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Abstract. The use of higher-order abstract syntax is an important ap-
proach for the representation of binding constructs in encodings of lan-
guages and logics in a logical framework. Formal meta-reasoning about
such object languages is a particular challenge. We present a mechanism
for such reasoning, formalized in Coq, inspired by the Hybrid tool in
Isabelle. At the base level, we define a de Bruijn representation of terms
with basic operations and a reasoning framework. At a higher level, we
can represent languages and reason about them using higher-order syn-
tax. We take advantage of Coq’s constructive logic by formulating many
definitions as Coq programs. We illustrate the method on two examples:
the untyped lambda calculus and quantified propositional logic. For each
language, we can define recursion and induction principles that work di-
rectly on the higher-order syntax.

1 Introduction

There are well-known challenges in reasoning within a logical framework about
languages encoded using higher-order syntax to represent binding constructs.
To illustrate, consider a simple example of an object language – the untyped λ-
calculus – encoded in a typed meta-language. We encode λ-terms, in higher-order
syntax, by a type term with constructors: abs of type (term → term) → term and
app of type term → term → term. We represent binding by negative occurrences
of the defined type. (Here, the single negative occurrence is underlined.) The Coq
system [3, 4] implements the Calculus of Inductive Constructions (CIC) [5, 27]:
Like many other systems, it does not allow negative occurrences in constructors
of inductive types.

Our approach realizes higher-order syntax encodings of terms with an un-
derlying de Bruijn representation [6]. De Bruijn syntax has two advantages:
α-convertibility is just equality and there is no variable capture in substitution.
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A main advantage of higher-order syntax is that it allows substitution by func-
tion application at the meta-level. We define higher-order syntax encodings on
top of the base level so that they expand to de Bruijn terms.

We provide libraries of operations and lemmas to reason on the higher-order
syntax, hiding the details of the de Bruijn representation. This approach is in-
spired by the Hybrid system [1], implemented in Isabelle [18]. The general struc-
ture is the same, but our basic definitions and operators to build a higher level
on top of de Bruijn terms are quite different.

Coq’s constructive logic allows us to define operators as functions, rather than
relations as in Hybrid. This simplifies some of the reasoning and provides more
flexibility in specifying object languages. We obtain new induction principles to
reason directly on the higher-order syntax, as well as non-dependent recursion
principles to define programs on the higher-order syntax.

Our framework includes two parts. The first part is a general library of defi-
nitions and lemmas used by any object language. It includes the definition of the
de Bruijn representation and of several recursive functions on de Bruijn terms,
e.g., substitution. The second part is a methodology to instantiate the library
to a particular object language. It includes definitions and lemmas that follow a
general pattern and can easily be adapted from one object language to the next.
An important result is the validation of induction and recursion principles on
the higher-order syntax of the language.

We illustrate our framework on two examples, the untyped λ-calculus (LC)
and quantified propositional logic (QPL); the same languages were implemented
in Hybrid [1]. For example, we give a Coq function computing the negation
normal form of formulas in QPL. This definition uses the recursion principle for
the higher-order syntax of QPL. The proof that it does indeed produce normal
forms is quite simple, making direct use of our induction principle for QPL. In
Hybrid, negation normal forms and many other definitions are given as relations
instead. In Coq, they are functions and our higher-order recursion principles
allow us to provide simpler, more direct proofs.

Section 2 presents the general part of our framework starting with the de
Bruijn syntax and Sect. 3 illustrates how we instantiate this general framework to
LC. Section 4 uses this instantiation to prove properties of this object language.
In Sect. 5, we apply our framework to QPL. In Sect. 6, we discuss related work,
and in Sect. 7, we conclude and discuss future work.

We formalized all the results in this paper in the proof assistant Coq. The
files of the formalization are available at:
http://www.site.uottawa.ca/~afelty/coq/types06_coq.html

2 De Bruijn Syntax

We describe the lowest level formalization of the syntax. We define a generic type
of expressions built on a parameter type of constants con. Expressions are built
from variables and constants through application and abstraction. There are two
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kinds of variables, free and bound. Two types, var and bnd, both instantiated as
natural numbers, are used for indexing the two kinds.

