
In Theory and Pratie of Logi Programming, 4(1&2): 1{39, 2004 1Polymorphi Lemmas and De�nitions in�Prolog and TwelfANDREW W. APPELDepartment of Computer Siene, Prineton University, USA(e-mail: appel�prineton.edu)AMY P. FELTYShool of Information Tehnology and Engineering, University of Ottawa, Canada(e-mail: afelty�site.uottawa.a)Abstrat�Prolog is known to be well-suited for expressing and implementing logis and inferenesystems. We show that lemmas and de�nitions in suh logis an be implemented with agreat eonomy of expression. We enode a higher-order logi using an enoding that mapsboth terms and types of the objet logi (higher-order logi) to terms of the metalanguage(�Prolog). We disuss both the Terzo and Teyjus implementations of �Prolog. We alsoenode the same logi in Twelf and ompare the features of these two metalanguages forour purposes. 1 IntrodutionIt has long been the goal of mathematiians to minimize the set of assumptionsand axioms in their systems. Implementers of theorem provers use this priniple:they use a logi with as few inferene rules as possible, and prove lemmas outsidethe ore logi in preferene to adding new inferene rules. In appliations of logito omputer seurity { suh as proof-arrying ode (Ne97) and distributed authen-tiation frameworks (AF99a) { the implementation of the ore logi is inside thetrusted ode base (TCB), while proofs need not be in the TCB beause they anbe heked.Two aspets of the ore logi are in the TCB: a set of logial onnetives andinferene rules, and a program in some underlying programming language thatimplements proof heking { that is, interpreting the inferene rules and mathingthem against a theorem and its proof.De�nitions and lemmas are essential in onstruting proofs of reasonable size andlarity. A proof system should have mahinery for heking lemmas, and applyinglemmas and de�nitions, in the heking of proofs. This mahinery also is withinthe TCB; see Figure 1. Many theorem provers support de�nitions and lemmasand provide a variety of advaned features designed to help with tasks suh asorganizing de�nitions and lemmas into libraries, keeping trak of dependenies, andproviding modularization; in our work we are partiularly onerned with separating

2 Andrew W. Appel and Amy P. Felty
Proof Theorem

Logic

A
C

M
E

LEMM
A

C
O

Def'n
Lemma
Lemma

Trusted ode baseFigure 1. Lemma mahinery is inside the TCB.that part of the mahinery neessary for proof heking (i.e., in the TCB) fromthe programming-environment support that is used in proof development. Thisseparation was partiularly important for a proof-arrying ode system we builtinitially in �Prolog (AF00). In this paper we will demonstrate a de�nition/lemmaimplementation that is about three dozen lines of ode.The �Prolog language (NM88) has several features that allow onise and leanimplementation of logis, proof hekers, and theorem provers (Fel93). In a previ-ous paper (AF99b), we presented a lemma and de�nition mehanism implementedin �Prolog. In this paper, we extend that work and desribe it more fully. Wepresent the lemma mehanism and a generalization of our de�nition mehanism,again implemented in �Prolog. Sine we now have more experiene using the Twelfsystem (Pfe91; PS99), we inlude a detailed omparison of the Twelf and �Prologversions of the enoding of our logi, lemmas, and de�nitions. An important purposeof this paper is to show whih language features allow a small TCB and eÆientrepresentation of proofs. We also give a omparison of programming issues that areimportant to our proof-arrying ode appliation.Although the lemma and de�nition mehanism is general, we illustrate it using animplementation of higher-order logi. We all this logi the objet logi to distinguishit from the metalogi implemented by �Prolog or Twelf. Our objet logi is notpolymorphi, but our lemma and de�nition mehanisms are polymorphi in thesense that they an express properties that hold at any type of the objet logi.The symmetry of equality, for example, is one suh lemma we will enounter.2 Enoding a higher-order logiThe �Prolog version of the lauses we present use the syntax of the Terzo implemen-tation (Wi99). We also disuss the Teyjus implementation (NM99) and omparethe two for our purposes. Terzo is interpreted and provides more exibility, butTeyjus has a ompiler in whih our ode runs muh more eÆiently.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 3�Prolog is a higher-order logi programming language whih extends Prolog inessentially two ways. First, it replaes �rst-order terms with the more expressivesimply-typed �-terms; �Prolog implementations generally extend simple types toinlude ML-style prenex polymorphism (DM82; NP92). Seond, it permits impli-ation and universal quanti�ation (over objets of any type) in goal formulas.We introdue types and onstants using kind and type delarations, respetively.For example, a new primitive type t and a new onstant f of type t ! t ! t aredelared as follows.kind t type.type f t -> t -> t.Capital letters in type delarations denote type variables and are used in polymor-phi types. In program goals and lauses, �-abstration is written using bakslash\ as an in�x operator. Capitalized tokens not bound by �-abstration denote freevariables. All other unbound tokens denote onstants. Universal quanti�ation iswritten using the onstant pi in onjuntion with a �-abstration (e.g., pi X\represents universal quanti�ation over variable X). The symbols omma and =>represent onjuntion and impliation. The symbol :- denotes the onverse of =>and is used to write the top-level impliation in lauses. The type o is the type oflauses and goals of �Prolog. We usually omit universal quanti�ers at the top levelin de�nite lauses, and assume impliit quanti�ation over all free variables.We will enode a natural dedution proof system for our higher-order objetlogi. (In our earlier work (AF99b), we implemented a sequent alulus version.)We implement a proof heker for this logi that is similar to the one desribed byFelty (Fel93). Program 2 ontains the type delarations used in our enoding.We introdue three primitive types: tp for objet-level types, tm for objet-levelterms (inluding formulas) and pf for proofs in the objet logi.We introdue onstants for the objet-level type onstrutors. The main typeonstrutor for our objet language is the arrow onstrutor taking two types asarguments. We also inlude objets of type tp to represent base types, suh as formand intty.To represent formulas, we introdue onstants suh as imp to represent implia-tion in the objet logi, and eq whih takes two terms and a type and is used torepresent equality at any type. We use in�x notation for the type arrow and binarylogial onnetives. The binding strength of eah in�x operator is delared usingan infix delaration. The onstant forall represents universal quanti�ation. Ittakes a type representing the type of the bound variable and a funtional argument,whih allows objet-level binding of variables by quanti�ers to be de�ned in termsof meta-level �-abstration. An example of its use is the following formula, whihexpresses the ommutativity of equality for integers:forall intty (X\ forall intty (Y\ (eq intty X Y) imp (eq intty Y X))).The parser uses the usual rule for the syntati extent of a lambda, so this expressionis equivalent toforall intty X\ forall intty Y\ eq intty X Y imp eq intty Y X.

