An Algorithm for Compression of XACML Access Control
Policy Sets by Recursive Subsumption

Bernard Stepier? Stan Matwin™*® Amy Felty'?
School of Information Technology and Engineeringjuérsity of Ottawa, Ottawa, Canada

’Devera Logic Inc.

, Ottawa, Canada

3Institute for Computer Science, Polish Academy ci&Bces, Warsaw, Poland
(bernard | stan | afelty)@site.uottawa.ca

Abstract— Policy administrators increasingly face the chakeiof

managing large policy bases, and this need beconwes acute
with the growing importance of fine-grained accessntrol

models, e.g. ABAC. We have shown in previous wikt simple
policies mostly based on conjunctions of singlerilaite

conditions, can be merged into more complex cookti
composed of combinations of conjunctions and digjons of

attribute/value pairs. Here, we propose an algorithat uses a
recursive process of subsumption applied on thgirai set of
policies that results in a complex and short polioften

significantly compressing the original policy. Weepent this
algorithm, and discuss the advantages of this @gproi.e. its
performance when working on the policy structumesoentered in
real-life policy sets, its scalability, and its iito deal with large
alphabet sets.

access control,

Keywords: subsumption algorithm,

XACML.

Access control (AC) policy specification languagpese
gone through a long evolution over time [3]. Moegently,
the increasingly important requirement of intergdity
has led to standardization efforts that produces XML-
based XACML access control policy specificationgaage
[14]. In addition to the benefits of standardizaticthis
language has the additional advantage that it allthe
specification of complex conditions, which are idiea fine
grained AC systems. However, a combination of tacidrs
has resulted in very little use of these powerapabilities.
The first factor is related to legacy. Administratinave to

INTRODUCTION

technical notation preserves the semantics of XACNihe
notation is not a language in itself; it is merety
simplification of the XACML language that retainbet
overall XACML structure. We use this notation thghout
this paper for examples. Once the verbosity of XACIE
eliminated, it is possible to take advantage ofttbeefits of
using complex conditions, which we have shown 6,17].
These benefits arise mostly from the ability to malolicy
conditions more understandable and thus more mahbge

Il. BACKGROUND

A. Reasons for Large Policy Sets

It is a well-known fact that AC policy sets are
traditionally large for two reasons: first of aih early AC
systems, permissions to access resources werenegsig
directly to individuals. Later, new AC models elimated the
direct assignment of permissions to individualsstéad,
permissions were assigned to various attributel sscthe
roles an individual plays, as in the RBAC model ¢7leven
to an unlimited number of attributes as in the ABf&]
model. These models allow for fine grained AC, ahbhis
the central feature of the XACML language itselfisTis a
major improvement that has resulted in a reductibthe
number of policies required to specify the AC regmients
of an organization. However, there still remains@e for
having large numbers of policies: one of them &snlmber
of attributes, especially in fine grained AC sysseiim [10],
it has been established that for RBAC models, ihe af a
policy set can be potentially” Zombinations of n roles,

migrate legacy AC systems that don't allow complexwhile ABAC has a potential number of 2ombinations of

conditions.

rules forn attributes. However, the prime reason for large

They usually do a straightforward translation thatnumbers of rules resides mostly in specificatioiest For

perpetuates a specification style of using onlypéénogical
expressions. Such expressions are usually simp
conjunctions of individual conditions on given Hitites.
The second factor ironically resides in the XML urat of
XACML itself. While XACML is an ideal machine reable
language, its extreme verbosity, due to the contioinaof
long XML tags and long domain names for operatorakes
the use of complex conditions difficult for a humanread,
prone to errors during editing and thus impractital[15]
we have shown that the verbosity of XACML can be
eliminated easily using a non-technical notatiombimed
with an attribute data model for the purpose opldiging
and editing of XACML policies. Because of its cadnogl
with an attribute data model, the transformatido the non-

example, in XACML, the target part of a rule oripgluses
|ﬁﬁostly simple logical expressions. In [16] we shdwuieat it
is possible to reduce considerably the number b€ips by
instead using complex conditions. Our findings wére
result of an exercise in scalability where policiegre
generated systematically on sets of alphabetstfobutes.
The advantages of reducing the number of policies a
twofold:

Reducing the risk of conflicts;
Improving performance of access granting tools.

