
1

A comparison between
TTCN-3 and Python
by Bernard Stepien, Liam Peyton
SchooI of Information Technology and

Engineering

TTCN-3 User Conference 2008
Madrid, Spain

2

Motivation

• Report on frequent remarks when
presenting TTCN-3 to Industry in North
America.

• Give an example for Python users where
they can see how to translate a Python
program into TTCN-3 and improve their
testing.

• Promote adoption of TTCN-3 by
highlighting the differences with Python.

3

Most common fears about TTCN-3

• Is a test specification language, not an
Object Oriented language.

• Pattern matching with some regular
expressions.

• Specialized test-focused community
• Cannot debug test cases.
• Writing codec is not trivial.
• Port communication concept

misunderstood.

4

Known limitations of Python

• OO language but not strongly typed.

• Full regular expressions but with restricted set-
based matching.

• Python has a general purpose programming
community (not testing).

• No Eclipse plug-in.

• Cannot group test cases.
• Only two verdicts (pass or fail).

• By default no parallel test cases.

5

Misconceptions about Python
as a test language

• Matching mechanism can be achieved
using Python’s built-in structured equality
operator “==“.

• Parallel test component can be
implemented in Python with multi-
threading.

• No learning curve, especially for the test
adapter.

6

Central TTCN-3 concepts

• Data types.
• Composite events.
• Templates.
• Matching mechanism.
• Signature templates for procedures.
• Behavior trees
• Altstep
• Parallel test components.
• Separation of concerns.
• Operational semantics.

7

Python concepts

• Python is an interpreted language. Thus
there is no compile time error detection.

• Python is a dynamic language. Nothing is
really set in advance. Things can change
at any time. This implies that if you change
something accidentally, your test will no
longer run or worse, interpret results
incorrectly.

• Complex structural equality operator “==“

8

Important conceptual differences

• TTCN-3 has a clear model on how to structure a
test.

• Python has no model. The user is left to his
imagination. “pyUnit” is a poor solution too.

• With Python, the risk for bad design is great.
• With TTCN-3 the design will always follow the

same model.

• The clear, unavoidable TTCN-3 model ensures
exchangeability of test suites among players.

9

TTCN-3 Data types to Python
• Python has objects.
• Python objects don’t naturally

have attributes.
• Python object attributes are not

typed.
• Python objects attributes:

– Are not declared explicitly.
– are declared implicitly at

initialization time in the object
constructor (initializer),

– in isolation anywhere in a
program where the object
instance is actually used.

• Python attributes declarations
are dynamic.

• TTCN-3 data types are used
for two purposes:
– Normal variables definitions.
– Template definitions.

• TTCN-3 Templates
– full structured datatypes
– parametrization to enable

sophisticated matching
– Dynamically instantiated into a

strongly typed run-time
variable

• TTCN-3 data types are used
for strong type checking at
design time.

10

TTCN-3 Composite events

• Oracles are specified around test events:
– Messages being sent or received

– Procedures being invoked or returning values.

• All the data gathered in a test event is
processed at once using TTCN-3’s built-in
matching mechanism.

• Thus, TTCN-3 can be described as
composite test event-centric .

11

Templates and
matching mechanism

12

TTCN-3 templates to Python

• TTCN-3 templates could be mapped to
Python object instances.

• However, there are serious limitations
using the above technique with Python.

• Python objects are practically typeless.

13

Templates differences

• In TTCN-3 templates, there is a
direct connection (WYSIWYG)
between field names and values.

• The TTCN-3 template is a one step
feature.

• In Python, the class instantiation does
not show the field names, thus, prone
to errors, especially due to
typelessness.

• The python template requires two
independent steps.

TTCN-3:

Type record myType {
chartstring field_1,
integer field_2,
bitstring field_3

}

template myType myTemplate := {
field_1 := “abc”,
field_2 := 25,
field_3 := ‘0110’

}

Python :

Class myClass :
def __init__ (self, theA, theB, theC):

field_1 = theA
field_2 = theB
field_3 = theC

…
create an object instance

myTemplate = myClass(‘abc’, 25, ‘0110’)

14

Matching concepts

• TTCN-3 does bulk
matching of all the
elements of a data
structure at once.