Bound variables are treated as de Bruijn indices: this notation eliminates
the need to specify the name of the abstracted variable. Thus, the abstraction
operator is a simple unary constructor. Expressions are an inductive type:

Inductive expr : Set :=
CON : con → expr

VAR : var → expr

BND : bnd → expr

APP : expr → expr → expr

ABS : expr → expr

This is the same definition used in Hybrid [1]. The idea is that the variable
(BND i) is bound by the i-th occurrence of ABS above it in the syntax tree. In
the following example, we underline all the variable occurrences bound by the
first ABS:

ABS (APP (ABS (APP (BND 1) (BND 0))) (BND 0)).

Written in the usual λ-calculus notation, this expression would be λx.(λy.x y) x.

There may occur BND variables with indices higher than the total number
of ABSs above them. These are called dangling variables. They should not occur
in correct terms, but we need to handle them in higher-order binding.

Substitution can be defined for both kinds of variables, but we need it only
for the BND variables (substitution of VAR variables can be obtained by first
swapping the variable with a fresh BND variable, as shown below, and then
substituting the latter).

If j is a de Bruijn index, we define the term e[j/x] (written as (bsubst e j x)

in the Coq code), obtained by substituting the dangling BND j variable with
x. This operation is slightly complicated by the fact that the identity of a
BND variable depends on how many ABSs are above it: Every time we go un-
der an ABS, we need to increment the index of the substituted variable and
of all the dangling variables in x. In ordinary λ-calculus notation we have
((λy.x y) x)[x/y] = (λy′.y y′) y.1 In de Bruijn syntax, we have, using BND 0 for
x and BND 1 for y:

(APP (ABS (APP (BND 1) (BND 0))) (BND 0))[0/BND 1]

= (APP (ABS (APP (BND 2) (BND 0))) (BND 1))

The two underlined occurrences of BND 1 and BND 0 on the left-hand side repre-
sent the same dangling variable, the one with index 0 at the top level. Similarly,
the two occurrences of BND 2 and BND 1 on the right-hand side represent the
same dangling variable, the one with index 1 at the top level.

1 Here, y has been renamed y′ to avoid capture. Using de Bruijn notation, there is
never any variable capture, since renaming is implicit in the syntax.
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Call x̂ (written as (bshift x) in the Coq code) the result of incrementing
by one all the dangling variables in x. We define:

(CON c)[j/x] = CON c
(VAR v)[j/x] = VAR v
(BND i)[j/x] = if j = i then x else BND i
(APP e1 e2)[j/x] = APP (e1[j/x]) (e2[j/x])
(ABS e)[j/x] = ABS (e[j + 1/x̂])

To define binding operators, we need to turn a free variable into a bound one.
If e is an expression, j a bound variable, and v a free variable, then we denote
by e[j ↔ v] (written as (ebind v j e) in the Coq code) the result of swapping
BND j with VAR v in e, taking into account the change in indexing caused by
the occurrences of ABS:

(CON c)[j ↔ v] = CON c
(VAR w)[j ↔ v] = if w = v then BND j else VAR w
(BND i)[j ↔ v] = if i = j then VAR v else BND i
(APP e1 e2)[j ↔ v] = APP (e1[j ↔ v]) (e2[j ↔ v])
(ABS e)[j ↔ v] = ABS (e[j + 1 ↔ v])

We can easily prove that the operation is its own inverse: e[j↔ v][j↔ v] = e.
Finally, the operation newvar e gives the index of the first free variable not

occurring in e. Because it is a new variable, if we replace any dangling BND

variable with it and then swap the two, we obtain the original term:

Lemma 1. For e : expr, j : bnd, and n = newvar e; e[j/(VAR n)][j ↔ n] = e.

