Higher-Order Conditional Term Rewriting
in the L, Logic Programming Language
Preliminary Results

Amy Felty

AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974

Abstract

In this paper, we extend the notions of first-order conditional rewrite systems
and higher-order rewrite systems to obtain higher-order conditional rewriting.
Such rewrite systems can be used to directly express many operations in theo-
rem proving and functional programming. We then illustrate that these rewrite
systems can be naturally specified and implemented in a higher-order logic pro-
gramming language. This paper was presented at the Third International Work-
shop on Extensions of Logic Programming, February 1992.

1 Introduction

Higher-order rewrite systems extend first-order rewrite systems and provide a
mechanism for reasoning about equality in languages that include notions of
bound variables [1, 9, 12, 5]. First-order conditional rewrite systems extend first-
order rewrite systems, providing more expressive power by allowing conditions
to be placed on rewrite rules [2, 8]. Such conditions must be satisfied before a
particular rewrite can be applied. In this paper, we extend these two notions
to define higher-order conditional rewriting. We extend first-order conditional
rewriting to the higher-order case in a manner that can be viewed as analogous to
the way that Nipkow [12] and Felty [5] extend first-order rewriting to the higher-
order case. We use the simply typed A-calculus as the language for expressing
rules, with a restriction on the occurrences of free variables so that matching
of terms with rewrite templates is decidable. Conditions will be expressed in
a logic, called F), which extends this restriction on free variables to variables
bound by quantification.

We then show how such rewrite systems can be specified and implemented
in a higher-order logic programming language whose logical foundation is L
[10], a variant of E\. This language replaces first-order terms in traditional
languages such as Prolog with simply typed A-terms, and first-order unification
with a simple and decidable subcase of higher-order unification, called Bon-
unification. The rules of a higher-order rewrite system can be directly specified

in this language, and unification is directly available for matching terms with
rewrite templates. Our extended language also permits queries and the bodies
of clauses to be both implications and universally quantified. These operations
are essential for applying rewrite and congruence rules to descend through terms
in order to apply rewrite rules to subterms. The programs presented here have
been tested in the logic programming language AProlog which is more general
than the language L used in this paper.

In Section 2 we define Ly and FEj, the metalanguages for logic programming
and for expressing rewriting, respectively. In Section 3, we define conditional
higher-order rewrite systems using this metalanguage. In Section 4 we describe
an interpreter for the logic programming language, and in Section b we illustrate
by example how rewrite systems can be specified in this language. Finally,
Section 6 concludes.

2 A Metalanguage for Rewriting

The terms of the metalanguage are the simply typed A-terms. We present the
notation used here and some basic properties. See Hindley and Seldin [7] for a
fuller discussion. We assume a fixed set of primitive types. The set of types is
the smallest set of expressions that contains the primitive types and is closed
under the construction of function types, denoted by the binary, infix symbol
—. The Greek letter 7 is used as a syntactic variable ranging over types. The
type constructor — associates to the right.

For each type 7, we assume that there are denumerably many constants and
variables of that type. Constants and variables do not overlap and if two con-
stants (variables) have different types, they are different constants (variables).
To make the type T of constant a explicit, we often write a: 7. We often speak
of a fixed signature or a finite set of constants and variables, usually denoted
3. Simply typed A-terms are built in the usual way using constants, variables,
applications, and abstractions. If M is a term and =z, ..., z, are distinct vari-
ables, we often write AZ,,.M for Az;...Ax,.M and M=%, for Mz, ...z,. For a
term M of type 71 — -+ — T, = 7o where n > 0 and 7y is primitive, we say
that n is the arity of M. In a term of the form hAM; ... M, where n > 0 and h
is a constant or variable, we say that h is the head of this term.

If z is a variable and M is a term of the same type then [M/z] denotes the
operation of substituting M for all free occurrences of z, systematically changing
bound variables in order to avoid variable capture. We shall assume that the
reader is familiar with the usual notions and properties of substitution and «,
B, and 1 conversion for the simply typed A-calculus. Here, equality between
A-terms is taken to mean B7n-convertible. When we write a term, it actually
represents an equivalence class of terms.

A term is called a higher-order pattern (or simply pattern) if every occurrence
of a free variable h appears in a subterm of the form hz; ...z, where n > 0
and zi,...,2, are distinct bound variables. In Miller [10], it is shown that

unification of patterns, called Bon-unification, is decidable and that for any two
unifiable patterns, a most general unifier can be computed.