• Enables overview
qualities of matching
results

• Has optional fields.
• Has unlimited

combinations of wildcard
fields.

• Python would allow
two different modes of
matching:
– Single element

matching.
– bulk matching using

the “==“ operator on
objects.

– Has no optional fields
– Has no flexible field

based wildcards.

15

Matching: ttcn-3 vs python

• Strict values
• Alternate values
• Wildcards
• Optional fields
• Complex data structures
• Parametrization

16

Set differences

• In python, like in Java, sets do not allow
duplicate elements.

• In TTCN-3, sets do allow duplicate
elements.

• In fact, in TTCN-3 the set data type should
really be called a bag .

17

Matching mechanism differences

• In python, the equality
operator does not work
with class instances.

• In python, the equality
operator for classes has
to be defined by the user
in the class definition.

• In python classes, only
one unique user defined
equality operator can be
defined.

• In TTCN-3, different
templates with different
matching rules can be
specified using the same
data type.

• the matching mechanism
is fully built-in and does
not need to be written by
the user.

18

Python class matching example
class engine:

def __init__ (self, theNbPistons, theFuelType):
self.nb_pistons = theNbPistons
self.fuel_type = theFuelType

def __eq__(self, other):
return self.nb_pistons == other.nb_pistons \

and self.fuel_type in other.fuel_type
…
assert aTemplate_1 == aTemplate_2

TTCN-3:
…
match(aTemplate_1, aTemplate2)

19

Handling of TTCN-3 wild cards

• In Python the TTCN-3 wildcards (*, ?) can only
be implemented by either:
– not specifying an equality for a field
– By using regular expressions for a given field “(.*)”.

• This prevents the use of an object constructor
(initializer) (__init__) to represent templates.

• Two different templates with different wild cards
fields can only be represented by different
constructors, not different object instances.

• In Python you can define only one constructor
and one equality operator per defined class.

20

Wildcard Example
• In Python this can only be implemented using

regular expressions in a fixed manner.

TTCN-3

template myType templ_1 := {
field_1 := ?,
field_2 := “abc”

}

template myType templ_2 := {
field_1 := “xyz”,
field_2 := ?

}

match(templ_1, templ_2) will succeed

Python

class MyType_1:
def __init __(theA):

field_1 = theA

class MyType_2:
def __init __(theB):

field_2 = theB

templ_1 = MyType_1(“abc”)

templ_2 = MyType_2(“xyz”)

templ_1 == templ_2
will be rejected in Python

21

Python objects limitations
• Only one constructor at a time allowed (no

polymorphism allowed).
• If duplicate, only takes the second definition

class AClass:
def __init__ (self, theF1, theF2):

self.af1 = theF1
self.af2 = theF2

def __init__ (self, theF1):
self.af1 = theF1
self.af2 = 25

def __eq__(self, other):
return self.af1 == other.af1 \

and self.af2 == other.af2

a1 = AClass('red', 4)

Traceback (most recent call last):
File "multi_constructors.py", line 15,

in <module>
a1 = AClass('red', 4)

TypeError: __init__() takes exactly
2 arguments (3 given)

22

Python objects limitations
• Only one equality operator allowed
• Only the second definition is used

class AClass:
def __init__(self, theF1, theF2):

self.af1 = theF1
self.af2 = theF2

def __eq__(self, other):
print 'evaluating first eq'
return self.af1 == other.af1 \

and self.af2 == other.af2

def __eq__(self, other):
print 'evaluating second eq'
return self.af1 == other.af1

…
assert a1 == a1

>>> ======= RESTART =========>>>
evaluating second eq

The first equality operator definition
Is merely ignored

23

Python object matching
obscure behaviors

• If two different python objects attributes names
are identical (can happen by accident since
Python is not strongly typed), then instances of
these different objects can be compared.

• The above is inherently dangerous.
• However, this “trick” could be a solution to the

previous wildcard combination problem.

• This is not a solution to the TTCN-3 behavior
tree concept in Python.

