
An Algorithm for Compression of XACML Access Control
Policy Sets by Recursive Subsumption

Bernard Stepien1,2, Stan Matwin1,2,3, Amy Felty1,2

1School of Information Technology and Engineering, University of Ottawa, Ottawa, Canada
2Devera Logic Inc., Ottawa, Canada

3Institute for Computer Science, Polish Academy of Sciences, Warsaw, Poland
(bernard | stan | afelty)@site.uottawa.ca

Abstract— Policy administrators increasingly face the challenge of
managing large policy bases, and this need becomes more acute
with the growing importance of fine-grained access control
models, e.g. ABAC. We have shown in previous work that simple
policies mostly based on conjunctions of single attribute
conditions, can be merged into more complex conditions
composed of combinations of conjunctions and disjunctions of
attribute/value pairs. Here, we propose an algorithm that uses a
recursive process of subsumption applied on the original set of
policies that results in a complex and short policy, often
significantly compressing the original policy. We present this
algorithm, and discuss the advantages of this approach, i.e. its
performance when working on the policy structures encountered in
real-life policy sets, its scalability, and its ability to deal with large
alphabet sets.

Keywords: access control, subsumption algorithm,
XACML.

I. INTRODUCTION

Access control (AC) policy specification languages have
gone through a long evolution over time [3]. More recently,
the increasingly important requirement of interoperability
has led to standardization efforts that produced the XML-
based XACML access control policy specification language
[14]. In addition to the benefits of standardization, this
language has the additional advantage that it allows the
specification of complex conditions, which are ideal for fine
grained AC systems. However, a combination of two factors
has resulted in very little use of these powerful capabilities.
The first factor is related to legacy. Administrators have to
migrate legacy AC systems that don’t allow complex
conditions.

They usually do a straightforward translation that
perpetuates a specification style of using only simple logical
expressions. Such expressions are usually simple
conjunctions of individual conditions on given attributes.
The second factor ironically resides in the XML nature of
XACML itself. While XACML is an ideal machine readable
language, its extreme verbosity, due to the combination of
long XML tags and long domain names for operators, makes
the use of complex conditions difficult for a human to read,
prone to errors during editing and thus impractical. In [15]
we have shown that the verbosity of XACML can be
eliminated easily using a non-technical notation combined
with an attribute data model for the purpose of displaying
and editing of XACML policies. Because of its coupling
with an attribute data model, the transformation into the non-

technical notation preserves the semantics of XACML. The
notation is not a language in itself; it is merely a
simplification of the XACML language that retains the
overall XACML structure. We use this notation throughout
this paper for examples. Once the verbosity of XACML is
eliminated, it is possible to take advantage of the benefits of
using complex conditions, which we have shown in [16,17].
These benefits arise mostly from the ability to make policy
conditions more understandable and thus more manageable.

II. BACKGROUND

A. Reasons for Large Policy Sets

It is a well-known fact that AC policy sets are
traditionally large for two reasons: first of all, in early AC
systems, permissions to access resources were assigned
directly to individuals. Later, new AC models eliminated the
direct assignment of permissions to individuals. Instead,
permissions were assigned to various attributes such as the
roles an individual plays, as in the RBAC model [7] or even
to an unlimited number of attributes as in the ABAC [8]
model. These models allow for fine grained AC, which is
the central feature of the XACML language itself. This is a
major improvement that has resulted in a reduction of the
number of policies required to specify the AC requirements
of an organization. However, there still remain reasons for
having large numbers of policies: one of them is the number
of attributes, especially in fine grained AC systems. In [10],
it has been established that for RBAC models, the size of a
policy set can be potentially 2n combinations of n roles,
while ABAC has a potential number of 2n combinations of
rules for n attributes. However, the prime reason for large
numbers of rules resides mostly in specification styles. For
example, in XACML, the target part of a rule or policy uses
mostly simple logical expressions. In [16] we showed that it
is possible to reduce considerably the number of policies by
instead using complex conditions. Our findings were the
result of an exercise in scalability where policies were
generated systematically on sets of alphabets for attributes.
The advantages of reducing the number of policies are
twofold:

• Reducing the risk of conflicts;
• Improving performance of access granting tools.

B. State of Research in Reducing Policy Sets

Both of the advantages above have been the focus of
extensive research. A summary of research in conflict

detection is given in [16]. The topic of improving
performance has been the subject of more recent research
[11,12,13].

