
A Logic Programming Approach toImplementing Higher-Order TermRewriting ?Amy FeltyINRIA RocquencourtDomaine de Voluceau78153 Le Chesnay Cedex, FranceAbstractTerm rewriting has proven to be an important technique in theorem proving.In this paper, we illustrate that rewrite systems and strategies for higher-orderterm rewriting, which includes the usual notion of �rst-order rewriting, canbe naturally speci�ed and implemented in a higher-order logic programminglanguage. We adopt a notion of higher-order rewrite system which uses thesimply typed �-calculus as the language for expressing rules, with a restriction onthe occurrences of free variables on the left hand sides of rules so that matchingof terms with rewrite templates is decidable. The logic programming languagecontains an implementation of the simply-typed lambda calculus including ��-conversion and higher-order uni�cation. In addition, universal quanti�cationin queries and the bodies of clauses is permitted. For higher-order rewriting,we show how these operations implemented at the meta-level provide elegantmechanisms for the object-level operations of descending through terms andmatching terms with rewrite templates. We discuss tactic style theorem provingin this environment and illustrate how term rewriting strategies can be expressedas tactic-style search.1 IntroductionMuch e�ort has gone into the study of �rst-order rewrite systems and as a result,there is currently a large body of knowledge about their properties. Implemen-tors of theorem proving systems have been able to exploit this knowledge toimplement e�ective strategies for reasoning about equality between �rst-orderterms. More recently, the study of rewrite systems has included the more ex-pressive higher-order rewrite systems. One direction involves extending earlywork by Aczel [1] and Klop [16] which uses �-terms as a meta-language for ex-pressing rewrite systems for object languages that include notions of bound vari-ables. Such �-terms can be used to elegantly express the higher-order abstract? This paper appears in Proceedings of the 1991 InternationalWorkshop on Extensions of LogicProgramming, Lars-Henrik Eriksson, Lars Halln�as, and Peter Schroeder-Heister, editors,Springer-Verlag Lecture Notes in Arti�cial Intelligence, 1992.

syntax of these object languages [27, 18]. For example, the abstractions builtinto �-terms can be used to represent quanti�cation in formulas or abstractionin functional programs. Using this representation, many operations on formu-las and programs can be naturally expressed as higher-order rewrite systems.Within theorem proving systems, capabilities for higher-order rewriting can thusprovide a useful tool for the manipulation of formulas and programs.In this paper, we adopt the de�nition of higher-order rewrite system given byNipkow [23], though we give a di�erent presentation of the notions of rewrite re-lation and of equality modulo a rewrite system. We then show how such rewritesystems as well as strategies for rewriting can be speci�ed and implemented ina higher-order logic programming language.The higher-order logic programming language used here is based on higher-order hereditary Harrop formulas [21]. This language replaces �rst-order termsin traditional languages such as Prolog with simply typed �-terms, and �rst-order uni�cation with higher-order uni�cation. The rules of a higher-orderrewrite system can be directly speci�ed in this language, and the operationof higher-order uni�cation is directly available for matching terms with rewritetemplates. Our extended language also permits queries and the bodies of clausesto be both implications and universally quanti�ed. We shall show how these op-erations are essential for applying congruence rules to descend through terms inorder to apply rewrite rules to subterms.In Section 2 we de�ne higher-order rewrite systems, and in Section 3 wepresent several examples. In Section 4 we describe the meta-logic and logicprogramming language, and in Section 5 we illustrate by example how rewritesystems can be speci�ed in this language. Sections 6 and 7 illustrate how tointegrate a general component for higher-order term rewriting into a tactic styletheorem prover. The implementation discussed here builds on the logic pro-gramming implementation of tactic style theorem provers presented in Felty andMiller [8] and Felty [6]. Section 7 discusses how the operation of higher-orderuni�cation which is available in our logic programming language can be used todirectly implement tactics for �rst-order term rewriting. We discuss both thepower and limitations of this implementation technique. Finally, Section 8 con-cludes and discusses related work. Appendix A contains a proof of equivalencebetween our operational de�nition of rewriting and the corresponding inferencesystem for equality modulo a rewrite system.2 Higher-Order Rewrite SystemsAs stated, the meta-language used to de�ne higher-order rewrite systems is thesimply typed �-calculus. We present the notation used here and some basicproperties. See Hindley and Seldin [13] for a fuller discussion. We assume a�xed set of primitive types. The set of types is the smallest set of expressionsthat contains the primitive types and is closed under the construction of functiontypes, denoted by the binary, in�x symbol !. The Greek letter � is used as a2

syntactic variable ranging over types. The type constructor! associates to theright.For each type � , we assume that there are denumerably many constants andvariables of that type. Constants and variables do not overlap and if two con-stants (variables) have di�erent types, they are di�erent constants (variables).To make the type � of constant a explicit, we often write a: � . Simply typed�-terms are built in the usual way using constants, variables, applications, andabstractions. IfM is a term and x1; : : : ; xn are distinct variables, we often write�xn:M for �x1 : : :�xn:M and Mxn for Mx1 : : :xn. In the former term, we saythat �xn is its binder andM its body. For a termM of type �1 ! � � � ! �n ! �0where n � 0 and �0 is primitive, we say that n is the arity of M .If x is a variable and M is a term of the same type then [M=x] denotesthe operation of substituting M for all free occurrences of x, systematicallychanging bound variables in order to avoid variable capture. The expression[M1=x1; : : : ;Mn=xn] will denote the simultaneous substitution of the termsM1; : : : ;Mn for distinct variables x1; : : : ; xn, respectively. We use Greek let-ter � to denote substitutions, and write �M for the application of substitution� to term M .The relation of convertibility up to �; �; � is written as =��. A �-term is in��-long form if it is of the form �xn:hM1 : : :Mm where n;m � 0, h is eithera constant or a variable of arity m, and terms M1; : : : ;Mm are also in ��-longform. We call h the head of this term. All �-terms ��-convert to a term in��-long form, unique up to �-conversion. We shall assume that the reader isfamiliar with the usual notions and properties of substitution and �, �, and �conversion for the simply typed �-calculus. Here, equality between �-terms istaken to mean ��-convertible. When we write a term, it actually represents anequivalence class of terms. It will often be convenient to consider the ��-longform as the canonical representative of its equivalence class.A term is called a higher-order pattern (or simply pattern) if every occurrenceof a free variable h appears in a subterm of the form hx1 : : : xn where n � 0and x1; : : : ; xn are distinct bound variables. This subclass of simply typed �-terms is de�ned in Miller [19] where it is also proved that uni�cation of patternsis decidable and for any two uni�able patterns, a most general uni�er can becomputed.A rewrite rule is de�ned to be a pair l ! r such that l and r are �-termsof the same primitive type, l is a pattern, but not a free variable, and all freevariables in r also occur in l. This meta-language and the restriction to patternson the left hand side in de�ning rewrite rules is, in fact, similar to that used byKlop [17] in de�ning CombinatoryReduction Systems and the same as that usedby Nipkow [23]. By imposing this restriction on left hand sides, we guaranteethat the rewrite relation will always be decidable. In writing rewrite rules, weadopt the convention that tokens beginning with upper case initial letters arefree variables. Tokens that begin with lower case letters other than those boundby � are constants. 3

De�nition 1 A Higher-Order Rewrite System (HRS) is a �nite set of rewriterules. Given an HRS H , a relation !H on terms can be de�ned as follows:M !H N if there are terms u; L;R such that M =�� uL, N =�� uR, andu; L;R are obtained as follows.1. There is a rule l! r in H .2. x1; : : : ; xn are variables not occurring free in M;N; l; r.3. � is a substitution whose domain is the free variables of l and whose rangeconsists of terms whose only free variables are x1; : : : ; xn.4. L is the term with binder �xn and body �l.5. R is the term with binder �xn and body �r.Certain type constraints are left implicit in this de�nition. Let �1; : : : ; �n be thetypes of x1; : : : ; xn, respectively. Let �0 be the type of l and r, and � the typeof M and N . The term u must have the type ((�1! � � � ! �n)! �0)! � . Wecall the term u the context, and the terms L and R the left closure and rightclosure, respectively. Note that such closures are always closed terms. We write�$H to denote the reexive, symmetric, transitive closure of this relation.Given a rule l ! r in H , it must of course be the case that l !H r. To seehow, let z1; : : : ; zn be the free variables of l, and let x1; : : : ; xn be n variablesnot occurring free in l of the same types as z1; : : : ; zn, respectively. Let � be thesubstitution that maps zi to xi for i = 1; : : : ; n, and L the term with binder �xnand body �l. Let w be a variable distinct from z1; : : : ; zn. Then with �w:wznas context and L as left closure, we have l!H r.To illustrate further the above de�nition, we consider ��-convertibility forthe untyped �-calculus expressed as a higher-order rewrite system. Note thatin this example, the simply typed �-calculus is the meta-language while theuntyped �-calculus is the object language. We introduce a primitive type tmfor untyped terms and two constants app and abs of type tm ! tm ! tm and(tm! tm)! tm, respectively, used to code untyped terms. The rewrite systemconsists of the following two rewrite rules corresponding to � and �-conversionin the untyped �-calculus. app (abs M) N ! MNabs �x:(app M x) ! MIn the second rule, the bound variable will not occur in instances of M as isrequired by the �-rule: any instance ofM containing x would cause the variablex in the above rule to be renamed to avoid variable capture. Consider the term(abs �x:(app (abs �y:(app x y)) x)) which is the encoding of the untyped �-term �x:((�y:xy)x). Using either the � or � rewrite rule, we obtain the term(abs �x:(app x x)). We obtain this result by the � rule with substitution [z=M],context �w:(abs �x:(app (wx) x)), and left closure �z:(abs �y:(app z y)), and4

