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Abstract— Policy administrators increasingly face the challenge of 
managing large policy bases, and this need becomes more acute 
with the growing importance of fine-grained access control 
models, e.g. ABAC. We have shown in previous work that simple 
policies mostly based on conjunctions of single attribute 
conditions, can be merged into more complex conditions 
composed of combinations of conjunctions and disjunctions of 
attribute/value pairs. Here, we propose an algorithm that uses a 
recursive process of subsumption applied on the original set of 
policies that results in a complex and short policy, often 
significantly compressing the original policy. We present this 
algorithm, and discuss the advantages of this approach, i.e. its 
performance when working on the policy structures encountered in 
real-life policy sets, its scalability, and its ability to deal with large 
alphabet sets. 

Keywords: access control, subsumption algorithm,  
XACML. 

I.  INTRODUCTION 

Access control (AC) policy specification languages have 
gone through a long evolution over time [3]. More recently, 
the increasingly important requirement of interoperability 
has led to standardization efforts that produced the XML-
based XACML access control policy specification language 
[14]. In addition to the benefits of standardization, this 
language has the additional advantage that it allows the 
specification of complex conditions, which are ideal for fine 
grained AC systems. However, a combination of two factors 
has resulted in very little use of these powerful capabilities. 
The first factor is related to legacy. Administrators have to 
migrate legacy AC systems that don’t allow complex 
conditions. 

They usually do a straightforward translation that 
perpetuates a specification style of using only simple logical 
expressions. Such expressions are usually simple 
conjunctions of individual conditions on given attributes. 
The second factor ironically resides in the XML nature of 
XACML itself. While XACML is an ideal machine readable 
language, its extreme verbosity, due to the combination of 
long XML tags and long domain names for operators, makes 
the use of complex conditions difficult for a human to read, 
prone to errors during editing and thus impractical. In [15] 
we have shown that the verbosity of XACML can be 
eliminated easily using a non-technical notation combined 
with an attribute data model for the purpose of displaying 
and editing of XACML policies. Because of its coupling 
with an attribute data model, the transformation into the non-

technical notation preserves the semantics of XACML. The 
notation is not a language in itself; it is merely a 
simplification of the XACML language that retains the 
overall XACML structure. We use this notation throughout 
this paper for examples. Once the verbosity of XACML is 
eliminated, it is possible to take advantage of the benefits of 
using complex conditions, which we have shown in [16,17]. 
These benefits arise mostly from the ability to make policy 
conditions more understandable and thus more manageable. 

II. BACKGROUND 

A. Reasons for Large Policy Sets 

It is a well-known fact that AC policy sets are 
traditionally large for two reasons: first of all, in early AC 
systems, permissions to access resources were assigned 
directly to individuals. Later, new AC models eliminated the 
direct assignment of permissions to individuals. Instead, 
permissions were assigned to various attributes such as the 
roles an individual plays, as in the RBAC model [7] or even 
to an unlimited number of attributes as in the ABAC [8] 
model.  These models allow for fine grained AC, which is 
the central feature of the XACML language itself. This is a 
major improvement that has resulted in a reduction of the 
number of policies required to specify the AC requirements 
of an organization. However, there still remain reasons for 
having large numbers of policies: one of them is the number 
of attributes, especially in fine grained AC systems. In [10], 
it has been established that for RBAC models, the size of a 
policy set can be potentially 2n combinations of n roles, 
while ABAC has a potential number of 2n combinations of 
rules for n attributes. However, the prime reason for large 
numbers of rules resides mostly in specification styles. For 
example, in XACML, the target part of a rule or policy uses 
mostly simple logical expressions. In [16] we showed that it 
is possible to reduce considerably the number of policies by 
instead using complex conditions. Our findings were the 
result of an exercise in scalability where policies were 
generated systematically on sets of alphabets for attributes. 
The advantages of reducing the number of policies are 
twofold: 

• Reducing the risk of conflicts; 
• Improving performance of access granting tools. 

B. State of Research in Reducing Policy Sets 

Both of the advantages above have been the focus of 
extensive research. A summary of research in conflict 



detection is given in [16]. The topic of improving 
performance has been the subject of more recent research 
[11,12,13].  