24

Alternate values in templates
python

• Use the equality operator definition and
the ‘in’ verb

anEngine1 = engine(6, 'gas')
anEngine2 = engine(6, ['gas', 'oil'])

assert anEngine1 == anEngine2 succeeds
But assert anEngine2 == anEngine1 fails
File "C:\BSI_Projects\python\car_v1.py", line 8, in __eq__

and self.fuel_type in other.fuel_type
TypeError: 'in <string>' requires string as left operand

class engine:
…
def __eq__(self, other):

return self.nb_pistons == other.nb_pistons \
and self.fuel_type in other.fuel_type

Problem: if you accidentally
omit the list [‘gas’] in an
object instance for a single
element, the matching will
no longer work and without
warning.

25

Optional fields

• TTCN-3 can have
optional fields

• Python does only
strict matches:
– Strict values
– All fields must be

present.

26

TTCN-3 template modifies feature

• Is unique to TTCN-3
• In Python, this would require writing an

object duplication code.

template MyType myFirstTemplate := {
field_1 := 5,
field_2 := “done”,
field_3 := { “a”, “f”, “g” }

}

template MyType myOtherTemplate modifies myFirstTemplate := {
field_2 := “pending”

}

27

Template modifies in Python

• An assignment of an object to a new variable
does not correspond to a duplication.

• New variable contains the instance of the
previous variable.

• Modification of a field to the new variable
propagates to the previous variable

engine_a = engine(6, 'gas')

print "engine_a: ", engine_a.fuel_type

engine_b = engine_a
engine_b.fuel_type = 'oil'

print "after modifying engine_b, engine_a: ", engine_a.fuel_type

>>> ==========RESTART ==========
>>>
engine_a: gas
after modifying engine_b, engine_a: oil

28

Differences in modifies feature

• In TTCN-3 the modifies
creates a new copy of the
referred template.

• The new template is as
permanent and persistent
as the one used to derive
the new one.

• Once declared, a given
template can no longer
be modified.

• Only template parameters
can modify a value on the
fly.

• Python can modify the
value of a field of an
object instance any time
with a reassignment.

• The problem with this is
that the previous version
of the instance object is
no longer available.

29

Template pattern matching

TTCN-3

template MyType templ_1 := {
str_field := pattern “abc*xyz”

}

Python

Using regular expressions?

Not with classes?

30

TTCN-3 vs Python
regular expressions

• TTCN-3 specifies
regular expressions in
the template field.

• Thus, two different
templates can have
two different regular
expressions for the
same field.

• Python can only
specify the regular
expression in the user
defined equality
operator __eq__

• Thus a regular
expression for a given
field can be defined
only once.

31

Behavior trees

32

TTCN-3 behavior tree to Python

• A TTCN-3 behavior tree can be
represented with a collection of nested if-
then-else constructs in Python.

• TTCN-3 however, with the combination of
behavior trees and templates achieves
one important separation of concern:

Separating behavior from
conditions governing behavior.

33

TTCN-3 behavior tree features

• The TTCN-3 behavior tree is based on
TTCN-3 snapshot semantics.

• Representing a behavior tree with a
python nested if-then-else is not always
possible when there is more than one data
type for received values.

34

TTCN-3 behavior tree concept

• Each branch can operate on different data
types.

• Each branch can operate on different ports
• TTCN-3 has an implicit and transparent

message queue look up.
• TTCN-3 behavior tree is a very concise

notation.

35

Behavior tree in Python
• Does not work because different objects of different

classes can not be compared.
• Must use an isinstance(…) construct.

a1 = AClass('red', 4)
b2 = BClass('red', 4) a1 == b2

Traceback (most recent call last):
File "C:/BSI_Projects/python/object_matching", line 41, in <module>

if a1 == b2:
File "C:/BSI_Projects/python/object_matching", line 8, in __eq__

return self.af1 == other.af1 \
AttributeError: BClass instance has no attribute 'af1'

class AClass :
def __init__(self, theF1, theF2):

self.af1 = theF1
self.af2 = theF2

def __eq__(self, other):
return self.af1 == other.af1 \

and self.af2 == other.af2

class BClass :
def __init__(self, theF1, theF2):

self.bf1 = theF1
self.bf2 = theF2

def __eq__(self, other):
return self.bf1 == other.bf1 \

and self.bf2 == other.bf2

36

Behavior tree in TTCN-3

• TTCN-3 uses the concept of separation of concerns
between the abstract layer and the adaptation layer.