by the � rule with substitution [�y:(app z y)=M; z=N], context �w:(abs �x:wx),and left closure �z:(app (abs �y:(app z y)) z).A �rst-order rewrite system (see Dershowitz [5], for example) can be de-scribed as an HRS such that all terms and all subterms in rewrite rules are ofprimitive type. For this subset of rewrite systems we can in fact restrict Def-inition 1 so that the type of the left and right closures is also primitive, andthus the outermost binder is empty. In this way, we obtain a de�nition that isequivalent to the one often given for �rst-order rewriting.In addition to the \operational" de�nition of rewriting above, we de�nethe logical notion of equality modulo an HRS H . We formalize this notion interms of an inference system. We will see that the operational behavior of theprograms in Sections 5 and 6 will correspond quite closely to constructing prooftrees in this inference system. Formulas in this system are universally quanti�edequalities between terms of primitive type, i:e:, of the form 8x1 : : :8xn(M = N),often also written 8xn(M = N). The inference rules include the following tworules which are the usual rules for universal elimination and introduction.8xA 8-E[t=x]A [y=x]A 8-I8xAIn the 8-E rule t must be a term of the same type as x, and in 8-I the usualproviso that the variable y cannot appear free in 8xA holds. In addition, forevery rule l! r in H , there is an axiom of the form:8xn(l = r)where x1; : : : ; xn are the free variables in l. In addition, we have the followingcongruence rule.8xm1(M1xm1 = N1xm1) � � � 8xmn(Mnxmn = Nnxmn) CONGhM1 : : :Mn = hN1 : : :NnHere h is a variable or constant of arity n, and for i = 1; : : : ; n, Mi and Niare terms of arity mi. Also, the universally quanti�ed variables in the premisesmust not occur free in the conclusion, and must be of the appropriate type forthe terms in the premises to be well-formed. We also have the usual rules forreexivity, symmetry, and transitivity, with the additional restriction that therules are only applied to terms at primitive type. For HRS H , we write `H A ifformula A is provable in the inference system consisting of the above rules.The corresponding inference system often given for equality modulo �rst-order equations (as in Dershowitz [5], for example) can be seen to be containedin this inference system. The �rst-order congruence rule, for instance, can beseen to be a special case of the (CONG) rule given here. In the �rst-order case, h isalways a constant and the arity of the arguments to h is always 0. In addition,instead of a single axiom for each rewrite rule, axioms are often included for5

every instance of a rewrite rule. As a result, universal quanti�ers do not appearin formulas and the 8-E and 8-I rules are not needed.In Appendix A, we prove the equivalence at primitive types of the operationalde�nition of rewriting using �$H given by De�nition 1 and the logical de�nitiongiven by the above inference system. In particular, we show that for arbitrarytermsM and N of arity n, and for distinct variables x1; : : : ; xn not free inM orN that `H 8xn(Mxn = Nxn) if and only if M �$H N . In the next section, wepresent further examples of higher-order rewrite systems which express commonoperations in both functional programming and theorem proving.3 Further Examples of Higher-Order RewriteSystemsWe consider a simple functional programming language consisting of primitivedatatypes for booleans and natural numbers, constructs for lists, function ab-straction, application, a conditional statement, a �x point operator, and thelet operator as in ML. Hannan and Miller [12] give a speci�cation of evalua-tion for this language in terms of inference rules in a meta-language similar tothe one that will be used to implement rewriting. As in that paper, we use ahigher-order abstract syntax for functional programs. As in the rewrite systemfor ��-convertibility in the last section, we use a single primitive type, tm, forterms in this language. We use the abs and app constructs as in that section andintroduce new constants and their types for the remaining program constructs.true : tm hd : tm! tmfalse : tm tl : tm! tm0 : tm empty : tm! tms : tm! tm if : tm! tm! tm! tmnil : tm fix : (tm! tm)! tmcons : tm! tm! tm let : (tm! tm)! tm! tmClearly not all terms of type tm correspond to valid programs. Some form oftype checking is needed. We only discuss evaluation here and assume termsto be evaluated correspond to valid programs. The following rewrite systemexpresses evaluation in this language.hd (cons M N) ! M if true M N ! Mtl (cons M N) ! N if false M N ! Nempty nil ! true app (abs M) N ! MNempty (cons M N) ! false fix M ! M (fix M)let M N ! MNNote that as a rewrite system, these rules express non-deterministic evalua-tion. Nothing about order of evaluation in speci�ed. In Section 6, we will seethat di�erent rewriting strategies when given these rewrite rules as a parametercorrespond to various strategies for evaluating functional programs.6

In theorem proving, formulas are often pre-processed in order to obtain acertain form before applying inference rules. Many such pre-processing stepscan be expressed as higher-order rewrite systems. Nipkow [23] discusses rewritesystems for putting �rst-order classical formulas in negation normal form, inprenex normal form, and for moving quanti�ers inward. As another example, inan intuitionistic or classical logic with connectives ^;�; 8, any formula can beput into the equivalent form 8x1 : : :8xn (A1 ^ � � � ^ Am � B1 ^ � � � ^ Bp) wheren;m; p � 0, A1; : : : ; Am have the same form recursively, and B1; : : : ; Bp have thesame form recursively with no outermost quanti�cation. (Clauses in the logicprogramming language described in the next section will always be written inthis form, with p = 1.) We describe a rewrite system for putting �rst-orderformulas in this form. We use primitive type tm for �rst-order terms, introducetype form for �rst-order formulas, and introduce the following constants andtheir types for the connectives.^ : form! form! form� : form! form! form8 : (tm! form)! formWe use the usual in�x notation for ^ and �. The following rewrite systemperforms the desired operation.(8A) ^ (8B) ! 8 �x:(Ax ^Bx) A � (8B) ! 8 �:x(A � Bx)(8A) ^B ! 8 �x:(Ax ^B) A � (B � C) ! (A ^ B) � CA ^ (8B) ! 8 �x:(A^Bx)As a �nal example, we consider a rewrite system expressing proof reductionsfor normalization in natural deduction. Again, we consider only the ^;�; 8connectives. We express proofs as �-terms using the primitive type prf and thefollowing constants.^-I : prf! prf! prf �-I : (prf! prf)! prf^-E1 : prf! prf �-E : prf! prf! prf^-E2 : prf! prf 8-I : (tm! prf)! prf8-E : prf! tm! prfNote that the �-introduction rule is represented by a constant that takes afunction from proofs to proofs as argument, and the 8-introduction rule takes afunction from �rst-order terms to proofs. The �rst argument to 8-E is the proofof the premise and the second is the substitution term. Details on this repre-sentation of natural deduction proofs can be found in Felty [8]. The requiredreductions can be expressed as follows.^-E1 (^-I P Q) ! P �-E (�-I P) Q) ! PQ^-E2 (^-I P Q) ! Q 8-E (8-I P) M ! PMNatural deduction proofs are strongly normalizable and thus any complete re-duction strategy using these rules will reduce an arbitrary proof to its normal7