In [11], an approach to reducing the number of policies 
by eliminating policies that are in conflict is proposed. The 
elimination of conflicts results in a reduced number of 
policies since one of the two conflicting policies must be 
eliminated. This paper also describes an important policy 
writing style that separates policies into two groups: safety 
policies that consist of specifying what users should not 
have access to and utility policies that consist of specifying 
what users have access to (a generalization of availability 
policies). However the authors point out that these two 
stylistic groups are naturally conflicting. More important is 
the fact that they consider these types of policies difficult to 
resolve at run time. Thus there is still a need to find a 
method for detecting these conflicts at compile time. They 
use static pruning and minimal inconsistency cover set. 

In [12], the emphasis is not on reduction of the size of 
the policy sets, but instead on re-ordering the policies to 
improve the search time required to evaluate AC requests 
and grant or deny permission to access a resource. The 
originality of this work is that the reordering algorithm is 
based on a statistical analysis not only of the policies of a 
policy set but also on the dynamic flow of requests that can 
structurally vary with time due to seasonal factors or market 
conditions. 

In [13], the hierarchical structuring of XACML policy 
elements (policy sets, policies, rules, targets and conditions) 
is used for the purpose of optimization and improved 
performance. Their approach consists of shifting the 
location of these elements along the hierarchy of a policy in 
order to minimize the number of comparisons between 
attribute values of a request and a policy to achieve a 
reduction in evaluation costs. Experiments show that a 60% 
reduction in evaluation costs can be achieved. Again this is 
not by reducing the number of policies but merely 
restructuring them. 

All of the above research shows that there is a 
widespread awareness that there is a performance problem 
with XACML policy sets. In summary, most of the existing 
research focuses on specific application domains [9] or on 
reasoning about policy conditions [6]. 

C. Distribution of Logic in XACML 

XACML policy logic is described in several structural 
levels that already make some effort to reduce the amount of 
computation when evaluating AC requests. It separates 
policies and rules, each of them having logic located in a 
target, and the rule having a separate condition. In order to 
focus on the logic instead of computational efficiency, and 
to counter the scattering of logic that makes understanding 
and testing of policies difficult, we collapse all these levels 
into a single logical expression. This is possible because 
XACML’s structural breakdown amounts in fact to an 
implicit conjunction. The approach of representing a 

XACML policy using a single condition has already been 
explored although not published. It is described in a U.S. 
patent [1]. Note that by collapsing rules and policies in this 
way, there is no longer any distinction between a rule and a 
policy. 

D. Performance Measurement 

In [17] we have proposed a metric to measure the impact 
of policy specification styles that compared two opposing 
styles: the use of simple conjunctions of attribute conditions 
and the use of complex conditions using combinations of 
conjunctions and disjunctions of attribute conditions. If a 
policy set has n attributes a1, …, an with corresponding na1, 
…, nan possible values v for each attribute (size of alphabet), 
the number of policies np required to cover the entire 
permission space is the number of combinations between 
attributes and their values: 
 

np = na1 × na2 × … × nan 
 
If we are performing an evaluation request by linearly 
traversing a policy set in this representation, the worst case 
number of comparisons nc, also called request evaluation 
cost, between the values of an AC request and the values of 
policy attributes is the product of the sizes of each of the 
attribute alphabets (number of combinations np above) 
multiplied by the number of attributes itself: 
 
 nc = (na1 × na2 × … × nan) × n  
 
This is due to the fact that each attribute must be re-
evaluated for each policy until one matches. 