In [11], an approach to reducing the number of policies
by eliminating policies that are in conflict is proposed. The
elimination of conflicts results in a reduced number of
policies since one of the two conflicting policies must be
eliminated. This paper also describes an important policy
writing style that separates policies into two groups: safety
policies that consist of specifying what users should not
have access to and utility policies that consist of specifying
what users have access to (a generalization of availability
policies). However the authors point out that these two
stylistic groups are naturally conflicting. More important is
the fact that they consider these types of policies difficult to
resolve at run time. Thus there is still a need to find a
method for detecting these conflicts at compile time. They
use static pruning and minimal inconsistency cover set.

In [12], the emphasis is not on reduction of the size of
the policy sets, but instead on re-ordering the policies to
improve the search time required to evaluate AC requests
and grant or deny permission to access a resource. The
originality of this work is that the reordering algorithm is
based on a statistical analysis not only of the policies of a
policy set but also on the dynamic flow of requests that can
structurally vary with time due to seasonal factors or market
conditions.

In [13], the hierarchical structuring of XACML policy
elements (policy sets, policies, rules, targets and conditions)
is used for the purpose of optimization and improved
performance. Their approach consists of shifting the
location of these elements along the hierarchy of a policy in
order to minimize the number of comparisons between
attribute values of a request and a policy to achieve a
reduction in evaluation costs. Experiments show that a 60%
reduction in evaluation costs can be achieved. Again this is
not by reducing the number of policies but merely
restructuring them.

All of the above research shows that there is a
widespread awareness that there is a performance problem
with XACML policy sets. In summary, most of the existing
research focuses on specific application domains [9] or on
reasoning about policy conditions [6].

C. Distribution of Logic in XACML

XACML policy logic is described in several structural
levels that already make some effort to reduce the amount of
computation when evaluating AC requests. It separates
policies and rules, each of them having logic located in a
target, and the rule having a separate condition. In order to
focus on the logic instead of computational efficiency, and
to counter the scattering of logic that makes understanding
and testing of policies difficult, we collapse all these levels
into a single logical expression. This is possible because
XACML’s structural breakdown amounts in fact to an
implicit conjunction. The approach of representing a

XACML policy using a single condition has already been
explored although not published. It is described in a U.S.
patent [1]. Note that by collapsing rules and policies in this
way, there is no longer any distinction between a rule and a
policy.

D. Performance Measurement

In [17] we have proposed a metric to measure the impact
of policy specification styles that compared two opposing
styles: the use of simple conjunctions of attribute conditions
and the use of complex conditions using combinations of
conjunctions and disjunctions of attribute conditions. If a
policy set has n attributes a1, …, an with corresponding na1,
…, nan possible values v for each attribute (size of alphabet),
the number of policies np required to cover the entire
permission space is the number of combinations between
attributes and their values:

np = na1 × na2 × … × nan

If we are performing an evaluation request by linearly
traversing a policy set in this representation, the worst case
number of comparisons nc, also called request evaluation
cost, between the values of an AC request and the values of
policy attributes is the product of the sizes of each of the
attribute alphabets (number of combinations np above)
multiplied by the number of attributes itself:

 nc = (na1 × na2 × … × nan) × n

This is due to the fact that each attribute must be re-
evaluated for each policy until one matches.

Instead, we found that a policy set that has the same
coverage can be represented by a single policy that is
composed of a conjunction between conditions for each
attribute. These conditions correspond to a disjunction
between the values of the alphabet for each attribute. This
single policy, let us call it a generalized policy GP, is a
subsumption of the original set of policies P1,…, Pn, in that
there exists, for each combination of specific values of
attributes of each Pi, an assignment of values of attributes in
GP such that for this assignment of values GP = Pi.. When
a policy P subsumes a policy Q, P is in fact a
generalization of Q. For example, if P gives specific values
to attributes a1,…,an, then GP is:

 a 1 is one of v a11, …, v a1n1
and
 …
and
 a n is one of v an1, …, v annm

We have previously determined that the worst case number
of comparisons between the attribute values of a request
against the policy required to reach a match is additive in a
generalized policy rather than multiplicative as in the first

case. In this case it is the sum of the individual sizes of each
attributes alphabets:

ncps = na1 + na2 + … + nan

While so far we had determined that it is possible to reduce
the size of policy bases and that there is a clear advantage to
it, we had not yet determined a procedure to systematically
achieve this goal. This paper describes an algorithm to
reduce policy sets based on simple policies (conjunctions of
conditions on individual attributes) and discusses the
benefits of such an approach for realistic AC policy sets.
Our contribution is therefore the algorithm for policy
compression of policy sets described in this paper. This
algorithm has the capability to substantially reduce the size
of policy sets by merging (by subsumption) individual
policy condition logic into single conditions, thus making
them both more manageable and allowing a better
performance for PDPs.