B. State of Research in Reducing Policy Sets

Both of the advantages above have been the focus of

extensive research. A summary of research in ainfli

detection is given in [16].
performance has been the subject of more receatnds
[11,12,13].

In [11], an approach to reducing the number of gied
by eliminating policies that are in conflict is pased. The
elimination of conflicts results in a reduced numlmé
policies since one of the two conflicting policiesist be
eliminated. This paper also describes an imporgehicy
writing style that separates policies into two greusafety
policies that consist of specifying what users $thonot
have access to and utility policies that consisspecifying
what users have access to (a generalization ofaandy
policies). However the authors point out that thése
stylistic groups are naturally conflicting. More portant is
the fact that they consider these types of polidiéiicult to
resolve at run time. Thus there is still a needfibd a
method for detecting these conflicts at compileetifihey
use static pruning and minimal inconsistency ceetr

In [12], the emphasis is not on reduction of thee bf
the policy sets, but instead on re-ordering thdcpasd to
improve the search time required to evaluate AQiests
and grant or deny permission to access a resolire.
originality of this work is that the reordering atghm is
based on a statistical analysis not only of thecpas of a
policy set but also on the dynamic flow of requebkts can
structurally vary with time due to seasonal factmrsnarket
conditions.

In [13], the hierarchical structuring of XACML poly
elements (policy sets, policies, rules, targets @mdlitions)

is used for the purpose of optimization and imptbve

The topic of improving XACML policy using a single condition has alreadgeln

explored although not published. It is describedhit.S.
patent [1]. Note that by collapsing rules and pe$idn this
way, there is no longer any distinction betweenla and a

policy.
D. Performance Measurement

In [17] we have proposed a metric to measure thpaaoh
of policy specification styles that compared twgooging
styles: the use of simple conjunctions of attribcaaditions
and the use of complex conditions using combinatiof
conjunctions and disjunctions of attribute conditolIf a
policy set has attributesa; . a, with corresponding,;,

.., Ny, possible values for each attribute (size of alphabet),
the number of policiep required to cover the entire
permission space is the number of combinations detw
attributes and their values:

NP =M1 X Nag X ... X Nap

If we are performing an evaluation request by liea
traversing a policy set in this representation, wloest case
number of comparisonsc, also called request evaluation
cost, between the values of an AC request andaheey of
policy attributes is the product of the sizes ofleaf the
attribute alphabets (number of combinationgs above)
multiplied by the number of attributes itself:

NC = (MaX Na2 X ... X Nyy) X N

performance_ Their approach consists of Sh|ft|n93 th This is due to the fact that each attribute mustrée

location of these elements along the hierarchy pdlecy in

order to minimize the number of comparisons between

attribute values of a request and a policy to achia
reduction in evaluation costs. Experiments show #&h&0%
reduction in evaluation costs can be achieved. gas is

evaluated for each policy until one matches.

Instead, we found that a policy set that has thmesa
coverage can be represented by a single policy ithat
composed of a conjunction between conditions fachea
attribute. These conditions correspond to a digjanc

not by reducing the number of po"cies but mere|ybetWeen the values of the alphabet for each at&ribrhis

restructuring them.

All of the above research shows that there is ubsumptiorof the original set of policieB;,...

widespread awareness that there is a performaratgepn
with XACML policy sets. In summary, most of the stkng
research focuses on specific application domaih®{%n
reasoning about policy conditions [6].