3 Higher-order syntax: The untyped λ-calculus

The first object language that we try to encode is the untyped λ-calculus. Its
higher-order definition would be:

Inductive term : Set :=
abs : (term → term) → term

app : term → term → term

This definition is not accepted by Coq, because of the negative occurrence of
term in the type of abs. However, we can simulate it on top of the de Bruijn
framework. Define lexpr to be the type of expressions obtained by instantiating
the type of constants con by the two element type LCcon = {app, abs}. Not
all expressions in lexpr represent valid λ-terms: app can be applied only to two
expressions and abs can be applied only to an abstraction. Therefore there are
just two correct forms for a λ-term, besides variables:

APP (APP (CON app) e1) e2 and APP (CON abs) (ABS e).2

2 Do not confuse APP and ABS with app and abs: the first are constructors for
expressions, the second are constants in the syntax of the λ-calculus.
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This is easily captured by a boolean function on expressions:

termcheck : lexpr → B

termcheck (VAR v) = true

termcheck (BND i) = true

termcheck (APP (APP (CON app) e1) e2) = (termcheck e1) and (termcheck e2)
termcheck (APP (CON abs) (ABS e)) = termcheck e
termcheck = false

In constructive systems like Coq, a boolean function is not the same as a
predicate. However, it can be turned into a predicate Tcheck by (Tcheck e) =
Is true (termcheck e), where Is true true = True and Is true false = False.3

Well-formed λ-terms are those expressions satisfying Tcheck. They can be
defined in type theory by a record type4:

Record term := mk term

{ t expr : lexpr;
t check : Tcheck t expr}

The advantage of our definition of Tcheck is that its value is always True for
well-formed expressions. This implies that the t check component of a term must
always be I, the only proof of True. This ensures that terms are completely defined
by their t expr component:

Lemma 2 (term unicity). ∀t1, t2 : term, (t expr t1) = (t expr t2) → t1 = t2.

Now our aim is to define higher-order syntax for term. It is easy to define
notation for variables and application:

Var v = mk term (VAR v) I

Bind i = mk term (BND i) I

t1 @ t2 = mk term (APP (APP (CON app) (t expr t1)) (t expr t2)) F

(The F symbol stands for a proof of Tcheck that can easily be constructed from
t check t1 and t check t2. In the rest of this paper, we often omit the details of
Tcheck proofs and use this symbol instead.)

The crucial problem is the definition of a higher-order notation for abstrac-
tion. Let f : term → term; we want to define a term (Fun x, f x) representing
the λ-term (λx.f x). The underlying expression of this term must be an abstrac-
tion, i.e., it must be in the form (APP (CON abs) (ABS e)). The idea is that e
should be the result of replacing the metavariable x in f x by the bound vari-
able Bind 0. However, the simple solution of applying f to Bind 0 is incorrect:
Different occurrences of the metavariable should be replaced by different de
Bruijn indices, according to the number of abstractions above them. The solu-
tion is: First apply f to a new free variable Var n, and then replace VAR n with

3 The values true and false are in B which is a member of Set, while True and False

are propositions, i.e., members of Prop.
4 Here, mk term is the constructor of term; t expr and t check are field names.
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BND 0 in the underlying expression. Formally: tbind f = t expr (f (Var n))[0↔n].
The proof tbind check f of (Tcheck (tbind f)) can be constructed from the proof
t check (f (Var n)). We can then define a term that we call the body of the func-
tion f : tbody f = mk term (tbind f) (tbind check f). Finally, we can define the
higher-order notation for λ-abstraction:

Funx, f x = mk term(APP (CON abs) (ABS (tbind (λx, f x)))) F

We must clarify what it means for n to be a new variable for a function
f : term → term. In Coq, the function space term → term includes meta-terms
that do not encode terms of the object language LC, often called exotic terms

(see [7]). Functions that do encode terms are those that work uniformly on all
arguments. Since we do not require uniformity, (f x) may have a different set of
free variables for each argument x. It is in general not possible to find a variable
that is new for all the results. We could have, e.g., f x = Var (size x) where
(size x) is the total number of variables and constants occurring in x. Only if f
is uniform, e.g., if f x = (Var 1) @ (x @ (Var 0)), we can determine objectively
an authentic free variable, in this case n = 2. For the general case, we simply
define n to be a free variable for (f (Bind 0)). This definition gives an authentic
free variable when f is uniform.