III. POLICY COMPRESSION ALGORITHM

In [17] we used a concrete small example of 18 policies
that were automatically generated using the combinations of
values of 3 attributes X, Y, Z that each have alphabets of
{10, 20, 30}, {“a”, “b”, “c”}, {true, false}, respectively, as
follows:
P1: X is 10 ˄ Y is “a” ˄ Z is true
P2: X is 10 ˄ Y is “a” ˄ Z is false
P3: X is 10 ˄ Y is “b” ˄ Z is true
P4: X is 10 ˄ Y is “b” ˄ Z is false
P5: X is 10 ˄ Y is “c” ˄ Z is true
P6: X is 10 ˄ Y is “c” ˄ Z is false
P7: X is 20 ˄ Y is “a” ˄ Z is true
P8: X is 20 ˄ Y is “a” ˄ Z is false
P9: X is 20 ˄ Y is “b” ˄ Z is true
P10: X is 20 ˄ Y is “b” ˄ Z is false
P11: X is 20 ˄ Y is “c” ˄ Z is true
P12: X is 20 ˄ Y is “c” ˄ Z is false
P13: X is 30 ˄ Y is “a” ˄ Z is true
P14: X is 30 ˄ Y is “a” ˄ Z is false
P15: X is 30 ˄ Y is “b” ˄ Z is true
P16: X is 30 ˄ Y is “b” ˄ Z is false
P17: X is 30 ˄ Y is “c” ˄ Z is true
P18: X is 30 ˄ Y is “c” ˄ Z is false

Note that in this example, there is a policy for every
combination of values. Furthermore, we assume that all of
these policies are assigned the same affect (accept or
deny). We start with this simple example for illustration
purposes, so that we can show the steps our algorithm takes
to collapse all 18 policies to a single one. We will then
generalize to more realistic policies. As the above policy set
is “full”, i.e. it represents all the possible values of all
attributes, it can—as we will show below—be reduced by
recursive application of subsumptions to a single policy Ps
using a shallow complex condition as follows:

 X is one of 10, 20, 30
and
 Y is one of “a”, “b”, “c”

and
 Z is one of true, false

In this example, the cost of processing a request for the
worst case scenario would be equal to 3×3×2×3 = 54
comparisons for the original set of 18 policies while the cost
for the single policy would be only 3+3+2 = 8 comparisons.
A realistic example would have considerably more attributes
and larger alphabets and would show even more dramatic
differences in the computation cost. For example if in this
example with three attributes we, increase the sizes of the
alphabets to {5, 10, 8}, we would have 5×10×8×3 = 1200
comparisons rather than 5+10+8 = 23. This is a ratio of 52
instead of a ratio of 6.5 for the number of comparisons.

Reducing the number of policies in a policy set has
always been a goal among policy administrators. However,
the most common technique to achieve this compression
consists of using “blanket” policies that specify the same
effect against exception policies that specify the opposite
effect. For example, a rule that permits access for a few
values of a given attribute might be placed before a blanket
rule that denies access for all values. The main problem with
this approach is that it creates a de facto intentional conflict
that is difficult to distinguish from conflicts resulting from
mere errors. The problem is aggravated in the case where
there are several attributes, as inevitably the policy
administrator will have to juggle with combinatorics, with
the potential for further increasing the risk of conflicts.