C. Distribution of Logic in XACML

XACML policy logic is described in several strucalr
levels that already make some effort to reduceatheunt of

computation when evaluating AC requests. It separa

policies and rules, each of them having logic ledain a
target, and the rule having a separate conditiorardler to
focus on the logic instead of computational efficg and
to counter the scattering of logic that makes ustdeding
and testing of policies difficult, we collapse #ikese levels
into a single logical expression. This is possibbcause

single policy, let us call it a generalized poli@P, is a

, B, inthat
there exists, for each combination of specificueal of
attributes of eacR;, an assignment of values of attributes in
GP such that for this assignment of valu&B = P;.. When

a policy P subsumes a policy Q, P is in fact a
generalization 0of). For example, iP gives specific values
to attributes ga...,a, thenGPis:

a iisoneof v a1l «o» V. alnl
and
t
and
a n,isoneof v anls «+» V. annm

We have previously determined that the worst caseber
of comparisons between the attribute values of quest
against the policy required to reach a match istizddn a

XACML’s structural breakdown amounts in fact to angeneralized policy rather than multiplicative asthe first

implicit conjunction. The approach of representirg

case. In this case it is the sum of the individtizés of each
attributes alphabets:

nep = Nart Naz + ... + Mo

While so far we had determined that it is possibleeduce
the size of policy bases and that there is a @daantage to
it, we had not yet determined a procedure to syatieally
achieve this goal. This paper describes an algurith
reduce policy sets based on simple policies (catijons of
conditions on individual attributes) and discusstbe
benefits of such an approach for realistic AC polsets.
Our contribution is therefore the algorithm for ipyl
compression of policy sets described in this papérs
algorithm has the capability to substantially resitize size
of policy sets by merging (by subsumption) indiatiu
policy condition logic into single conditions, thusaking
them both more manageable and allowing a bett
performance for PDPs.

In [17] we used a concrete small example of 18cpesi
that were automatically generated using the contioins of
values of 3 attributes X, Y, Z that each have daighs of
{10, 20, 30}, {“a”, “b”, “c™}, {true, false}, respectively, as
follows:

POLICY COMPRESSION ALGORITHM

P:: Xis 10 AYis“a” A Zis true
P,: X'is 10 AYis“a” A Zis false
Ps: Xis 10 AYis“b” A Zis true
P, Xis 10 AY is“b” A Zis false
Ps: Xis 10 AYis*“c” A Zis true
Ps: X is 10 AYis“c” A Zis false
P;: X'is 20 AYis“a’ A Zis true
Pg: X is 20 AYis*“a” A Zis false
Py: X is 20 AYis*“b” A Zis true
Pio: Xis 20 AYis“b” A Zis false
Pi1: Xis 20 AYis“c” AZis true
P1,: Xis 20 AYis“c” A Zis false
Pi3: Xis 30 AYis“a” A Zis true
Pi4: Xis 30 AYis“a’ A Zis false
Pis: Xis 30 AYis“b” A Zis true
Pis: Xis 30 AYis “b” A Zis false
Pi7: Xis 30 AYis“c” A Zis true
Pis: Xis 30 AYis“c” A Zis false

Note that in this example, there is a policy foremyv
combination of values. Furthermore, we assume dhaif
these policies are assigned the same affect (acoept
deny). We start with this simple example for ithasion
purposes, so that we can show the steps our dgotikes
to collapse all 18 policies to a single one. Wd thien
generalize to more realistic policies. As the abpelicy set
is “full”, i.e. it represents all the possible vati of all
attributes, it can—as we will show below—be redubgd
recursive application of subsumptions to a singlkcp Ps
using a shallow complex condition as follows:

