
Integration Testing of Composite Applications

Liam Peyton
University of Ottawa, S.I.T.E, 800

King Edward Avenue
Ottawa, ON, Canada, K1N6N5

lpeyton@site.uottawa.ca

 Bernard Stepien
University of Ottawa, S.I.T.E,

800 King Edward Avenue,
Ottawa, ON, Canada,K1N6N5
bernard@site.uottawa.ca

Pierre Seguin
University of Ottawa, S.I.T.E, 800

King Edward Avenue
Ottawa, ON, Canada, K1N6N5

seguin_pierre@yahoo.ca

Abstract
A service-oriented architecture enables composite

applications that support business processes to be
defined and built dynamically from loosely coupled
and interoperable web services. The testing and
debugging of such applications presents special
challenges in terms of localizing faults within the
architecture, as well as addressing distributed, multi-
user interactions. In this paper we define an
integration test framework for composite applications
based on defining test cases of expected behavior for
composite applications and the web services used. The
test framework is implemented in TTCN-3 using a test
agent architecture that supports coordinated "grey-
box" testing of application behavior and web service
interaction. The essential issues that must be
addressed in implementing such a framework are
identified, and we illustrate how TTCN-3 support for
templates, abstraction levels, set operations, and
pattern matching allow one to address these issues
efficiently and effectively.

1. Introduction
A service-oriented architecture enables composite

applications that support business processes to be
defined and built dynamically from loosely coupled and
interoperable web services. The testing and debugging
of such applications presents special challenges. A
defect observed at the level of user interaction with the
application could be

• a fault or quality of service issue
(performance, security, scalability, etc.) in the
application or process logic

• a fault or quality of service issue in any of the
services used by the application

• an unintended interaction in combining
services

The situation is further complicated by the
distributed nature of the service oriented architecture
and the large volumes of user interactions that must be
handled simultaneously. As well, individual services
may be replaced or updated independently of the
application.

A systematic and comprehensive test framework is
needed in order to successfully deploy and upgrade
applications in such a complex environment. The test
framework must be able to simulate the full complexity
of large volume, multi-user scenarios, and be able to
localize faults and quality of service issues to
individual services within the service oriented
architecture while correlating them to user interactions
and requests originating from within the composite
application. Existing approaches to testing have
focused on unit testing of individual services, or on
verifying the correctness of the choreography and
orchestration of web services used by a composite
application. Neither of these approaches can
adequately address quality of service issues that arise
when the full system is in use under load. Nor can they
adequately correlate behavior of individual services to
overall system behavior.

In this paper we define an integration test
framework for composite applications that addresses
these issues based on defining test cases of expected
behavior for composite applications and the web
services used. The test framework is implemented in
TTCN-3 using a test agent architecture that supports
coordinated "grey-box" testing of application behavior
and web service interaction. The essential issues that
must be addressed in implementing such a framework
are identified, and we illustrate how TTCN-3 support
for templates, abstraction levels, set operations, and
pattern matching allow one to address these issues
efficiently and effectively.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

2. Background
TTCN-3 [5] is a test specification and test

implementation language for testing distributed systems
developed by the European Telecommunications
Standards Institute (ETSI). It provides powerful
abstraction mechanisms for interfacing to different data
and presentation formats. It also enables one to define
test cases at different levels of abstraction, much as
developers use modeling languages to specify the
design of a system at different levels of abstraction.
This allows one to define functional tests in terms of
the essential application logic and its management of
information independent of volatile implementation and
presentation details. It also allows for reuse across
different levels of test activities [7]. In particular, it
allows testers to start working in parallel to developers
from the same system requirements and specifications.

A composite application is a piece of software that
composes functionality drawn from services within a
service oriented architecture to perform operations or
tasks on behalf of a user, often in the context of a well
defined business process. The OASIS organization [6]
has developed frameworks and standards to address
issues related to composite applications and business
processes beyond the initial set of standards for service
oriented architecture defined by the W3C [11].
Composite applications support dynamic run-time
configuration and collaboration of services. This is
problematic for traditional testing approaches which
assume a static set of components have been pre-
compiled into a single monolithic application.