Instead, we found that a policy set that has the same 
coverage can be represented by a single policy that is 
composed of a conjunction between conditions for each 
attribute. These conditions correspond to a disjunction 
between the values of the alphabet for each attribute. This 
single policy, let us call it a generalized policy GP, is a 
subsumption of the original set of policies P1,…, Pn,  in that 
there exists, for each  combination of specific values of 
attributes of each Pi, an assignment of values of attributes in 
GP such that for this assignment of values GP = Pi.. When  
a policy P subsumes  a policy  Q, P is in fact a 
generalization of Q.  For example, if P gives specific values 
to attributes a1,…,an,  then GP is: 
 
   a 1 is one of  v a11, …, v a1n1  
and 
   … 
and 
   a n is one of  v an1, …, v annm 

 
We have previously determined that the worst case number 
of comparisons between the attribute values of a request 
against the policy required to reach a match is additive in a 
generalized policy rather than multiplicative as in the first 



case. In this case it is the sum of the individual sizes of each 
attributes alphabets: 
 

ncps = na1 + na2 + … + nan 
 
While so far we had determined that it is possible to reduce 
the size of policy bases and that there is a clear advantage to 
it, we had not yet determined a procedure to systematically 
achieve this goal. This paper describes an algorithm to 
reduce policy sets based on simple policies (conjunctions of 
conditions on individual attributes) and discusses the 
benefits of such an approach for realistic AC policy sets. 
Our contribution is therefore the algorithm for policy 
compression of policy sets described in this paper. This 
algorithm has the capability to substantially reduce the size 
of policy sets by merging (by subsumption) individual 
policy condition logic into single conditions, thus making 
them both more manageable and allowing a better 
performance for PDPs. 

III.  POLICY COMPRESSION ALGORITHM 

In [17] we used a concrete small example of 18 policies 
that were automatically generated using the combinations of 
values of 3 attributes X, Y, Z that each have alphabets of 
{10, 20, 30}, {“a”, “b”, “c”}, {true, false}, respectively, as 
follows: 
P1: X is 10 ˄ Y is “a” ˄ Z is true  
P2: X is 10 ˄ Y is “a” ˄ Z is false  
P3: X is 10 ˄ Y is “b” ˄ Z is true  
P4: X is 10 ˄ Y  is “b” ˄ Z is false  
P5: X is 10 ˄ Y is “c” ˄ Z is true 
P6: X is 10 ˄ Y is “c” ˄ Z is false 
P7: X is 20 ˄ Y is “a” ˄ Z is true 
P8: X is 20 ˄ Y is “a” ˄ Z is false 
P9: X is 20 ˄ Y is “b” ˄ Z is true 
P10: X is 20 ˄ Y is “b” ˄ Z is false 
P11: X is 20 ˄ Y is “c” ˄ Z is true 
P12: X is 20 ˄ Y is “c” ˄ Z is false 
P13: X is 30 ˄ Y is “a” ˄ Z is true 
P14: X is 30 ˄ Y is “a” ˄ Z is false 
P15: X is 30 ˄ Y is “b” ˄ Z is true 
P16: X is 30 ˄ Y is “b” ˄ Z is false 
P17: X is 30 ˄ Y is “c” ˄ Z is true 
P18: X is 30 ˄ Y is “c” ˄ Z is false 

 
Note that in this example, there is a policy for every 
combination of values.  Furthermore, we assume that all of 
these policies are assigned the same affect (accept or 
deny).  We start with this simple example for illustration 
purposes, so that we can show the steps our algorithm takes 
to collapse all 18 policies to a single one.  We will then 
generalize to more realistic policies. As the above policy set 
is “full”, i.e. it represents all the possible values of all 
attributes, it can—as we will show below—be reduced by 
recursive application of subsumptions to a single policy Ps 
using a shallow complex condition as follows: 
 

   X is one of 10, 20, 30 
and 
   Y is one of “a”, “b”, “c” 

and 
   Z is one of true, false 

 
In this example, the cost of processing a request for the 
worst case scenario would be equal to 3×3×2×3 = 54 
comparisons for the original set of 18 policies while the cost 
for the single policy would be only 3+3+2 = 8 comparisons. 
A realistic example would have considerably more attributes 
and larger alphabets and would show even more dramatic 
differences in the computation cost. For example if in this 
example with three attributes we, increase the sizes of the 
alphabets to {5, 10, 8}, we would have 5×10×8×3 = 1200 
comparisons rather than 5+10+8 = 23. This is a ratio of 52 
instead of a ratio of 6.5 for the number of comparisons.  