To prove some results, we must require that functions are uniform, so we
must define this notion formally. Intuitively, uniformity means that all values
(f x) are defined by the same expression. We say that f is an abstraction if this
happens. We already defined the body of f , (tbody f). We now state that f is
an abstraction if, for every term x, (f x) is obtained by applying the body of f
to x. We define the result of applying a function body to an argument by the
use of the operation of substitution of bound variables.

If t = mk term et ht and x = mk term ex hx,
then tapp t x = mk term (et[0/ex]) F

We can now link the higher-order abstraction operator Fun to the application
of the constant abs at the de Bruijn level in an exact sense.

Lemma 3. For all e : t expr and h : Tcheck e, we have

Fun x, tapp (mk term e h) x = mk term (APP (CON abs) (ABS e)) F

Proof. Unfold the definitions of Fun, tbind and tapp and then use Lemma 1.

The body of the application of a term is always the term itself. We define a
function to be an abstraction if it is equal to the application of its body.

Lemma 4. ∀t : term, t = tbody (tapp t)

Definition 1. Given a function f : term → term, we define its canonical form
as funt f = tapp (tbody f) : term → term. We say that f is an abstraction,

is abst f , if ∀x, f x = funt f x.
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Some definitions and results will hold only in the case that the function is
an abstraction. For example, if we want to formalize β-reduction, we should
add such a hypothesis: is abst f → ((Fun x, f x) @ t) ;β f t. This assump-
tion does not appear in informal reasoning, so we would like it to be auto-
matically provable. It would be relatively easy to define a tactic to dispose of
such hypotheses mechanically. A different solution is to use always the canonical
form in place of the bare function. In the case of β-reduction we would write:
((Fun x, f x)@ t) ;β (funt f) t. Note that if f happens to be an abstraction, then
(funt f) t and f t are convertible at the meta-level, so the two formulations are
equivalent and in the second one we are exempted from proving the uniformity
of f . In Sect. 4 we follow Hybrid in adopting the first definition, but using the
second one would be equally easy.

Coq provides an automatic induction principle on expressions. It would be
more convenient to have an induction principle tailored to the higher-order syn-
tax of terms. The first step in this direction is an induction principle on expres-
sions satisfying Tcheck:

Theorem 1 (Induction on well-formed expressions). Let P : lexpr → Prop

be a predicate on expressions such that the following hypotheses hold:

∀v : var, P (VAR v)
∀i : bnd, P (BND i)
∀e1, e2 : lexpr, P e1 → P e2 → P (APP (APP (CON app) e1) e2)
∀e : lexpr, P e → P (APP (CON abs) (ABS e))

Then (P e) is true for every e : lexpr such that (Tcheck e) holds.

Proof. By induction on the structure of e. The assumptions provide us with
derivations of (P e) from the inductive hypotheses that P holds for all subterms
of e satisfying Tcheck, but only if e is in one of the four allowed forms. If e is in a
different form, the result is obtained by reductio ad absurdum from the assump-
tion (Tcheck e) = False . To apply the induction hypotheses to subterms, we need
a proof that Tcheck holds for them. This is easily derivable from (Tcheck e).

This induction principle was used to prove several results about terms. A
fully higher-order induction principle can be derived from it.

Theorem 2 (Induction on terms). Let P : term → Prop be a predicate on

terms such that the following hypotheses hold:

∀v : var, P (Var v)
∀i : bnd, P (Bind i)
∀t1, t2 : term, P t1 → P t2 → P (t1 @ t2)
∀f : term → term, P (tbody (λx, f x)) → P (Fun x, f x)

Then (P t) is true for every t : term.5

5 The induction hypothesis is formulated for (tbody (λx, f x)) rather than for (tbody f)
because, in Coq, extensionally equal functions are not always provably equal, so we
may need to use their η-expansion.
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Proof. Since t must be in the form t = (mk term e h) where e : lexpr and h :
(Tcheck e), we apply Theorem 1. This requires solving two problems.