To define Ly formulas, we extend the notion of terms. We assume o is
a member of the set of primitive types. A predicate p is a constant of type
Ty = +++— Tp, — 0 Where 7, ..., T, do not contain o. The logical constants are
given the following types: A (conjunction) and O (implication) are both of type
0 — 0 — o; and V., (universal quantification) is of type (7 — 0) — o, for all types
T not containing o. The logical constants A and D are written in the familiar
infix form. A formula is either atomic or non-atomic. An atomic formula is of
the form (pt; . ..t,), where p is a predicate and ¢4, . .., ¢, are terms of the types
T1,...,Tn, respectively. Non-atomic formulas are of the form B; A By, B; D Bs,
or V-(Az B), where B, By, and B; are formulas and 7 is a type not containing
0. The expression V,(Az B) is written V,z B or simply as V& B when types
can be inferred from context. The formula V&, ...Vz, B, n > 0 is also written
VZ,.B.

We define two sets of L formulas, called D and G, by placing restrictions on
variables bound by quantification. These restrictions are similar to the one above
on variables bound by A-abstraction in patterns. A variable occurrence z in a
formula is said to be positive (negative) if it is bound by a positive (negative)
occurrence of a universal quantifier. A variable occurrence is A-bound if it is
bound by a A-abstraction. A formula is in D (respectively G) if every positive
(respectively negative) variable occurrence z appears in a subterm of the form
z%y...Tn, where n > 0 and 21, ..., 2, are distinct either negative (respectively
positive) variable occurrences or A-bound variable occurrences bound within the
scope of the binding for z. We call this restriction on z the head restriction. In
addition, we require that formulas in D and G are closed. A formulain D or G
is called, respectively, a D-formula or a G-formula.

Provability for Ly can be given in terms of sequent calculus proofs. A sequent
is a pair I' — G, where G is a G-formula, and T' is a finite (possibly empty) sets
of D-formulas. The set I' is this sequent’s antecedent and G is its succedent. The
expression B, I' denotes the set I'U{B}; this notation is used even if B € T'. The
inference rules for sequents are presented in Figure 1. The following provisos
are also attached to the two inference rules for quantifier introduction: in V-R
¢ is a constant of type 7 not occurring free in the lower sequent, and in V-L ¢ is
a term of type 7.

A proof of the sequent I' — G is a finite tree constructed using these
inference rules such that the root is labeled with I' — G and the leaves are
labeled with initial sequents, that is, sequents I'' — G’ such that G’ € T. The
non-terminals in such a tree are instances of the inference figures in Figure 1.
Since we do not have an inference figure for 8n-conversion, we shall assume that
in building a proof, two formulas are equal if they are #7n-convertible.

We extend Ly with equality, reducibility, join, and redex relations at prim-
itive types by introducing four constants =,, =, |*, and —,, respectively, of
type 7 — 7 — o for every primitive type 7 except o. Subscripts will be omitted
when type information is not important or can be inferred from context. This

B,C,T' — @G r—B r—cC

BAC,T —a /Mt T—BAC R

r —B C,T'—G L B, I —C R
Bo>CT -G T—>Bo>C~
[t/z]B,T — G I' — [¢/z]B
V,z B,T — G " j—— R

Fig.1. Left and right introduction rules for Lj

language will be called E, and has the additional inference rules in Figure 2.
The first four rules express reflexivity, symmetry, transitivity, and congruence
of equality. In the CONG rule, h is a variable or constant of arity n, and for
i=1,...,n, M; and N; are terms of arity m;. Also, the universally quantified
variables in the premises must not occur free in the conclusion, and must be of
the appropriate type for the terms in the premises to be well-formed. In addi-

' -M=N

' —>M=P ' —»P=N
— TRANS
I' = VZn,(MiZm, = N1Zpm,) -+ T —VEn, (MnTh, = NuTm,) CONG
r M35P r N5P
— — — — JOIN

T >M['N

Fig.2. Rules for equality in Ej

tion, Ey has corresponding REFL, TRANS, and CONG rules for the = relation.
Finally, the last rule expresses the meaning of the join relation. There are no
rules for the — relation. It will be used to express rewrite rules.

We define a set of formulas called G’ that, unlike I' and G may contain free
variables. A formula is in G’ if all its constants are either logical connectives
or one of the equality, reducibility, join, or redex predicates. In addition, we

place a head restriction on negative variable occurrences similar to that on G
but we also extend it to free variables. In particular, every negative variable
occurrence or free variable occurrence z must appear in a subterm of the form
Z&y...¢n, Where n > 0 and #4, ..., z, are distinct positive variable occurrences
or A-bound occurrences bound within the scope of the binding for z. A formula
in G’ is called a G-condition. Such formulas will be used to express conditions
on rewrite rules.