• The actual decoded or encoded values are stored in an
invisible variable.

• If the type of the decoded variable does not match,
TTCN-3 moves on to the next condition without raising
an error until it matches the right type and then the right
value. Thus, the isinstance(…) checking is implicit.

• Conclusion: the TTCN-3 behavior tree is more than
nested if-then-else constructs.

• Another non visible aspect is the snapshot mechanism
that is part of execution tools (no programming effort).

37

testcase myMultiTypeTest() runs on MTCType {
… map(…) // for both ports
portA .send("request A");
portB .send("request B");

interleave {
[] portA .receive(templateA) { }
[] portB .receive(templateB) { }

}
setverdict(pass)

}

Behavior tree example TTCN-3
type record typeA {

integer A_field_1,
charstring A_field_2

}

type record typeB {
charstring B_field_1,
integer B_field_2

}

type port APortType message {
in typeA ;
out charstring;

}

type port BPortType message {
in typeB ;
out charstring;

}

template typeA templateA := {
A_field_1 := 58,
A_field_2 := "abcd"

}

template typeB templateB := {
B_field_1 := "xyz",
B_field_2 := 279

}

38

Behavior tree example Python

• The
corresponding
TTCN-3 map,
send and receive
statements must
be custom
written in Python.

• The interleave
construct must
be hand written.

def myMultiTypeTestCase ():

portA = map("portA", 9000)
portB = map("portB", 9001)

send("portA", 'getKind\n\r')
send("portB", 'getHeight\n\r')

if receive("portA", templateA):
if receive("portB", templateB):

print 'verdict pass'
else:

print 'did not receive templateB - verdict fail'
elif receive("portB", templateB):

if receive("portA", templateA):
print 'verdict pass'

else:
print 'did not receive templateA - verdict fail'

else:
print 'receive unexpected templateA – v fail

39

Send in Python
user custom written code

def send (portName, template):
port = connections[portName]
TODO write an encode

port.send(template)

e = event('send', portName, template)
events.append(e)

40

def receive (port, template):
receivedSomething = False
while receivedSomething == False:

try:
in_msg = msgQueue[port]
receivedSomething = True

except KeyError:
receivedSomething = False

if isinstance(in_msg, typeA) and in_msg == template:
print 'in receive template matched'
e = event('receive', port, template)
events.append(e)
return True

elif isinstance(in_msg, typeA) and …
else:

print 'did not receive template - verdict fail'
return False

Receive in Python
user custom written code

• Two parts:
– Retrieving data

from the port.
– Matching the

incoming
message to the
template.

41

TTCN-3 altstep concept

• Is basically defined only as a macro.
• But it is more than a macro because of the underlying

TTCN-3 snapshot semantics.
• Thus it is a rather very powerful structuring concept
• Enables factoring out behavior.
• What is factored out is a sub-tree, including the

conditions governing behavior.
• Since Python does not support macros, this would be

impossible to implement except through custom code.
• Not obvious to implement in Python due to the

underlying TTCN-3 snapshot semantics.

42

altstep example

• Python can not split an if-then-else
into functions, nor does it support
macros.

• At best it could factor out the body
of an if or an else, but not the
condition.

• This is because a python function
invocation is only a sequential
construct.

alt {
[] p.receive(“a”) { …}
[] p.receive(“b”) { …}
[] p.receive(“c”) { …}

}

TTCN-3

alt {
[] p.receive(“a”) { … }
[] other_behavior ()

}

altstep other_behavior () {
alt {

[] p.receive(“b”) { …}
[] p.receive(“c”) { …}

}
}

Python

If response == “a”:
…

else if response == “b”:
…

else if response == “c”:
…

43

Matching differences
TTCN-3 match vs Python assert

• TTCN-3 has the
concept of matching
(implicit in receive, or
explicit with the
keyword match)

• In a behavior tree, the
match is not final (not
an assert). It will look
up the specified
alternatives until a
match is found.