First, P is a predicate on terms, while Theorem 1 requires a predicate on
expressions. We define it by: P̄ e = ∀h : (Tcheck e), P (mk term e h).

Second, we have to prove the four assumptions about P̄ of Theorem 1. The
first three are easily derived from the corresponding assumptions in the state-
ment of this theorem. The fourth requires a little more work. We need to prove
that ∀e : lexpr, P̄ e → P̄ (APP (CON abs) (ABS e)). Let then e be an expression
and assume (P̄ e) = ∀h : (Tcheck e), P (mk term e h) holds. The conclusion of the
statement is unfolded to:

∀h : (Tcheck e), P (mk term (APP (CON abs) (ABS e)) h).

By Lemma 3, the above expression has a higher-order equivalent:

(mk term (APP (CON abs) (ABS e)) h) = Fun x, tapp (mk term e F) x.

By the fourth assumption in the statement, P holds for this term if it holds
for (tbody (λx, tapp (mk term e F) x)), which is (tbody (tapp (mk term e F))) by
extensionality of tbody. This follows from (P (mk term e F)) by Lemma 4, and
this last proposition holds by assumption, so we are done.

In Sect. 5 we give a similar induction principle for Quantified Propositional
Logic and explain its use on an example.

As stated earlier, although inspired by Hybrid [1], our basic definitions and
operators to build the higher-order level on top of de Bruijn terms are quite
different. For example, our higher-order notation for λ-abstraction (Funx, f x)
is defined only on well-formed terms. In Hybrid, the corresponding lambda is
defined on all expressions. A predicate is defined identifying all non-well-formed
terms, which are mapped to a default expression. Hybrid also defines an induc-
tion principle similar to our Theorem 1. Here we go a step further and show that
a fully higher-order induction principle can be derived from it (Theorem 2). In
Sect. 5, we also provide a non-dependent recursion principle (Theorem 4).

4 Lazy Evaluation of Untyped λ-Terms

Using the higher-order syntax from the previous section, we give a direct defini-
tion of lazy evaluation of closed λ-terms as an inductive relation:

Inductive ⇓ : term → term → Prop :=
∀f : term → term, (Fun x, f x) ⇓ (Fun x, f x)
∀e1, e2, v : term, ∀f : term → term,

is abst f → e1 ⇓ (Fun x, f x) → (f e2) ⇓ v → (e1 @ e2) ⇓ v

Notice that in the second rule, expressing β-reduction, substitution is obtained
simply by higher-order application: (f e2).
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By a straightforward induction on this definition, we can prove that evalua-
tion is a functional relation. The uniformity hypothesis (is abst f) in the applica-
tion case is important (see Definition 1); without it, the property does not hold.
In particular, the proof uses the following lemma, which holds only for functions
which satisfy the is abst predicate:

Lemma 5 (Fun injectivity). Let f1, f2 : term → term such that is abst f1 and

is abst f2; if (Fun x, f1 x) = (Fun x, f2 x), then ∀x : term, (f1 x) = (f2 x).

Our main theorem follows by direct structural induction on the proof of the
evaluation relation.

Theorem 3 (Unique values). Let e, v1, v2 : term; if both e⇓v1 and e⇓v2 hold,

then v1 = v2.

5 Quantified Propositional Logic

Our second example of an object language, Quantified Propositional Logic (QPL),
is also inspired by the Hybrid system [1]. The informal higher-order syntax rep-
resentation of QPL would be the following:

Inductive formula : Set :=
Not : formula → formula

Imp : formula → formula → formula

And : formula → formula → formula

Or : formula → formula → formula

All : (formula → formula) → formula

Ex : (formula → formula) → formula

As for the case of LC, this definition is not acceptable in type theory because of
the negative occurrences of formula in the types of the two quantifiers.

As in Sect. 3, we instantiate the type of de Bruijn expressions with the
type of constants QPLcon = {not, imp, and,or, all, ex}. We call oo the type of
expressions built on these constants.