The complexity of composite applications dictates
that a systematic test framework [8] reflective of a
service oriented architecture is needed rather than a
patchwork of tools and test scripts. Several approaches
have focused on supporting formal verification of
services against defined protocols. In [12] formal
verification of web services using TTCN-3 was
presented, while [3] leveraged the UML 2.0 protocol
state machine to define the expected protocol for web
service conformance. In [10], ebXML dynamic
collaboration protocols from OASIS are extended with
temporal logic and timing constraints and showed how
a distributed framework of test agents [2] could be used
for dynamically verifying completeness and consistency
of service invocations in compliance with the protocol.

The approach we describe here differs from formal
verification because we focus on defining test cases that
link expected outcomes at the application level to the
intermediate results returned by individual services.
However, the test agent architecture we employ is
similar to the test agent architectures that have been

used in formal verification. One might imagine
employing a mix of both test-case based verification
and formal verification. In this paper, we identify the
special challenges specific to test case driven
verification in a service oriented architecture, and
highlight how special language features in TTCN-3 can
be used to address them.

Model-based testing, in which test cases and test
scripts are generated from models is also relevant. This
was done in the AGEDIS case studies [4] where
HTTPUnit and HTMLUnit scripts were generated from
UML models. In [1] User Requirements Notation
(URN), an ITU standard for requirements modeling in
telecommunications was used to generate TTCN-3 test
scripts. And in [9] evaluations done with JML-JUnit
used JUnit scripts generated from JML models of Java
classes. Similar approaches could potentially be used
to generate test cases (or formal characterizations of
protocols) within a test agent framework, but we have
not addressed this in this paper. Our focus has been on
issues that have to be addressed in implementation
whether that implementation is manually created or
automatically generated.

3. Test Agent Architecture for Composite
Applications

The purpose of a test agent architecture is to
exploit the architecture of the system being tested in
order to integrate test components that can run tests and
monitor behavior. Typically, each component of the
system being tested is paired with a test agent specific
to that component. A master test component can be
used to coordinate the activities of all test agents.

3.1 Composite Application
Figure 1 gives a simple example of a composite

application that is composed of services available in a
service oriented architecture.

Figure 1. Composite application

In this case, the composite application is an on-line
CD Store. There are several services available that are
consumed by the composite application including a

Product Catalog service that provides information on
available products, and an Order Process service that
will create and process orders for fulfillment. The
composite application communicates with these
services using SOAP requests. For this example,
consumer requests to the CD Store composite
application are shown as HTTP requests on the
assumption that consumers are using a simple browser
interface. In general, though, the format of requests
handled by the composite application will depend on
the application and type of consumers targeted. For
example, the composite application could itself be a
service that supported SOAP requests from other
applications.

3.2 Black Box Test Agent Architecture
The simplest approach to testing a composite

application is to simulate the behavior of a consumer
interacting with the composite application as a black
box. Figure 2 below shows a composite test agent that
emulates the behavior of a composite application
consumer, communicating with the composite
application via HTTP requests and responses. The
composite test agent not only emulates a consumer, but
it also verifies the responses received based on pre-
defined test cases. This enables one to test the actual
flow of composite application responses and their
presentation elements. It also stresses the overall
system under the actual combination (orchestration and
choreography) of web service calls that the system
employs.

 Figure 2 - Application test with consumer

emulation

This is the most natural approach but it does not
allow one to pinpoint the reasons for a failure with
precision, because all the messages between the web
application and the underlying services are not visible.
There are also complications in that the expected
response from the composite application will
incorporate many volatile presentation and formatting
details related to the browser interface [13].

A more complete black box test of the composite
application, shown in figure 3 below, consists of testing
both the composite application’s interaction with the
consumer and the flow of messages that are occurring
between the composite application and the web
services.