X is one of 10, 20, 30
and
Y is one of “a”, “b”, “c”

and
Z is one of true, false

In this example, the cost of processing a requestttie
worst case scenario would be equal to 3x3x2x3
comparisons for the original set of 18 policies levlthe cost
for the single policy would be only 3+3+2 = 8 comipans.
A realistic example would have considerably motghaites
and larger alphabets and would show even more diama
differences in the computation cost. For examplm ithis
example with three attributes we, increase thessifethe
alphabets to {5, 10, 8}, we would have 5x10x8x3 200
comparisons rather than 5+10+8 = 23. This is @ rafi52
instead of a ratio of 6.5 for the number of comgans.
Reducing the number of policies in a policy set has
always been a goal among policy administrators. éi@s,
the most common technique to achieve this compmessi
e(Fonsists of using “blanket” policies that specifietsame
effect against exception policies that specify tpposite
effect. For example, a rule that permits accessafdew
values of a given attribute might be placed betotdanket
rule that denies access for all values. The maiblpm with
this approach is that it createsla factointentional conflict
that is difficult to distinguish from conflicts neking from
mere errors. The problem is aggravated in the vdmre
there are several attributes, as inevitably theicpol
administrator will have to juggle with combinatajowith
the potential for further increasing the risk ohfliwts.

54

A. Recursive Subsumption Algorithm

The algorithm consists of comparing each attritnfta
pair of policies. In [16], we had already shownttltais
possible to subsume a pair of simple policies,sfiemming
them into a single synthesized policy in the caserwall
attributes have the same values except one. Thes/af
the attribute that are different can be expresssdaa
disjunction in the synthesized policy. This is ttese for
example of the two first policies,Rnd B:

AZis true
A Zis false

AYis“a’
AYis*“a”

P.: X'is 10
P,: Xis 10

that can be subsumed into a single policy,PRrhere
attribute Z is now a disjunction:

Policy Pm condition:

Xis 10
and
Yis“a”
and
Z is one of true, false

The same principle can be applied to other pairgatities
such as Pand R and all other pairs in the sequence. This is
of course because for all of these pairs the ciomditof
attributes X and Y are always identical. Thus, & apply
this algorithm to all the policies in the above ipplbase

example, we will end up with nine policies RriRm
subsuming the original 18 policies ;,P.,P;s. This
corresponds to the total number of simple polidesded
by two.

The second and any subsequent step in this algorith
consists of attempting to further subsume thesee nin
intermediary policies. For example in the first ggsolicies
P; and B can also be subsumed into policy fam follows:

Policy Pm condition:

Xis 10
and
Y is “b”
and
Z is one of true, false

We can easily observe that subsumed policies & Pm
have now attributes X and Z that are common buitbate

Y that is different. Thus we can subsume;Rmd Pm into
policy Pm, by creating a disjunction for attribute Y as
follows:

Policy Pm, condition:

Xis 10
and

Y is one of “a”, “b”
and

Z is one of true, false

This procedure can be repeated for all pairs o$suied
policies of iteration 1 and all subsequent mergekitigs in
the subsequent iterations resulting from incredging
complex subsumed policies until we reach the sipgley
Ps. In this algorithm, two policies whether simpbe
complex must have first, an identical effect (peftany)
and second, n — 1 attributes in common in ordebeo
merged. If this first condition is satisfied, theracommon
attribute values can be subsumed into a disjunctio
regardless of the number of elements they confaie
various iterations required to merge the abovecjgdiare
summarized in Figure 1 where policies were compéead
left to right. Figure 1 shows the tree of values &ach
attribute (X, Y, Z) that are implicitly linked via
conjunctions.

The set of policies shown in Figure 1 have all $hene
effect, either permit or deny. This allows us towlthat the
result of this algorithm is a single policy. This &n
exceptional situation, due to the fact that the afetl8
policies R,...,Pig represents exhaustively all the
combinations of the values of the three attributasd
therefore it can be compressed by building a petfeary-
ternary tree shown in Figure 1. More realistic casee
addressed in subsequent sections.

We have implemented this algorithm in Prolog, which

has already been successfully used in access tontro

verification [2].