form. For intuitionistic logic, this property remains true even if the _ and 9connectives are added. In this case, many more reduction rules are needed tohandle permutations of the _-elimination and 9-elimination rules with otherrules. These permutations can also be described as rewrite rules. For a com-plete speci�cation of the reductions for full intuitionistic �rst-order logic usingthe representation of proof trees as given here, see Felty [6].4 The Meta-Logic and LanguageWe now present the meta-language used to specify and implement rewrite sys-tems in the remainder of this paper. The terms of the meta-logic are the simplytyped �-terms, the same language used to de�ne higher-order rewrite systems.We often speak of a �xed signature or a �nite set of constants and variables,usually denoted �. As before, equality between �-terms is taken to mean ��-convertible. We assume that the symbol o is always a member of the �xed set ofprimitive types. Following Church [3], o is the type for propositions. The logicalconstants are given the following types: ^ (conjunction), _ (disjunction), and� (implication) are of type o! o! o; and 8� (universal quanti�cation) and 9�(existential quanti�cation) are of type (� ! o)! o, for all types � . A formulais a term of type o. The logical constants ^, _, and � are written in the familiarin�x form. The expression 8� (�z M) is written 8�zM or simply 8zM when thetype � can be inferred from context.A proposition whose ��-long form is such that the head h is not a logicalconstant will be called an atomic formula. The head h is called a predicate. Inthis section, A denotes a syntactic variable for atomic formulas. We now de�netwo new classes of propositions, called goal formulas and de�nite clauses. LetG be a syntactic variable for goal formulas and let D be a syntactic variable forde�nite clauses. These two classes are de�ned by the followingmutual recursion.G := A j G1 _G2 j G1 ^G2 j D � G j 9�xG j 8�xGD := A j G � A j 8�xDDe�nite clauses are also called higher-order Hereditary Harrop formulas (hohhfor short). There is one �nal restriction: if an atomic formula is a de�nite clause,it must have a constant as its head. The heads of atomic goal formulas maybe either variable or constant. Note that the top-level form of a de�nite clauseis either 8xnA or 8xn(G � A) where n � 0 and the head of A is a constant.In either case, the atomic formula A is called the head of the clause, and G iscalled the body. A logic program or just simply a program is a �nite set of closedde�nite clauses.We also consider a subset of this logic called hh! which only includes the^, �, and 8� connectives, where � is a type not containing occurrences of o.Thus this language doesn't allow quanti�cation over predicates. This restrictedlanguage will be su�cient for specifying higher-order rewrite systems as we will8

see in the next section. In Sections 6 and 7, we will use the full hohh forimplementing rewriting strategies.From properties about hohh presented in Miller et al. [21], a sound andcomplete (with respect to intuitionistic logic) non-deterministic interpreter canbe implemented by employing the following six search operations. Here, theinterpreter is attempting to determine if the goal formula G follows from theprogram P.AND: If G is G1 ^G2 then try to show that both G1 and G2 follow from P .OR: If G is G1 _G2 then try to show that either G1 or G2 follows from P .AUGMENT: If G is D � G0 then add D to the current program and try toshow G0.INSTANCE: If G is 9�xG0 then pick some closed �-termM of type � and tryto show [M=x]G0.GENERIC: If G is 8�xG0 then pick a new constant c of type � and try toshow [c=x]G0.BACKCHAIN: If G is atomic, we consider the current program. If there isa universal instance of a de�nite clause which is convertible to G then weare done. If there is a de�nite clause with a universal instance of the formG0 � G then try to show G0 follows from P. If neither case holds then Gdoes not follow from P .An interpreter for hh! uses the same operations, but doesn't require ORor INSTANCE. An implementation of an interpreter must make many choiceswhich are left unspeci�ed in the high-level description above. We discuss someof the choices made by the logic programming language �Prolog since we laterpresent several �Prolog programs. For example, the order in which conjunctsand disjuncts are attempted and the order for backchaining over de�nite clausesis determined exactly as in conventional Prolog systems: conjuncts and disjunctsare attempted in the order they are presented. De�nite clauses are backchainedover in the order they are listed in P using a depth-�rst search paradigm tohandle failures. Logic variables as in Prolog are used in the INSTANCE opera-tion and in forming a universal instance in the BACKCHAIN operation. Thesevariables can later be instantiated through uni�cation. Here, uni�cation on sim-ply typed �-terms is required. �Prolog implements a depth-�rst version of theuni�cation search procedure described in Huet [14]. Most uni�cation problemswe shall encounter in executing programs in this paper are simple. In particular,although at times there may be more than one uni�er, there will generally be a�nite number that can be easily enumerated by the uni�cation procedure.The presence of logical variables in an implementation also requires thatGENERIC be implemented slightly di�erently than is described above. In par-ticular, if the goal 8�xG0 contains logical variables, the new constant c must9

not appear in the terms eventually instantiated for the logical variables whichappear in G0 or in the current program. Any implementation must take thisconstraint into account.In addition to these restrictions, �Prolog contains some extensions that wewill make use of here. First, a degree of polymorphism is permitted by allowingtype declarations to contain type variables (written as capital letters). Second,negation by failure and the cut operator (!) as in Prolog are added. The cut isa goal which always succeeds and commits the interpreter to all choices madesince the parent goal was uni�ed with the head of the clause in which the cutoccurs.5 Specifying Rewrite SystemsIn this section, we discuss the speci�cation of higher-order rewrite systems inhh!. The speci�cation of syntax of terms is direct since both the meta-languageof higher-order rewrite rules and our speci�cation language hh! contain simplytyped �-terms. We will assume that all terms from a given object languagecontain only constants from a �xed signature, say �, which at least includesall of the constants in the rewrite rules. To specify rewriting at a particularprimitive type � , we introduce the in�x arrow�!� to serve as a predicate of type� ! � ! o. The speci�cation of rewrite rules as clauses is then straightforward:using these predicates, we take the universal closure over the free variables ofthe rewrite rule. For example, the rewrite rules for for ��-convertibilty of theuntyped �-calculus are expressed as the formulas below.8M8N(app (abs M) N �!tm MN)8M(abs �x:(app M x) �!tm M)Generally, in executing rewrite goals, we will have a closed term on the left ofthe arrow and a variable on the right to be instantiated with the result of therewrite. In the �rst clause for example, M and N will be replaced with logicvariables, and a term that represents a �-redex will unify with the pattern onthe left of the arrow. The substitution of N for the bound variable in M isachieved by application of �-terms at the meta-level MN .For readability, in the remainder of this and the next sections, we will oftenleave o� outermost universal quanti�cation, and assume universal closure overall variables written as tokens with initial upper case letters.Rewrite rules express reducibility in one step. To express reducibility in 0 ormore steps, we introduce the predicate �!�� and include the following formulafor each primitive type � : (M �!� N) � (M �!�� N).To specify congruence, we introduce an hh! formula for each constant in�. For example, the following two formulas are included for the app and absconstants. (M �!�tm P) ^ (N �!�tm Q) � (app M N �!�tm app P Q)8x((x �!�tm x) � (Mx �!�tm Nx)) � (abs M �!�tm abs N)10

The clause for abs states that an abstraction (abs M) rewrites to (abs N) if forarbitrary x such that x rewrites to itself,Mx rewrites to Nx. Operationally, intrying to solve a goal of the form (abs M 0 �!�tm abs N 0) where, say, M 0 is aclosed term and N 0 a logic variable, we can use this clause to descend throughthe abstraction in M 0. The GENERIC operation will generate a new meta-levelsignature item, say c, and the AUGMENT operation will add the atomic formula(c �!�tm c) stating that this constant reduces to itself. This can be consideredas the dynamic addition of a new constant to the object-level signature and acongruence rule for that constant. Then, �-reduction at the meta-level of M 0cperforms the substitution of the new item for the outermost bound variable inM 0. In e�ect, the new signature item plays the role of the name of the objectlevel bound variable. The atomic clause (c �!�tm c) can be used during thesearch for a term N 0c that is reachable by some number of rewrite steps fromM 0c. N 0 is the abstraction not containing c.Note that in the presence of a clause representing a reexive rule at typetm: 8M(M �!�tm M), the addition of the new clause (c �!�tm c) is redundantsince any subgoal of this form can be proved using either this new clause or thereexive axiom. In the presence of the reexive axiom, the congruence rule forabs could be simply speci�ed as follows.8x(Mx �!�tm Nx) � (abs M �!�tm abs N)Alternatively, if we restrict to a particular signature, a formula specifyingreexivity can be omitted as long as we include congruence clauses for all atomicconstants in �, and specify congruence for functional constants such as absso that formulas explicitly include assumptions about the congruence of newconstants. For example, if our signature for untyped terms includes constants fand a in addition to app and abs, we must include the clauses (f �!�tm f) and(a �!�tm a). Operationally, the inclusion of a reexive rule can be more e�cientsince it can be used to prove the equivalence of two arbitrary terms of primitivetype. Without it, congruence rules must be used to descend through the entireterm, applying congruence rules for constants at the leaves. An advantage of thislatter approach is that it also veri�es that a term is well-formed in a particularsignature.Note that a new congruence rule for a new constant of functional type ismore complex. For example, if we had a function constant g whose type is((tm! tm)! tm)! tm, its corresponding congruence clause would be:8f(8P ((P �!�tm P) � (fP �!�tm fP)) � (Mf �!�tm Nf)) � (g M �!�tm g N)Operationally, after backchaining on the above clause, instead of an atomicclause, the clause (P �!�tm P) � (fP �!�tm fP) would be dynamically addedby AUGMENT, serving as a congruence rule for the new function symbol f .We can in fact de�ne a general function for specifying congruence rules fora particular signature. For signature item a of type � , the following function11

