A Logic Programming Approach to
Implementing Higher-Order Term
Rewriting *

Amy Felty

INRIA Rocquencourt
Domaine de Voluceau

78153 Le Chesnay Cedex, France

Abstract

Term rewriting has proven to be an important technique in theorem proving.
In this paper, we illustrate that rewrite systems and strategies for higher-order
term rewriting, which includes the usual notion of first-order rewriting, can
be naturally specified and implemented in a higher-order logic programming
language. We adopt a notion of higher-order rewrite system which uses the
simply typed A-calculus as the language for expressing rules, with a restriction on
the occurrences of free variables on the left hand sides of rules so that matching
of terms with rewrite templates is decidable. The logic programming language
contains an implementation of the simply-typed lambda calculus including 875-
conversion and higher-order unification. In addition, universal quantification
in queries and the bodies of clauses is permitted. For higher-order rewriting,
we show how these operations implemented at the meta-level provide elegant
mechanisms for the object-level operations of descending through terms and
matching terms with rewrite templates. We discuss tactic style theorem proving
in this environment and illustrate how term rewriting strategies can be expressed
as tactic-style search.

1 Introduction

Much effort has gone into the study of first-order rewrite systems and as a result,
there is currently a large body of knowledge about their properties. Implemen-
tors of theorem proving systems have been able to exploit this knowledge to
implement effective strategies for reasoning about equality between first-order
terms. More recently, the study of rewrite systems has included the more ex-
pressive higher-order rewrite systems. Omne direction involves extending early
work by Aczel [1] and Klop [16] which uses A-terms as a meta-language for ex-
pressing rewrite systems for object languages that include notions of bound vari-
ables. Such A-terms can be used to elegantly express the higher-order abstract
T}mperappears in Proceedings of the 1991 International Workshop on Eztensions of Logic

Programming, Lars-Henrik Eriksson, Lars Hallnds, and Peter Schroeder-Heister, editors,
Springer-Verlag Lecture Notes in Artificial Intelligence, 1992.

syntaz of these object languages [27, 18]. For example, the abstractions built
into A-terms can be used to represent quantification in formulas or abstraction
in functional programs. Using this representation, many operations on formu-
las and programs can be naturally expressed as higher-order rewrite systems.
Within theorem proving systems, capabilities for higher-order rewriting can thus
provide a useful tool for the manipulation of formulas and programs.

In this paper, we adopt the definition of higher-order rewrite system given by
Nipkow [23], though we give a different presentation of the notions of rewrite re-
lation and of equality modulo a rewrite system. We then show how such rewrite
systems as well as strategies for rewriting can be specified and implemented in
a higher-order logic programming language.

The higher-order logic programming language used here is based on higher-
order hereditary Harrop formulas [21]. This language replaces first-order terms
in traditional languages such as Prolog with simply typed A-terms, and first-
order unification with higher-order unification. The rules of a higher-order
rewrite system can be directly specified in this language, and the operation
of higher-order unification is directly available for matching terms with rewrite
templates. Our extended language also permits queries and the bodies of clauses
to be both implications and universally quantified. We shall show how these op-
erations are essential for applying congruence rules to descend through terms in
order to apply rewrite rules to subterms.

In Section 2 we define higher-order rewrite systems, and in Section 3 we
present several examples. In Section 4 we describe the meta-logic and logic
programming language, and in Section 5 we illustrate by example how rewrite
systems can be specified in this language. Sections 6 and 7 illustrate how to
integrate a general component for higher-order term rewriting into a tactic style
theorem prover. The implementation discussed here builds on the logic pro-
gramming implementation of tactic style theorem provers presented in Felty and
Miller [8] and Felty [6]. Section 7 discusses how the operation of higher-order
unification which is available in our logic programming language can be used to
directly implement tactics for first-order term rewriting. We discuss both the
power and limitations of this implementation technique. Finally, Section 8 con-
cludes and discusses related work. Appendix A contains a proof of equivalence
between our operational definition of rewriting and the corresponding inference
system for equality modulo a rewrite system.

2 Higher-Order Rewrite Systems

As stated, the meta-language used to define higher-order rewrite systems is the
simply typed A-calculus. We present the notation used here and some basic
properties. See Hindley and Seldin [13] for a fuller discussion. We assume a
fixed set of primitive types. The set of fypes is the smallest set of expressions
that contains the primitive types and is closed under the construction of function
types, denoted by the binary, infix symbol —. The Greek letter 7 is used as a

syntactic variable ranging over types. The type constructor — associates to the
right.

For each type 7, we assume that there are denumerably many constants and
variables of that type. Constants and variables do not overlap and if two con-
stants (variables) have different types, they are different constants (variables).
To make the type 7 of constant a explicit, we often write a: 7. Simply typed
A-terms are built in the usual way using constants, variables, applications, and
abstractions. If M is a term and 1, ..., z, are distinct variables, we often write
AT, .M for Azq...Az,.M and Mz, for Mz, ...z,. In the former term, we say
that Az, is its binder and M its body. For a term M of type 1, — -+ — T, — To
where n > 0 and 7y is primitive, we say that n is the arity of M.

If is a variable and M is a term of the same type then [M/z] denotes
the operation of substituting M for all free occurrences of z, systematically
changing bound variables in order to avoid variable capture. The expression
[Mi/zq,...,M,/z,] will denote the simultaneous substitution of the terms
My, ..., M, for distinct variables i, ..., %,, respectively. We use Greek let-
ter o to denote substitutions, and write oM for the application of substitution
o to term M.

The relation of convertibility up to «, 8,7 is written as =g,. A A-term is in
Bn-long form if it is of the form AZ,,.hM; ... M,, where n,m > 0, h is either
a constant or a variable of arity m, and terms My, ..., M,, are also in 8n-long
form. We call h the head of this term. All A-terms S7n-convert to a term in
Bn-long form, unique up to a-conversion. We shall assume that the reader is
familiar with the usual notions and properties of substitution and ¢, 8, and 7
conversion for the simply typed A-calculus. Here, equality between A-terms is
taken to mean f@7-convertible. When we write a term, it actually represents an
equivalence class of terms. It will often be convenient to consider the 8n-long
form as the canonical representative of its equivalence class.

A term is called a higher-order pattern (or simply pattern) if every occurrence
of a free variable h appears in a subterm of the form hz; ...z, where n > 0
and zq,...,%, are distinct bound variables. This subclass of simply typed A-
terms is defined in Miller [19] where it is also proved that unification of patterns
is decidable and for any two unifiable patterns, a most general unifier can be
computed.

A rewrite rule is defined to be a pair [— r such that [and r are A-terms
of the same primitive type, [is a pattern, but not a free variable, and all free
variables in 7 also occur in [. This meta-language and the restriction to patterns
on the left hand side in defining rewrite rules is, in fact, similar to that used by
Klop [17] in defining Combinatory Reduction Systems and the same as that used
by Nipkow [23]. By imposing this restriction on left hand sides, we guarantee
that the rewrite relation will always be decidable. In writing rewrite rules, we
adopt the convention that tokens beginning with upper case initial letters are
free variables. Tokens that begin with lower case letters other than those bound
by A are constants.

Definition 1 A Higher-Order Rewrite System (HRS) is a finite set of rewrite
rules. Given an HRS H, a relation —5 on terms can be defined as follows:
M —y N if there are terms u, L, R such that M =g, ulL, N =g, uR, and
u, L, R are obtained as follows.

1. There isarule ! — r in H.
2. ¢1,..., %, are variables not occurring free in M, N, [, r.

3. o is a substitution whose domain is the free variables of ! and whose range
consists of terms whose only free variables are z1, ..., z,.

4. L is the term with binder AZ,, and body ol.
5. R is the term with binder Az, and body or.

Certain type constraints are left implicit in this definition. Let 74, ..., 7, be the
types of z1, ..., z,, respectively. Let 19 be the type of [and r, and 7 the type
of M and N. The term u must have the type ((71 — -+ — 7,) — 70) = 7. We
call the term u the context, and the terms L and R the left closure and right
closure, respectively. Note that such closures are always closed terms. We write
&4 to denote the reflexive, symmetric, transitive closure of this relation.

Given a rule [— r in H, it must of course be the case that I — 4 r. To see
how, let z1,...,z, be the free variables of [, and let z1,...,z, be n variables
not occurring free in [of the same types as zy, .. ., z,, respectively. Let o be the
substitution that maps z; to #; for ¢ = 1, ..., n, and L the term with binder Az,
and body ol. Let w be a variable distinct from zq, ..., z,. Then with Aw.wz,
as context and L as left closure, we have [—5 7.