Reducing the number of policies in a policy set has 
always been a goal among policy administrators. However, 
the most common technique to achieve this compression 
consists of using “blanket” policies that specify the same 
effect against exception policies that specify the opposite 
effect. For example, a rule that permits access for a few 
values of a given attribute might be placed before a blanket 
rule that denies access for all values. The main problem with 
this approach is that it creates a de facto intentional conflict 
that is difficult to distinguish from conflicts resulting from 
mere errors. The problem is aggravated in the case where 
there are several attributes, as inevitably the policy 
administrator will have to juggle with combinatorics, with 
the potential for further increasing the risk of conflicts. 

A. Recursive Subsumption Algorithm 

The algorithm consists of comparing each attribute of a 
pair of policies. In [16], we had already shown that it is 
possible to subsume a pair of simple policies, transforming 
them into a single synthesized policy in the case when all 
attributes have the same values except one.  The values of 
the attribute that are different can be expressed as a 
disjunction in the synthesized policy. This is the case for 
example of the two first policies P1 and P2: 
 
P1: X is 10 ˄ Y is “a” ˄ Z is true 
P2: X is 10 ˄ Y is “a” ˄ Z is false  
 
that can be subsumed into a single policy Pm1 where 
attribute Z is now a disjunction: 
 
Policy Pm1 condition: 
 

   X is 10 
and 
   Y is “a” 
and 
   Z is one of true, false 

 
The same principle can be applied to other pairs of policies 
such as P3 and P4 and all other pairs in the sequence. This is 
of course because for all of these pairs the conditions of 
attributes X and Y are always identical. Thus, if we apply 
this algorithm to all the policies in the above policy base 



example, we will end up with nine policies Pm1..Pm9 

subsuming the original 18 policies P1,…,P18. This 
corresponds to the total number of simple policies divided 
by two. 

The second and any subsequent step in this algorithm 
consists of attempting to further subsume these nine 
intermediary policies. For example in the first pass, policies 
P3 and P4 can also be subsumed into policy Pm2 as follows: 
 
Policy Pm2 condition: 
 

   X is 10 
and 
   Y is “b” 
and 
   Z is one of true, false 

 
We can easily observe that subsumed policies Pm1 and Pm2 
have now attributes X and Z that are common but attribute 
Y that is different. Thus we can subsume Pm1 and Pm2 into 
policy Pm12 by creating a disjunction for attribute Y as 
follows: 
 
Policy Pm12 condition: 
 

   X is 10 
and 
   Y is one of “a”, “b” 
and 
   Z is one of true, false 

 
This procedure can be repeated for all pairs of subsumed 

policies of iteration 1 and all subsequent merged policies in 
the subsequent iterations resulting from increasingly 
complex subsumed policies until we reach the single policy 
Ps. In this algorithm, two policies whether simple or 
complex must have first, an identical effect (permit/deny) 
and second, n – 1 attributes in common in order to be 
merged. If this first condition is satisfied, the non-common 
attribute values can be subsumed into a disjunction 
regardless of the number of elements they contain. The 
various iterations required to merge the above policies are 
summarized in Figure 1 where policies were compared from 
left to right. Figure 1 shows the tree of values for each 
attribute (X, Y, Z) that are implicitly linked via 
conjunctions. 

The set of policies shown in Figure 1 have all the same 
effect, either permit or deny. This allows us to show that the 
result of this algorithm is a single policy. This is an 
exceptional situation, due to the fact that the set of 18 
policies P1,…,P18 represents exhaustively all the 
combinations of the values of the three attributes, and 
therefore it can be compressed by building a perfect binary-
ternary tree shown in Figure 1. More realistic cases are 
addressed in subsequent sections. 

We have implemented this algorithm in Prolog, which 
has already been successfully used in access control 
verification [2]. 