3 Higher-Order Conditional Rewrite Systems

A conditional equation is defined to be a triple G = | = r such that G is a
G-condition whose atomic formulas contain only the equality predicate, [and
r are patterns having the same primitive type, [is not a free variable, and all
free variables in r also occur in [or G. We say that an occurrence of a free
variable in a G-condition is in reduced-term position if it occurs in an atomic
formula on the right hand side of a binary relation and the atomic formula is
on the right hand side of an even number of implications. A conditional rewrite
rule is defined to be a triple G = [— r such that all the atomic formulas of
the G-condition G contain only reducibility, join, and redex predicates, [and
r are patterns having the same primitive type, [is not a free variable, and all
free variables in 7 also occur in [or have occurrences in reduced-term position
in G. A Higher-Order Conditional Rewrite System (HCRS) is a finite set of
conditional rewrite rules. In Nipkow [12] and Felty [5], higher-order rewrite
rules without conditions are defined using patterns on the left hand side and
arbitrary A-terms on the right. The specification of such rewrite systems in a
metalanguage slightly more general than L) is discussed in [5]. This notion of
higher-order rewriting extends the usual notion of first-order term rewriting.
Conditional rewrite rules as defined here extend first-order conditional rewrite
rules (as defined in Dershowitz et. al. [3], for example) in an analogous way. In
first-order rewrite rules, the condition G is often defined to be a conjunction of
atomic formulas using equality or one of the reducibility predicates. Thus, our
definition extends the definition by allowing an arbitrary formula from G'.

For higher-order rewrite rules without conditions, the fact that unification
of patterns is decidable guarantees that the rewrite relation is decidable. Condi-
tional rewriting, even in the first-order case is more complicated and not always
decidable, and thus will not be decidable in our case either. Note that we do,
however, retain the property that it is decidable whether a given term matches
a left hand side of a rewrite rule.

In writing rewrite rules, we adopt the convention that tokens beginning with
upper case initial letters are free variables. Tokens that begin with lower case
letters other than those bound by A are constants.

To illustrate, we consider an example which expresses evaluation in a simple
functional programming language consisting of primitive datatypes for booleans
and natural numbers, a conditional statement, constructs for lists, function

abstraction, application, a fix point operator, and the let operator as in ML. We
introduce a primitive type ¢m for terms of this functional language and introduce
the constants shown with their types in Figure 3 to represent the constructs of
the language. We will write — and < as infix operators. Clearly not all terms of

true : tm nil :tm

false : tm cons : tm — tm — tm
if:tm > tm —>tm — tm hd : tm — tm
0:tm tlh:tm —tm
s:tm—>tm empty : tm = tm
<:tm—=>itm—=>tm app :tm —tm —tm
—:itm —tm —tm abs : (tm — tm) > tm

ged @ tm — tm — tm let : (tm — tm) > tm —> tm

fiz : (tm = tm) = tm

Fig. 3. Constants for Representing Functional Programs

type tm correspond to valid programs. Some form of type checking is needed.
We only discuss evaluation here and assume terms to be evaluated correspond
to valid programs. The rewrite rules expressing evaluation are given in Figure 4.
Evaluation in the first-order fragment of this language is given by all but the last

M < M — false
M < (s M) — true
(s M) < M — false
(s M)<(sN)>M<N
(sM)—(sN)>M-N
0—-M—0
M-0—-M
(N < M > true) = (gcd M N — ged (M — N) N)
(M < N 3 true) = (gcd M N = ged M (N — M))
ged M M - M
iftrue M N—- M
if false M N - N
hd (cons M N) - M
tl (cons M N) - N
empty nil — true
empty (cons M N) — false
abs dz.(app M z) > M
Vz.((z — N) D (Mz 5 P)) = (app (abs M) N — P)
Vz.((z — N)D (Mz 5 P)) = (let M N — P)

Fig.4. Rewrite Rules Expressing Evaluation in a Simple Functional Language

four rules. These rules are straightforward and it is easy to see that they satisfy
the necessary constraints. The left and right hand sides are patterns since none

of the free variables are applied to any arguments, and the two conditions are
G-conditions.