To illustrate further the above definition, we consider #n-convertibility for
the untyped A-calculus expressed as a higher-order rewrite system. Note that
in this example, the simply typed A-calculus is the meta-language while the
untyped A-calculus is the object language. We introduce a primitive type tm
for untyped terms and two constants app and abs of type tm — tm — tm and
(tm — tm) — tm, respectively, used to code untyped terms. The rewrite system
consists of the following two rewrite rules corresponding to 8 and 7-conversion
in the untyped A-calculus.

app (abs M) N - MN
abs Az.(app M z) — M

In the second rule, the bound variable will not occur in instances of M as is
required by the 5-rule: any instance of M containing « would cause the variable
z in the above rule to be renamed to avoid variable capture. Consider the term
(abs Az.(app (abs Ay.(app = y)) ¢)) which is the encoding of the untyped A-
term Az.((Ay.zy)z). Using either the 8 or 7 rewrite rule, we obtain the term
(abs Az.(app = x)). We obtain this result by the 7 rule with substitution [z/M],
context Aw.(abs Az.(app (wz) z)), and left closure Az.(abs Ay.(app z y)), and

by the 8 rule with substitution [Ay.(app z y)/M, z/N], context Aw.(abs Az.wz),
and left closure Az.(app (abs Ay.(app z y)) z).

A first-order rewrite system (see Dershowitz [5], for example) can be de-
scribed as an HRS such that all terms and all subterms in rewrite rules are of
primitive type. For this subset of rewrite systems we can in fact restrict Def-
inition 1 so that the type of the left and right closures is also primitive, and
thus the outermost binder is empty. In this way, we obtain a definition that is
equivalent to the one often given for first-order rewriting.

In addition to the “operational” definition of rewriting above, we define
the logical notion of equality modulo an HRS H. We formalize this notion in
terms of an inference system. We will see that the operational behavior of the
programs in Sections 5 and 6 will correspond quite closely to constructing proof
trees in this inference system. Formulas in this system are universally quantified
equalities between terms of primitive type, i.e., of the form Vz, .. . Ve, (M = N),
often also written V&, (M = N). The inference rules include the following two
rules which are the usual rules for universal elimination and introduction.

Ve A [y/z]A
t/a]A T va v

In the V-E rule £ must be a term of the same type as #, and in V-I the usual
proviso that the variable y cannot appear free in Vz A holds. In addition, for
every rule I — r in H, there is an axiom of the form:

Ve, (l=r)
where 1, ..., %, are the free variables in /. In addition, we have the following
congruence rule.
VEm, (M1Tm, = N1Tomy) o VEmp (MnTm, = NoTm,)
hM, ... M, = hN;...N, CONG
Here h is a variable or constant of arity n, and for i = 1,...,n, M; and N;

are terms of arity m;. Also, the universally quantified variables in the premises
must not occur free in the conclusion, and must be of the appropriate type for
the terms in the premises to be well-formed. We also have the usual rules for
reflexivity, symmetry, and transitivity, with the additional restriction that the
rules are only applied to terms at primitive type. For HRS H, we write g A if
formula A is provable in the inference system consisting of the above rules.
The corresponding inference system often given for equality modulo first-
order equations (as in Dershowitz [5], for example) can be seen to be contained
in this inference system. The first-order congruence rule, for instance, can be
seen to be a special case of the (CONG) rule given here. In the first-order case, h is
always a constant and the arity of the arguments to h is always 0. In addition,
instead of a single axiom for each rewrite rule, axioms are often included for

every instance of a rewrite rule. As a result, universal quantifiers do not appear
in formulas and the V-E and V-I rules are not needed.

In Appendix A, we prove the equivalence at primitive types of the operational
definition of rewriting using < given by Definition 1 and the logical definition
given by the above inference system. In particular, we show that for arbitrary
terms M and N of arity n, and for distinct variables 1, ..., #, not free in M or
N that g VE,(MZ, = N%,) if and only if M &4 N. In the next section, we
present further examples of higher-order rewrite systems which express common
operations in both functional programming and theorem proving.

3 Further Examples of Higher-Order Rewrite
Systems

We consider a simple functional programming language consisting of primitive
datatypes for booleans and natural numbers, constructs for lists, function ab-
straction, application, a conditional statement, a fix point operator, and the
let operator as in ML. Hannan and Miller [12] give a specification of evalua-
tion for this language in terms of inference rules in a meta-language similar to
the one that will be used to implement rewriting. As in that paper, we use a
higher-order abstract syntax for functional programs. As in the rewrite system
for Bn-convertibility in the last section, we use a single primitive type, tm, for
terms in this language. We use the abs and app constructs as in that section and
introduce new constants and their types for the remaining program constructs.

true : tm hd : tm — tm
false : tm tl:tm — tm
0:tm empty : tm — tm
s:tm —tm if :tm — tm — tm — tm
nil :tm fiz : (tm — tm) — tm
cons : tm — tm — tm let : (tm — tm) — tm — tm

Clearly not all terms of type tm correspond to valid programs. Some form of
type checking is needed. We only discuss evaluation here and assume terms
to be evaluated correspond to valid programs. The following rewrite system
expresses evaluation in this language.

hd (cons M N) - M iftrue M N - M
tl (cons M N) - N if false M N -+ N
empty nil — true app (abs M) N - MN
empty (cons M N) — false fiz M — M (fiz M)

let M N - MN

Note that as a rewrite system, these rules express non-deterministic evalua-
tion. Nothing about order of evaluation in specified. In Section 6, we will see
that different rewriting strategies when given these rewrite rules as a parameter
correspond to various strategies for evaluating functional programs.

In theorem proving, formulas are often pre-processed in order to obtain a
certain form before applying inference rules. Many such pre-processing steps
can be expressed as higher-order rewrite systems. Nipkow [23] discusses rewrite
systems for putting first-order classical formulas in negation normal form, in
prenex normal form, and for moving quantifiers inward. As another example, in
an intuitionistic or classical logic with connectives A, D,V, any formula can be
put into the equivalent form Ve, ...V, (A1 A---A Ay, D By A--- A By) where
n,m,p > 0, Ai,..., Ay, have the same form recursively, and By, ..., By have the
same form recursively with no outermost quantification. (Clauses in the logic
programming language described in the next section will always be written in
this form, with p = 1.) We describe a rewrite system for putting first-order
formulas in this form. We use primitive type tm for first-order terms, introduce
type form for first-order formulas, and introduce the following constants and
their types for the connectives.

A : form — form — form
D : form — form — form
V: (tm — form) — form

We use the usual infix notation for A and D. The following rewrite system
performs the desired operation.

(VA)A (YB) — V Az.(Az A Bz) AD (VB) —» V Az(A D Bz)
(VA)AB — V Az.(Az A B) AD(BDOC)—(AANB)DC
AN(VB) = V Az.(AA Bz)

As a final example, we consider a rewrite system expressing proof reductions
for normalization in natural deduction. Again, we consider only the A, D,V
connectives. We express proofs as A-terms using the primitive type prf and the
following constants.

A1 : prf— prf— prf O-1: (prf— prf) — prf
AN-Eq 1 prf— prf D-E : prf — prf — prf
A-Eq : prf — prf V-1: (tm — prf) — prf

V-E : prf — tm — prf

Note that the D-introduction rule is represented by a constant that takes a
function from proofs to proofs as argument, and the V-introduction rule takes a
function from first-order terms to proofs. The first argument to V-E is the proof
of the premise and the second is the substitution term. Details on this repre-
sentation of natural deduction proofs can be found in Felty [8]. The required
reductions can be expressed as follows.

ANE; (TP Q) — P D-E (D-1P) Q) — PQ
AEy (TP Q)= Q V-E (V-1 P) M — PM

Natural deduction proofs are strongly normalizable and thus any complete re-
duction strategy using these rules will reduce an arbitrary proof to its normal

form. For intuitionistic logic, this property remains true even if the V and 3
connectives are added. In this case, many more reduction rules are needed to
handle permutations of the V-elimination and J-elimination rules with other
rules. These permutations can also be described as rewrite rules. For a com-
plete specification of the reductions for full intuitionistic first-order logic using
the representation of proof trees as given here, see Felty [6].

4 The Meta-Logic and Language

We now present the meta-language used to specify and implement rewrite sys-
tems in the remainder of this paper. The terms of the meta-logic are the simply
typed A-terms, the same language used to define higher-order rewrite systems.
We often speak of a fixed signature or a finite set of constants and variables,
usually denoted 3. As before, equality between A-terms is taken to mean B7-
convertible. We assume that the symbol o is always a member of the fixed set of
primitive types. Following Church [3], o is the type for propositions. The logical
constants are given the following types: A (conjunction), V (disjunction), and
D (implication) are of type 0 — 0 — o0; and V.. (universal quantification) and 3,
(existential quantification) are of type (7 — 0) — o, for all types 7. A formula
is a term of type o. The logical constants A, V, and D are written in the familiar
infix form. The expression V,(Az M) is written V,zM or simply VzM when the
type 7 can be inferred from context.