Similarly to the definition of termcheck and Tcheck, we define a boolean func-
tion formulacheck and a predicate Fcheck to restrict the well-formed expressions
to those in one of the following forms:

VAR v APP (APP (CON and) e1) e2

BND i APP (APP (CONor) e1) e2

APP (CON not) e APP (CON all) (ABS e)
APP (APP (CON imp) e1) e2 APP (CON ex) (ABS e)

Then the type of formulas can be defined by:

Record formula := mk formula

{ f expr : oo;
f check : Fcheck f expr}
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The higher-order syntax of QPL is defined similarly to that of LC:

Var v = mk formula (VAR v) I

Bind i = mk formula (BND i) I

Nota = mk formula (APP not (f expr a)) F

a1 Imp a2 = mk formula (APP (APP imp (f expr a1)) (f expr a2)) F

a1 And a2 = mk formula (APP (APP and (f expr a1)) (f expr a2)) F

a1 Or a2 = mk formula (APP (APPor (f expr a1)) (f expr a2)) F

All x, f x = mk formula (APP (CON all) (ABS (fbind (λx, f x)))) F

Exx, f x = mk formula (APP (CON ex) (ABS (fbind (λx, f x)))) F

where fbind is defined exactly as tbind in Sect. 3. As in that case, fbind f satisfies
Fcheck, giving us the formula fbody f , the body of the function f . As before, the
canonical form funf f is the application of the body of f (following Definition 1).

For this example, we carry the encoding of higher-order syntax further by
defining a non-dependent recursion principle.

Theorem 4. For any type B, we can define a function of type formula → B by

recursively specifying its results on the higher-order form of formulas:

Hvar : var → B
Hbind : bnd → B
Hnot : formula → B → B
Himp : formula → formula → B → B → B
Hand : formula → formula → B → B → B
Hor : formula → formula → B → B → B
Hall : (formula → formula) → B → B
Hex : (formula → formula) → B → B

If f = form recHvar,Hbind,Hnot,Himp,Hand,Hor,Hall,Hex : formula → B is the function so

defined, then the following reduction equations hold:

f (Var v) = Hvar v f (a1 Imp a2) = Himpa1 a2 (f a1) (f a2)
f (Bind i) = Hbind i f (a1 And a2) = Handa1 a2 (f a1) (f a2)
f (Not a) = Hnota (f a) f (a1 Or a2) = Hor a1 a2 (f a1) (f a2)
f (All x, f x) = Hall (funf (λx.f x)) (f (fbody (λx.f x)))
f (Ex x, f x) = Hex (funf (λx.f x)) (f (fbody (λx.f x)))

Proof. Let a : formula; it must be of the form (mk formula e h). The definition
is by recursion on the structure of e. The assumptions give the inductive steps
when e is in one of the allowed forms. If e is in a different form, we can give an
arbitrary output, since h : (Fcheck e) = False is absurd.

For the allowed expressions, we transform e into its equivalent higher-order
form in the same manner as was done for λ-terms in the proof of Theorem 2.
The reduction equations follow from unfolding definitions.

As illustration, we use this recursion principle to define the negation normal
form of a formula. Intuitively, (nnf a) recursively moves negations inside connec-
tives and quantifiers, eliminating double negations. For example, here are four
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of the several possible cases:

nnf (Not (Nota)) = a
nnf (Not (a1 Imp a2)) = (nnf a1) And (nnf (Not a2))
nnf (All x, f x) = All x, fapp (nnf (fbody (λx, f x))) x
nnf (Not (All x, f x)) = Exx, fapp (nnf (Not (fbody (λx, f x)))) x

Notice, in particular, the way nnf is defined on quantifiers. It would be incorrect
to try to define it as nnf (All x, f x) = All x, (nnf (f x)), because this would imply
that in order to define nnf on (All x, x), it must already be recursively defined
on every x, in particular on x = (All x, f x) itself. This definition is circular and
therefore incorrect. Instead, we recursively apply nnf only to the body of f and
then quantify over the application of the result.