For each service that the Composite application
interacts with, a service test agent is created to emulate
the service and validate the interaction of the composite
application with it. The environment is configured so
that the SOAP requests that the composite application
makes when calling a web service are redirected to the
appropriate service test agent instead of the real
service. A master test component (MTC) coordinates
the overall test. The MTC sends test cases for the
composite test agent to run against the composite
application and it sends a corresponding test case, if
necessary, to the service test agent. The service test
agent test case consists in receiving and matching
expected SOAP requests from the composite
application and if satisfied sending the corresponding
responses back to the composite application as the real
service would do. At the end of a test campaign, the
MTC correlates the test verdicts it receives from each
of the underlying test agents.

Figure 3 - Application test with service emulation

This approach verifies that the composite
application sends the expected requests to the services.
Once this is verified, if the response to the user is
incorrect, one can conclude with confidence that the
problem is located in the web application processing as
long as each service test agent is accurately emulating
its service. The problem is that each of the services in
the service oriented architecture may be evolving
independently of the composite application so we need
some mechanism of integrating verification of the
composite application with verification of each service.

Figure 4 shows an example of how each service
can have its own black box test in which a service test
agent emulates the behavior of the composite
application by sending SOAP requests and receiving
SOAP responses that one would expect a composite
application to send/receive when orchestrating an
interaction with the services in the SOA.

 Figure 4 - Service Test with Application Emulation

Note, however, that this service agent is
completely different from the service test agent in
Figure 3 and completely independent of the black box
text of the composite application in Figure 2. It
provides a simple unit test of the service narrowly
focused on the perspective of the composite application
(ignoring the types of interactions other composite
applications may invoke) and completely ignoring any
possible interactions or dependencies with other
services. The web service call may function as
designed and pass tests but fail in combination with
other web service calls in the full application. There
still needs to be some mechanism of integrating
verification of the composite application with
verification of each service.

3.3 Grey Box Test Agent Architecture
In the black box test agent architecture, the

composite application and each service used is unit
tested as a separate "black box" in which only the
inputs and outputs of the black box are tested (in figure
3, the requests made by the composite application to
each service are treated as outputs). This architecture
does not address how the various test agents and test
cases are kept in synch as the different components
evolve independently. It also does not address the most
difficult aspect of integration testing which is the
possible interaction between web services as the
composite application choreographs and orchestrates its
use of the web services.

Figure 5 shows a grey box test agent architecture in
which the application test from Figure 3 is combined
with the service tests from Figure 4 into a single
integrated test framework. We refer to this as "grey
box" testing because the system we are testing is in
effect the overall service oriented architecture and we
do not treat it as a black box, rather we treat it as a
"grey" box in which we are aware of all of its
components and can monitor and test the interactions
between these components. Each service test agent
emulates its service by forwarding the request from the
composite application on to the service itself. In doing
so, however, it both validates that it is an expected
request from the composite application and verifies that
the response from the service is the expected response.
The master test component is able to correlate precisely

where faults are occurring and it also stresses the
overall system under the actual combination
(orchestration and choreography) of web service calls
that the system must support, testing the actual
responses that are returned by each service. Careful
design of the service test agents should also make it
possible for them to be implemented in such a way that
they are completely reusable by any composite
application.

Figure 5 - Grey Box Test Agent Architecture

However, there are some significant
implementation challenges associated with this test
agent architecture, especially if the composite test agent
is simulating many users making multiple simultaneous
requests to the composite application. Two important
challenges are:

• Caching: Previous responses from an
underlying service may be cached so that
identical requests to the composite application
may not result in the same requests to
underlying services, even when performed on
behalf of different users. .

• Correlation Gap: The sequencing and
interleaving of requests and responses may
vary significantly making it difficult to
correlate service requests and responses to the
particular user request made to the composite
application.

Composite applications that consume services
often cache responses from services for future use. This
usually happens when the response is known to be valid
across a certain time interval or for a consumer’s
session. It is important that the caching mechanism

should be well documented by the composite
application designers since it typically is based on
assumptions of how the service it is using behaves. In
order to test caching, we need to verify that a (non-
event) has occurred. If a request to a service that should
be cached does not occur, the test can pass, and if it
does occur, the test should fail. This requires three
mechanisms (which we demonstrate in section 4):

• A mechanism for representing a caching
mechanism

• A mechanism for representing the non-event
detection

• A mechanism to distinguish messages that are
subject to caching from others that never can
be cached because they contain only one time
user data such as invoice content.