A proposition whose #7n-long form is such that the head A is not a logical
constant will be called an atomic formula. The head h is called a predicate. In
this section, A denotes a syntactic variable for atomic formulas. We now define
two new classes of propositions, called goal formulas and definite clauses. Let
G be a syntactic variable for goal formulas and let D be a syntactic variable for
definite clauses. These two classes are defined by the following mutual recursion.

G::A|G1\/G2|G1/\G2|DDG|E|7-$G|VT:EG

D:=A|GD>A|VYzeD

Definite clauses are also called higher-order Hereditary Harrop formulas (hohh
for short). There is one final restriction: if an atomic formula is a definite clause,
it must have a constant as its head. The heads of atomic goal formulas may
be either variable or constant. Note that the top-level form of a definite clause
is either VZ,A or VZ,(G O A) where n > 0 and the head of A is a constant.
In either case, the atomic formula A is called the head of the clause, and G is
called the body. A logic program or just simply a program is a finite set of closed
definite clauses.

We also consider a subset of this logic called Ah“ which only includes the
A, D, and V, connectives, where 7 is a type not containing occurrences of o.
Thus this language doesn’t allow quantification over predicates. This restricted
language will be sufficient for specifying higher-order rewrite systems as we will

see in the next section. In Sections 6 and 7, we will use the full hohh for
implementing rewriting strategies.

From properties about hohh presented in Miller et al. [21], a sound and
complete (with respect to intuitionistic logic) non-deterministic interpreter can
be implemented by employing the following six search operations. Here, the
interpreter is attempting to determine if the goal formula G follows from the
program P.

AND: If G is G; A G5 then try to show that both G; and G, follow from P.
OR: If G is G; V G5 then try to show that either G; or G5 follows from P.

AUGMENT: If G is D D G’ then add D to the current program and try to
show G'.

INSTANCE: If G is 3,2G’ then pick some closed A-term M of type 7 and try
to show [M/z]G'.

GENERIC: If G is V,zG’ then pick a new constant ¢ of type 7 and try to
show [c¢/z]G'.

BACKCHAIN: If G is atomic, we consider the current program. If there is
a universal instance of a definite clause which is convertible to G then we
are done. If there is a definite clause with a universal instance of the form
G’ DO G then try to show G’ follows from P. If neither case holds then G
does not follow from P.

An interpreter for hh* uses the same operations, but doesn’t require OR
or INSTANCE. An implementation of an interpreter must make many choices
which are left unspecified in the high-level description above. We discuss some
of the choices made by the logic programming language AProlog since we later
present several AProlog programs. For example, the order in which conjuncts
and disjuncts are attempted and the order for backchaining over definite clauses
is determined exactly as in conventional Prolog systems: conjuncts and disjuncts
are attempted in the order they are presented. Definite clauses are backchained
over in the order they are listed in P using a depth-first search paradigm to
handle failures. Logic variables as in Prolog are used in the INSTANCE opera-
tion and in forming a universal instance in the BACKCHAIN operation. These
variables can later be instantiated through unification. Here, unification on sim-
ply typed A-terms is required. AProlog implements a depth-first version of the
unification search procedure described in Huet [14]. Most unification problems
we shall encounter in executing programs in this paper are simple. In particular,
although at times there may be more than one unifier, there will generally be a
finite number that can be easily enumerated by the unification procedure.

The presence of logical variables in an implementation also requires that
GENERIC be implemented slightly differently than is described above. In par-
ticular, if the goal V,2G' contains logical variables, the new constant ¢ must

not appear in the terms eventually instantiated for the logical variables which
appear in G’ or in the current program. Any implementation must take this
constraint into account.

In addition to these restrictions, AProlog contains some extensions that we
will make use of here. First, a degree of polymorphism is permitted by allowing
type declarations to contain type variables (written as capital letters). Second,
negation by failure and the cut operator (!) as in Prolog are added. The cut is
a goal which always succeeds and commits the interpreter to all choices made
since the parent goal was unified with the head of the clause in which the cut
occurs.

5 Specifying Rewrite Systems

In this section, we discuss the specification of higher-order rewrite systems in
hh*. The specification of syntax of terms is direct since both the meta-language
of higher-order rewrite rules and our specification language hh* contain simply
typed A-terms. We will assume that all terms from a given object language
contain only constants from a fixed signature, say 3, which at least includes
all of the constants in the rewrite rules. To specify rewriting at a particular
primitive type 7, we introduce the infix arrow —.; to serve as a predicate of type
7T — T — 0. The specification of rewrite rules as clauses is then straightforward:
using these predicates, we take the universal closure over the free variables of
the rewrite rule. For example, the rewrite rules for for 8n-convertibilty of the
untyped A-calculus are expressed as the formulas below.

VMVN (app (abs M) N —,,, MN)
VM (abs Az.(app M) —¢m M)

Generally, in executing rewrite goals, we will have a closed term on the left of
the arrow and a variable on the right to be instantiated with the result of the
rewrite. In the first clause for example, M and N will be replaced with logic
variables, and a term that represents a G-redex will unify with the pattern on
the left of the arrow. The substitution of N for the bound variable in M is
achieved by application of A-terms at the meta-level M N.

For readability, in the remainder of this and the next sections, we will often
leave off outermost universal quantification, and assume universal closure over
all variables written as tokens with initial upper case letters.

Rewrite rules express reducibility in one step. To express reducibility in 0 or
more steps, we introduce the predicate —* and include the following formula
for each primitive type 7: (M —, N) D (M —X N).

To specify congruence, we introduce an hh® formula for each constant in
3.. For example, the following two formulas are included for the app and abs
constants.

Ve((z —7,) O (Mz —},, Nz)) D (abs M —7},, abs N)

10

The clause for abs states that an abstraction (abs M) rewrites to (abs N) if for
arbitrary such that z rewrites to itself, Mz rewrites to Nz. Operationally, in
trying to solve a goal of the form (abs M’ —7,, abs N') where, say, M’ is a
closed term and N’ a logic variable, we can use this clause to descend through
the abstraction in M’'. The GENERIC operation will generate a new meta-level
signature item, say ¢, and the AUGMENT operation will add the atomic formula
(¢ —},, ¢) stating that this constant reduces to itself. This can be considered
as the dynamic addition of a new constant to the object-level signature and a
congruence rule for that constant. Then, B-reduction at the meta-level of M'c
performs the substitution of the new item for the outermost bound variable in
M'. In effect, the new signature item plays the role of the name of the object
level bound variable. The atomic clause (¢ —},, ¢) can be used during the
search for a term N'c that is reachable by some number of rewrite steps from
M'c. N'is the abstraction not containing c.

Note that in the presence of a clause representing a reflexive rule at type
tm: VM (M —},, M), the addition of the new clause (¢ —7}, ¢) is redundant
since any subgoal of this form can be proved using either this new clause or the
reflexive axiom. In the presence of the reflexive axiom, the congruence rule for
abs could be simply specified as follows.

Ve(Mz —},, Nz) D (abs M —,, abs N)

Alternatively, if we restrict to a particular signature, a formula specifying
reflexivity can be omitted as long as we include congruence clauses for all atomic
constants in ¥, and specify congruence for functional constants such as abs
so that formulas explicitly include assumptions about the congruence of new
constants. For example, if our signature for untyped terms includes constants f
and a in addition to app and abs, we must include the clauses (f —;,, f) and
(a —7,, a). Operationally, the inclusion of a reflexive rule can be more efficient
since it can be used to prove the equivalence of two arbitrary terms of primitive
type. Without it, congruence rules must be used to descend through the entire
term, applying congruence rules for constants at the leaves. An advantage of this
latter approach is that it also verifies that a term is well-formed in a particular
signature.

Note that a new congruence rule for a new constant of functional type is
more complex. For example, if we had a function constant ¢ whose type is
((tm — tm) — tm) — tm, its corresponding congruence clause would be:

VI(VP((P —m P) D (fP —m fP)) D (Mf —m Nf)) D (9 M —4 g N)

Operationally, after backchaining on the above clause, instead of an atomic
clause, the clause (P —},, P) D (fP —1},, fP) would be dynamically added
by AUGMENT, serving as a congruence rule for the new function symbol f.

We can in fact define a general function for specifying congruence rules for
a particular signature. For signature item a of type 7, the following function

11

defined by induction on the structure of 7 yields the necessary congruence rule.

{a —*a if 7 is a primitive type
[a:7] = T o
Vae([z:m] D [az :m])if T7is 7 — 7
(This function is similar to the one used by Felty [7] to code a dependent typed
A-calculus in hh® and by Miller [20] to specify equality and substitution for
simply typed A-terms.)

To complete the specification, we introduce the predicate +—% at each prim-
itive type 7. The following clauses express the reflexive, symmetric, transitive
closure of —},.