To define nnf formally, we need to give its result simultaneously on a formula
a and its negation (Not a). Therefore, we define an auxiliary function nnf aux :
formula → formula × formula in such a way that nnf aux a = 〈nnf a, nnf (Nota)〉.
We apply form rec with B := formula × formula:

Hvar v = 〈Var v, Not (Var v)〉
Hbind i = 〈Bind i, Not (Bind i)〉
Hnota 〈u, v〉 = 〈v, u〉
Himpa1 a2 〈u1, v1〉 〈u2, v2〉 = 〈v1 Or u2, u1 And v2〉
Handa1 a2 〈u1, v1〉 〈u2, v2〉 = 〈u1 And u2, v1 Or v2〉
Hor a1 a2 〈u1, v1〉 〈u2, v2〉 = 〈u1 Or u2, v1 And v2〉
Hall f 〈u, v〉 = 〈(All x, fapp u x), (Ex x, fapp v x)〉
Hex f 〈u, v〉 = 〈(Ex x, fapp u x), (All x, fapp v x)〉

and then define nnf a = π1 (nnf aux a). The arguments in the form 〈u, v〉 repre-
sent the result of the recursive calls on the formula and its negation. For exam-
ple, in the definition of Hnot, u represents (nnf a) and v represents (nnf (Nota)).
In the definition of Hall, u represents (nnf (fbody (λx, f x))) and v represents
nnf (Not (fbody (λx, f x))).

We also prove an induction principle on formulas, similar to Theorem 2.

Theorem 5 (Induction on formulas). Let P : formula → Prop be a predicate

on formulas such that the following hypotheses hold:

∀v : var, P (Var v)
∀i : bnd, P (Bind i)
∀a : formula, P a → P (Nota)
∀a1, a2 : formula, P a1 → P a2 → P (a1 Imp a2)
∀a1, a2 : formula, P a1 → P a2 → P (a1 And a2)
∀a1, a2 : formula, P a1 → P a2 → P (a1 Or a2)
∀f : formula → formula, P (fbody (λx, f x)) → P (All x, f x)
∀f : formula → formula, P (fbody (λx, f x)) → P (Ex x, f x)

Then (P a) is true for every a : formula.

As an application of this principle, we defined an inductive predicate is Nnf

stating that a formula is in negation normal form, i.e., negation can occur only
on variables, and proved that the result of nnf is always in normal form.

11



6 Related Work

There is extensive literature on approaches to representing object languages
with higher-order syntax and reasoning about them within the same framework.
Pollack’s notes on the problem of reasoning about binding [22] give a high-level
summary of many of them. Some of them were used to solve the POPLmark
challenge problem set [2]. We mention a few here.

Several approaches have used Coq. These include the use of weak higher-order

abstract syntax [7, 14]. In weak higher-order syntax, the problem of negative
occurrences in syntax encodings is handled by replacing them by a new type.
For example, the abs constructor for the untyped λ-terms introduced in Sect. 1
has type (var → term) → term, where var is a type of variables. Some additional
operations are needed to encode and reason about this new type, which at times
is inconvenient. Miculan’s approach [14, 15] introduces a “theory of contexts”
to handle this representation of variables, with extensive use of axioms whose
soundness must be justified independently.

McDowell and Miller [12] introduce a new logic specifically designed for rea-
soning with higher-order syntax. Their logic is intuitionistic and higher-order
with support for natural number induction and definitions. In general, higher-
order syntax mainly addresses encodings of term-level abstraction. More recent
work by Miller and Tiu [16] includes a new quantifier for this style of logic, which
provides an elegant way to handle abstractions at the level of proofs. Another
approach uses multi-level encodings [8, 17]. This approach also aims to capture
more than term-level abstraction, and is inspired by the work of McDowell and
Miller but uses Coq and Isabelle, respectively.

Gabbay and Pitts [9] define a variant of classical set theory that includes
primitives for variable renaming and variable freshness, and a new “freshness
quantifier.” Using this set theory, it is possible to prove properties by structural
induction and also to define functions by recursion over syntax.