A. Recursive Subsumption Algorithm

The algorithm consists of comparing each attribute of a
pair of policies. In [16], we had already shown that it is
possible to subsume a pair of simple policies, transforming
them into a single synthesized policy in the case when all
attributes have the same values except one. The values of
the attribute that are different can be expressed as a
disjunction in the synthesized policy. This is the case for
example of the two first policies P1 and P2:

P1: X is 10 ˄ Y is “a” ˄ Z is true
P2: X is 10 ˄ Y is “a” ˄ Z is false

that can be subsumed into a single policy Pm1 where
attribute Z is now a disjunction:

Policy Pm1 condition:

 X is 10
and
 Y is “a”
and
 Z is one of true, false

The same principle can be applied to other pairs of policies
such as P3 and P4 and all other pairs in the sequence. This is
of course because for all of these pairs the conditions of
attributes X and Y are always identical. Thus, if we apply
this algorithm to all the policies in the above policy base

example, we will end up with nine policies Pm1..Pm9

subsuming the original 18 policies P1,…,P18. This
corresponds to the total number of simple policies divided
by two.

The second and any subsequent step in this algorithm
consists of attempting to further subsume these nine
intermediary policies. For example in the first pass, policies
P3 and P4 can also be subsumed into policy Pm2 as follows:

Policy Pm2 condition:

 X is 10
and
 Y is “b”
and
 Z is one of true, false

We can easily observe that subsumed policies Pm1 and Pm2
have now attributes X and Z that are common but attribute
Y that is different. Thus we can subsume Pm1 and Pm2 into
policy Pm12 by creating a disjunction for attribute Y as
follows:

Policy Pm12 condition:

 X is 10
and
 Y is one of “a”, “b”
and
 Z is one of true, false

This procedure can be repeated for all pairs of subsumed

policies of iteration 1 and all subsequent merged policies in
the subsequent iterations resulting from increasingly
complex subsumed policies until we reach the single policy
Ps. In this algorithm, two policies whether simple or
complex must have first, an identical effect (permit/deny)
and second, n – 1 attributes in common in order to be
merged. If this first condition is satisfied, the non-common
attribute values can be subsumed into a disjunction
regardless of the number of elements they contain. The
various iterations required to merge the above policies are
summarized in Figure 1 where policies were compared from
left to right. Figure 1 shows the tree of values for each
attribute (X, Y, Z) that are implicitly linked via
conjunctions.

The set of policies shown in Figure 1 have all the same
effect, either permit or deny. This allows us to show that the
result of this algorithm is a single policy. This is an
exceptional situation, due to the fact that the set of 18
policies P1,…,P18 represents exhaustively all the
combinations of the values of the three attributes, and
therefore it can be compressed by building a perfect binary-
ternary tree shown in Figure 1. More realistic cases are
addressed in subsequent sections.

We have implemented this algorithm in Prolog, which
has already been successfully used in access control
verification [2].

Figure 1: Policy merging iterations summary

B. Alternate Policy Comparison Strategies

Since the above 18 policies P1,…,P18 were generated
automatically according to a simple combinatorial
algorithm, they are naturally sorted according to the value of
their attributes from left to right. In this order, the policy
compression process requires 21 comparisons between
either original or subsumed policies. These comparisons
consist of 9 comparisons between the original simple
policies where subsumptions occur immediately after the
first comparison and 12 comparisons between various
degrees of generalization of already subsumed policies. The
obtained policies require several comparisons before finding
a match. For example, Policy Pm3 (subsumption of P5 and
P6), can only be matched with policy Pm6 (subsumption of
P11 and P12), thus failing to match with policies Pm4 and
Pm5 (not shown here but resulting from the subsumption of
original adjacent simple policies) in the list of generalized
policies. We have observed that the maximum number of
comparison attempts was 3 with also a fair amount of cases
succeeding after 1 or 2 attempts. In this experiment we have
attempted several other approaches in order to optimize the
number of comparisons. One of them consisted of
comparing an original simple policy in priority to the list of
already generalized policies before comparing it to another
simple policy. This approach resulted in a large increase in
the number of comparisons because the criteria to have n-1
attributes with equal values can be achieved only for a
subset of policies. In fact, a simple policy can never be
subsumed by an already generalized policy because there
will always be more than one attribute value that is
different. For example, if we attempted to merge a simple
policy P5 with a generalized policy Pm12, we would at least
temporarily create an error:

P5: X is 10 ˄ Y is “c” ˄ Z is true

against the generalized merged policy Pm12:

 X is 10
and
 Y is one of “a”, “b”
and
 Z is one of true, false

Policy P5 has only a common value of 10 for attribute X, an
entirely different value “c” for attribute Y but a value of true
for attribute Z that is included in the corresponding attribute
set of values (implicit disjunction) of another generalized
policy Pm12. This is due to the fact that the original policies
and the result of their merging are not equivalent in the sense
that the original policies are satisfied by the merged policy,
but the reverse is not true as the merged policy has
combinations of values that cannot be satisfied by the
original policies. We have actually verified this fact using
theorem proving.