 
Figure 1: Policy merging iterations summary 

B. Alternate Policy Comparison Strategies 

Since the above 18 policies P1,…,P18 were generated 
automatically according to a simple combinatorial 
algorithm, they are naturally sorted according to the value of 
their attributes from left to right. In this order, the policy 
compression process requires 21 comparisons between 
either original or subsumed policies. These comparisons 
consist of 9 comparisons between the original simple 
policies where subsumptions occur immediately after the 
first comparison and 12 comparisons between various 
degrees of generalization of already subsumed policies. The 
obtained policies require several comparisons before finding 
a match. For example, Policy Pm3 (subsumption of P5 and 
P6), can only be matched with policy Pm6 (subsumption of 
P11 and P12), thus failing to match with policies Pm4 and 
Pm5 (not shown here but resulting from the subsumption of 
original adjacent simple policies) in the list of generalized 
policies.  We have observed that the maximum number of 
comparison attempts was 3 with also a fair amount of cases 
succeeding after 1 or 2 attempts. In this experiment we have 
attempted several other approaches in order to optimize the 
number of comparisons. One of them consisted of 
comparing an original simple policy in priority to the list of 
already generalized policies before comparing it to another 
simple policy. This approach resulted in a large increase in 
the number of comparisons because the criteria to have n-1 
attributes with equal values can be achieved only for a 
subset of policies. In fact, a simple policy can never be 
subsumed by an already generalized policy because there 
will always be more than one attribute value that is 
different. For example, if we attempted to merge a simple 
policy P5 with a generalized policy Pm12, we would at least 
temporarily create an error: 
 

P5: X is 10 ˄ Y is “c” ˄ Z is true 

 
against the generalized merged policy Pm12: 
 

   X is 10 
and 
   Y is one of “a”, “b” 
and 
   Z is one of true, false 



Policy P5 has only a common value of 10 for attribute X, an 
entirely different value “c” for attribute Y but a value of true 
for attribute Z that is included in the corresponding attribute 
set of values (implicit disjunction) of another generalized 
policy Pm12. This is due to the fact that the original policies 
and the result of their merging are not equivalent in the sense 
that the original policies are satisfied by the merged policy, 
but the reverse is not true as the merged policy has 
combinations of values that cannot be satisfied by the 
original policies. We have actually verified this fact using 
theorem proving. 

C. Performance and Policy Base Order 

The experimental policy set being naturally sorted as a 
result of automated generation is highly unrealistic when 
compared to what will be encountered in real-life access 
control policies where usually policies are implemented 
randomly according to the unpredictable movement of 
personnel and their assignments to departments, work 
teams, etc. In order to simulate this natural chaos we have 
experimented by unsorting the policies, making their order 
more random. Random orders resulted in a wide variety of 
comparison costs represented by the number of comparisons 
to achieve the full single policy merge. Thus, sorting 
policies by attribute values increases performance. This is 
similar to the findings made in [12] although not for the 
same purpose. However, since our policies are simple, an 
ordinary sorting algorithm would be sufficient since those 
are log-linear or even linear (radix sort can be used for the 
kind of structured format data we are dealing with in 
policies).  

IV. USING THE ALGORITHM WITH REALISTIC CASES 

Our experimental example has one additional unrealistic 
feature. It is the result of the combinations of values of the 
exhaustive value sets (alphabets) of each attribute. This 
example is unrealistic, first of all because it will allow 
everyone to be either exclusively granted or exclusively 
denied access to resources, which is usually not the primary 
goal of access control policies. For one thing, since there 
can be only two antagonistic effects, permit or deny, a share 
of those combinations will permit access while the 
complement will deny access. It is a well-known fact that 
policy administrator use two strategies to deny access: 

• Selective denial of access 
• Default denial of access 

A. Selective Denial of Access 

The selective denial of access approach will result in a 
policy base that will consist of exactly the number of 
combinations of all values of attribute alphabets, a portion of 
it being permits and the complement being denies. However, 
from a subsumption algorithm point of view, this is actually 
favourable, resulting in an efficient generalized result. Each 
of these two portions will result in efficient compression by 
subsumption. Sometimes the result is a compression down to 
only two policies, one for permit and one for deny. The 

reality, however, is that permits and denies will be 
encountered in uneven distributions. In order to measure the 
resulting reduction for various proportions of effects, we 
have conducted further experiments by changing the effect 
permit or deny of some policies. In our case, we have 
determined that the worst result consists of a 50% reduction 
in the number of policies for each group of effects.  