The correlation gap is a temporal ordering
problem. The composite application may place its
requests to the service in a different order from what
was received from the users. Similarly, services may
return responses in a different order from the order in
which it receives requests. Figure 6 shows an
interaction diagram of two users (simulated by the
composite test agent) interacting with a composite
application. Request 1 is submitted first by User1
however Request2 from User2 is fulfilled first by the
composite application. The interleaving of requests and
responses makes it so that requests cannot simply be
correlated by their order of arrival/departure from the
test agents. Ideally there would be unique IDs
associated with requests associating them with
particular users. However, when services are not under
control of the development team this will often not be
the case. Therefore, in the general case of composite
applications, simple end to end tracking does not work.

To handle the correlation gap, we must use sets of
requests/responses to handle the verification of
messages agnostic of arrival time. For each service
request received, the service test agent performs two
kinds of checking:

• It checks if such a message was expected for a
specific test campaign, if yes, it forwards it to
the service.

• It enforces the expected response from the
service and if successful forwards the service
response to the web application.

Figure 6 – Correlation Gap for Multi-user Requests

The master test component tells the service handler
what requests to expect based on some internal logic
gathered from the user test components, but not the
order in which they will be received. At the end of the
test, the service handler checks if the set of messages it
was told to expect by the master test component
matches the set of actually received messages.

4. Implementation Considerations
The grey box test agent architecture in figure 5 was

implemented using the TTCN-3 test specification and
implementation language and applied to a basic CD
Store composite application.

4.1 Basic concepts of TTCN-3
TTCN-3 is based on the concept of sending a

message to a system under test and receiving a response
that it will attempt to match against a very flexibly
structured template that serves as an oracle to define
the possible outcomes. The central concept of the
TTCN-3 testing language is a separation of concerns in
the architecture of a test framework. This separation of
concerns is performed at two different levels:

• First, TTCN-3 defines an Abstract Test Suite
separate from the concrete implementation of
coding and decoding of requests and
responses and all related communication with
the system under test.

• Second, TTCN-3 presents an Abstract Test
Suite as a system behavior tree that displays
sequences of requests to and alternative
responses from the system under test. The
switching of paths through that tree is
achieved via templates that are combinations
of test data and matching rules. Thus, the tree
and templates represent a separation of
concerns between behavior and conditions
governing behavior.

Test behavior is displayed using the concept of a
hierarchal tree where the child nodes indicate

branching. The tree specifies the sequence of requests
and responses to the various services composing a
system. The tree shows all the possible alternative
behavior paths a system can follow during a specific
test. TTCN-3 templates are used to determine which
alternative path the system takes. It is by matching a
given template against an incoming response that the
test execution tool can determine which path to follow.
Eventually, a path will lead to a leaf where the test
verdict is set according to the tester’s test purpose.

A test case consists of a sequence of requests and
responses encoded as a tree as described previously. A
test case can be parameterized to make it re-usable with
different test data templates. A test case is always
declared to run on a specific test component and system
test component. Normal computations can be inserted
anywhere in the behavior tree.

TTCN-3’s main characteristic is to separate the
abstract test suite from lower level activities such as the
communication management and the coding and
decoding of messages. For example, HTTP requests
arrive in the form of text that needs to be decoded to
obtain the relevant information for a test. However, this
coding/decoding activity is of no interest at the abstract
specification of behavior. Consequently it is an
advantage to separate it from the abstract layer and all
we need is some mechanism to populate the abstract
data structures with the values obtained from the
messages. This adaptation layer is most efficiently
programmed using a traditional programming language
and depends mostly of the APIs provided by TTCN-3
test execution tools. Our implementation uses the Sun
Java programming language for our adaptation layer
and more specifically the htmlUnit libraries that
support low level message parsing.