(N —7, M) D (N «—}, M)
(N «—3, M) D (M +—}, N)
(M +—%, P)AN(P +—}, N) D (M +—+, N)

Operationally, we may often want to attempt to reduce a term until there are
no longer any rewrite rules that apply. Equality of terms under a strongly
normalizing rewrite system can be checked this way, i.e., two terms are each
reduced to their normal form and then checked to see if they are identical. In
such a case, we can replace the formulas for symmetry and transitivity with
clauses that have better operational behavior. We introduce a new predicate
normal of type tm — tm — o which relates a term to its normal form, and
include the following formulas.

(M —}, N)A(M = N) D (normal M N)
(M —},, P) A (normal P N) D (normal M N)

If the clauses are ordered so that the rewrite rules appear before the congruence
rules, then whenever a goal of the form (normal M N) is given such that M is
a closed term and N is a logic variable, N will get instantiated to the normal
form of M. The first clause handles the case when M is already in normal form,
while the second clause handles the case when M reduces in one or more steps
to some term P. A recursive call is made to further reduce P if possible.

This example illustrates the general manner in which higher-order rewrite
systems can be specified rather directly in Ah“. All of the other examples of
rewrite systems given in the previous section, for instance, can be specified in
the same way. Several of these rewrite systems have some notion of object-
level types. For example, although we expressed Bn-convertibility for untyped
terms, the same rewrite system can express this relation for the simply typed
A-calculus. Also, although the rewrite relation for evaluation of the functional
language given in Section 3 doesn’t rely on type information, the programming
language itselfis a typed language. In addition, the rewrite relation on first-order
formulas could equally apply to a many-sorted first-order logic where terms are
required to be correctly typed. We now consider a slight modification of the 8-
conversion on untyped terms, and illustrate how to include typing information

12

in order to restrict rewriting to typable terms. To represent types, we introduce
the primitive type ty and the arrow = of type ty — ty — ty. To express
rewriting and equivalence at a particular type, we replace the binary relations
on terms with ternary relations which include an argument for the type. For
example, to express rewriting in 0 or more steps, we introduce the predicate
rewj,, of type ty — tm — tm — o. Using this predicate, congruence for app
and abs can be expressed as follows.

(rew;,, A= B M P) A (rewj,, AN Q) D (rewj,, B (app M N) (app P Q))
Ve ((rews,, Az z) D (rew},, B Mz Nz)) D (rew},, A= B (abs M) (abs N))

As before, congruence rules for constants can be given also, in this case with
their types. Let nat be a constant of type ty and let f represent a unary function
from nat to nat, and a a constant of this type. The corresponding clauses are
(rew},, nat = nat f f) and (rewj,, nat a a), respectively. Typing information
can similarly be added to the formulas specifying the 8 and 7 rewrite rules, as
well as to reflexivity, symmetry, and transitivity. In a specification of reduction
for typed terms, if we omit the reflexive rule and rely on the congruence rules
only, in addition to verifying that terms are well-formed, these rules also verify
that terms are correctly typed. In fact, they can also be used to infer types
when a logic variable is given for the type argument in a goal.

6 Implementing Tactics for Rewriting

We have now seen how higher-order rewrite systems can be directly specified
in our logic programming language and how the basic operations of this logic
programming language implement basic operations of higher-order term rewrit-
ing. In this and the next section, we go one step further and present AProlog
programs for implementing various rewriting techniques and strategies.

In this section, since we present several AProlog programs, we will adopt
the syntax of this language. The comma (,), semicolon (;), and arrow (=>)
represent A, V, and D, respectively, while :- denotes the converse of => and is
used to write the top-level implication in clauses. A-abstraction is written using
backslash \ as an infix operator, and universal quantification is written using
the constant pi in conjunction with a A-abstraction. As in the previous section,
we assume universal closure over all variables written as tokens with an upper
case initial letter. Finally, a signature member, say f of type a — b — c is
represented as simply the line:

type f a->b->c.

Using this syntax and the infix symbols -—> and -->* for the —¢,, and —},,
relations in the previous section, the clauses for the 8-reduction rule and con-
gruence for abs, for example, would be written:

(app (abs M) N) --> (M N).
(abs M) -->* (abs N) :- pi x\ ((x -—>#* x) => ((M x) -->x (N x))).

13

Tactic style theorem provers were first built in the early LCF systems and
have been adopted as a central mechanism in such notable theorem proving
systems as Edinburgh LCF [10], HOL [11], Nuprl [4], and Isabelle [24]. All of
these systems are implemented in the functional programming language ML.
Tactic style theorem provers for a variety of logics can also be specified and
implemented in the logic programming language used here (see Felty and Miller
[8] and Felty [6]). In such an implementation, basic tactics express the inference
rules of a particular logic and serve as the primitive operations of a theorem
prover, while tacticals provide high-level control over search. Tactics and tacti-
cals can be combined to build more complex strategies and partially automated
procedures. In this section, we illustrate that strategies for rewriting can be
naturally expressed as logic programs and easily integrated into this framework.
Term rewriting can thus be added to an existing tactic theorem prover for a par-
ticular logic, providing a flexible means for reasoning about the equality relation
of that logic.

We begin in subsection 6.1 by presenting the basic data structures for goals
of the tactic theorem prover. Then, in subsection 6.2, we slightly modify the
specification of rewrite and congruence rules given in Section 5 to provide basic
tactics for rewriting. In subsection 6.3, we present tacticals which implement
the general interpreter for tactic theorem proving. Finally, in subsection 6.4, we
build on these procedures to implement general and specialized strategies for
rewriting. In summary, subsections 6.1 and 6.3 represent a slight extension of the
general tactic interpreter given by Felty and Miller [8, 6], while subsections 6.2
and 6.4 illustrate how to add mechanisms for higher-order rewriting.

Although the specifications in the previous section used only hh“, in this
section we will make use of some aspects outside the scope of this language. For
example, predicate quantification of the more expressive language hohh can be
used to obtain elegant implementations of the high-level control procedures. It
will also be convenient to make some uses of the polymorphism of AProlog as
well as the cut (!) operator for finer control.

6.1 Data Structures for Goals

In Felty [6], we have one goal constructor corresponding to each of the search
operations of the logic programming interpreter. Those that will be used here
are given with their types below.

type tt goal.

type && goal -> goal -> goal.
type ==>> o —> goal -> goal.
type all (A -> goal) -> goal.

The goal tt corresponds to the trivially satisfied goal, && to the AND search
operation, ==>> to AUGMENT, and all to GENERIC. We use infix notation for
&& and ==>>. We call goals constructed from these constants compound goals, in
contrast to primitive rewriting goals which we will present in the next subsection.
In addition, we have two constructors for building goal trees.

14

type *k goal -> goal -> goal.
type 1f goal -> goal.

The ** operator is the (infix) node constructor and takes two trees as arguments.
Leaf nodes are indicated by 1f and take a compound goal as an argument. Such
trees form the top-level goal structure, i.e., node and leaf constructors appear
only at the top level and not inside compound goals built from &&, ==>>, or all.

6.2 Basic Tactics for Rewriting

Instead of expressing equivalence at each primitive type 7 as we did in Section 5
using <—}, we introduce the infix relation eq of polymorphic type A -> 4 ->
goal. In practice, we will have primitive rewriting goals of the form (M eq N)
where M is a closed term and N is a variable. Thus A will be instantiated with the
type of M. In addition, it will always be a primitive type. Using a polymorphic
type here allows us to describe a general package for rewriting independent
of the primitive types of a particular rewrite system. For simplicity, we use a
single relation instead of three distinct relations as in the previous section. Both
rewrite and congruence rules will be expressed using eq.

A tactic in this setting is a binary relation on goals and has type goal
-> goal -> o. The first goal will be the “input” goal or goal to be proved,
and the second the “output” goal whose instances are the subgoals which must
subsequently be proved. Generally, when applying a tactic, the first subgoal is
at least partially instantiated, and the second goal is a logic variable.

Specifying rewrite rules as tactics is straightforward. The tactics for g5-
conversion for the untyped A-calculus for example are as follows.

rew ((app (abs M) N) eq (M N)) tt.
rew ((abs x\ (app M x)) eq M) tt.

If the input goal to the rew tactic is an instance of one of the first arguments in
the above clauses, then the goal succeeds and there are no remaining subgoals.
As stated above, the term on the right of the arrow in a rewriting goal will often
be a variable. Thus the input goal as a whole will be only partially instantiated.
The tactic succeeds if the term on the left is a 8- or n-redex. The variable on
the right is then instantiated to its reduced form. It is also possible to specify
each rewrite rule with a distinct name, so that it becomes possible to control
which rewrite rule is attempted. To do so, we may replace the name rew above
with beta and eta, for example.
The congruence rules for app and abs are specified as follows.

cong ((app M N) eq (app P Q)) ((1f (M eq P)) ** (1f (N eq Q))).
cong ((abs M) eq (abs N))
(1f (all x\ ((cong_const (eq x x) tt) ==>> (eq (M x) (N x))))).