Py P, P3 Py Ps Pg P; Pg Py Py Py Pyp Pig Piy Pis PigPyy Pig

X

Y
z

10 10 10 10
a a b b
T F T F

10 10 20 20 20 20 20 20 30 30 30 3030 30
c ¢c a a b b c c a a b boc c

T FTFTFTF TFTFTF

LT L L
10 20 20 20 30 30 30

b c a b c a b c

TF LE T,:E LE T TF ek TF
| \ \ \ \ | |
[[[

10 20

ab,c abc

30
ab,c
TF TF
[| |

TF
[

10,20,30

Iteration 1

10
El
TF

10

Iteration 2

Iteration 3

ab,c
TF

Iteration 4

Figure 1: Policy merging iterations summary

B. Alternate Policy Comparison Strategies

Since the above 18 policies,P.,P;g were generated
automatically according to a simple combinatorial
algorithm, they are naturally sorted according® talue of
their attributes from left to right. In this orddhe policy
compression process requires 21 comparisons between
either original or subsumed policies. These conspas
consist of 9 comparisons between the original smpl
policies where subsumptions occur immediately after
first comparison and 12 comparisons between various
degrees of generalization of already subsumedipslidhe
obtained policies require several comparisons kediading
a match. For example, Policy Rrisubsumption of £and
Ps), can only be matched with policy Rrfsubsumption of
P11 and R,), thus failing to match with policies Bnand
Pm (not shown here but resulting from the subsumptibn
original adjacent simple policies) in the list aérgralized
policies. We have observed that the maximum nunober
comparison attempts was 3 with also a fair amofictees
succeeding after 1 or 2 attempts. In this expertmenhave
attempted several other approaches in order tonggithe
number of comparisons. One of them consisted
comparing an original simple policy in priority the list of
Biready generalized policies before comparing iamother
simple policy. This approach resulted in a largeréase in
the number of comparisons because the criteriate In-1
attributes with equal values can be achieved only &
subset of policies. In fact, a simple policy canverebe
subsumed by an already generalized policy becduse t
will always be more than one attribute value that i
different. For example, if we attempted to mergsimple
policy P with a generalized policy Pmwe would at least
temporarily create an error:

of

Ps: X is 10 AYis“c” AZis true

against the generalized merged policy;Pm

Xis 10
and

Y is one of “a”, “b”
and

Z is one of true, false

Policy R has only a common value of 10 for attribute X, anreality,

entirely different value “c” for attribute Y but\alue of true
for attribute Z that is included in the correspomdattribute
set of values (implicit disjunction) of another gealized
policy Pm,. This is due to the fact that the original poliie
and the result of their merging are not equivaiernihe sense
that the original policies are satisfied by the geef policy,

but the reverse is not true as the merged policg h

combinations of values that cannot be satisfied tig
original policies. We have actually verified thiacf using
theorem proving.

C. Performance and Policy Base Order

The experimental policy set being naturally sorésda
result of automated generation is highly unrealistihen
compared to what will be encountered in real-litcess
control policies where usually policies are impleneel

randomly according to the unpredictable movement o
personnel and their assignments to departmentsk wor .

teams, etc. In order to simulate this natural ch@eshave
experimented by unsorting the policies, making rtioeder
more random. Random orders resulted in a wide tyade
comparison costs represented by the number of aisopa
to achieve the full single policy merge. Thus, isgrt
policies by attribute values increases performartes is
similar to the findings made in [12] although nat fthe
same purpose. However, since our policies are sigo
ordinary sorting algorithm would be sufficient sénthose
are log-linear or even linear (radix sort can bedufor the
kind of structured format data we are dealing with
policies).

V.