Now consider the last four rules. The two constants app and abs are used to
code function application and abstraction. The first rule specifies 7-reduction of
A-terms. On the left hand side, the bound variable z will not occur in instances
of M as is required by the 5-rule: any instance of M containing ¢ would cause
the variable z in the above rule to be renamed to avoid variable capture. The
second rule specifies 8-conversion. A term of the form (app (abs M) N) is a
B-redex whose reduced form is P as long as the condition on the left is satisfied.
This condition states that for an arbitrary z, under the addition of the rewrite
rule that rewrites # to N, it must be the case that M=z reduces to P. Note
that instances of P cannot contain free occurrences of the variable £ bound by
universal quantification for the same reason as stated above for M. Thus all
occurrences of z in Mz must be rewritten to N in order for this condition to
succeed. The let construct corresponds to a let statement in ML. In a term of
the form (let M N), it is intended that the bound variable at the head of M will
be assigned the value N in the body. In other words, this term is an abbreviation
for the application M N. This reduction is expressed by the third rule above and
is similar to the rule for B-reduction. The rule which expresses the unfolding of
a fixpoint operator is also similar, but here # rewrites to (fiz M).

It is easy to see that the left and right hand sides of the above four rules
are patterns, since there are no arguments to any of the free variables. In the
conditions, the free variable M is applied to # which is bound by a positive
occurrence of a universal quantifier. In the latter three rules, although P occurs
on the right but not on the left of the rewrite rule, it occurs in reduced-term
postition in the condition. Thus these conditions are G-conditions, and all four
rules are valid conditional rewrite rules.

Note that as a rewrite system, these rules express non-deterministic eval-
uation. Nothing about order of evaluation in specified. In Felty [5], we show
how to implement various rewriting strategies in the AProlog logic program-
ming language. Such strategies, when given these rewrite rules as a parameter,
correspond to various strategies for evaluating functional programs.

4 An Interpreter for L,

In the next section, we will talk about specifying higher-order conditional rewrite
systems in Ly. We will discuss the operational reading of these specifications
with respect to a logic programming interpreter for Ly and provide some insight
into implementation. We provide a high-level description of this interpreter
here.

A definite clause is a D-formula of Ly, and a program is a set of definite
clauses. A goal is a G-formula. From properties about L) presented in Miller
[10], a sound and complete (with respect to intuitionistic logic) non-deterministic
interpreter can be described by the following search operations. Here, the inter-

preter is attempting to determine if the goal formula G follows from the program

I.
AND: If G is G; A G5 then try to show that both G; and G5 follow from T'.

AUGMENT: If G is D D G’ then add D to the current program and try to
show G'.

GENERIC: If G is V,zG’ then pick a new constant ¢ of type 7 and try to
show [c¢/z]G'.

BACKCHAIN: If G is atomic, we consider the current program. If there is
a universal instance of a definite clause which is convertible to G then we
are done. If there is a definite clause with a universal instance of the form
G' O G then try to show G’ follows from I'. If neither case holds then G
does not follow from I'.

An implementation of an interpreter must make many choices which are
left unspecified in the high-level description above. We discuss a few of the
choices made by the logic programming language AProlog, which contains an
implementation of Lj.

First, the order in which conjuncts and disjuncts are attempted and the order
for backchaining over definite clauses is determined exactly as in conventional
Prolog systems: conjuncts and disjuncts are attempted in the order they are
presented. Definite clauses are backchained over in the order they are listed in
I’ using a depth-first search paradigm to handle failures. Logic variables as in
Prolog are used in forming a universal instance in the BACKCHAIN operation.
These variables can later be instantiated through unification. In this case, it is
Bo-unification that is required.

The presence of logical variables in an implementation also requires that
GENERIC be implemented slightly differently than is described above. In par-
ticular, if the goal V,.2G' contains logical variables, the new constant ¢ must
not appear in the terms eventually instantiated for the logical variables which
appear in G’ or in the current program. Any implementation must take this
constraint into account.

5 Specifying Rewrite Systems

In this section, we discuss the specification of higher-order rewrite systemsin L.
Unlike Ey, Ly does not have the equality, reducibility, join, and redex relations
or the inference rules for them as primitives. Here, we introduce constants for
these relations and provide program clauses to specify the inference rules.

We will assume that all terms from a given object language contain only con-
stants from a fixed signature, say ¥, which at least includes all of the constants
in the rewrite rules. As an example, we take as a signature the set of constants
declared in Figure 3 and illustrate the specification of the rewrite system for
evaluation given in Figure 4.