This specification is similar to that in the previous section. The input/output
relation between the two arguments to cong here corresponds to the relation
of a head of a clause and its body in the previous specification. Here, the two

15

subgoals for app form two leaves in a goal tree. The clause for abs can be read
as before: an abstraction (abs M) rewrites to (abs N) if for arbitrary x such
that x rewrites to itself, (M x) rewrites to (N x). The operational reading is
more indirect. It will depend on how we process the goal constructors. For
example, all and ==>> will be implemented using the GENERIC and AUGMENT
operations. The left hand side of the implication (cong_const (eq x x) tt)
represents a congruence tactic for the new constant of type tm introduced for
x. We use cong_const here instead of cong. For reasons that will become
apparent later, we want to distinguish congruence at meta-level primitive and
functional types. As before, we may wish to make even more distinctions and
replace the name cong above with cong_app and cong_abs for example. The
remaining clauses for congruence in the 8n-convertibility example are those for
the constants f and a.

cong_const (f eq f) tt.
cong_const (a eq a) tt.

6.3 The High-Level Search Primitives

Next, we present the high-level tacticals that will be useful for implementing
rewriting tactics. The AProlog implementation is very natural and extends the
usual meaning of tacticals by permitting them to have access to logic variables
and the search operations.

maptac Tac tt tt.

maptac Tac (InGl && InG2) (OutGl && OutG2) :- maptac Tac InGl OutG1l,
maptac Tac InG2 OutG2.

maptac Tac (all InG) (all OutG) :- pi x\ (maptac Tac (InG x) (OutG x)).

maptac Tac (D ==>> InG) (D ==>> OutG) :- D => (maptac Tac InG OutG).

maptac Tac InG OutG :- Tac InG OutG.

then Tacl Tac2 InG OutG :- Tacl InG MidG, maptac Tac2 MidG OutG.
orelse Tacl Tac2 InG OutG :- Tacl InG OutG; Tac2 InG OutG.

idtac G G.

repeat Tac InG OutG :- orelse (then Tac (repeat Tac)) idtac InG OutG.
try Tac InG OutG :- orelse Tac idtac InG OutG.

The maptac tactical descends through the structure of a compound goal and
applies the argument tactic to the primitive goals.? The then tactical performs
the composition of tactics. The maptac procedure is used in the second subgoal
since the application of Tacl may result in an output goal (MidG) with compound
structure. This tactical plays a fundamental role in combining the results of
step-by-step proof construction. The substitutions resulting from applying these

2 Note that the maptac clause for implication is not allowed by the definition of definite clauses
given in Section 4 because D is a variable occurring on the left of =>. In AProlog, variables in
this position are acceptable, but a runtime check is included to insure that D is instantiated
to a definite clause before it is added to the program using the AUGMENT operation. In
the examples here, it will always be instantiated to an atomic formula.

16

separate tactics get combined correctly since MidG provides the necessary sharing
of logical variables between these two calls to tactics. The orelse tactical
attempts to apply either Tacl or Tac2. The next tactical, idtac, simply returns
the input goal unchanged. The repeat tactical repeatedly applies a tactic until
it is no longer applicable. Finally, the try tactical prevents failure of the given
tactic by using idtac when Tac fails.

It is worth noting the differences between the ML and AProlog implementa-
tions of the then tactical. The AProlog implementation of then reveals its very
simple nature: then is very similar to the natural join of two relations. In ML,
the then tactical applies the first tactic to the input goal and then maps the
application of the second tactic over the list of intermediate subgoals. The full
list of subgoals must be built as well as the compound validation function from
the results. These tasks can be quite complicated, requiring some auxiliary list
processing functions. In AProlog, the analogue of a list of subgoals is a nested
&& structure. These are processed by the clause of maptac which handles &&.
The maptac procedure is richer than the usual notion of a mapping function
in that, in addition to nested && structures, it can handle other goal structures
corresponding to the AProlog search operations. For more on these tacticals and
their comparison to the ML implementation, see Felty [6].

The maptac tactical above provides a uniform way in which to apply a tactic
to all primitive goals in a goal structure. It will also be useful to be able to apply
a tactic to a particular primitive goal while leaving others untouched. The tree
structure on goals is provided for this purpose. The following tacticals provide
operations which descend through a tree structure and choose a primitive goal
to which a tactic will be applied.

left_node Tac (1f InG) (1f OutG) :- maptac Tac InG OutG.
left_node Tac (InG ** G) (OutG #** G) :- left_node Tac InG OutG.

first_node Tac (1f InG) (1f OutG) :- maptac Tac InG OutG.
first_node Tac (InG ** G) (OutG ** G) :- first_node Tac InG OutG, !.
first_node Tac (G ** InG) (G ** OutG) :- first_node Tac InG OutG.

tree_to_goal (1f G) G.
tree_to_goal (InGl ** InG2) (OutGl && OutG2) :- tree_to_goal InGl OutG1l,
tree_to_goal InG2 OutG2.

untree Tac InG OutG :- then Tac tree_to_goal InG OutG.
left Tac InG OutG :- untree (left_node Tac) InG OutG.
first Tac InG OutG :- untree (first_node Tac) InG OutG.

The left node tactical applies a tactic to the leftmost leaf goal, while the
first node tactical performs a depth-first search over the tree structure search-
ing for the first leaf goal to which the tactic can successfully be applied. The cut
(1) is essential for the desired behavior. This tactical should only succeed once
and only on the first possible leaf. We can implement a tactical that succeeds if
the tactic can be applied to any leaf goal by simply removing the cut. Opera-
tionally, leaf goals would be attempted in a left to right order, only going beyond

17

the first one if subsequent failure causes backtracking. The tree_to_goal tac-
tical simply removes the tree structure from a goal. This tactical is used by
the untree tactical which applies tree_to_goal after applying a tactic. It is
useful when the remaining tree structure is no longer important after applying a
tactic to a particular leaf. The left and first tacticals use untree to remove
tree structure after applying a tactic to the leftmost leaf or first possible leaf,
respectively.

6.4 Implementing Rewriting Strategies

This completes the implementation of the tacticals. We return to the imple-
mentation of rewriting. As discussed in the previous section, we do not need
to implement a general tactic for reflexivity. Instead, we can repeatedly apply
congruence rules. For example, the following tactic implements reflexivity for
untyped A-terms.

refl_tm InG OutG :- then (repeat (untree cong)) cong_const InG OutG.

This tactic applies congruence rules to descend through terms, applying congru-
ence rules for constants at the leaves. In fact, we can write a general tactical used
for implementing reflexive tactics that take tactics for congruence of constants
at both functional and primitive types.

refl Cong Const InG OutG :- then (repeat (untree Cong)) Const InG OutG.

Reflexivity for a particular primitive type can then be defined using this tactical
as in the following example for the untyped A-calculus.

refl_tm InG OutG :- refl cong cong_const InG OutG.

Of course, it is also possible to implement the reflexive tactic directly.

refl (M eq M) tt.
The transitivity and symmetry rules are specified simply as the formulas below.

sym (M eq N) (1f (N eq M)).
trans (M eq N) ((1f (M eq P)) ** (1f (P eq N))).

Two common strategies for terminating rewrite systems are bottom-up and
leftmost-outermost rewriting of subterms. A procedure for the bottom-up strat-
egy is given as part of an implementation for first-order term rewriting in Isabelle
[22]. Although it is written in ML, a very similar implementation can be given
in our setting, since it can be defined using previously defined basic tacticals
such as then, orelse, and others. We present the AProlog version here for
illustration purposes. As noted above, a more significant difference appears in
the implementations of these basic tacticals in the two settings. It should be
noted that although this strategy is presented as part of an implementation of
first-order rewriting in Isabelle, if given the appropriate rewrite and congruence
rules as arguments, it can also serve as a tactic for higher-order rewriting in that
setting. The following tacticals implement the bottom-up strategy.

18

left_rew Tac InG OutG :- then trans (left Tac) InG OutG.

bu Cong Rew Refl InG OutG :-
then (bu_sub Cong Rew Refl)
(orelse (then (left_rew Rew) (bu Cong Rew Refl)) Refl) InG OutG.

bu_sub Cong Rew Refl InG OutG :-
try (left_rew (then (untree Cong) (bu Cong Rew Refl))) InG OutG.