Our experimental example has one additional urstali
feature. It is the result of the combinations ofuea of the
exhaustive value sets (alphabets) of each attriblbés
example is unrealistic, first of all because it Iwallow
everyone to be either exclusively granted or excélg
denied access to resources, which is usually roptimary
goal of access control policies. For one thingcsithere
can be only two antagonistic effects, permit orydenshare
of those combinations will
complement will deny access. It is a well-knownt fdtat
policy administrator use two strategies to denyeastc

¢ Selective denial of access
« Default denial of access

USING THE ALGORITHM WITH REALISTIC CASES

A. Selective Denial of Access

The selective denial of access approach will reisublt
policy base that will consist of exactly the numbar
combinations of all values of attribute alphabatpprtion of
it being permits and the complement being deniesvéver,
from a subsumption algorithm point of view, thisaistually
favourable, resulting in an efficient generalizegult. Each
of these two portions will result in efficient conggsion by
subsumption. Sometimes the result is a compres&iom to
only two policies, one for permit and one for defe

however, is that permits and denies wik b
encountered in uneven distributions. In order t@snee the
resulting reduction for various proportions of effe we
have conducted further experiments by changingeffect
permit or deny of some policies. In our case, w&eha
determined that the worst result consists of a B8dtction
in the number of policies for each group of effects

aB. Default Denial of Access

The second policy implementation style consists of
using only one of the two effects in the specifiwatof
individual policies and using a default catch-adlligy (a
“blanket policy”) for the other effect. Handlingishcase is
relatively simple and consists of handling only gpecific
effect simple policies and ignoring the defaultippl To

simulate this approach, we have removed a number of

olicies from our experimental generated policy. Sato
Fechniques were used for this simulation:
Removing policies with identical attribute values;

« Removing policies with non-identical attribute

values.

For example, with the first technique we could remaill
policies for which the value of attribute Z is falsNot
surprisingly, this case results in a single genzszdl policy
merely because this action resulted in reducingathbabet
of attribute Z to one element instead of two.

Py Py Ps Py Pio Py P14 P1s Pig
10 10 10 20

b ¢ a

20 20
b ¢

30 30 30
a b

Iteration 1

a (]

T E I T F T F T F

\ 1 | [J

[| [| I

X 10 10,20 20 ! 30 o
§
Y ac b ac i ac ®
i g

z T F i ! F
] 1 1

X 10,20 10,20 30 30
h¢ ac b b ac
z T F T F

Figure 2: incomplete alphabet iterations

Iteration 3

The second case can be simulated by alternatieetpving
policies for the opposite value of attribute Z &®wn in
Figure 2. For example, for the first four policie$ our

permit access while thegynerimental policy set, we can achieve this pattey

removing policy i and B. Now the remaining policies;P
and B will no longer satisfy the condition of having nl-
attributes with common conditions. Instead, we rwave
only value 10 for attribute X in common as follows:

A Zis true
A Zis false

AYis*“a”
AYis*“c”

Pi: Xis 10
Ps: X'is 10

Thus, R and R, now adjacent, cannot be merged along this
principle (n-1 common attributes conditions) andll wi
remain potentially single separate policies. Thablst and
irreducible set of policies is reached after onhree
iterations and one policy,£ could not be generalized at
all. However, the results show only four policiestead of
the initial nine which represents a reduction d¥#b5

However, policies Pand R could have been subsumed and

immediately using deeper conditions such as:

Xis 10
and
Y is one of
a provided Z is true
b provided Z is false.

Actor is one of
Doctor,
Nurse
provi ded t hat DayOfTheWeek is

one of Saturday, Sunday

We now would like to merge the following poli&rd with
the complex policyPcxabove.

Further subsuming such complex conditions cannot be

handled using the n — 1 common attribute princgfleur
algorithm and could potentially be achieved onlgegater
costs. This approach is further work.

C. Attributes with Large Alphabets

Discussions with industry have raised an intergstise
where one or several attributes have a large agthabile
the remaining attributes have small alphabets. #sw
believed that our algorithm would not be usefuthis case.
This is, among others, the case of controlled teleps
where users are restricted in the usage of suephehes,
for example for long distance calls by area codewvan at
the exchange level, international, etc. In thisecasie of the
attributes is
definition can be large for large organizationsaaese it is
at least equal to the number of employees which mn
typically in the tens of thousands range. Our atgor still
works in this special case for the following reaspolicies
are generalized according to the attributes withalkm

Policy Prd condition:

Emergency i s true
and
Actor i s Radiologist

provi ded that Location i s hospital

A close inspection of these two policies shows ttfegy
cannot be merged. The reason is in the disjundi&ween
the Patient consent and emergency attributes iicypBlcx
The disjunction for these two attributes would wailoin
error, the radiologist to access the medical docusnehen
the patient consent is true which is not specifiegholicy
Prd that we are attempting to merge. This examplstilides

inevitably the phone number which bythat deep complex conditions can be subsumed apden

their complex conditions for each attribute are oan.