de�ned by induction on the structure of � yields the necessary congruence rule.[[a : �]] = (a �!�� a if � is a primitive type8�1x([[x : �1]] � [[ax : �2]]) if � is �1 ! �2(This function is similar to the one used by Felty [7] to code a dependent typed�-calculus in hh! and by Miller [20] to specify equality and substitution forsimply typed �-terms.)To complete the speci�cation, we introduce the predicate !�� at each prim-itive type � . The following clauses express the reexive, symmetric, transitiveclosure of �!�tm. (N �!�tm M) � (N !�tm M)(N !�tm M) � (M !�tm N)(M !�tm P) ^ (P !�tm N) � (M !�tm N)Operationally, we may often want to attempt to reduce a term until there areno longer any rewrite rules that apply. Equality of terms under a stronglynormalizing rewrite system can be checked this way, i:e:, two terms are eachreduced to their normal form and then checked to see if they are identical. Insuch a case, we can replace the formulas for symmetry and transitivity withclauses that have better operational behavior. We introduce a new predicatenormal of type tm ! tm ! o which relates a term to its normal form, andinclude the following formulas.(M �!�tm N) ^ (M = N) � (normal M N)(M �!�tm P) ^ (normal P N) � (normal M N)If the clauses are ordered so that the rewrite rules appear before the congruencerules, then whenever a goal of the form (normal M N) is given such that M isa closed term and N is a logic variable, N will get instantiated to the normalform ofM . The �rst clause handles the case when M is already in normal form,while the second clause handles the case when M reduces in one or more stepsto some term P . A recursive call is made to further reduce P if possible.This example illustrates the general manner in which higher-order rewritesystems can be speci�ed rather directly in hh! . All of the other examples ofrewrite systems given in the previous section, for instance, can be speci�ed inthe same way. Several of these rewrite systems have some notion of object-level types. For example, although we expressed ��-convertibility for untypedterms, the same rewrite system can express this relation for the simply typed�-calculus. Also, although the rewrite relation for evaluation of the functionallanguage given in Section 3 doesn't rely on type information, the programminglanguage itself is a typed language. In addition, the rewrite relation on �rst-orderformulas could equally apply to a many-sorted �rst-order logic where terms arerequired to be correctly typed. We now consider a slight modi�cation of the ��-conversion on untyped terms, and illustrate how to include typing information12

in order to restrict rewriting to typable terms. To represent types, we introducethe primitive type ty and the arrow) of type ty ! ty ! ty. To expressrewriting and equivalence at a particular type, we replace the binary relationson terms with ternary relations which include an argument for the type. Forexample, to express rewriting in 0 or more steps, we introduce the predicaterew�tm of type ty ! tm ! tm ! o. Using this predicate, congruence for appand abs can be expressed as follows.(rew�tm A) B M P) ^ (rew�tm A N Q) � (rew�tm B (app M N) (app P Q))8x((rew�tm A x x) � (rew�tm B Mx Nx)) � (rew�tm A) B (abs M) (abs N))As before, congruence rules for constants can be given also, in this case withtheir types. Let nat be a constant of type ty and let f represent a unary functionfrom nat to nat, and a a constant of this type. The corresponding clauses are(rew�tm nat) nat f f) and (rew�tm nat a a), respectively. Typing informationcan similarly be added to the formulas specifying the � and � rewrite rules, aswell as to reexivity, symmetry, and transitivity. In a speci�cation of reductionfor typed terms, if we omit the reexive rule and rely on the congruence rulesonly, in addition to verifying that terms are well-formed, these rules also verifythat terms are correctly typed. In fact, they can also be used to infer typeswhen a logic variable is given for the type argument in a goal.6 Implementing Tactics for RewritingWe have now seen how higher-order rewrite systems can be directly speci�edin our logic programming language and how the basic operations of this logicprogramming language implement basic operations of higher-order term rewrit-ing. In this and the next section, we go one step further and present �Prologprograms for implementing various rewriting techniques and strategies.In this section, since we present several �Prolog programs, we will adoptthe syntax of this language. The comma (,), semicolon (;), and arrow (=>)represent ^, _, and �, respectively, while :- denotes the converse of => and isused to write the top-level implication in clauses. �-abstraction is written usingbackslash \ as an in�x operator, and universal quanti�cation is written usingthe constant pi in conjunction with a �-abstraction. As in the previous section,we assume universal closure over all variables written as tokens with an uppercase initial letter. Finally, a signature member, say f of type a ! b ! c isrepresented as simply the line:type f a -> b -> c.Using this syntax and the in�x symbols --> and -->* for the �!tm and �!�tmrelations in the previous section, the clauses for the �-reduction rule and con-gruence for abs, for example, would be written:(app (abs M) N) --> (M N).(abs M) -->* (abs N) :- pi x\ ((x -->* x) => ((M x) -->* (N x))).13

Tactic style theorem provers were �rst built in the early LCF systems andhave been adopted as a central mechanism in such notable theorem provingsystems as Edinburgh LCF [10], HOL [11], Nuprl [4], and Isabelle [24]. All ofthese systems are implemented in the functional programming language ML.Tactic style theorem provers for a variety of logics can also be speci�ed andimplemented in the logic programming language used here (see Felty and Miller[8] and Felty [6]). In such an implementation, basic tactics express the inferencerules of a particular logic and serve as the primitive operations of a theoremprover, while tacticals provide high-level control over search. Tactics and tacti-cals can be combined to build more complex strategies and partially automatedprocedures. In this section, we illustrate that strategies for rewriting can benaturally expressed as logic programs and easily integrated into this framework.Term rewriting can thus be added to an existing tactic theorem prover for a par-ticular logic, providing a exible means for reasoning about the equality relationof that logic.We begin in subsection 6.1 by presenting the basic data structures for goalsof the tactic theorem prover. Then, in subsection 6.2, we slightly modify thespeci�cation of rewrite and congruence rules given in Section 5 to provide basictactics for rewriting. In subsection 6.3, we present tacticals which implementthe general interpreter for tactic theorem proving. Finally, in subsection 6.4, webuild on these procedures to implement general and specialized strategies forrewriting. In summary, subsections 6.1 and 6.3 represent a slight extension of thegeneral tactic interpreter given by Felty and Miller [8, 6], while subsections 6.2and 6.4 illustrate how to add mechanisms for higher-order rewriting.Although the speci�cations in the previous section used only hh!, in thissection we will make use of some aspects outside the scope of this language. Forexample, predicate quanti�cation of the more expressive language hohh can beused to obtain elegant implementations of the high-level control procedures. Itwill also be convenient to make some uses of the polymorphism of �Prolog aswell as the cut (!) operator for �ner control.6.1 Data Structures for GoalsIn Felty [6], we have one goal constructor corresponding to each of the searchoperations of the logic programming interpreter. Those that will be used hereare given with their types below.type tt goal.type && goal -> goal -> goal.type ==>> o -> goal -> goal.type all (A -> goal) -> goal.The goal tt corresponds to the trivially satis�ed goal, && to the AND searchoperation, ==>> to AUGMENT, and all to GENERIC. We use in�x notation for&& and ==>>. We call goals constructed from these constants compound goals, incontrast to primitive rewriting goals which we will present in the next subsection.In addition, we have two constructors for building goal trees.14

type ** goal -> goal -> goal.type lf goal -> goal.The ** operator is the (in�x) node constructor and takes two trees as arguments.Leaf nodes are indicated by lf and take a compound goal as an argument. Suchtrees form the top-level goal structure, i:e:, node and leaf constructors appearonly at the top level and not inside compound goals built from &&, ==>>, or all.6.2 Basic Tactics for RewritingInstead of expressing equivalence at each primitive type � as we did in Section 5using !�� , we introduce the in�x relation eq of polymorphic type A -> A ->goal. In practice, we will have primitive rewriting goals of the form (M eq N)where M is a closed term and N is a variable. Thus A will be instantiated with thetype of M. In addition, it will always be a primitive type. Using a polymorphictype here allows us to describe a general package for rewriting independentof the primitive types of a particular rewrite system. For simplicity, we use asingle relation instead of three distinct relations as in the previous section. Bothrewrite and congruence rules will be expressed using eq.A tactic in this setting is a binary relation on goals and has type goal-> goal -> o. The �rst goal will be the \input" goal or goal to be proved,and the second the \output" goal whose instances are the subgoals which mustsubsequently be proved. Generally, when applying a tactic, the �rst subgoal isat least partially instantiated, and the second goal is a logic variable.Specifying rewrite rules as tactics is straightforward. The tactics for ��-conversion for the untyped �-calculus for example are as follows.rew ((app (abs M) N) eq (M N)) tt.rew ((abs x\ (app M x)) eq M) tt.If the input goal to the rew tactic is an instance of one of the �rst arguments inthe above clauses, then the goal succeeds and there are no remaining subgoals.As stated above, the term on the right of the arrow in a rewriting goal will oftenbe a variable. Thus the input goal as a whole will be only partially instantiated.The tactic succeeds if the term on the left is a �- or �-redex. The variable onthe right is then instantiated to its reduced form. It is also possible to specifyeach rewrite rule with a distinct name, so that it becomes possible to controlwhich rewrite rule is attempted. To do so, we may replace the name rew abovewith beta and eta, for example.The congruence rules for app and abs are speci�ed as follows.cong ((app M N) eq (app P Q)) ((lf (M eq P)) ** (lf (N eq Q))).cong ((abs M) eq (abs N))(lf (all x\ ((cong_const (eq x x) tt) ==>> (eq (M x) (N x))))).This speci�cation is similar to that in the previous section. The input/outputrelation between the two arguments to cong here corresponds to the relationof a head of a clause and its body in the previous speci�cation. Here, the two15