The 1left_rew tactical is useful for procedures that involve many rewriting steps.
It applies transitivity to obtain two subgoals, and then applies Tac to solve
the first. The remaining subgoal allows further rewrite steps to be performed.
The bu and bu_sub tacticals take a congruence tactic, a rewriting tactic, and
a reflexive tactic as arguments. The bu tactical proceeds in two steps. First
bu_sub is applied to perform bottom-up rewriting to all of the subterms. Then
a rewrite is attempted on the resulting term. If it succeeds, the bu procedure is
repeated. If it fails, then the reflexive tactic is applied to complete the rewriting.
The bu_sub tactical first applies a congruence, and then bu is applied recursively
to all of the subgoals. The application of Cong is within the scope of untree
since the tree structure must be removed in order to apply bu uniformly to all
of the subgoals generated by the application of a congruence rule. A top-level
try is used so that if the term is a constant and the congruence tactic fails,
the procedure as a whole terminates successfully. Using this tactical, a tactic
for bottom-up rewriting for the untyped A-calculus is then implemented by the
following tactic.

bu_tm (M eq N) OutG :- bu cong rew refl_tm (M eq N) OutG.

A tactic for leftmost-outermost rewriting can be written similarly.

lo Cong Rew Refl InG OutG :-
then (repeat (left_rew (lo_rew Cong Rew Refl))) Refl InG OutG.

lo_rew Cong Rew Refl InG OutG :-
orelse Rew (then (then Cong (first (lo_rew Cong Rew Refl)))
Refl) InG OutG.

Here, the lo tactical implements the top-level loop, while lo_rew searches for
the leftmost-outermost subterm that can be rewritten. In lo_rew, a rewrite is
attempted directly on the goal. If that fails, a congruence is applied and lo_rew
is called recursively in the scope of first. Thus, lo_rew is attempted on all
of the subgoals in succession looking for the first possible subterm to which a
rewrite can be applied. If successful, the reflexive tactic is applied to complete
all remaining subgoals. If no subterms can be rewritten, the tactical fails. The
lo tactical repeatedly calls 1lo_rew until no more rewrites are possible. In this
case, the reflexive tactic is called to reduce the current goal to tt.

Consider the term (abs Ag.(app (abs Az.(app g z)) a)). Using the bu_tm
procedure above, this term is reduced to (abs Ag.(app g a)) by reducing the

19

n-redex (abs Az.(app g z)) to g. Using lo_rew, we obtain the same reduced
term, but in this case, the outer S-redex (app (abs Az.(app g #)) a) is reduced.

As another example, let AP P be the following term representing the program
for appending two lists in our functional language.

(fiz AF.(abs Aly.(abs Aly.
(if (empty ly) la (cons (hd l1) (app (app F (8l 1)) 12))))))

Using the 1o strategy, the term (app (app APP (cons 0 nil)) (cons (s 0) nil))
will reduce to (cons 0 (cons (s 0) nil)), while the bu strategy will loop, repeatedly
applying the rewrite rule for fiz and expanding the definition of the function.
The 1o strategy, in fact, corresponds to lazy evaluation of this language.

The bu and 1o tacticals implement general strategies that can be applied
with any rewrite system as a parameter. It may also be useful to write strategies
specialized to a particular rewrite system. As an example, we implement a
strategy for normalizing typed A-terms as implemented in the EIf higher-order
logic programming language [25]. This strategy involves recursion over types,
so we use the specification below of the rewrite, congruence, and equivalence
tactics that includes an extra argument for types. Here, we replace the binary
relation eq with the ternary relation of the same name, and use the arrow -->
of type ty -> ty -> ty as the constructor for object level types.

beta (eq A (app (abs M) N) (M N)) tt.
eta (eq (A --> B) (abs x\ (app M x)) M) tt.
cong_app (eq B (app M N) (app P Q))
((1f (eq (A --> B) M P)) **x (1f (eq A N Q))).
cong_abs (eq (A --> B) (abs M) (abs N))
(1f (all x\ ((cong_const (eq A x x) tt) ==>> (eq B (M x) (N x))))).
cong_const (eq (nat --> nat) f £) tt.
cong_const (eq nat a a) tt.
refl_tm InG OutG :- refl (orelse cong_app cong_abs) cong_const InG OutG.
sym (eq A M N) (1f (eq A N M)).
trans (eq A M N) ((1f (eq A M P)) #x (1f (eq A P N))).

This strategy will also use the following rule, which expresses the fact that a
term M at functional type reduces to N if for arbitrary #, the term (app M z)
reduces to (app N z).

eq_arrow (eq (A ——> B) M N) (1f (all x\ ((cong_const (eq A x x) tt) ==>>
(eq B (app M x) (app N x))))).

This rule can alternatively be defined in terms of the others as the following
tactic.

eq_arrow InG OutG :- then (left_rew (then (untree sym) eta))
(then (right_rew eta) cong_abs) InG OutG.

Here right rew is the dual to left_rew and can be defined similarly. The
rewrite strategy we will implement can be described as follows. First, repeatedly

20

apply eq_arrow until the resulting term has primitive type. If the term is a
constant, it is reduced; otherwise it is an application. If the left term is a
constant then repeat the procedure on the right term. Otherwise perform a weak
head reduction and repeat the procedure on the resulting term. The following
tactics implement weak head reduction and the general strategy, respectively.

whr InG OutG :-
orelse (left_rew beta) (then cong_app (left whr)) InG OutG.

reduce InG OutG :-
then (repeat (then (repeat (untree eq_arrow))
(orelse (then cong_app (left cong_const))
whr))) refl_tm InG OutG.

The main loop of the reduce tactic consists of first repeatedly applying the
eq_arrow tactic and then applying one of the two arguments to orelse. The
first applies cong_app and completes the first of the two subgoals if the left term
is a constant. The second applies whr. In either case, the loop is repeated on
the remaining goal. If neither of these steps can be applied, the reduction is
complete and the outer repeat terminates. The remaining subgoal is reduced
to tt by the reflexive tactic.

We complete this section with a few words about establishing formal cor-
rectness of such tactics. A proof of correctness of a direct specification of 875-
convertibility for untyped terms is given in Felty [6]. This specification is similar
to those in Section 5, and thus correctness of those given here, including the one
that includes type information, should follow similarly. Informally, a correctness
result states that two terms M and N are equivalent modulo 8n-conversion if
and only if, for the corresponding terms encoded using app and abs, say M’ and
N', we can show that M’ +—}, N'. Using the implementations in this section,
such a correctness result would involve the eq relation and would depend on
the correctness of the implementation of the tacticals. Although it has not been
done, it should be straightforward to establish this correctness, in particular for
those tacticals that are specified as hohh formulas. It will follow directly that
any tactic T'ac written using tacticals and taking the primitive operations for
congruence and rewriting as arguments will be sound. That is, we will be able to
state that if (Tac (M’ eq N') tt) is provable in hohh, then M =g, N. Note
that proving that a particular tactic implements a desired strategy requires es-
tablishing another level of correctness involving details about the execution of
the logic programming interpreter.

7 Using Higher-Order Unification to Implement
First-Order Rewriting

In this section, we discuss a technique for implementing first-order rewriting
that makes extensive use of the operation of higher-order unification on A-terms

21

in AProlog. This technique is quite powerful for those cases in which it can be
applied. We present the technique and then discuss its limitations.

First, consider a rewrite system such that all terms are of the same primitive
type, say tm, and consider the following simple tactic.

ho_sub ((C X) eq (C Y)) (X eq V).

We assume that X and Y have type tm and that C has type tm -> tm. This
tactic expresses the fact that for any C, the term C applied to X is equivalent
to C applied to Y if X is equivalent to Y. Operationally, if X is equivalent to ¥,
then any term containing 0 or more occurrences of X is equivalent to the term
such that these occurrences are replaced by Y. When this tactic is applied, the
terms C and X are determined by unification. There may be many possible
instances arising from the unification of the term to be rewritten against the
pattern (C X), and this tactic will succeed once for each one. Note that when
C is instantiated to a vacuous abstraction, X and Y could be instantiated to
arbitrary terms of type tm, which are not necessarily subterms of the term to
be rewritten. Operationally, the AProlog interpreter would leave X a variable
in this case, resulting in a subgoal (X eq Y) where both X and Y are variables.
We will in fact not want to consider this case. In AProlog, we can rule out this
solution as follows.

ho_sub ((C X) eq (C Y)) (X eq Y) :- not (C = z\P).

Here, not is the negation by failure operator. To see how vacuous instances are
ruled out, consider instances of the variable P. If such an instance were to contain
a free occurrence of the variable z, the bound variable name in the pattern z\P
would have to be changed to avoid capture. Thus, any instance of P will not
contain any free occurrences of the bound variable in the above pattern.

Suppose we only want to consider those instances such that X is a term that
can be rewritten directly by some rewrite rule to Y. We can do so with the
following tactic.

ho_rew Rew InG OutG :- then ho_sub Rew InG OutG.