To specify rewriting at a particular primitive type 7, we introduce the infix
relations =,, =, |*, and —, to serve as predicates of type 7 — 7 — 0. Our
specification will be a set of definite clauses from which we can attempt to
prove goals representing rewriting queries. The specification of rewrite rules as
clauses is straightforward: we replace the rewriting relations of E with the new
rewriting predicates, we replace = with O, and we take the universal closure
over the free variables of the rewrite rule, including those in the condition. To
illustrate, the three clauses below specify a first-order rule without and with
a condition, and a higher-order rule with a condition. All subscripts on the

reducibility and redex relation should be tm. We omit them for readability.

VMVN ((s M) < (s N) = M < N)
VMYN((N < M > true) D (9ed M N — ged (M — N) N))
VNYMYP(Vz.((z — N) D (M=z = P)) D (app (abs M) N — P))

Note that we do in fact obtain D-formulas by simply taking the universal closure
at the top level. Any free variable occurrence in the rewrite rule becomes a
positive variable occurrence in the closure. In the condition, both negative and
free variable occurrences become positive variable occurrences in the closure.
As a formula in G’, it was the negative and free variables that had to satisfy the
head restriction, while in a D-formula, it is the positive occurrences that must
satisfy this restriction.

Generally, in executing rewrite goals, we will often have a closed term on the
left of the arrow and a variable on the right to be instantiated with the result
of the rewrite. In using the first clause for example, M and N will be replaced
with logic variables which get instantiated by matching the left hand side of
the query with the pattern (s M) < (s N). When the second clause is used in
backchaining, we will then have to solve the subgoal specifying the condition.
Note that if M and N are instantiated by the backchain operation, the terms
on both the left and right of this subgoal will be instantiated. Backchaining
on the third clause will provide instances of M and N. The subgoal that must
be proved is slightly more complex. First, a GENERIC search operation will be
applied to generate a new constant, say c, for . Then the AUGMENT operation
will add a clause stating that this constant c rewrites to the given instance of
N. Then, in this new context, it must be shown that M c rewrites to some term
instantiating P. By the restriction on the GENERIC operation, this term cannot
contain ¢, thus the rewrite rule for ¢ must be applied for every instance of c,
replacing each one by N.

For readability, in the remainder of this and the next sections, we will often
leave off outermost universal quantification, and assume universal closure over
all variables written as tokens with initial upper case letters.

To specify congruence, we introduce a D-formula for each constant in X.
These D-formulas have the same form as those for rewrite rules with condi-
tions. For example, the following two formulas are included for the app and abs

constants.

(M5 PYANSQ)D (app M N — app P Q)
Vz((z — z) D (Mz > Nz)) D (abs M — abs N)

The clause for abs states that an abstraction (abs M) rewrites to (abs N) if for
arbitrary z such that z rewrites to itself, Mz reduces to Nz. Operationally,
in trying to solve a goal of the form (abs M' — abs N') where, say, M'is a
closed term and N’ a logic variable, we can use this clause to descend through
the abstraction in M’. The GENERIC operation will generate a new meta-level
signature item, say ¢, and the AUGMENT operation will add the atomic formula
(¢ = ¢). This can be viewed as the dynamic addition of a new constant to
the object-level signature and a reflexive rule for it. Then, B-reduction at the
meta-level of M'c performs the substitution of the new item c for the outermost
bound variable in M’. In effect, the new signature item plays the role of the
name of the object level bound variable. The atomic clause (¢ — ¢) can be used
during the search for a term N’c that is reachable by some number of rewrite
steps from M’c. N' is the abstraction not containing c.

A congruence rule for a new constant of functional type is more complex. For
example, if we had a function constant A whose type is ((¢tm — tm) — tm) — tm,
its corresponding congruence clause would be:

VH(YPYQ((P = Q) D (fP — fQ)) D (Mf = Nf)) D (h M — h N)

Operationally, after backchaining on the above clause, instead of an atomic
clause, the clause (P = Q) O (fP — fQ) would be dynamically added by
AUGMENT, serving as new congruence rule for the new function constant f.

We can in fact define a general function for specifying congruence rules for
a particular signature. For signature item a of type 7, [a;a : 7]~ yields the
necessary congruence rule.

_ M —. N if 7 is a primitive type
M;N : = =N g s
1M N 2 7] {VmVy([[m;y:Tl]]+ D[Mz;Ny:m])ifrisT — 7
M5 N if T is a primitive type
M;N:r]" = T
[M; 1 : 7] {Vm([[m;m:n]]_ O [Mz;Ne :n])ifrism — 7

These functions are a (corrected) version of those used by Miller [11] to specify
equality and substitution for simply typed A-terms and are similar to those used
by Felty [4] to code a dependent typed A-calculus in a higher-order intuitionistic
logic.