subgoals for app form two leaves in a goal tree. The clause for abs can be readas before: an abstraction (abs M) rewrites to (abs N) if for arbitrary x suchthat x rewrites to itself, (M x) rewrites to (N x). The operational reading ismore indirect. It will depend on how we process the goal constructors. Forexample, all and ==>> will be implemented using the GENERIC and AUGMENToperations. The left hand side of the implication (cong const (eq x x) tt)represents a congruence tactic for the new constant of type tm introduced forx. We use cong const here instead of cong. For reasons that will becomeapparent later, we want to distinguish congruence at meta-level primitive andfunctional types. As before, we may wish to make even more distinctions andreplace the name cong above with cong app and cong abs for example. Theremaining clauses for congruence in the ��-convertibility example are those forthe constants f and a.cong_const (f eq f) tt.cong_const (a eq a) tt.6.3 The High-Level Search PrimitivesNext, we present the high-level tacticals that will be useful for implementingrewriting tactics. The �Prolog implementation is very natural and extends theusual meaning of tacticals by permitting them to have access to logic variablesand the search operations.maptac Tac tt tt.maptac Tac (InG1 && InG2) (OutG1 && OutG2) :- maptac Tac InG1 OutG1,maptac Tac InG2 OutG2.maptac Tac (all InG) (all OutG) :- pi x\ (maptac Tac (InG x) (OutG x)).maptac Tac (D ==>> InG) (D ==>> OutG) :- D => (maptac Tac InG OutG).maptac Tac InG OutG :- Tac InG OutG.then Tac1 Tac2 InG OutG :- Tac1 InG MidG, maptac Tac2 MidG OutG.orelse Tac1 Tac2 InG OutG :- Tac1 InG OutG; Tac2 InG OutG.idtac G G.repeat Tac InG OutG :- orelse (then Tac (repeat Tac)) idtac InG OutG.try Tac InG OutG :- orelse Tac idtac InG OutG.The maptac tactical descends through the structure of a compound goal andapplies the argument tactic to the primitive goals.2 The then tactical performsthe composition of tactics. The maptac procedure is used in the second subgoalsince the application of Tac1may result in an output goal (MidG) with compoundstructure. This tactical plays a fundamental role in combining the results ofstep-by-step proof construction. The substitutions resulting from applying these2 Note that the maptac clause for implication is not allowed by the de�nition of de�nite clausesgiven in Section 4 because D is a variable occurring on the left of =>. In �Prolog, variables inthis position are acceptable, but a runtime check is included to insure that D is instantiatedto a de�nite clause before it is added to the program using the AUGMENT operation. Inthe examples here, it will always be instantiated to an atomic formula.16

separate tactics get combined correctly since MidG provides the necessary sharingof logical variables between these two calls to tactics. The orelse tacticalattempts to apply either Tac1 or Tac2. The next tactical, idtac, simply returnsthe input goal unchanged. The repeat tactical repeatedly applies a tactic untilit is no longer applicable. Finally, the try tactical prevents failure of the giventactic by using idtac when Tac fails.It is worth noting the di�erences between the ML and �Prolog implementa-tions of the then tactical. The �Prolog implementation of then reveals its verysimple nature: then is very similar to the natural join of two relations. In ML,the then tactical applies the �rst tactic to the input goal and then maps theapplication of the second tactic over the list of intermediate subgoals. The fulllist of subgoals must be built as well as the compound validation function fromthe results. These tasks can be quite complicated, requiring some auxiliary listprocessing functions. In �Prolog, the analogue of a list of subgoals is a nested&& structure. These are processed by the clause of maptac which handles &&.The maptac procedure is richer than the usual notion of a mapping functionin that, in addition to nested && structures, it can handle other goal structurescorresponding to the �Prolog search operations. For more on these tacticals andtheir comparison to the ML implementation, see Felty [6].The maptac tactical above provides a uniform way in which to apply a tacticto all primitive goals in a goal structure. It will also be useful to be able to applya tactic to a particular primitive goal while leaving others untouched. The treestructure on goals is provided for this purpose. The following tacticals provideoperations which descend through a tree structure and choose a primitive goalto which a tactic will be applied.left_node Tac (lf InG) (lf OutG) :- maptac Tac InG OutG.left_node Tac (InG ** G) (OutG ** G) :- left_node Tac InG OutG.first_node Tac (lf InG) (lf OutG) :- maptac Tac InG OutG.first_node Tac (InG ** G) (OutG ** G) :- first_node Tac InG OutG, !.first_node Tac (G ** InG) (G ** OutG) :- first_node Tac InG OutG.tree_to_goal (lf G) G.tree_to_goal (InG1 ** InG2) (OutG1 && OutG2) :- tree_to_goal InG1 OutG1,tree_to_goal InG2 OutG2.untree Tac InG OutG :- then Tac tree_to_goal InG OutG.left Tac InG OutG :- untree (left_node Tac) InG OutG.first Tac InG OutG :- untree (first_node Tac) InG OutG.The left node tactical applies a tactic to the leftmost leaf goal, while thefirst node tactical performs a depth-�rst search over the tree structure search-ing for the �rst leaf goal to which the tactic can successfully be applied. The cut(!) is essential for the desired behavior. This tactical should only succeed onceand only on the �rst possible leaf. We can implement a tactical that succeeds ifthe tactic can be applied to any leaf goal by simply removing the cut. Opera-tionally, leaf goals would be attempted in a left to right order, only going beyond17

the �rst one if subsequent failure causes backtracking. The tree to goal tac-tical simply removes the tree structure from a goal. This tactical is used bythe untree tactical which applies tree to goal after applying a tactic. It isuseful when the remaining tree structure is no longer important after applying atactic to a particular leaf. The left and first tacticals use untree to removetree structure after applying a tactic to the leftmost leaf or �rst possible leaf,respectively.6.4 Implementing Rewriting StrategiesThis completes the implementation of the tacticals. We return to the imple-mentation of rewriting. As discussed in the previous section, we do not needto implement a general tactic for reexivity. Instead, we can repeatedly applycongruence rules. For example, the following tactic implements reexivity foruntyped �-terms.refl_tm InG OutG :- then (repeat (untree cong)) cong_const InG OutG.This tactic applies congruence rules to descend through terms, applying congru-ence rules for constants at the leaves. In fact, we can write a general tactical usedfor implementing reexive tactics that take tactics for congruence of constantsat both functional and primitive types.refl Cong Const InG OutG :- then (repeat (untree Cong)) Const InG OutG.Reexivity for a particular primitive type can then be de�ned using this tacticalas in the following example for the untyped �-calculus.refl_tm InG OutG :- refl cong cong_const InG OutG.Of course, it is also possible to implement the reexive tactic directly.refl (M eq M) tt.The transitivity and symmetry rules are speci�ed simply as the formulas below.sym (M eq N) (lf (N eq M)).trans (M eq N) ((lf (M eq P)) ** (lf (P eq N))).Two common strategies for terminating rewrite systems are bottom-up andleftmost-outermost rewriting of subterms. A procedure for the bottom-up strat-egy is given as part of an implementation for �rst-order term rewriting in Isabelle[22]. Although it is written in ML, a very similar implementation can be givenin our setting, since it can be de�ned using previously de�ned basic tacticalssuch as then, orelse, and others. We present the �Prolog version here forillustration purposes. As noted above, a more signi�cant di�erence appears inthe implementations of these basic tacticals in the two settings. It should benoted that although this strategy is presented as part of an implementation of�rst-order rewriting in Isabelle, if given the appropriate rewrite and congruencerules as arguments, it can also serve as a tactic for higher-order rewriting in thatsetting. The following tacticals implement the bottom-up strategy.18