4.2 Test Case Definitions
Individual test cases that define expected behavior

in the test agent architecture shown in figure 5 can be
coded directly at an abstract level into TTCN-3 code.
The example in Figure 7 shows how we create and
activate a service test agent and two composite test
agents simulating users performing different behaviors
that are coded in separate functions and thus can be re-
used for various tests. The test case is defined to run
on the master test component (runs on MTCType
below). The three test agent processes are created and
started. The OrderService test agent is passed the
expected order requests that it will validate, and each
user test agent is passed the user requests and responses
it will simulate and validate (User_1_behavior(),
User_2_behavior below).

testcase CompositeAppTesting1() runs on
MTCType

 system SystemComponentType {
 var ServiceAgentType theOrderServiceTest;
 var CompositeAgentType theUserTest [2];

 theUserTest [0] :=

 CompositeAgentType.create;
 theUserTest [1] :=
 CompositeAgentType.create;
 theOrderServiceTest:=
 ServiceAgentType.create;

 theOrderServiceTest.start(

serviceEventsTest(
theExpectedOrderRequests));

 theUserTest[0].start(User_1_behavior());
 theUserTest[1].start(User_2_behavior());

 theUserTest[0].done;
 theUserTest[1].done;

 servCoordPort.send("end test");

 all component.done;
}

Figure 7 – Activation of test agents

The structure of the test case shown in figure 7 remains
the same for different tests. The only difference is in
the use of the appropriate test behavior functions for
the different components. The test case is built in two
steps:

• First, build each individual user behavior that
depicts their interaction with the composite
application only.

• Second, build individual behavior trees for
each kind of request/response expected at a
given service test agent. Then compose a
behavior tree with these individually defined
request/response behavior trees.

The test behavior of the users (User_1_behavior(),
User_2_behavior() above) and expected responses is
relatively straight forward to implement for the
composite test agent processing. However, the service
test agent processing is more complex. First for a given
test campaign, it must check both that correct requests
have been sent and that the corresponding expected
response has been received. Due to the interleaving of
requests among several users, the behavior of the
service test agent can not be a simple sequence of
requests and response as in the user behavior. It is more
a recursive machine that receives one request at a time,
relays it to the service and expects and enforces a
response. Since the order of service request is
unpredictable, the only solution is to use a choice
construct that in TTCN-3 is called an alternative. Each
alternate behavior is composed of a pair of request and
corresponding response or even several alternative

responses to the same request, thus forming a behavior
tree. These alternatives can be structured efficiently
using the TTCN-3 altstep construct which is a powerful
alternatives composition construct. The different
alternatives can be defined as a pool of potential
behaviors described individually in an altstep which is
a type of function. Then, the appropriate service test
behavior for a given test campaign can be assembled in
a TTCN-3 alt construct where the different alternatives
are a selection of the individual altsteps previously
defined.

Figure 8 shows the behavior of the service test
agent in relation to a request, B2, and its corresponding
response and shows how request B2 can be
encapsulated in an altstep named B2_behavior. Once
this behavior tree has been processed a recursive
invocation of the serviceEventsTest() function will
ensure that the next request from the composite
application is handled.

altstep B2_behavior(RequestsType
expectedRequests)
 runs on SOAComponentType
{
 var ServiceRequestWrapperType incomingMsg;
 timer theServiceTimer;
 …

 [] soaWebPort. receive(request_2B) -> value

incomingMsg {
 servicePort. send(

 incomingMsg. theRequest);
 theServiceTimer.start(5.0);
 alt {
 [] servicePort.receive(response_2B) {
 theServiceTimer.stop;
 soaWebPort. send(response_2B)

to …
 }
 [] servicePort.receive {
 setverdict(fail); stop
 }
 [] theServiceTimer.timeout {
 setverdict(fail); stop
 }
 }
 serviceEventsTest(expectedRequests)
 }
}

Figure 8 – Service test agent behavior for an
example request.

The behavior subtree shown in figure 8 describes
one alternative that consists in receiving and matching
message request B2 and then after relaying the
incoming message to the service it will wait for a
response where three possible behaviors could occur:

• Receive the correct response response_2B

• Receive an incorrect response (catch all
receive) and set the test verdict to fail.

• Encounter a timeout and set the test verdict to
fail.