B. Default Denial of Access 

The second policy implementation style consists of 
using only one of the two effects in the specification of 
individual policies and using a default catch-all policy (a 
“blanket policy”) for the other effect. Handling this case is 
relatively simple and consists of handling only the specific 
effect simple policies and ignoring the default policy. To 
simulate this approach, we have removed a number of 
policies from our experimental generated policy set. Two 
techniques were used for this simulation: 

• Removing policies with identical attribute values; 
• Removing policies with non-identical attribute 

values. 
For example, with the first technique we could remove all 
policies for which the value of attribute Z is false. Not 
surprisingly, this case results in a single generalized policy 
merely because this action resulted in reducing the alphabet 
of attribute Z to one element instead of two. 
 

 
Figure 2: incomplete alphabet iterations 

 
The second case can be simulated by alternatively removing 
policies for the opposite value of attribute Z as shown in 
Figure 2. For example, for the first four policies of our 
experimental policy set, we can achieve this pattern by 
removing policy P2 and P3. Now the remaining policies P1 
and P4 will no longer satisfy the condition of having n – 1 
attributes with common conditions. Instead, we now have 
only value 10 for attribute X in common as follows: 
 
P1: X is 10 ˄ Y is “a” ˄ Z is true 
P4: X is 10 ˄ Y is “c” ˄ Z is false 

 
Thus, P1 and P4, now adjacent, cannot be merged along this 
principle (n-1 common attributes conditions) and will 
remain potentially single separate policies. The stable and 
irreducible set of policies is reached after only three 
iterations and one policy, P15, could not be generalized at 
all. However, the results show only four policies instead of 
the initial nine which represents a reduction of 55%.  



However, policies P1 and P4 could have been subsumed 
immediately using deeper conditions such as: 
 
   X is 10 
and 
   Y is one of 
      a provided Z is true 
      b provided Z is false. 
 

Further subsuming such complex conditions cannot be 
handled using the n – 1 common attribute principle of our 
algorithm and could potentially be achieved only at greater 
costs. This approach is further work. 

C. Attributes with Large Alphabets 

Discussions with industry have raised an interesting case 
where one or several attributes have a large alphabet while 
the remaining attributes have small alphabets. It was 
believed that our algorithm would not be useful in this case. 
This is, among others, the case of controlled telephones 
where users are restricted in the usage of such telephones, 
for example for long distance calls by area code or even at 
the exchange level, international, etc. In this case, one of the 
attributes is inevitably the phone number which by 
definition can be large for large organizations because it is 
at least equal to the number of employees which can be 
typically in the tens of thousands range. Our algorithm still 
works in this special case for the following reason: policies 
are generalized according to the attributes with smaller 
alphabets. For example, if we take our experimental 
generated example of figure 1 and we change the alphabet 
of attribute X to have 50,000 different values, the result of 
this algorithm will again be a single policy of the form: 
 

   X is one of v 1 .. v 50000  
and 
   Y is one of “a”, “b”, “c” 
and 
   Z is one of true, false 

 
This is due to the natural fact that each value of the attribute 
of the smaller alphabet will apply to large chunks of the 
attribute with the very large alphabet.  

V. MERGING COMPLEX AND DEEPER CONDITIONS 

POLICIES 

The XACML language allows the specification of 
complex conditions with any combination of conjunction 
and disjunction operations at any depth. These may have 
sub-constraints attached to attribute values conditions. For 
example a policy that specifies the condition of access to 
medical documents where the function may restrict access 
depending on the day of the week. 
 
Policy Pcx condition: 
 
      PatientConsent is true 
   or 
      Emergency is true 

and 
   Actor is one of 
      Doctor, 
      Nurse 
         provided that DayOfTheWeek is  
                  one of Saturday, Sunday 

 
We now would like to merge the following policy Prd with 
the complex policy Pcx above. 
 