left_rew Tac InG OutG :- then trans (left Tac) InG OutG.bu Cong Rew Refl InG OutG :-then (bu_sub Cong Rew Refl)(orelse (then (left_rew Rew) (bu Cong Rew Refl)) Refl) InG OutG.bu_sub Cong Rew Refl InG OutG :-try (left_rew (then (untree Cong) (bu Cong Rew Refl))) InG OutG.The left rew tactical is useful for procedures that involve many rewriting steps.It applies transitivity to obtain two subgoals, and then applies Tac to solvethe �rst. The remaining subgoal allows further rewrite steps to be performed.The bu and bu sub tacticals take a congruence tactic, a rewriting tactic, anda reexive tactic as arguments. The bu tactical proceeds in two steps. Firstbu sub is applied to perform bottom-up rewriting to all of the subterms. Thena rewrite is attempted on the resulting term. If it succeeds, the bu procedure isrepeated. If it fails, then the reexive tactic is applied to complete the rewriting.The bu sub tactical �rst applies a congruence, and then bu is applied recursivelyto all of the subgoals. The application of Cong is within the scope of untreesince the tree structure must be removed in order to apply bu uniformly to allof the subgoals generated by the application of a congruence rule. A top-leveltry is used so that if the term is a constant and the congruence tactic fails,the procedure as a whole terminates successfully. Using this tactical, a tacticfor bottom-up rewriting for the untyped �-calculus is then implemented by thefollowing tactic.bu_tm (M eq N) OutG :- bu cong rew refl_tm (M eq N) OutG.A tactic for leftmost-outermost rewriting can be written similarly.lo Cong Rew Refl InG OutG :-then (repeat (left_rew (lo_rew Cong Rew Refl))) Refl InG OutG.lo_rew Cong Rew Refl InG OutG :-orelse Rew (then (then Cong (first (lo_rew Cong Rew Refl)))Refl) InG OutG.Here, the lo tactical implements the top-level loop, while lo rew searches forthe leftmost-outermost subterm that can be rewritten. In lo rew, a rewrite isattempted directly on the goal. If that fails, a congruence is applied and lo rewis called recursively in the scope of first. Thus, lo rew is attempted on allof the subgoals in succession looking for the �rst possible subterm to which arewrite can be applied. If successful, the reexive tactic is applied to completeall remaining subgoals. If no subterms can be rewritten, the tactical fails. Thelo tactical repeatedly calls lo rew until no more rewrites are possible. In thiscase, the reexive tactic is called to reduce the current goal to tt.Consider the term (abs �g:(app (abs �x:(app g x)) a)). Using the bu tmprocedure above, this term is reduced to (abs �g:(app g a)) by reducing the19

�-redex (abs �x:(app g x)) to g. Using lo rew, we obtain the same reducedterm, but in this case, the outer �-redex (app (abs �x:(app g x)) a) is reduced.As another example, letAPP be the following term representing the programfor appending two lists in our functional language.(fix �F:(abs �l1:(abs �l2:(if (empty l1) l2 (cons (hd l1) (app (app F (tl l1)) l2))))))Using the lo strategy, the term (app (app APP (cons 0 nil)) (cons (s 0) nil))will reduce to (cons 0 (cons (s 0) nil)), while the bu strategy will loop, repeatedlyapplying the rewrite rule for fix and expanding the de�nition of the function.The lo strategy, in fact, corresponds to lazy evaluation of this language.The bu and lo tacticals implement general strategies that can be appliedwith any rewrite system as a parameter. It may also be useful to write strategiesspecialized to a particular rewrite system. As an example, we implement astrategy for normalizing typed �-terms as implemented in the Elf higher-orderlogic programming language [25]. This strategy involves recursion over types,so we use the speci�cation below of the rewrite, congruence, and equivalencetactics that includes an extra argument for types. Here, we replace the binaryrelation eq with the ternary relation of the same name, and use the arrow -->of type ty -> ty -> ty as the constructor for object level types.beta (eq A (app (abs M) N) (M N)) tt.eta (eq (A --> B) (abs x\ (app M x)) M) tt.cong_app (eq B (app M N) (app P Q))((lf (eq (A --> B) M P)) ** (lf (eq A N Q))).cong_abs (eq (A --> B) (abs M) (abs N))(lf (all x\ ((cong_const (eq A x x) tt) ==>> (eq B (M x) (N x))))).cong_const (eq (nat --> nat) f f) tt.cong_const (eq nat a a) tt.refl_tm InG OutG :- refl (orelse cong_app cong_abs) cong_const InG OutG.sym (eq A M N) (lf (eq A N M)).trans (eq A M N) ((lf (eq A M P)) ** (lf (eq A P N))).This strategy will also use the following rule, which expresses the fact that atermM at functional type reduces to N if for arbitrary x, the term (app M x)reduces to (app N x).eq_arrow (eq (A --> B) M N) (lf (all x\ ((cong_const (eq A x x) tt) ==>>(eq B (app M x) (app N x))))).This rule can alternatively be de�ned in terms of the others as the followingtactic.eq_arrow InG OutG :- then (left_rew (then (untree sym) eta))(then (right_rew eta) cong_abs) InG OutG.Here right rew is the dual to left rew and can be de�ned similarly. Therewrite strategy we will implement can be described as follows. First, repeatedly20

apply eq arrow until the resulting term has primitive type. If the term is aconstant, it is reduced; otherwise it is an application. If the left term is aconstant then repeat the procedure on the right term. Otherwise perform a weakhead reduction and repeat the procedure on the resulting term. The followingtactics implement weak head reduction and the general strategy, respectively.whr InG OutG :-orelse (left_rew beta) (then cong_app (left whr)) InG OutG.reduce InG OutG :-then (repeat (then (repeat (untree eq_arrow))(orelse (then cong_app (left cong_const))whr))) refl_tm InG OutG.The main loop of the reduce tactic consists of �rst repeatedly applying theeq arrow tactic and then applying one of the two arguments to orelse. The�rst applies cong app and completes the �rst of the two subgoals if the left termis a constant. The second applies whr. In either case, the loop is repeated onthe remaining goal. If neither of these steps can be applied, the reduction iscomplete and the outer repeat terminates. The remaining subgoal is reducedto tt by the reexive tactic.We complete this section with a few words about establishing formal cor-rectness of such tactics. A proof of correctness of a direct speci�cation of ��-convertibility for untyped terms is given in Felty [6]. This speci�cation is similarto those in Section 5, and thus correctness of those given here, including the onethat includes type information, should follow similarly. Informally, a correctnessresult states that two terms M and N are equivalent modulo ��-conversion ifand only if, for the corresponding terms encoded using app and abs, sayM 0 andN 0, we can show thatM 0 !�tm N 0. Using the implementations in this section,such a correctness result would involve the eq relation and would depend onthe correctness of the implementation of the tacticals. Although it has not beendone, it should be straightforward to establish this correctness, in particular forthose tacticals that are speci�ed as hohh formulas. It will follow directly thatany tactic Tac written using tacticals and taking the primitive operations forcongruence and rewriting as arguments will be sound. That is, we will be able tostate that if (Tac (M 0 eq N 0) tt) is provable in hohh, then M =�� N . Notethat proving that a particular tactic implements a desired strategy requires es-tablishing another level of correctness involving details about the execution ofthe logic programming interpreter.7 Using Higher-Order Uni�cation to ImplementFirst-Order RewritingIn this section, we discuss a technique for implementing �rst-order rewritingthat makes extensive use of the operation of higher-order uni�cation on �-terms21

in �Prolog. This technique is quite powerful for those cases in which it can beapplied. We present the technique and then discuss its limitations.First, consider a rewrite system such that all terms are of the same primitivetype, say tm, and consider the following simple tactic.ho_sub ((C X) eq (C Y)) (X eq Y).We assume that X and Y have type tm and that C has type tm -> tm. Thistactic expresses the fact that for any C, the term C applied to X is equivalentto C applied to Y if X is equivalent to Y. Operationally, if X is equivalent to Y,then any term containing 0 or more occurrences of X is equivalent to the termsuch that these occurrences are replaced by Y. When this tactic is applied, theterms C and X are determined by uni�cation. There may be many possibleinstances arising from the uni�cation of the term to be rewritten against thepattern (C X), and this tactic will succeed once for each one. Note that whenC is instantiated to a vacuous abstraction, X and Y could be instantiated toarbitrary terms of type tm, which are not necessarily subterms of the term tobe rewritten. Operationally, the �Prolog interpreter would leave X a variablein this case, resulting in a subgoal (X eq Y) where both X and Y are variables.We will in fact not want to consider this case. In �Prolog, we can rule out thissolution as follows.ho_sub ((C X) eq (C Y)) (X eq Y) :- not (C = z\P).Here, not is the negation by failure operator. To see how vacuous instances areruled out, consider instances of the variable P. If such an instance were to containa free occurrence of the variable z, the bound variable name in the pattern z\Pwould have to be changed to avoid capture. Thus, any instance of P will notcontain any free occurrences of the bound variable in the above pattern.Suppose we only want to consider those instances such that X is a term thatcan be rewritten directly by some rewrite rule to Y. We can do so with thefollowing tactic.ho_rew Rew InG OutG :- then ho_sub Rew InG OutG.Here, the parameter Rew should be instantiated to the tactic that applies one ofthe desired rewrite rules. It is then easy to implement a tactic that applies allrewrite rules until no more can be applied.ho_reduce Rew Refl InG OutG :- then (repeat (left_rew (ho_rew Rew)))Refl InG OutG.Note that the order in which subterms are rewritten depends on the order inwhich instances of C and X are generated by �Prolog. The only control providedto the user is whether uni�cation performs the imitation operation before theprojection operation (as in Huet's procedure [14]), or vice versa. Thus, such atactic is of little use if �ner control over the order in which subterms are rewrittenis important. For strongly normalizing rewrite systems, the order often does22