Once individual behavior trees have been defined for
each type of service request message, preferably in a
separate module, they can be assembled into an
expected overall behavior for a given test campaign as
shown in figure 9 by selecting the appropriate ones.

function serviceEventsTest(RequestType
 expectedRequests) runs on
SOAComponentType {
 timer theCompositeApplicationTimer;
 alt {
 [] A1_behavior(expectedRequests) {}
 …
 [] B2_behavior(expectedRequests) {}
 [] soaWebPort.receive {setverdict(fail)}
 [] endTestBehavior(expectedRequests)
}

Figure 9 – Abstract service test agent behavior for
all expected requests

In the function shown in figure 9 there are two
more alternatives in addition to all the predicted
request/response pairs. One is a catch all receive
construct for messages that are not on the expected
messages list. This means that an incoming message
could not be matched against any of the alsteps
assembled for a given test campaign. This is a way to
catch an incorrect request from the composite
application and thus set the test verdict to fail. Finally
there is an additional altstep that catches the
coordination message from the MTC that signals the
end of a test campaign. This is where potential missing
messages are determined. A missing message would
indicate that the composite application has produced a
response to a user without consulting a service either
because it produced an incorrect caching operation or it
has some fault in its logic. This is explained further in
the correlation discussion section below.

4.3 Caching
To handle caching, the service test agent must

check if the cached event occurs, and if it does, set the
verdict to fail. This requires a TTCN-3 implementation
to represent a caching mechanism and detect a non-
event. Our approach is to store received messages into
a set of cached messages (var cachedRequests in figure
10) and verify that a subsequent message does not
belong to that set. Due to the principle of separation of
concerns, in TTCN-3 this can be implemented in a
concise way. First the entire code that handles the
receiving of a message and its decoding is relegated to
the adaptation layer and thus not visible at the abstract
layer. Here we merely specify that whatever message
received at the adaptation layer must match our

specification. For example, in the altstep B2_behavior
presented in figure 8 we should specify that if we
receive a particular message, say request_2B, we
should first check the cache using a user defined
function and, if satisfied, we should update the cache.
Otherwise we should set the verdict to fail and stop the
execution of the test case. This has been implemented
in two steps via two separate functions. The first one,
cacheChecking() can be concisely inserted in any of the
behavior trees and basically handles the setting of the
test verdict. The second one, isNotCached() handles the
lower level cache lookup.

In figure 10 we show the definition of a component
type where variables are declared for the cache
mechanism:

type component ServiceAgentType {

 integer nbRequests = 0;

 var RequestsType cachedRequests := {};

 …

}

Figure 10 – Declaring cache variables for service
test agent

Then, in figure 11 we present a modified version of
the B2_behavior() altstep which includes the cache
verification. Note that this approach naturally allows us
to separate the messages that are subject to caching or
not. For a non-cached message, one just needs to omit
the invocation to the cacheChecking() function.

altstep B2_behavior(RequestsType
 expectedRequests)
 runs on SOAComponentType {
 …

 alt {

 [] soaWebPort.receive(request_2B) ->

 Value incomingMsg {
cacheChecking(incomingMsg. theRequest);

 …

Figure 11 – Incorporating caching into service
agent test

The cacheChecking() function shown in figure 12
is trivial. It merely invokes another function
isNotCached(), shown in figure 13, that performs a
lookup of the cache. If this lookup returns false we
merely update the cache with this incoming message
and if it is positive we set the verdict to fail.

While so far, the cache update could have been
achieved in any conventional programming language,
in TTCN-3 the cache checking is considerably
simplified using the TTCN-3 matching mechanism. It

relegates the processing of the comparison of two
complex messages to the tool, thus potentially saving
considerable coding and debugging effort as shown in
figure 12.

function cacheChecking(ServiceRequestType
 theRequest) runs on SOAComponentType
 return boolean {
 if(isNotCached(theRequest)) {
 updateCache(theRequest);
 return true;
 }
 else {
 log("has received a cached message:_"
 & theRequest);
 setverdict(fail);
 stop
 }
}