Here, the parameter Rew should be instantiated to the tactic that applies one of
the desired rewrite rules. It is then easy to implement a tactic that applies all
rewrite rules until no more can be applied.

ho_reduce Rew Refl InG OutG :- then (repeat (left_rew (ho_rew Rew)))
Refl InG OutG.

Note that the order in which subterms are rewritten depends on the order in
which instances of C and X are generated by AProlog. The only control provided
to the user is whether unification performs the imitation operation before the
projection operation (as in Huet’s procedure [14]), or vice versa. Thus, such a
tactic is of little use if finer control over the order in which subterms are rewritten
is important. For strongly normalizing rewrite systems, the order often does

22

not matter. In this case, the tactic represents a compact implementation of a
complete rewrite strategy, and for first-order rewriting, provides an alternative
to the bu and lo procedures in the previous section.

As an example, consider the term (¢l (cons 0 (cons (hd (cons 0 nil)) nil))) in
the first-order fragment of the functional language presented in Section 2. If rew
is a tactic implementing all of the rewrite rules of this example, then applying
(ho_reduce rew refl tm) with imitation before projection will perform the
following series of rewrites:

(tl (cons 0 (cons (hd (cons 0 nil)) nil)))
— (tl (cons 0 (cons 0 nil))) — (cons 0 nil)

In the first rewrite step, the instances of C and X are Aw.(¢l (cons 0 (cons w nil)))
and (hd (cons 0 nil)), respectively. Projection before imitation performs the
two rewrite steps in the opposite order.

(tl (cons 0 (cons (hd (cons 0 nil)) nil)))
— (cons (hd (cons 0 nil)) nil) — (cons 0 nil)

To generalize this technique to first-order rewrite systems of more than one
primitive type, we simply include an ho_sub tactic for every possible type of C.
For example, with two types t1 and t2, up to four tactics may be needed for
the types t1 -> t1, t1 -> t2,t2 -> t2, and t2 -> t1.

To see why this technique is not adequate for higher-order rewriting, consider
the term
(abs Az.(abs Ay.(tl (cons z (cons (hd (cons y nil)) nil))))). There are two
instances of X in ho_sub which are abstractions over terms that can be rewritten
by a rewrite rule. One such instance, for example is Az.(hd (cons z nil)). The
corresponding instance of C is

Aw.(abs Az.(abs Ay.(¢ (cons z (cons wy nil))))).

(Note that these instances of C and X correspond to the context and left closure
of Definition 1 in Section 2.) However, there is no instance of X at primitive type
tm to which a rewrite rule can be applied. In fact, universal quantification at
the meta-level as it is used in congruence rules is essential for descending past
abstractions so that rewriting can be performed on subterms. Here, the term
(1 (cons c1 (cons (hd (cons ca mil)) nil))))) can be obtained by two applications
of the congruence rule for abs, where ¢; and ¢y are the new constants generated
by the GENERIC operation. Note that this term is first-order and so it is possible
to apply ho_reduce at this point to obtain the reduced term (cons ¢y nil). So,
by the tactic:

then (then (untree cong_abs) (untree cong_abs)) (ho_reduce rew refl_tm)

the original term rewrites to (abs Az.(abs Ay.(consy nil))). Thus, although this
method is not adequate for general higher-order rewriting, it can be employed
for rewriting first-order subsets of higher-order rewrite systems.

23

8 Conclusion and Related Work

The Isabelle theorem prover [24] also contains a specification language which is
essentially hh®. Thus higher-order rewrite systems could be expressed in much
the same way there. In Isabelle, however, the language used to specify inference
rules is distinct from that used to implement tacticals and tactics, namely ML.
Here, the same language is used for both specification and implementation. It is
the interpreter described in Section 4 that provides control by giving operational
interpretation directly to the logical connectives.

Although we use the same meta-language as Nipkow [23] to define higher-
order rewrite rules, both the definition of the rewrite relation and the notion
of equality modulo an HRS are defined differently here. One difference, for
example, is in the definition of the rewrite relation. Instead of using contexts
with an abstraction indicating where in a term a rewrite is performed, Nipkow
uses positions in first-order abstract trees. This notion of position is similar
to the one often used in defining first-order rewriting (as in Dershowitz [5] for
example). Despite these differences, both the notions of rewrite relation and
equivalence modulo a rewrite system are equivalent to those given here for terms
and rewrite rules at primitive type.

In Nipkow [23], the notion of critical pair is extended to higher-order rewrite
systems, and it is shown that the critical pair lemma extends to the higher-
order case. This result gives rise to a procedure for completion. Higher-order
logic programming should provide a suitable framework for implementing such
completion procedures.

In Pfenning [26], the notion of higher-order patterns is extended to the
dependent-type A-calculus LF, and to the Calculus of Constructions (CC). It
should be straightforward to adopt LF as the meta-language for expressing
rewrite systems and extend the notion of higher-order rewriting accordingly.
While the restriction to primitive types extends naturally to LF, in CC it does
not since quantification over types is permitted. Despite this fact, it would be
interesting to study ways in which CC could be adopted as a meta-language for
rewriting.

It is also possible to encode terms of CC in the simply typed A-calculus, and
to specify and implement provability for this calculus in Ah* [9]. Using this en-
coding, notions of convertibility of CC terms could be expressed as higher-order
rewrite systems as defined here, and incorporated into such an implementation.

Another direction of study in higher-order rewriting has been to consider
the interaction of first-order rewrite systems with reduction rules for various
typed A-calculi (Breazu-Tannen and Gallier [2] and Jouannaud and Okada [15]
for example). In this work, no distinction between the object and meta-level is
made, but properties about the hybrid systems are studied. The rewrite systems
studied there could in fact be encoded as rewrite systems in the setting defined
here and thus implemented directly. Known properties of these systems would
provide knowledge about the corresponding implementations. For example, from
results shown by Breazu-Tannen and Gallier, we know that we can add the app

24

and abs constants and the rewrite rule for #-conversion given in Section 2 to any

terminating first-order rewrite system and obtain a terminating rewrite system.

Acknowledgements

The author would like to thank Dale Miller and the reviewers for helpful com-

ments on this work. This research was supported in part by ESPRIT Basic
Research Action 3245 “Logical Frameworks: Design, Implementation, and Ex-

periment.”

References

1.

10.

11.

12.

13.

Peter Aczel. A general church-rosser theorem. Technical report, University of
Manchester, 1978.

Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves algebraic
strong normalization. Theoretical Computer Science, 83(1):3-28, 1991.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof De-
velopment System. Prentice-Hall, 1986.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed-
itor, Formal Models and Semantics, Handbook of Theoretical Computer Science,
volume B, pages 243-320. Elsevier-MIT Press, 1989.

Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic
Programming Language. PhD thesis, University of Pennsylvania, August 1989.

Amy Felty. Encoding dependent types in an intuitionistic logic. In Gérard Huet
and Gordon Plotkin, editors, Logical Frameworks. Cambridge University Press,
1991.

Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic pro-
gramming language. In Ninth International Conference on Automated Deduction,
Argonne, IL, May 1988.

Amy Felty and Dale Miller. A meta language for type checking and inference:
An extended abstract. Presented at the 1989 Workshop on Programming Logic,
Balstad, Sweden, 1989.

Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh
LCF: A Mechanised Logic of Computation, volume 78 of Lecture Notes in Computer
Science. Springer-Verlag, 1979.

Mike Gordon. HOL: A machine oriented formulation of higher-order logic. Tech-
nical Report 68, University of Cambridge, July 1985.

John Hannan and Dale Miller. Enriching a meta-language with higher-order fea-
tures. In Workshop on Meta-Programming in Logic Programming, Bristol, June

1988.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic and
Lambda Calculus. Cambridge University Press, 1986.

25

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Gérard Huet. A unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

Jean-Pierre Jouannaud and Mitsuhiro Okada. A computation model for executable
higher-order algebraic specification languages. In Sizth Annual Symposium on
Logic in Computer Science, pages 350-361, Amsterdam, July 1991.

J.W. Klop. Combinatory reduction systems. Technical Report Mathematical Cen-
tre Tracts Nr.127, Centre for Mathematics and Computer Science, Amsterdam,

1980.

J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume II. Oxford University
Press, 1991.

Dale Miller. Abstract syntax and logic programming. In Proceedings of the Second
Russian Conference on Logic Programming. Springer-Verlag LNAI series, Septem-
ber 1991. To appear.

Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497-

536, 1991.

Dale Miller. Unification of simply typed lambda-terms as logic programming. In
Eighth International Logic Programming Conference, Paris, France, June 1991.
MIT Press.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,

51:125-157, 1991.

Tobias Nipkow. Equational reasoning in Isabelle. Science of Computer Program-

ming, 12:123-149, 1989.