not matter. In this case, the tactic represents a compact implementation of acomplete rewrite strategy, and for �rst-order rewriting, provides an alternativeto the bu and lo procedures in the previous section.As an example, consider the term (tl (cons 0 (cons (hd (cons 0 nil)) nil))) inthe �rst-order fragment of the functional language presented in Section 2. If rewis a tactic implementing all of the rewrite rules of this example, then applying(ho reduce rew refl tm) with imitation before projection will perform thefollowing series of rewrites:(tl (cons 0 (cons (hd (cons 0 nil)) nil)))! (tl (cons 0 (cons 0 nil)))! (cons 0 nil)In the �rst rewrite step, the instances of C and X are �w:(tl (cons 0 (cons w nil)))and (hd (cons 0 nil)), respectively. Projection before imitation performs thetwo rewrite steps in the opposite order.(tl (cons 0 (cons (hd (cons 0 nil)) nil)))! (cons (hd (cons 0 nil)) nil)! (cons 0 nil)To generalize this technique to �rst-order rewrite systems of more than oneprimitive type, we simply include an ho sub tactic for every possible type of C.For example, with two types t1 and t2, up to four tactics may be needed forthe types t1 -> t1, t1 -> t2, t2 -> t2, and t2 -> t1.To see why this technique is not adequate for higher-order rewriting, considerthe term(abs �x:(abs �y:(tl (cons x (cons (hd (cons y nil)) nil))))). There are twoinstances of X in ho sub which are abstractions over terms that can be rewrittenby a rewrite rule. One such instance, for example is �z:(hd (cons z nil)). Thecorresponding instance of C is�w:(abs �x:(abs �y:(tl (cons x (cons wy nil))))):(Note that these instances of C and X correspond to the context and left closureof De�nition 1 in Section 2.) However, there is no instance of X at primitive typetm to which a rewrite rule can be applied. In fact, universal quanti�cation atthe meta-level as it is used in congruence rules is essential for descending pastabstractions so that rewriting can be performed on subterms. Here, the term(tl (cons c1 (cons (hd (cons c2 nil)) nil))))) can be obtained by two applicationsof the congruence rule for abs, where c1 and c2 are the new constants generatedby the GENERIC operation. Note that this term is �rst-order and so it is possibleto apply ho reduce at this point to obtain the reduced term (cons c2 nil). So,by the tactic:then (then (untree cong_abs) (untree cong_abs)) (ho_reduce rew refl_tm)the original term rewrites to (abs �x:(abs �y:(cons y nil))). Thus, although thismethod is not adequate for general higher-order rewriting, it can be employedfor rewriting �rst-order subsets of higher-order rewrite systems.23

8 Conclusion and Related WorkThe Isabelle theorem prover [24] also contains a speci�cation language which isessentially hh! . Thus higher-order rewrite systems could be expressed in muchthe same way there. In Isabelle, however, the language used to specify inferencerules is distinct from that used to implement tacticals and tactics, namely ML.Here, the same language is used for both speci�cation and implementation. It isthe interpreter described in Section 4 that provides control by giving operationalinterpretation directly to the logical connectives.Although we use the same meta-language as Nipkow [23] to de�ne higher-order rewrite rules, both the de�nition of the rewrite relation and the notionof equality modulo an HRS are de�ned di�erently here. One di�erence, forexample, is in the de�nition of the rewrite relation. Instead of using contextswith an abstraction indicating where in a term a rewrite is performed, Nipkowuses positions in �rst-order abstract trees. This notion of position is similarto the one often used in de�ning �rst-order rewriting (as in Dershowitz [5] forexample). Despite these di�erences, both the notions of rewrite relation andequivalence modulo a rewrite system are equivalent to those given here for termsand rewrite rules at primitive type.In Nipkow [23], the notion of critical pair is extended to higher-order rewritesystems, and it is shown that the critical pair lemma extends to the higher-order case. This result gives rise to a procedure for completion. Higher-orderlogic programming should provide a suitable framework for implementing suchcompletion procedures.In Pfenning [26], the notion of higher-order patterns is extended to thedependent-type �-calculus LF, and to the Calculus of Constructions (CC). Itshould be straightforward to adopt LF as the meta-language for expressingrewrite systems and extend the notion of higher-order rewriting accordingly.While the restriction to primitive types extends naturally to LF, in CC it doesnot since quanti�cation over types is permitted. Despite this fact, it would beinteresting to study ways in which CC could be adopted as a meta-language forrewriting.It is also possible to encode terms of CC in the simply typed �-calculus, andto specify and implement provability for this calculus in hh! [9]. Using this en-coding, notions of convertibility of CC terms could be expressed as higher-orderrewrite systems as de�ned here, and incorporated into such an implementation.Another direction of study in higher-order rewriting has been to considerthe interaction of �rst-order rewrite systems with reduction rules for varioustyped �-calculi (Breazu-Tannen and Gallier [2] and Jouannaud and Okada [15]for example). In this work, no distinction between the object and meta-level ismade, but properties about the hybrid systems are studied. The rewrite systemsstudied there could in fact be encoded as rewrite systems in the setting de�nedhere and thus implemented directly. Known properties of these systems wouldprovide knowledge about the corresponding implementations. For example, fromresults shown by Breazu-Tannen and Gallier, we know that we can add the app24

and abs constants and the rewrite rule for �-conversion given in Section 2 to anyterminating �rst-order rewrite system and obtain a terminating rewrite system.AcknowledgementsThe author would like to thank Dale Miller and the reviewers for helpful com-ments on this work. This research was supported in part by ESPRIT BasicResearch Action 3245 \Logical Frameworks: Design, Implementation, and Ex-periment."References1. Peter Aczel. A general church-rosser theorem. Technical report, University ofManchester, 1978.2. Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves algebraicstrong normalization. Theoretical Computer Science, 83(1):3{28, 1991.3. Alonzo Church. A formulation of the simple theory of types. Journal of SymbolicLogic, 5:56{68, 1940.4. Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof De-velopment System. Prentice-Hall, 1986.5. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed-itor, Formal Models and Semantics, Handbook of Theoretical Computer Science,volume B, pages 243{320. Elsevier-MIT Press, 1989.6. Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order LogicProgramming Language. PhD thesis, University of Pennsylvania, August 1989.7. Amy Felty. Encoding dependent types in an intuitionistic logic. In G�erard Huetand Gordon Plotkin, editors, Logical Frameworks. Cambridge University Press,1991.8. Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic pro-gramming language. In Ninth International Conference on Automated Deduction,Argonne, IL, May 1988.9. Amy Felty and Dale Miller. A meta language for type checking and inference:An extended abstract. Presented at the 1989 Workshop on Programming Logic,B�alstad, Sweden, 1989.10. Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. EdinburghLCF: A Mechanised Logic of Computation, volume 78 of Lecture Notes in ComputerScience. Springer-Verlag, 1979.11. Mike Gordon. HOL: A machine oriented formulation of higher-order logic. Tech-nical Report 68, University of Cambridge, July 1985.12. John Hannan and Dale Miller. Enriching a meta-language with higher-order fea-tures. In Workshop on Meta-Programming in Logic Programming, Bristol, June1988.13. J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic andLambda Calculus. Cambridge University Press, 1986.25

14. G�erard Huet. A uni�cation algorithm for typed �-calculus. Theoretical ComputerScience, 1:27{57, 1975.15. Jean-Pierre Jouannaud and Mitsuhiro Okada. A computationmodel for executablehigher-order algebraic speci�cation languages. In Sixth Annual Symposium onLogic in Computer Science, pages 350{361, Amsterdam, July 1991.16. J.W. Klop. Combinatory reduction systems. Technical Report Mathematical Cen-tre Tracts Nr.127, Centre for Mathematics and Computer Science, Amsterdam,1980.17. J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,editors, Handbook of Logic in Computer Science, volume II. Oxford UniversityPress, 1991.18. Dale Miller. Abstract syntax and logic programming. In Proceedings of the SecondRussian Conference on Logic Programming. Springer-Verlag LNAI series, Septem-ber 1991. To appear.19. Dale Miller. A logic programming language with lambda-abstraction, functionvariables, and simple uni�cation. Journal of Logic and Computation, 1(4):497{536, 1991.20. Dale Miller. Uni�cation of simply typed lambda-terms as logic programming. InEighth International Logic Programming Conference, Paris, France, June 1991.MIT Press.21. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniformproofs as a foundation for logic programming. Annals of Pure and Applied Logic,51:125{157, 1991.22. Tobias Nipkow. Equational reasoning in Isabelle. Science of Computer Program-ming, 12:123{149, 1989.23. Tobias Nipkow. Higher-order critical pairs. In Sixth Annual Symposium on Logicin Computer Science, pages 342{349, Amsterdam, July 1991.24. Lawrence C. Paulson. The foundation of a generic theorem prover. Journal ofAutomated Reasoning, 5(3):363{397, September 1989.25. Frank Pfenning. Logic programming in the LF logical framework. In G�erard Huetand Gordon Plotkin, editors, Logical Frameworks. Cambridge University Press,1991.26. Frank Pfenning. Uni�cation and anti-uni�cation in the calculus of constructions.In Sixth Annual Symposium on Logic in Computer Science, pages 74{85, Amster-dam, July 1991.27. Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedingsof the ACM-SIGPLAN Conference on Programming Language Design and Imple-mentation, 1988.
26