Figure 12 – Checking the cache

function isNotCached(RequestType theRequest)

runs on ServiceAgentType return boolean {

var integer i;

for(i:=0; i < nbRequests; i:=i+1) {

 if(match(theRequest, cachedRequests[i]))

 { return false; }

}

return true

}

Figure 13 – Checking if a message is cached or not

Finally, it is to be noted that in the special case
where all messages could be subject to caching, the set
of received messages that is dynamically updated as
messages arrive at the service test agent really can
fulfill two functionalities simultaneously; one
throughout the test to enable the cache checking
mechanism by verifying that a newly arrived message is
not already in the cache, the other at the very end of the
test when we compare the expected versus the received
messages for completeness checking. Consequently for
this special case, it may be more appropriate to use one
common variable for both types of checking.

4.4 Correlation Gap
To handle the correlation gap, the master test

component must tell the service test agent what
requests to expect but not in which order. This is
handled in a template represented as a set of messages.
Using the powerful set matching mechanisms in TTCN-
3 we can verify that the proper set of messages has
been received without worrying about the order of their
reception.

Two considerations need to be addressed:

• Check if a request arriving at the service test
agent was expected for a given test case.

• Check if all requests that are expected for a
given test case have actually been received by
the test service agent.

The first consideration is actually addressed
naturally by the content of the function
serviceEventsTest() shown in figure 9. This function is
composed of a TTCN-3 alt construct that contains all of
the messages that are expected regardless of their order
of arrival. Any message that is not in these alternatives
would fall in the generic receive statement where a
verdict of fail can be set as discussed before.

The second consideration consists in updating a set of
received messages as the messages arrive at the service.
Once the test is completed, a final match of the
expected versus received sets of messages suffice to
conclude that the test has passed or failed.

The verification of completeness of the received
set of messages is specified in a very concise and
expressive way in TTCN-3 through the altstep
endTestBehavior() using the match operator as shown
in figure 14 This is in fact similar to the use of the
matching mechanism explained in section 4.3 for the
cache look up but with the difference that here the
individual messages comparison is performed at the set
comparison level.

altstep endTestBehavior(RequestType
 expectedRequests) runs on … {

 [] serviceCoordPort.receive(“end of test”){
 if(match(expectedRequests,

receivedRequests)) {
 setverdict(pass);
 }
 else {
 setverdict(fail);
 };
 }
}

Figure 14 – Correlation gap handling

5. Results
This framework has successfully been

implemented and used for functional testing of
composite applications and is able to localize faults
within the service oriented architecture and correlate
them to user interactions under multi-user load. The
performance of the framework has been evaluated
compared to traditional approaches using JUnit,
HttpUnit and OpenSTA. It requires more effort and
sophistication to set up the unit testing tools, but it
results in a more comprehensive framework that can be
used to localize and detect faults down to the level of

individual web services correlated to user interactions.
The framework also complements more formal
methods of verifying service orchestration and
choreography. The framework is able to verify that
complex multi-user scenarios under load do not result
in unexpected side effects to the logic verified under
the assumption of a simple single user scenario.

Although it has not been shown in the examples
used in this paper, quality of service issues related to
response times experienced by the user (performance
and scalability) can be addressed by including a
measure of response time and throughput at each point
in the test agent architecture as part of the definition of
test cases and expected results.

6. Future Work
In our current approach, the test agents are

dynamically integrated into the architecture of the
composite application by a redirection or proxy of
HTTP and SOAP requests and responses to test agents
that process and analyze them before forwarding them
on. This requires that the test agent perform its
processing in real time with a likely significant impact
on performance, scalability and timing. This can affect
the processing of the system under test and compromise
the integrity of the testing approach. Simple stated, the
composite application may behave differently under
test than it does when not under test. An alternative is
to simply log a history of all requests and responses
that occur at each service as the composite application
is tested using a composite test agent. Once the test has
completed, each test agent can perform its actions by
processing their respective log files after the system has
finished executing. There are tools available which can
perform such message logging with minimal and more
predictable impact on system performance. Further, the
processing logic and test case definition that we have
defined will stay largely the same. It should suffice to
build an adaptor plug-in that parses the request and
response messages from a log file, as opposed to
parsing them from a socket connection. We are
currently exploring this approach.