Policy Prd condition: 
 
   Emergency is true 
and 
   Actor is Radiologist 
      provided that Location is hospital 

 
A close inspection of these two policies shows that they 
cannot be merged. The reason is in the disjunction between 
the Patient consent and emergency attributes in policy Pcx. 
The disjunction for these two attributes would allow, in 
error, the radiologist to access the medical documents when 
the patient consent is true which is not specified in policy 
Prd that we are attempting to merge. This example illustrates 
that deep complex conditions can be subsumed as long as 
their complex conditions for each attribute are common. 

VI. SCALABILITY  

One significant advantage of this algorithm is that it 
does not need all policies of a policy set to be in memory at 
once. Each pair can be retrieved from some policy data base 
individually, compared, eventually merged into a single 
policy and removed from the data base. The merged policy 
can be stored into the data base as well. However the 
number of retrievals to achieve a merging depends, as we 
have shown in Section 4, on the order of the attribute values. 
This is usually resolved naturally using data base indexing. 
We have run our algorithm on large policy sets of 5000 
policies that produced a single merged policy within 1000 
ms. 

VII.  CORRECTNESS OF THE COMPRESSION 

Once the transformation has been performed, it is 
necessary to demonstrate the equivalence of the two policy 
sets. The algorithm relies on a simple Boolean algebra 
transformation of a formula to an equivalent one. Policies in 
a policy set or rules in a XACML policy are mostly 
considered as lists, as the XML schema suggests. However, 
from a policy decision point of view, individual policies or 
rules are linked via implicit disjunction. For example, if a 
policy has the condition: (C1 ˄ C2 ˄ C3)  and another 
policy has the condition: (C1 ˄ C2 ˄ C4) , the disjunction 
can be constructed as follows: 

(C1 ˄ C2 ˄ C3) ˅ (C1 ˄ C2 ˄ C4)  
This can be rewritten, by using distributivity of the 
disjunction operator, as: 

(C1 ˅ C1) ˄ (C2 ˅ C2) ˄ (C3 ˅ C4)  
Thus, the two first terms above can use Boolean truth tables 
to be reduced as follows: 



 (C1 ˅ C1) = C1  and the same for (C2 ˅ C2) = C2 . 
Consequently, after this rewrite and reduction has been 
performed we obtain the desired merged conditions: 
                C1 ˄ C2 ˄ (C3 ˅ C4)  

 
In addition to the above reasoning, there are also three 

additional approaches: 
• Testing 
• Redundancy check 
• Theorem proving 

 
The first approach uses the fact that the original policy 

set is composed only of simple policies, consisting only of 
conjunctions of conditions on attributes that operate on a 
single value of each attribute, as in our generated 
experimental example. Each of these rules can be viewed as 
a request. Thus, each policy condition of the original policy 
set can be sent to a Policy Decision Point (PDP) program 
that evaluates the policies in the subsumed policy set to 
verify that it is satisfied. 

The second approach applies to cases where the original 
policy set already contains various degrees of complexities 
within a policy condition, usually meaning a mix of 
conjunctions and disjunctions of attribute conditions. This 
case is closer to real-life systems. In this case, the policies 
can no longer be used as requests and thus, the first testing 
approach is no longer usable. We have already shown in 
[16] that conflict detection algorithms using constraint logic 
programming can be applied in order to verify that a 
policy’s attributes verify also the condition of another 
policy. This is the case of a redundancy check. 

Finally, we have verified the equivalence between the 
set of original policies and the resulting policies of the 
subsumption using the tautology checker in the Coq 
theorem prover [4]. This verification has also been 
successfully performed for each intermediary result shown 
in figure 1 and 2. Coq was also used in our work on 
verifying a conflict detection algorithm for firewalls [5]. 

VIII.  CONCLUSION 

We have presented an algorithm for reducing the size of 
access control policies in XACML.  As we have argued, 
reduced policy sets decrease the risk of conflicts and 
improve PDP performance.  We have fully illustrated our 
algorithm on the best case scenario which reduces a policy 
set to a single policy, and discussed a variety of other 
realistic cases in which our experiments showed that we 
generally can achieve 50% reduction of a policy set size.  
Future work includes further improving the algorithm for 
more complex policies and proving its correctness.  
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