C. Performance and Policy Base Order

The experimental policy set being naturally sorted as a
result of automated generation is highly unrealistic when
compared to what will be encountered in real-life access
control policies where usually policies are implemented
randomly according to the unpredictable movement of
personnel and their assignments to departments, work
teams, etc. In order to simulate this natural chaos we have
experimented by unsorting the policies, making their order
more random. Random orders resulted in a wide variety of
comparison costs represented by the number of comparisons
to achieve the full single policy merge. Thus, sorting
policies by attribute values increases performance. This is
similar to the findings made in [12] although not for the
same purpose. However, since our policies are simple, an
ordinary sorting algorithm would be sufficient since those
are log-linear or even linear (radix sort can be used for the
kind of structured format data we are dealing with in
policies).

IV. USING THE ALGORITHM WITH REALISTIC CASES

Our experimental example has one additional unrealistic
feature. It is the result of the combinations of values of the
exhaustive value sets (alphabets) of each attribute. This
example is unrealistic, first of all because it will allow
everyone to be either exclusively granted or exclusively
denied access to resources, which is usually not the primary
goal of access control policies. For one thing, since there
can be only two antagonistic effects, permit or deny, a share
of those combinations will permit access while the
complement will deny access. It is a well-known fact that
policy administrator use two strategies to deny access:

• Selective denial of access
• Default denial of access

A. Selective Denial of Access

The selective denial of access approach will result in a
policy base that will consist of exactly the number of
combinations of all values of attribute alphabets, a portion of
it being permits and the complement being denies. However,
from a subsumption algorithm point of view, this is actually
favourable, resulting in an efficient generalized result. Each
of these two portions will result in efficient compression by
subsumption. Sometimes the result is a compression down to
only two policies, one for permit and one for deny. The

reality, however, is that permits and denies will be
encountered in uneven distributions. In order to measure the
resulting reduction for various proportions of effects, we
have conducted further experiments by changing the effect
permit or deny of some policies. In our case, we have
determined that the worst result consists of a 50% reduction
in the number of policies for each group of effects.

B. Default Denial of Access

The second policy implementation style consists of
using only one of the two effects in the specification of
individual policies and using a default catch-all policy (a
“blanket policy”) for the other effect. Handling this case is
relatively simple and consists of handling only the specific
effect simple policies and ignoring the default policy. To
simulate this approach, we have removed a number of
policies from our experimental generated policy set. Two
techniques were used for this simulation:

• Removing policies with identical attribute values;
• Removing policies with non-identical attribute

values.
For example, with the first technique we could remove all
policies for which the value of attribute Z is false. Not
surprisingly, this case results in a single generalized policy
merely because this action resulted in reducing the alphabet
of attribute Z to one element instead of two.

Figure 2: incomplete alphabet iterations

The second case can be simulated by alternatively removing
policies for the opposite value of attribute Z as shown in
Figure 2. For example, for the first four policies of our
experimental policy set, we can achieve this pattern by
removing policy P2 and P3. Now the remaining policies P1
and P4 will no longer satisfy the condition of having n – 1
attributes with common conditions. Instead, we now have
only value 10 for attribute X in common as follows:

P1: X is 10 ˄ Y is “a” ˄ Z is true
P4: X is 10 ˄ Y is “c” ˄ Z is false

Thus, P1 and P4, now adjacent, cannot be merged along this
principle (n-1 common attributes conditions) and will
remain potentially single separate policies. The stable and
irreducible set of policies is reached after only three
iterations and one policy, P15, could not be generalized at
all. However, the results show only four policies instead of
the initial nine which represents a reduction of 55%.

However, policies P1 and P4 could have been subsumed
immediately using deeper conditions such as:

 X is 10
and
 Y is one of
 a provided Z is true
 b provided Z is false.

Further subsuming such complex conditions cannot be
handled using the n – 1 common attribute principle of our
algorithm and could potentially be achieved only at greater
costs. This approach is further work.