Tobias Nipkow. Higher-order critical pairs. In Swzth Annual Symposium on Logic
in Computer Science, pages 342-349, Amsterdam, July 1991.

Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of

Automated Reasoning, 5(3):363-397, September 1989.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet
and Gordon Plotkin, editors, Logical Frameworks. Cambridge University Press,

1991.

Frank Pfenning. Unification and anti-unification in the calculus of constructions.
In Sizth Annual Symposium on Logic in Computer Science, pages 74-8b, Amster-

dam, July 1991.

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedings
of the ACM-SIGPLAN Conference on Programming Language Design and Imple-
mentation, 1988.

26

A Equivalence of Operational and Logical
Rewriting

Lemma 2 Let H be a higher-order rewrite system. Let M and N be terms of
type 71 — T2 and z a variable of type 7 not free in M or N. Then:

1. M =5 N if and only if Me —5 Nez.
2. M &4 Nif and only if Mz &4 Ne.

Proof: We prove (1). The proof of (2) then follows by induction on the number
of rewrite steps. We begin with the forward direction and assume that M — 4 N.
Then there is a context u and left and right closures L and R as in Definition 1
such that M =g, uL and N =g, uR. Let u' be the term Aw.uwz where w
is a variable distinct from z and not free in u. Then Mz =g, uLz =g, u'L
and N =g, uRx =g, u'R. Thus, by definition with context u’, we have
Mz —4 Ne.

Next, suppose Mz — gy Nz. Then there is a context v and left and right
closures L and R as in Definition 1 such such that Mz =g, vL and Nz =g, vR.
Let v’ be the term with bound variable z and body v, and v” be the term
Aw.Az.v'zw for variables z, w not free in v'. Then v"Lz =g, v'eL =g, vL =g,
Mz and similarly v"Re =g, v'R =g,, vR =g, Nz. Since z does not occur free
in M, N, or v", we have v""L =g, M and v"R =g,) N. Thus, by definition with
context v", M —y N.

Lemma 3 Let H be a higher-order rewrite system. Let M and N be terms of
type 71 and P and @ terms of type 71 — 7.

1. f M -4 N, then PM —, PN.
2. If P>y Q, then PM —5 QM.
3.f P&, Qand M S, N, then PM &4 QN.

Proof: To prove (1), we know that if M — 4 N, then there is a context u and
left and right closures L and R as in Definition 1 such that M =g, uL and
N =g, uR. Let u’ be the term Az.P(uz) where z is a variable not free in P
or u. Then v'L =g, P(uL) =g, PM and v'R =g, P(uR) =g, PN, and thus
by definition with context u', PM —y PN. The proof of (2) is similar. (3) is
proved by induction on the sum of the number of rewrite steps in P <5 Q and
M &g N, and follows easily from (1) and (2).

We now define a specialized form of the rewriting relation and prove that
the relation defined in Section 2 is contained in the transitive closure of this
new relation. Although it is not essential, this relation simplifies the proof of
Theorem 7.

27

Definition 4 Given an HRS H, we define the relation — 4 on terms as follows:
M —y N if there is a context u and left and right closures L and R as in
Definition 1 such that there is at most one free occurrence of the outermost
bound variable in the body of the 85-long form of u.

*
We write =5 to denote the reflexive, symmetric, transitive closure of this rela-

tion. It is easy to see that Lemma 3 also holds for — and éH.

Lemma 5 Given HRS H and terms M, N, if M —5 N, then M éH N.

Proof: Since M —y N, there is a context u and left and right closures L and
R as in Definition 1 such that M =g, uL and N =g, uR. The proof is by
induction on m, the number of free occurrences of the bound variable at the
head of u in the body of u. If m is 0, then M =g,, N. For the case when m > 0,
we can express u as an abstraction with bound variable and body [z/w]v for
some variable w and term v that has exactly one free occurrence of w. Let '
be the term with binder Aw.Az. and body v. Thus M =g, uL =g, v'LL. By
definition, with context 'L, we know that u'LL —y v'LR. Context u’'L has
one fewer free occurrence of the bound variable at its head in its body than does

u, so, by the induction hypothesis u'LL éH u'LR. By definition, with context
u', we know that v'L —5 v'R. By Lemma 3, we have v'/LR —5 v'RR. Thus

w'LL éH u'RR and we have our result.

Lemma 6 Let H be an HRS, and let M and N be terms of type 1y, — --- —
Tn — To where n > 0 and 79 is primitive. Let zq,...,%, be n distinct vari-

ables of type 71, ..., T, respectively, not free in M or N. If M —4 N, then
Fa Vi, (Mz, = NZ,,).

Proof: By Definition 4, there are a rule I — r in H, a substitution o, variables
Z1,...,%m, and a context u, such that (1) L and R are closures with binder
AZ, and bodies ol and or, respectively, (2) there is at most one free occurrence
of the outermost bound variable in the body of the 8n-long form of u, and (3)
M =g, uL and N =g, uRR. We show by induction on the structure of the 8n-long
form of u that g VZ,(MZ, = NZ,). The fn-long form of u has a binder of the
form AwAZ, and body of form the AP, ... P, where h is a variable or constant
and exactly one of the terms h, P, ..., P, contains exactly one occurrence of w.

We first consider the case where h is w. Then h, w, and L have the same type
and m = p. Let ¢’ be the substitution that maps z; to P;fori =1,...,m, and let
o' be the substitution that maps each element z in the domain of ¢ to ¢'(oz).
Then M%, =g, LP;...P, =g, 0'(0l) =g, 0"l and N%, =g, RP:...P, =g,
o'(or) =g, 0'r. The domain of " is the free variables of [. Thus, by a series of
V-E from the axiom corresponding to the rule [— r, using ¢ as the substitution
terms, we have -y M®,, = N%,. Then, by a series of applications of V-I, we
have our result.

28

We next consider the case where h and w are distinct. For ¢ = 1,...,p, let
u; be the term with bound variable w and body P;. Note that u; is smaller
than u. (Also, note that since there is exactly one occurrence of w in u,
all but one of the abstractions in us,...,u, are vacuous.) Then MZ, =g,
ulZ, =g, h(u1L) ... (upLl) and NZ, =g, uRZ, =g, h(u1R) ...(upR). By def-
1n1t10n fori=1,...,p, usmg u; as context, we know that u;L —5 u;R. Let
ST IR (R ¢ Where T4 1s primitive be the type of u;L, and z1,...,2Zm;
be m; varlables of type 73, . . ., T,,; that do not appear free in u;. Thus, by the in-
duction hypothesis, we can deduce VZ,,, (u;L%,,, = u; RZ.,,). By an application
of (CONG) we have h(u1 L) ...(upL) = h(u1R) ... (upR). Then by n applications
of V-1, we have our result.

Theorem 7 Let H be an HRS, and let M and N be terms of type 71 — -+ —
Tn, — To where n > 0 and 7p is primitive. Let 1, ..., %, be n distinct variables
of type 71, ..., Tn, respectively, not free in M or N. Then g Vz,(MzZ, = NzZ,)
if and only if M <4 N.

Proof: We prove the forward direction by induction on the height of a proof
tree. If the proof is a one node application of reflexivity, then n is 0 and M is
N. Then, clearly M &y N If Vi, (Mz, = N%,) is an axiom other than the
reflexive axiom, then M=z, — N&%, is a rewrite rule. Thus Mz, -5 Nz, and
by Lemma 2, M — g N.

If the last inference is V-E, then the premise has the form VeVz,, (M'zZ, =
N'zz,;) and the conclusion has the form Vz,(M'tz, = N'tz,) for some sub-
stitution term ¢. By the induction hypothesis M’ <, N’, and by Lemma 3
M't &, N't.

If the last inference is V-I, then the premise has the form Vz,(M'zz, =
N'zz,;) and the conclusion has the form VaVz,(M'zz, = N'zz,). By the
induction hypothesis M’z <&, N'z, and by Lemma 2, M’ &5 N'. The case
when the last rule application is (CONG) follows by the induction hypothesis and
Lemma 3. The last two cases for symmetry and transitivity follow directly from
the induction hypothesis.

Next, we assume that M &4 N. By Lemma 5, we know that M =5y N. The
proof is by induction on m, the number of rewrite steps using —y to rewrite
M to N. If mis 0, then M =g, N. Thus Mz, =g, Nz, and the desired
formula is provable by reflexivity followed by n applications of V-1. If m > 0,
then there is a term P such that M =y P -y N or M =5 P —y N. By
the induction hypothesis, -z M = P. By Lemma 6, either VZ,(PZ, = NZ,)
or VZ,(NZ, = P%,). By n applications of V-E, we obtain Pz, = Nz, or
NZ, = Pz,. In the latter case, by symmetry we obtain PZ,, = NZ,. Then, in
both cases, by transitivity followed by n applications of V-1, we get the desired
result.

29