Security and resilience in the face of inappropriate
use is another aspect of testing that this framework is
relevant to. In this paper, we have focused on test
cases to simulate and validate the system under normal
usage. Just as important are test cases that look for
security vulnerabilities and simulate users with
malicious intent. As with normal usage test cases, it is
critical to be able to localize any fault or quality of
service issues to individual services and correlate them
to user interactions under load intensive multi-user
scenarios.

7. Conclusions
The complexities of composite applications in a

service oriented architecture necessitate the
construction of a test agent architecture that closely
mirrors the underlying architecture of the composite
application. Given the independence of underlying
services from the composite applications that use them,
it is essential that grey box integration testing
approaches supplement black box unit testing
approaches. Testing must stress the overall system
under the actual combination (orchestration and
choreography) of web service calls that the system must
support, correlating the expected requests, responses
and quality of service of the composite application with
the expected requests, responses and quality of service
of the underlying services.

We have demonstrated the basic principles of how
this can be achieved using the TTCN-3 test
specification and implementation language. It is able to
leverage existing unit test tools into a more coordinated
framework. It complements formal verification
approaches well by ensuring that the expected results
are still obtained under high volume multi-user
scenarios.

There is still future work to be done in order to
ensure the approach does not introduce an unacceptable
overhead on system performance as well as to address
test scenarios related to security and users with
malicious intent.

8. References
[1] D. Amyot, J-F Roy, M. Weiss, UCM-Driven Testing of

Web Applications. SDL Forum 2005

[2] X.Bai, G. Dai, D. Xu, W. Tsai, "A Multi-Agent Based
Framework for Collaborative Testing on Web Services,"
seus-wccia, pp. 205-210, The Fourth IEEE Workshop
on Software Technologies for Future Embedded and
Ubiquitous Systems, 2006

[3] A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans.
Audition of web services for testing conformance to

open specified protocols. In R. Reussner, J. Stafford,
and C. Szyperski, editors, Architecting Systems with
Trustworthy Components, number 3938 in LNCS.
Springer-Verlag, 2006,

[4] Craggs I., Sardis M., and Heuillard T. AGEDIS Case
Studies: Model-based Testing in Industry. Proc. 1st
European Conf. on Model Driven Softw. Eng.
(Nuremberg, Germany, Dec. 2003), imbus AG, 106—
117

[5] ETSI ES 201 873-1, “The Testing and Test Control
Notation version 3, Part1: TTCN-3 Core notation,
V2.1.1”, June 2005

[6] OASIS: Web Services Composite Application
Framework, http://www.oasis-open.org/committees/ws-
caf/ Accessed 05/2007

[7] R. L. Probert, Pulei Xiong, Bernard Stepien, “Life-
cycle E-Commerce Testing with OO-TTCN-3”,
FORTE'04 Workshops proceedings, September 2004

[8] C.Rankin, The Software Testing Automation
framework, IBM Systems Journal, Software Testing and
Verification, Vol. 41, No.1, 2002

[9] R.P.Tan, S.H. Edwards, Experiences Evaluating the
Effectiveness of JML-JUnit Testing, ACM SIGSOFT
Software Engineering Notes, September 2004 Volume
29 Number 5

[10] W.T. Tsai, Q. Huang, B. Xiao, Y. Chen, "Verification
Framework for Dynamic Collaborative Services in
Service-Oriented Architecture," pp. 313-320, Sixth
International Conference on Quality Software
(QSIC'06), 2006

[11] W3C Working Group, “Web Services Architecture”,
Note 11 February 2004, http://www.w3.org/TR/ws-arch,
last retrieved: Oct 28, 2006.

[12] P.Xiong, R. L. Probert, B. Stepien , “An Efficient
Formal Testing Approach for Web Services with TTCN-
3”, SoftCom 2005, September 2005

[13] B. Stepien, L.Peyton, P.Xiong, “Framework Testing of
Web Applications using TTCN-3”, to appear in
International Journal on Software Tools for Technology
Transfer, Springer-Verlag, Berlin, Germany.