C. Attributes with Large Alphabets

Discussions with industry have raised an interesting case
where one or several attributes have a large alphabet while
the remaining attributes have small alphabets. It was
believed that our algorithm would not be useful in this case.
This is, among others, the case of controlled telephones
where users are restricted in the usage of such telephones,
for example for long distance calls by area code or even at
the exchange level, international, etc. In this case, one of the
attributes is inevitably the phone number which by
definition can be large for large organizations because it is
at least equal to the number of employees which can be
typically in the tens of thousands range. Our algorithm still
works in this special case for the following reason: policies
are generalized according to the attributes with smaller
alphabets. For example, if we take our experimental
generated example of figure 1 and we change the alphabet
of attribute X to have 50,000 different values, the result of
this algorithm will again be a single policy of the form:

 X is one of v 1 .. v 50000
and
 Y is one of “a”, “b”, “c”
and
 Z is one of true, false

This is due to the natural fact that each value of the attribute
of the smaller alphabet will apply to large chunks of the
attribute with the very large alphabet.

V. MERGING COMPLEX AND DEEPER CONDITIONS

POLICIES

The XACML language allows the specification of
complex conditions with any combination of conjunction
and disjunction operations at any depth. These may have
sub-constraints attached to attribute values conditions. For
example a policy that specifies the condition of access to
medical documents where the function may restrict access
depending on the day of the week.

Policy Pcx condition:

 PatientConsent is true
 or
 Emergency is true

and
 Actor is one of
 Doctor,
 Nurse
 provided that DayOfTheWeek is
 one of Saturday, Sunday

We now would like to merge the following policy Prd with
the complex policy Pcx above.

Policy Prd condition:

 Emergency is true
and
 Actor is Radiologist
 provided that Location is hospital

A close inspection of these two policies shows that they
cannot be merged. The reason is in the disjunction between
the Patient consent and emergency attributes in policy Pcx.
The disjunction for these two attributes would allow, in
error, the radiologist to access the medical documents when
the patient consent is true which is not specified in policy
Prd that we are attempting to merge. This example illustrates
that deep complex conditions can be subsumed as long as
their complex conditions for each attribute are common.

VI. SCALABILITY

One significant advantage of this algorithm is that it
does not need all policies of a policy set to be in memory at
once. Each pair can be retrieved from some policy data base
individually, compared, eventually merged into a single
policy and removed from the data base. The merged policy
can be stored into the data base as well. However the
number of retrievals to achieve a merging depends, as we
have shown in Section 4, on the order of the attribute values.
This is usually resolved naturally using data base indexing.
We have run our algorithm on large policy sets of 5000
policies that produced a single merged policy within 1000
ms.

VII. CORRECTNESS OF THE COMPRESSION

Once the transformation has been performed, it is
necessary to demonstrate the equivalence of the two policy
sets. The algorithm relies on a simple Boolean algebra
transformation of a formula to an equivalent one. Policies in
a policy set or rules in a XACML policy are mostly
considered as lists, as the XML schema suggests. However,
from a policy decision point of view, individual policies or
rules are linked via implicit disjunction. For example, if a
policy has the condition: (C1 ˄ C2 ˄ C3) and another
policy has the condition: (C1 ˄ C2 ˄ C4) , the disjunction
can be constructed as follows:

(C1 ˄ C2 ˄ C3) ˅ (C1 ˄ C2 ˄ C4)
This can be rewritten, by using distributivity of the
disjunction operator, as:

(C1 ˅ C1) ˄ (C2 ˅ C2) ˄ (C3 ˅ C4)
Thus, the two first terms above can use Boolean truth tables
to be reduced as follows:

 (C1 ˅ C1) = C1 and the same for (C2 ˅ C2) = C2 .
Consequently, after this rewrite and reduction has been
performed we obtain the desired merged conditions:
 C1 ˄ C2 ˄ (C3 ˅ C4)

In addition to the above reasoning, there are also three

additional approaches:
• Testing
• Redundancy check
• Theorem proving

The first approach uses the fact that the original policy

set is composed only of simple policies, consisting only of
conjunctions of conditions on attributes that operate on a
single value of each attribute, as in our generated
experimental example. Each of these rules can be viewed as
a request. Thus, each policy condition of the original policy
set can be sent to a Policy Decision Point (PDP) program
that evaluates the policies in the subsumed policy set to
verify that it is satisfied.