VI.

One significant advantage of this algorithm is thtat
does not need all policies of a policy set to benemory at

SCALABILITY

alphabets. For example, if we take our experimentabnce. Each pair can be retrieved from some polétg thase

generated example of figure 1 and we change theabid
of attribute X to have 50,000 different values, theult of
this algorithm will again be a single policy of tfeem:

X is one of v 1..V 50000
and

Y is one of “a”, “b”, “c”
and

Z is one of true, false

This is due to the natural fact that each valuthefattribute
of the smaller alphabet will apply to large churdsthe
attribute with the very large alphabet.

V. MERGING COMPLEX AND DEEPER CONDITIONS

POLICIES

individually, compared, eventually merged into agk
policy and removed from the data base. The mergddyp
can be stored into the data base as well. However t
number of retrievals to achieve a merging depeadswe
have shown in Section 4, on the order of the atteilvalues.
This is usually resolved naturally using data biaskexing.
We have run our algorithm on large policy sets 00®
policies that produced a single merged policy withDOO
ms.

VIl. CORRECTNESS OF THE COMPRESSION

Once the transformation has been performed, it is
necessary to demonstrate the equivalence of thepohoy
sets. The algorithm relies on a simple Boolean lakye
transformation of a formula to an equivalent ongidres in

The XACML language allows the specification of a policy set or rules in a XACML policy are mostly

complex conditions with any combination of conjuont
and disjunction operations at any depth. These heue
sub-constraints attached to attribute values crmdit For
example a policy that specifies the condition ofess to
medical documents where the function may restriciess
depending on the day of the week.

Policy Pcx condition:
PatientConsent i strue
or

Emergency i s true

considered as lists, as the XML schema suggestsetir,
from a policy decision point of view, individual fpmes or
rules are linked via implicit disjunction. For expla, if a
policy has the conditionic1 ~ c2 A c3) and another
policy has the conditionC1 ~cC2 ac4), the disjunction

can be constructed as follows:
(C1 AC2 AC3) v(C1 AC2 AC4

This can be rewritten, by using distributivity ohet

disjunction operator, as:
(C1 vCl) A(C2 vC2) A(C3 vC4)

Thus, the two first terms above can use Booleah tables
to be reduced as follows:

(C1 vciy=c1 andthe same fgc2 vc2)=c2
Consequently, after this rewrite and reduction bagn

performed we obtain the desired merged conditions:
C1 AC2 A(C3 Vv C4)

ACKNOWLEDGEMENTS

The authors acknowledge the support of the Natural

Sciences and Engineering Research Council of Caaada

In addition to the above reasoning, there are tisee
additional approaches:

» Testing

* Redundancy check

e Theorem proving [1]
The first approach uses the fact that the origpmicy [2]
set is composed only of simple policies, consistindy of
conjunctions of conditions on attributes that operan a (3]
single value of each attribute, as in our generated
experimental example. Each of these rules canédeed as

a request. Thus, each policy condition of the aagpolicy [4]
set can be sent to a Policy Decision Point (PDByam

that evaluates the policies in the subsumed pdiely to (5]
verify that it is satisfied. (6]