The remaining rules of Figure 2 are specified in a straightforward manner,
by including the following clauses at each primitive type.

(M5 PYA(PSN)D (M5 N)

(M |* PYA(N |* P) > (M 5 N)
(M 5 N)D (M=N)
(M 5 N)D (N=M)

Note that we do not include a clause specifying reflexivity. We do not need
one when we include “reflexivity” clauses (a — a) for each constant a of primitive
type in the signature. To rewrite a term to itself, congruence rules must be
used to descend through the entire term, applying reflexivity rules for constants
at the leaves. For efficiency reasons, we may want to include a reflexive rule
VM (M Y M). It can be used to prove the equivalence of two arbitrary terms of
primitive type in a single step. An advantage of the former approach is that it
can also be used to verify that a term is well-formed in a particular signature.

6 Some Concluding Remarks

As stated earlier, the formulation of rewrite rules in Nipkow [12] and Felty [5] is
slightly different than that given here. There are no conditions and right hand
sides are not restricted to be patterns. If terms are always matched against left
hand sides, decidability of the rewrite relation is not affected. In this setting,
the last three rules in Figure 4 can be expressed more directly, and perhaps
more naturally, as follows.

app (abs M) N - MN
fie M — M (fiz M)
let M N—- MN

In applying one of these rules, instead of having to satisfy a condition which adds
a rewrite rule for some new constant ¢, and must then reduce the term Mc¢ in a
new context, application of A-terms is used to directly substitute the appropriate
term for the bound variable in M. In that setting, a logic programming language
with unification more powerful than Bgn-unification is needed, such as AProlog.

Any rewrite system expressible in the more general setting can in fact be
expressed as conditional rewrite rules as defined here. A function can be defined
to translate rules with arbitrary A-terms on the right to conditional rules with
patterns on the right. Such a function is defined by induction over types in
a manner similar to the one in the previous section for generating congruence
clauses.

Within theorem proving systems, capabilities for higher-order rewriting can
provide a useful tool for the manipulation of formulas and programs. In [5], we
illustrate how to integrate a general component for higher-order term rewriting
into a tactic style theorem prover. The implementation discussed there builds on
the logic programming implementation of tactic style theorem provers presented
in Felty [6], and provides a setting for implementing both general and specific
rewriting strategies. These techniques can be easily extended to conditional
rewriting.

References

1. Peter Aczel. A general church-rosser theorem. Technical report, University of
Manchester, 1978.

11

10.

11.

12.

. J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluence and termi-
nation. Journal of Computer and System Sciences, 32:323-362, 1986.

N. Dershowitz, M. Okada, and G. Sivakumar. Confluence of conditional rewrite
systems. In S. Kaplan and J.-P. Jouannaud, editors, Proceedings of the First Inter-
national Workshop on Conditional Term Rewriting Systems, pages 31-44. Springer-
Verlag Lecture Notes in Computer Science, 1987.

. Amy Felty. Encoding dependent types in an intuitionistic logic. In Gérard Huet
and Gordon Plotkin, editors, Logical Frameworks, pages 215-251. Cambridge Uni-
versity Press, 1991.

Amy Felty. A logic programming approach to implementing higher-order term
rewriting. In Lars-Henrik Eriksson, Lars Hallnas, and Peter Schroeder-Heister,
editors, Proceedings of the January 1991 Workshop on Eztensions to Logic Pro-
gramming, pages 135—161. Springer-Verlag Lecture Notes in Artificial Intelligence,
1992.

Amy Felty. Implementing tactics and tacticals in a higher-order logic programming
language. Journal of Automated Reasoning, To appear.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic and
Lambda Calculus. Cambridge University Press, 1986.

Stéphane Kaplan. Conditional rewrite rules. Theoretical Computer Science,

33:175-193, 1984.

J. W. Klop. Combinatory reduction systems. Technical Report Mathematical
Centre Tracts Nr.127, Centre for Mathematics and Computer Science, Amsterdam,

1980.

Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497-

536, 1991.

Dale Miller. Unification of simply typed lambda-terms as logic programming. In
Eighth International Logic Programming Conference, Paris, France, June 1991.
MIT Press.

Tobias Nipkow. Higher-order critical pairs. In Swzth Annual Symposium on Logic
in Computer Science, pages 342-349, Amsterdam, July 1991.

12