A Equivalence of Operational and LogicalRewritingLemma 2 Let H be a higher-order rewrite system. Let M and N be terms oftype �1 ! �2 and x a variable of type �1 not free in M or N . Then:1. M !H N if and only if Mx!H Nx.2. M �$H N if and only if Mx �$H Nx.Proof: We prove (1). The proof of (2) then follows by induction on the numberof rewrite steps. We begin with the forward direction and assume thatM !H N .Then there is a context u and left and right closures L and R as in De�nition 1such that M =�� uL and N =�� uR. Let u0 be the term �w:uwx where wis a variable distinct from x and not free in u. Then Mx =�� uLx =�� u0Land Nx =�� uRx =�� u0R. Thus, by de�nition with context u0, we haveMx!H Nx.Next, suppose Mx !H Nx. Then there is a context v and left and rightclosures L and R as in De�nition 1 such such thatMx =�� vL and Nx =�� vR.Let v0 be the term with bound variable x and body v, and v00 be the term�w:�z:v0zw for variables z; w not free in v0. Then v00Lx =�� v0xL =�� vL =��Mx and similarly v00Rx =�� v0xR =�� vR =�� Nx. Since x does not occur freein M , N , or v00, we have v00L =�� M and v00R =�� N . Thus, by de�nition withcontext v00, M !H N .Lemma 3 Let H be a higher-order rewrite system. Let M and N be terms oftype �1 and P and Q terms of type �1 ! �2.1. If M !H N , then PM !H PN .2. If P !H Q, then PM !H QM .3. If P �$H Q and M �$H N , then PM �$H QN .Proof: To prove (1), we know that if M !H N , then there is a context u andleft and right closures L and R as in De�nition 1 such that M =�� uL andN =�� uR. Let u0 be the term �x:P (ux) where x is a variable not free in Por u. Then u0L =�� P (uL) =�� PM and u0R =�� P (uR) =�� PN , and thusby de�nition with context u0, PM !H PN . The proof of (2) is similar. (3) isproved by induction on the sum of the number of rewrite steps in P �$H Q andM �$H N , and follows easily from (1) and (2).We now de�ne a specialized form of the rewriting relation and prove thatthe relation de�ned in Section 2 is contained in the transitive closure of thisnew relation. Although it is not essential, this relation simpli�es the proof ofTheorem 7. 27

De�nition 4 Given an HRS H , we de�ne the relation*H on terms as follows:M *H N if there is a context u and left and right closures L and R as inDe�nition 1 such that there is at most one free occurrence of the outermostbound variable in the body of the ��-long form of u.We write �*)H to denote the reexive, symmetric, transitive closure of this rela-tion. It is easy to see that Lemma 3 also holds for *H and �*)H .Lemma 5 Given HRS H and terms M;N , if M !H N , then M �*)H N .Proof: Since M !H N , there is a context u and left and right closures L andR as in De�nition 1 such that M =�� uL and N =�� uR. The proof is byinduction on m, the number of free occurrences of the bound variable at thehead of u in the body of u. If m is 0, then M =�� N . For the case when m > 0,we can express u as an abstraction with bound variable x and body [x=w]v forsome variable w and term v that has exactly one free occurrence of w. Let u0be the term with binder �w:�x: and body v. Thus M =�� uL =�� u0LL. Byde�nition, with context u0L, we know that u0LL !H u0LR. Context u0L hasone fewer free occurrence of the bound variable at its head in its body than doesu, so, by the induction hypothesis u0LL �*)H u0LR. By de�nition, with contextu0, we know that u0L *H u0R. By Lemma 3, we have u0LR *H u0RR. Thusu0LL �*)H u0RR and we have our result.Lemma 6 Let H be an HRS, and let M and N be terms of type �1 ! � � � !�n ! �0 where n � 0 and �0 is primitive. Let x1; : : : ; xn be n distinct vari-ables of type �1; : : : ; �n, respectively, not free in M or N . If M *H N , then`H 8xn(Mxn = Nxn).Proof: By De�nition 4, there are a rule l! r in H , a substitution �, variablesz1; : : : ; zm, and a context u, such that (1) L and R are closures with binder�zm and bodies �l and �r, respectively, (2) there is at most one free occurrenceof the outermost bound variable in the body of the ��-long form of u, and (3)M =�� uL andN =�� uR. We show by induction on the structure of the ��-longform of u that `H 8xn(Mxn = Nxn). The ��-long form of u has a binder of theform �w�xn and body of form the hP1 : : :Pp where h is a variable or constantand exactly one of the terms h; P1; : : : ; Pp contains exactly one occurrence of w.We �rst consider the case where h is w. Then h, w, and L have the same typeandm = p. Let �0 be the substitution that maps zi to Pi for i = 1; : : : ; m, and let�00 be the substitution that maps each element x in the domain of � to �0(�x).Then Mxn =�� LP1 : : :Pn =�� �0(�l) =�� �00l and Nxn =�� RP1 : : :Pn =���0(�r) =�� �00r. The domain of �00 is the free variables of l. Thus, by a series of8-E from the axiom corresponding to the rule l! r, using �00 as the substitutionterms, we have `H Mxn = Nxn. Then, by a series of applications of 8-I, wehave our result. 28

We next consider the case where h and w are distinct. For i = 1; : : : ; p, letui be the term with bound variable w and body Pi. Note that ui is smallerthan u. (Also, note that since there is exactly one occurrence of w in u,all but one of the abstractions in u1; : : : ; up are vacuous.) Then Mxn =��uLxn =�� h(u1L) : : :(upL) and Nxn =�� uRxn =�� h(u1R) : : :(upR). By def-inition, for i = 1; : : : ; p, using ui as context, we know that uiL *H uiR. Let� i1 ! � � � ! � imi ! � i0 where � i0 is primitive be the type of uiL, and x1; : : : ; xmibe mi variables of type � i1; : : : ; � imi that do not appear free in ui. Thus, by the in-duction hypothesis, we can deduce 8xmi(uiLxmi = uiRxmi). By an applicationof (CONG) we have h(u1L) : : :(upL) = h(u1R) : : :(upR). Then by n applicationsof 8-I, we have our result.Theorem 7 Let H be an HRS, and let M and N be terms of type �1 ! � � � !�n ! �0 where n � 0 and �0 is primitive. Let x1; : : : ; xn be n distinct variablesof type �1; : : : ; �n, respectively, not free inM or N . Then `H 8xn(Mxn = Nxn)if and only if M �$H N .Proof: We prove the forward direction by induction on the height of a prooftree. If the proof is a one node application of reexivity, then n is 0 and M isN . Then, clearly M �$H N . If 8xn(Mxn = Nxn) is an axiom other than thereexive axiom, then Mxn ! Nxn is a rewrite rule. Thus Mxn !H Nxn andby Lemma 2, M !H N .If the last inference is 8-E, then the premise has the form 8x8xn(M 0xxn =N 0xxn) and the conclusion has the form 8xn(M 0txn = N 0txn) for some sub-stitution term t. By the induction hypothesis M 0 �$H N 0, and by Lemma 3M 0t �$H N 0t.If the last inference is 8-I, then the premise has the form 8xn(M 0xxn =N 0xxn) and the conclusion has the form 8x8xn(M 0xxn = N 0xxn). By theinduction hypothesis M 0x �$H N 0x, and by Lemma 2, M 0 �$H N 0. The casewhen the last rule application is (CONG) follows by the induction hypothesis andLemma 3. The last two cases for symmetry and transitivity follow directly fromthe induction hypothesis.Next, we assume thatM �$H N . By Lemma 5, we know thatM �*)H N . Theproof is by induction on m, the number of rewrite steps using *H to rewriteM to N . If m is 0, then M =�� N . Thus Mxn =�� Nxn and the desiredformula is provable by reexivity followed by n applications of 8-I. If m > 0,then there is a term P such that M �*)H P *H N or M �*)H P (H N . Bythe induction hypothesis, `H M = P . By Lemma 6, either 8xn(Pxn = Nxn)or 8xn(Nxn = Pxn). By n applications of 8-E, we obtain Pxn = Nxn orNxn = Pxn. In the latter case, by symmetry we obtain Pxn = Nxn. Then, inboth cases, by transitivity followed by n applications of 8-I, we get the desiredresult. 29