• In Python, the assert
statement produces a
failure if no match and
stops execution at the
point of failure.

• The assert is not
capable of doing an if-
then-else or a case
statement.

44

Python assert

• The Python assert feature is a one try only
feature.

• If the assert fails, the program stops.
• Thus, the assert can not be used to simulate the

TTCN-3 like behavior tree.
• In TTCN-3, if an alternative does not match, the

next alternative is tried.
• The weakness of the assert is not Python

specific, other general programming languages
have the same problem (Java/JUnit, etc…)

45

Programming styles
considerations

46

Python single element matching

• There are three activities in testing:
– Obtaining data over a communication channel
– Parsing data to extract the relevant field
– Matching the extracted data to an oracle.

• With general programming languages like
Python, users have a tendency to cluster or
intertwine the three above activities together in
their code.

• This structuring habit leads to poor
maintainability.

47

Python single element
testing example

• Three steps of testing:
– Step 1: Obtain response

from SUT by reading data
from a communication
channel.

– Step 2: Parse the response
data to extract a single
piece of data.

– Step 3: Make assertions on
single pieces of data.

• In the absence of a
model, testers have a
tendency to cluster the
above three steps
together.

Establish a connection:

connection = socket.socket(…)
connection.connect((HOST, PORT))

Step 1: read response data:

response = connection.recv(1024)

received response is: 'joe 178‘

name = response[0:5] # step 2
assert name.strip() == 'joe‘ # step 3

height = int(response[6:9]) # step 2
assert height == 178 # step 3

48

Programming styles

• The TTCN-3 template concept enforces a
style whereas the tester must consider all
the elements of a problem in a single
matching operation.

• Python can most of the time do the same
as ttcn-3 but tends to encourage a style
where elements of a problem are handled
one at a time.

49

pyUnit
unittest library

• Is merely JUnit implemented using python
• Limited functionality due to unit testing

approach.
• No easy solution for parallelism.
• Not even the limited GUI functions of

JUnit.

50

Strong typing

51

Strong typing differences
Python

• In python:
– will not match. Clear!
– But it is a silent error.
– It will reveal itself only at run time rather than

at compile time during development.

“ottawa” == 12345

52

Typing errors
python object instances

anEngine3 = engine(6, 'gas')
anEngine4 = engine('gas', 6)

assert anEngine3 == anEngine4

The above will fail silently or without explanations

Here, the error is due to the lack of typing
that could have warned the user about
the accidental permutation of values.

53

Strong typing differences
TTCN-3

• In TTCN-3, this would raise an error at compile time.
• Why is this important?:

– A test suite may be used by many testers.
– A silent error like in Python is thus spread among users, some

will detect it, some won’t.

type record someinfoType {
charstring city

}

template someinfoType myInfoTemplate := {
city := 12345

}

54

Python objects dynamic
attribute names issue

• Not really a typing issue.
• But with the same consequences.

class myClass :
def __init__(self, theColor, theSize):

self.color = theColor
self.size = theSize

def __eq__ …

a = myClass(‘red’, 10)
b = myClass(‘blue’, 15)

assert a == b # will not match, OK

Down the road:

a.colour = ‘blue’
a.size = 15

a == b # should have matched
but will still not match
but for the wrong
reason

55

Parametrization

• TTCN-3 allows
parametrization of:
– Templates
– Functions
– Test cases
– Parallel test

components

• Python allows
parametrization of
– Templates with

serious limitations
– Functions
– Threads with

limitations

56

Parallel test
components

57

Parallel test components

• TTCN-3
• Creation
• Variables

• Communication
• Behavior parameter

• Test component
coordination

• Python
• Multi-threading class

extension

• Creation
• Use of class functions
• Communication

58

Parallel test components –TTCN-3

• Concise test
case.

• Creation using
types

• Starting by
indicating which
test behavior to
use.

