f v§rr;]fy|r}g servulz(e_ orgresttratlon ?ﬁdt
given test case have actually been received byC oreograpny. € Tramework 1S able fo verity tha
. complex multi-user scenarios under load do notlresu
the test service agent. . ' . .
_) i) in unexpected side effects to the logic verifiedlem
The first consideration is actually addressed the assumption of a simple single user scenario.
naturally by the content of the function

serviceEventsTest() shown in figure 9. This function is
composed of a TTCN-3 alt construct that contaihsefal

Although it has not been shown in the examples
used in this paper, quality of service issues edlab
. response times experienced by the user (performance
th that ted dl bt o N)
© MeSSages mat are expecied regardiess obIeer and scalability) can be addressed by including a

of arrival. Any message that is not in these alitves f i d th hout at eact poi
would fall in the generic receive statement where ameasure of response time and througnput at €ach pot
verdict of fail can be set as discussed before. in the test agent architecture as part of the diefimof

.) o) test cases and expected results.
The second consideration consists in updating afset

received messages as the messages arrive attieeser g Fyture Work
Once the test is completed, a final match of_the In our current approach, the test agents are
expected versus received sets of messages suffice tgynamically integrated into the architecture of the
conclude that the test has passed or failed. composite application by a redirection or proxy of
The verification of completeness of the received HTTP and SOAP requests and responses to test agents
set of messages is specified in a very concise andhat process and analyze them before forwardinm the
expressive way in TTCN-3 through the altstep on. This requires that the test agent perform its
endTestBehavior() using thematch operator as shown processing in real time with a likely significamipact
in figure 14 This is in fact similar to the use thie on performance, scalability and timing. This cafeetf
matching mechanism explained in section 4.3 for thethe processing of the system under test and conipeom
cache look up but with the difference that here thethe integrity of the testing approach. Simpleestathe
individual messages comparison is performed as¢iie composite application may behave differently under
comparison level. test than it does when not under test. An alteraas
to simply log a history of all requests and resjgans
altstep endTestBehavior(RequestType _that occur at each service as the composite afiplica
expectedRequests) runs on ... { is tested using a composite test agent. Oncestiidras
completed, each test agent can perform its actigns

[} serviceCoordPort.receive("end of test’){ processing their respective log files after thetesyshas

i mat eh(expect eiiecqel;evsédsﬁgequest) finished executing. There are tools available Widan
setverdict(pass); perform such message logging with minimal and more
else { predictable impact on system performance. Further,
setverdict(fail); processing logic and test case definition that weeh
; defined will stay largely the same. It should méfto
}} build an adaptor plug-in that parses the request an
Figure 14 — Correlation gap handling response messages from a log file, as opposed to
parsing them from a socket connection. We are
5. Results currently exploring this approach.
This framework has successfully been Security and resilience in the face of inappropriat

implemented and used for functional testing of use is another aspect of testing that this framievior
composite applications and is able to localize tfaul relevant to. In this paper, we have focused oh tes
within the service oriented architecture and cateel cases to simulate and validate the system undenaior
them to user interactions under multi-user loache T usage. Just as important are test cases thatftwok
performance of the framework has been evaluatedsecurity vulnerabiliies and simulate users with
compared to traditional approaches using JUnit, malicious intent. As with normal usage test cagés,
HttpUnit and OpenSTA. It requires more effort and critical to be able to localize any fault or qugalibf
sophistication to set up the unit testing toolst u service issues to individual services and correlagen
results in a more comprehensive framework thatbean to user interactions under load intensive multiruse
used to localize and detect faults down to thellefe scenarios.

7. Conclusions

The complexities of composite applications in a

service oriented architecture necessitate

construction of a test agent architecture thatedyos
mirrors the underlying architecture of the compmsit [4]
application. Given the independence of underlying

services from the composite applications that beent

it is essential that grey box integration testing
approaches supplement black box unit testing
approaches. Testing must stress the overall syste
under the actual combination (orchestration and

choreography) of web service calls that the systerst

support, correlating the expected requests, reggons

and quality of service of the composite applicatistin

the expected requests, responses and quality vitser

of the underlying services.

We have demonstrated the basic principles of how
this can be achieved using the TTCN-3 test g

specification and implementation language. Itk do
leverage existing unit test tools into a more cowmtdd
framework.

scenarios.

It complements formal verification
approaches well by ensuring that the expected teesul
are still obtained under high volume multi-user

open specified protocols. In R. Reussner, J. Sthffo
and C. Szyperski, editors, Architecting System#$ wit
Trustworthy Components, number 3938 in LNCS.
Springer-Verlag, 2006,

Craggs I., Sardis M., and Heuillard T. AGEDIS Case
Studies: Model-based Testing in Industry. Proc. 1st
European Conf. on Model Driven Softw. Eng.
(Nuremberg, Germany, Dec. 2003), imbus AG, 106—
117

ETSI ES 201 873-1, “The Testing and Test Control
Notation version 3, Partl: TTCN-3 Core notation,
V2.1.1", June 2005

OASIS: Web Services Composite Application
Framework, http://www.oasis-open.org/committees/ws-
caf/ Accessed 05/2007

R. L. Probert, Pulei Xiong, Bernard Stepien, “Life
cycle E-Commerce Testing with OO-TTCN-3",
FORTE'04 Workshops proceedings, September 2004

C.Rankin, The Software Testing Automation
framework, IBM Systems Journal, Software Testindg an
Verification, Vol. 41, No.1, 2002

R.P.Tan, S.H. Edwards, Experiences Evaluating the
Effectiveness of IML-JUnit Testing, ACM SIGSOFT
Software Engineering Notes, September 2004 Volume
29 Number 5

There is still future work to be done in order to [10] W.T. Tsai, Q. Huang, B. Xiao, Y. Chen, "Verificatio

ensure the approach does not introduce an unatdepta
overhead on system performance as well as to aldres
test scenarios related to security and users with

malicious intent.

8. References

[1] D. Amyot, J-F Roy, M. Weiss, UCM-Driven Testing of

Web Applications. SDL Forum 2005
[2] X.Bai, G. Dai, D. Xu, W. Tsai, "A Multi-Agent Based

Framework for Collaborative Testing on Web Servites
seus-wccia, pp. 205-210, The Fourth IEEE Workshop
on Software Technologies for Future Embedded and

Ubiquitous Systems, 2006

[3] A. Bertolino, L. Frantzen, A. Polini, and J. Tretmsa
Audition of web services for testing conformance to

Framework for Dynamic Collaborative Services in
Service-Oriented Architecture,” pp. 313-320, Sixth
International Conference on Quality Software
(QsIC'06), 2006

[11] W3C Working Group, “Web Services Architecture”,

Note 11 February 2004, http://imww.w3.org/TR/ws-arch
last retrieved: Oct 28, 2006.

[12] P.Xiong, R. L. Probert, B. Stepien , “An Efficient

Formal Testing Approach for Web Services with TTCN-
3", SoftCom 2005, September 2005

[13] B. Stepien, L.Peyton, P.Xiong, “Framework Tegtof

Web Applications using TTCN-3", to appear in
International Journal on Software Tools for Tecloggl
Transfer, Springer-Verlag, Berlin, Germany.