The Twelf system [21], which implements the Logical Framework (LF) has
also been used as a framework for reasoning using higher-order syntax. In par-
ticular Schürmann [23] has developed a logic which extends LF with support for
meta-reasoning about object logics expressed in LF. The design of the compo-
nent for reasoning by induction does not include induction principles for higher-
order encodings. Instead, it is based on a realizability interpretation of proof
terms. The Twelf implementation of this approach includes powerful automated
support for inductive proofs.

Schürmann, Despeyroux, and Pfenning [24] develop a modal metatheory that
allows the formalization of higher-order abstract syntax with a primitive recur-
sion principle. They introduce a modal operator 2. Intuitively, for every type A
there is a type 2A of closed objects of type A. In addition to the regular function
type A → B, there is a more restricted type A ⇒ B ≡ 2A → B of uniform
functions. Functions used as arguments for higher-order constructors are of this
kind. This allows them to define a recursion principle that avoids the usual cir-
cularity problems. The system has not yet been extended to a framework with
dependent types.

12



Schürmann et. al. have also worked on designing a new calculus for defining
recursive functions directly on higher-order syntax [25]. Built-in primitives are
provided for the reduction equations for the higher-order case, in contrast to
our approach where we define the recursion principle on top of the base level de
Bruijn encoding, and prove the reduction equations as lemmas.

Nogin et. al. [19] build a theory in MetaPRL that includes both a higher-order
syntax and a de Bruijn representation of terms, with a translation between the
two. Induction principles are defined at the de Bruijn level. Their basic library is
more extensive than ours; it provides syntactic infrastructure for reflective rea-
soning and variable-length bindings. Instantiating the basic theory and proving
properties about specific object logics is left as future work.

Solutions to the POPLmark challenge also include first-order approaches
which adopt de Bruijn representations, such as the one by Stump [26] that
uses named bound variables and indices for free variables, and solves part 1a of
POPLmark. Another earlier first-order approach by Melham avoids de Bruijn
syntax altogether and encodes abstractions using names paired with expres-
sions [13]. Working at this level requires dealing with low-level details about α-
conversion, free and bound variables, substitution, etc. Gordon and Melham [11]
generalize this name-carrying syntax approach and develop a general theory of
untyped λ-terms up to α-conversion, including induction and recursion prin-
ciples. They illustrate that their theory can be used as a meta-language for
representing object languages in such a way that the user is free from concerns
of α-conversion. Norrish [20] improves the recursion principles, allowing greater
flexibility in defining recursive functions on this syntax. Gordon [10] was able to
take a step further in improving the name-carrying syntax approach by defin-
ing this kind of syntax in terms of an underlying de Bruijn notation. Gordon’s
work was the starting point for Hybrid [1], which kept the underlying de Bruijn
notation, but used a higher-order representation at the higher-level.

7 Conclusion

We have presented a new method for reasoning in Coq about object languages
represented using higher-order syntax. We have shown how to structure proof
development so that reasoning about object languages takes place at the level of
higher-order syntax, even though the underlying syntax uses de Bruijn notation.
An important advantage of our approach is the ability to define induction and
recursion principles directly on the higher-order syntax representation of terms.
Our examples illustrate the use of this framework for encoding object languages
and their properties in a manner that allows direct and simple reasoning.

Future work includes considering a wider variety of object languages and
completing more extensive proofs. It also includes adapting the preliminary ideas
from Hybrid [1] to show that our representation of the λ-calculus is an adequate
one. It is unlikely that these results will carry over directly to our construc-
tive setting, so further work will be required. We also plan to generalize the
methodology to define object languages with binding and prove their higher-
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order recursion and induction principles: the user should be able to define a new
language and reason about it using only higher-order syntax, without having to
look at all at the lower de Bruijn level. In a forthcoming article, we develop a
higher-order universal algebra in which the user can define a language by giving
typing rules for the constants. Higher-order terms and associated induction and
recursion principles are then automatically derived.
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