• Enables
parametrization
of behavior at
start time.

type component ptcType {
port networkPortType network;

}

testcase phoneSystemTest () runs on MTCType {
var ptcType user[2];

user[0] := ptcType.create;
user[1] := ptcType.create;

user[0].start(user_1_behavior ("555-1212"));
user[1].start(user_2_behavior (“911"));

all component.done;

log("testcase phoneSystemTest completed");
}

59

Parallel test components – Python
• Need to write a special

multi-threading class
extension.

• No way to communicate
directly which function to
run at start time.

• External functions do not
have access to the Ptc
object instance attributes.

• Poor object
intercommunication

• Parametrization is limited
due to the restriction of
only one initializer
allowed.

• There really is no
polymorphism.

import threading

class Ptc(threading.Thread):
def __init __(self, name, number):

threading.Thread.__init__(self)
self.name = name
self.number = number

def user_behavior_1 (self, req_number):
print 'user 1 is requesting number: ', req_number

def user_behavior_2 (self, req_number):
print 'user 2 is requesting number: ', req_number

def run (self):
print 'starting PTC for', self.name

if self.name == 'user_1':
self.user_behavior_1(self.number)

elif self.name == 'user_2':
self.user_behavior_2(self.number)

user = []
user.append(Ptc('user_1', '555-1212'))
user.append(Ptc('user_2', '911'))

user[0].start()
user[1].start()…

60

Tracing, debugging,
matching results

inspection

61

Displaying results

• In TTCN-3
• The tools provide:

– Test events inspection
– Tracing based on test

events

• In Python :

• You must develop
your own custom
events lookup
functions

• Tracing is function
invocation based.

62

Composite TTCN-3 test event
tools inspection facilities

• Because the TTCN-3 model uses the concept of
composite test event, tracing and debugging are
fully centered around the composite event:
– Composite event tracing.
– Composite event matching results.
– Composite event code location (context analysis).

• All tracing and lookup facilities are provided by
the TTCN-3 tools. (no programming effort).

63

TTCN-3 composite event tracing

64

TTCN-3 graphic event tracing

65

TTCN-3 composite event matching
results lookup

66

TTCN-3 composite event
code locator

67

Tracing with Python

• Produces only function invocation traces.
• No traces from successful test event

matching path that leads to the point of
error.

Traceback (most recent call last):
File "C:/BSI_Projects/python/Behavior Tree Example/behaviorTreeEx_3.py",

line 186, in <module> myMultiTypeTestCase()
File "C:/BSI_Projects/python/Behavior Tree Example/behaviorTreeEx_3.py",

line 170, in myMultiTypeTestCase if receive("portB", templateB):
File "C:/BSI_Projects/python/Behavior Tree Example/behaviorTreeEx_3.py",

line 127, in receive assert in_msg == template
AssertionError

68

TTCN-3 operational semantics

• Are defined as flow diagrams.
• Macros.
• Matching of messages
• There are 112 pages about operational semantics in the

standard.
• The most important concept is that in TTCN-3, the

operational semantics are clearly defined.
• In a Python program, nobody except the developer

knows what the semantics are unless he has written a
documentation (a rare fact).

• And because interpreted, weakly typed weird unintended
behavior is possible outside the intended semantics
when a “wrongly” typed input happens

69

TTCN-3 Operational semantics
flow diagram example

70

Operational semantics
very detailed description in standard

B.3.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, a reply to a procedure call
or an exception are receive , getcall , getreply and catch .

All these receiving operations are built up in the same manner:

<port-name>.<receiving-operation>(<matching-part>)
[from <sender>] [<assignment-part>]

The <port-name> and <receiving-operation> define port and operation used for
the reception of an item. In case of one-to-many connections a from -clause can
be used to select a specific sender entity <sender>. The item to be received has
to fulfil the conditions specified in the <matching-part>, i.e., it has to match.
The <matching-part> may use concrete values, template references, variable values,
constants, expressions, functions, etc. to specify the matching conditions.