The second approach applies to cases where the original
policy set already contains various degrees of complexities
within a policy condition, usually meaning a mix of
conjunctions and disjunctions of attribute conditions. This
case is closer to real-life systems. In this case, the policies
can no longer be used as requests and thus, the first testing
approach is no longer usable. We have already shown in
[16] that conflict detection algorithms using constraint logic
programming can be applied in order to verify that a
policy’s attributes verify also the condition of another
policy. This is the case of a redundancy check.

Finally, we have verified the equivalence between the
set of original policies and the resulting policies of the
subsumption using the tautology checker in the Coq
theorem prover [4]. This verification has also been
successfully performed for each intermediary result shown
in figure 1 and 2. Coq was also used in our work on
verifying a conflict detection algorithm for firewalls [5].

VIII. CONCLUSION

We have presented an algorithm for reducing the size of
access control policies in XACML. As we have argued,
reduced policy sets decrease the risk of conflicts and
improve PDP performance. We have fully illustrated our
algorithm on the best case scenario which reduces a policy
set to a single policy, and discussed a variety of other
realistic cases in which our experiments showed that we
generally can achieve 50% reduction of a policy set size.
Future work includes further improving the algorithm for
more complex policies and proving its correctness.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada and
of Devera Logic Inc. for this research.

REFERENCES

[1] A. Anderson, S. Proctor, Method for analysing an XACML policy,

U.S. patent 20100042973.

[2] S. Barker, P. J. Stuckey, Flexible access control policy specification
with constraint logic programming, in ACM Transactions on
Information and System Security, 6(4):501-546, 2003.

[3] R.Batouba and I. Aib, “Policy-based management: A historical
perspective,” IEEE Transactions on Network and Service
Management, Vol. 4, 2007.

[4] Y. Bertot, P. Castéran, Interactive Theorem Proving and Program
Development, , ISBN 3-540-20854-2, Springer Verlag

[5] V. Capretta, , B. Stepien, A. Felty, S. Matwin, Formal correctness of
conflict detection for firewalls, in FMSE'07 proceedings p 22-30.

[6] D. Dougherty, K. Fisler, S. Krishnamurti, Specifying and resaonning
about dynamic access-control policies, in IJCAR 2006 proceedings,
pages 632-646

[7] D. F. Ferraiolo, D. R. Kuhn, Role-based access control, in Proc. of
the 15th National Computer Security Conference, pages 554-
563,1992.

[8] A. Karp, H. Haury, M.H. Davis, From ABAC to ZBAC: the evolution
of access aontrol models, Technical Report HPL-2009-30,
http://www.hpl.hp.com/techreports/2009/HPL-2009-30.pdf, 2009.

[9] V Kolovski, J. Hendler, B. Parsia, Analyzing web access control
policies, in WWW 2007 proceedings, pages 677-686

[10] R. Kuhn, E. J. Coyne, T. R. Weil, Adding attributes to role-based
access control, in IEEE Computer, 43(6):79-81, 2010.

[11] J. Lu, R. Li, J. Hu, D. Xu, Inconsistency resolving of safety and
utility in access control, in EURASIP journal on Wireless
Communications and Networking, 2011.

[12] S. Marouf, M. Shehab, A.Squicciarini, S. Sundareswaran, Adaptive
reordering and clustering-based framework for efficient XACML
policy evaluation, in IEEE Transactions on Services Computing,
Oct.-Dec. 2011, pages 300-313

[13] P.L.Miseldine, Automated XACML policy reconfiguration for
evaluation optimisation, in proceedings SESS’08, pages 1-8

[14] OASIS, eXtensible Access Control Markup Language (XACML).
[Online]. Available: http://www.oasis-
open.org/committees/download.php/2406/oasis-xacml-1.0.pdf.

[15] B. Stepien, A. Felty, and S. Matwin, “A non-technical user-oriented
display notation for XACML conditions,” E-Technologies:
Innovation in an Open World, Proc. of the 4th International MCeTech
Conference, Springer, 2009,

[16] B. Stepien, A. Felty, S. Matwin, Strategies for reducing risks of
inconsistencies in access control policies, in ARES 2010 proceedings.

[17] B. Stepien, A. Felty, S. Matwin, Advantages of a non-technical
XACML notation in role-based models, in PST 2011 proceedings.