The second approach applies to cases where thaairig
policy set already contains various degrees of ¢exites
within a policy condition, usually meaning a mix of [7]
conjunctions and disjunctions of attribute condiio This
case is closer to real-life systems. In this c#se,policies

can no longer be used as requests and thus, sheefiting (8l
approach is no longer usable. We have already shown
[16] that conflict detection algorithms using coastt logic [9]
programming can be applied in order to verify tleat
policy’s attributes verify also the condition of ather [10]

policy. This is the case of a redundancy check.
Finally, we have verified the equivalence betwelea t [11]
set of original policies and the resulting policiek the
subsumption using the tautology checker in the Cog o)
theorem prover [4]. This verification has also been
successfully performed for each intermediary reshtiwn
in figure 1 and 2. Coq was also used in our work on
verifying a conflict detection algorithm for fireWs [5]. [13

VIII. (4]

We have presented an algorithm for reducing the sfz
access control policies in XACML. As we have amdjue [15]
reduced policy sets decrease the risk of conflatsl
improve PDP performance. We have fully illustrataat
algorithm on the best case scenario which reduqediey
set to a single policy, and discussed a varietyotbfer
realistic cases in which our experiments showed t&
generally can achieve 50% reduction of a policy see.
Future work includes further improving the algomithfor
more complex policies and proving its correctness.

CONCLUSION

[16]

[17]

of Devera Logic Inc. for this research.

REFERENCES

A. Anderson, S. Proctor, Method for analysing anCML policy,
U.S. patent 20100042973.

S. Barker, P. J. Stuckey, Flexible access conwbty specification
with constraint logic programming, iPACM Transactions on
Information and System Securi6(4):501-546, 2003.

R.Batouba and 1. Aib, “Policy-based management: istohical
perspective,” IEEE Transactions on Network and i8erv
Management, Vol. 4, 2007.

Y. Bertot, P. Castéran, Interactive Theorem Provamgl Program
Development, , ISBN 3-540-20854-2, Springer Verlag

V. Capretta, , B. Stepien, A. Felty, S. Matwin, iRait correctness of
conflict detection for firewalls, in FMSE'07 proaiegs p 22-30.

D. Dougherty, K. Fisler, S. Krishnamurti, Specifyiand resaonning
about dynamic access-control policies, in IJCAR&p@oceedings,
pages 632-646

D. F. Ferraiolo, D. R. Kuhn, Role-based accessrobnh Proc. of
the 14" National Computer Security Conferencpages 554-
563,1992.

A. Karp, H. Haury, M.H. Davis, From ABAC to ZBACh¢ evolution
of access aontrol models, Technical Report HPL-28@9
http://www.hpl.hp.com/techreports/2009/HPL-2009g#i5, 2009.

V Kolovski, J. Hendler, B. Parsia, Analyzing webcess control
policies, in WWW 2007 proceedings, pages 677-686

R. Kuhn, E. J. Coyne, T. R. Weil, Adding attributiesrole-based
access control, iEEE Computer43(6):79-81, 2010.

J. Lu, R. Li, J. Hu, D. Xu, Inconsistency resolvinf safety and
utility in access control, in EURASIP journal on Mess
Communications and Networking, 2011.

S. Marouf, M. Shehab, A.Squicciarini, S. SundareawaAdaptive
reordering and clustering-based framework for &ffit XACML
policy evaluation, in IEEE Transactions on Servicgsmputing,
Oct.-Dec. 2011, pages 300-313

P.L.Miseldine, Automated XACML policy reconfigurati for
evaluation optimisation, in proceedings SESS'08ggal-8

OASIS, eXtensible Access Control Markup Languag@é\QXiL).
[Online]. Available: http://www.oasis-
open.org/committees/download.php/2406/oasis-xacépdf

B. Stepien, A. Felty, and S. Matwin, “A non-techaliciser-oriented
display notation for XACML conditions,” E-Technoles:
Innovation in an Open World, Proc. of th® iiternational MCeTech
Conference, Springer, 2009,

B. Stepien, A. Felty, S. Matwin, Strategies for ueidg risks of
inconsistencies in access control policies, in ARB$0 proceedings.

B. Stepien, A. Felty, S. Matwin, Advantages of anechnical
XACML notation in role-based models, in PST 201&qaedings.