The operational semantics assumes that there exists a generic MATCH-ITEM function:
MATCH-ITEM(<item-to-check>, <matching-part>, <sender>) returns true if
<item-to-check> fulfils the conditions of <matching-part> and if <item-to-check> has
been sent by<sender>, otherwise it returns false.

71

Cost benefit analysis

72

Cost factors

Coding efforts Maintenance
efforts

Results
Analysis

efforts

Debugging
efforts

Skill/training
Efforts

73

Coding efforts

• TTCN-3 language constructs result in code
reduction.

• The concept of Abstract Test Suite makes a test
suite usable on different platforms or tools from
different vendors.

Abstract Test Suite
(ATS)

Test Adapter
codecs

74

TTCN-3 Coding efforts distribution

TTCN-3
Abstract Test Suite

TTCN-3
Test adapter

codecs

TTCN-3 runtime Tool

1. Matching mechanism
2. Sophisticated tracing

you
Tool vendor

Coding effort migration

Reusability of
adapter codecs?

75

Coding effort reduction

• TTCN-3 provides coding
effort reduction via:
– Powerful language

constructs and short
hands.

– Strong typing.
– Strong semantics.
– Test event centric tracing

facilities.

• Python provides coding
effort reduction via:
– Typelessness (no

datatypes to define).
– Structured equality

operator (not really true).
• Unfortunately, Python’s

coding effort reduction
mostly results in:
– additional debugging

efforts (resulting from
typelessness).

– Custom code development
(structured equality
operator, …).

76

Results analysis efforts

• Question: when a test has executed, how
do we know that the results are correct?

• A pass verdict does not guarantee that the
test is correct.

• Consequently, the easier it will be to
analyze test results, the more you will trust
these results.

77

Maintenance efforts

• TTCN-3’s central concept of separation of
concern reduces maintenance efforts:
– Concept of composite test event enables to

zero in on a specific test functionality.
– The separation between abstract and

concrete layers code enables to zero in on
specific test aspects (protocol,
communications, codecs).

– The risk of errors is reduced because there is
less code to look at for a given functionality.

78

Debugging efforts

• Debugging efforts are directly linked to
results analysis efforts.

• The composite test event centric aspect of
TTCN-3 enables:
– Zero in on an event.
– Appraise the protocol part (ATS).
– Appraise the test adapter and codecs.
– Question the correctness of the tool used.
– Question the TTCN-3 standard.

79

Skill/training efforts
the problematic

• The myth:
– TTCN-3 has an extremely steep learning curve.

• The reality:
– TTCN-3 is a large language
– TTCN-3 has unusual but very powerful concepts

• Templates
• Matching mechanism
• Behavior tree
• Adaptation layer

– There is no reason to start with a sub-set of the language where
the learning curve is extremely shallow.

– As skills build up, more powerful features can be learned.

80

Skill/training efforts
the help

• Where to learn TTCN-3?
– ETSI web site tutorials.

– Universities
– Vendor’s courses

• Training cycle
– Basic elements can be learned in a day.

– Powerful features in three days.

81

Software economics

HighLowMaintenance
efforts

HighLowResults
analysis efforts

HighLowDebugging
effort

LowLowCoding effort

LowHighSkill/training

PythonTTCN-3Factor

82

Coding efforts details

highNilDisplay of
results

LowHighCodec

LowHighTest adapter

HighLowTest event
specification

PythonTTCN-3Factor

83

Where to get TTCN-3 help?

• http://www.ttcn-3.org
– standards
– Tutorials
– Papers

• http://www.site.uottawa.ca/~bernard/ttcn.ht
ml
– Tutorials
– Papers
– Case studies

84

Conclusion
TTCN-3 is better than a general

programming language
• Because it separates abstraction from

implementation details.
• The template concept is considerably more

flexible.
• Strong typing allows early detection of errors.
• The behavior tree allows better test behavior

overview.
• Python is however an excellent choice for the

test adapter and codecs and thus could be
combined with TTCN-3.

85

Contact information

• bernard@site.uottawa.ca
• lpeyton@site.uottawa.ca
• http://www.site.uottawa.ca/~bernard/ttcn.ht

ml
• http://www.site.uottawa.ca/~lpeyton/