4 Andrew W. Appel and Amy P. Feltykind tp type.kind tm type.kind pf type.type form tp.type intty tp.type arrow tp -> tp -> tp. infixr arrow 8.type pair tp -> tp -> tp.type eq tp -> tm -> tm -> tm.type imp tm -> tm -> tm. infixr imp 7.type forall tp -> (tm -> tm) -> tm.type false tm.type lam (tm -> tm) -> tm.type app tp -> tm -> tm -> tm.type mkpair tm -> tm -> tm.type fst tp -> tm -> tm.type snd tp -> tm -> tm.type hastype tm -> tp -> o.type proves pf -> tm -> o.type assump o -> o.type refl pf.type beta pf.type fstpair pf.type sndpair pf.type surjpair pf.type ongr tp -> tm -> tm -> (tm -> tm) -> pf -> pf -> pf.type imp_i (pf -> pf) -> pf.type imp_e tm -> pf -> pf -> pf.type forall_i (tm -> pf) -> pf.type forall_e tp -> (tm -> tm) -> pf -> tm -> pf.Program 2. Type delarations for ore logi.This use of higher-order data strutures is alled higher-order abstrat syntax (PE88);with it, we don't need to desribe the mehanis of substitution expliitly in theobjet logi (Fel93).To represent terms, we introdue the app and lam onstants for appliation andabstration, as well as onstants for pairing and projetions. The app onstrutortakes three arguments. The seond argument is a term of funtional type and thethird argument is the term it is applied to. The �rst argument is the type of theargument to the funtion. The lam onstant has a type, whih like forall, usesmeta-level abstration to represent objet-level binding.The onstants at the end of Program 2 are used to build terms representingproofs. We all these onstants as well as any other terms whose type ends in \->pf" proof onstrutors.Programs 2 and 3 together implement a full proof heker for our objet logi.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 5hastype (eq T X Y) form :- hastype X T, hastype Y T.hastype (A imp B) form :- hastype A form, hastype B form.hastype (forall T A) form :- pi x\ (hastype x T => hastype (A x) form).hastype false form.hastype (lam F) (T1 arrow T2) :- pi x\ (hastype x T1 => hastype (F x) T2).hastype (app T1 F X) T2 :- hastype F (T1 arrow T2), hastype X T1.hastype (mkpair X Y) (pair T1 T2) :- hastype X T1, hastype Y T2.hastype (fst T2 X) T1 :- hastype X (pair T1 T2).hastype (snd T1 X) T2 :- hastype X (pair T1 T2).proves Q A :- assump (proves Q A).proves refl (eq T X X).proves beta (eq T2 (app T1 (lam F) X) (F X)).proves fstpair (eq T1 (fst T2 (mkpair X Y)) X).proves sndpair (eq T2 (snd T1 (mkpair X Y)) Y).proves surjpair (eq (pair T1 T2) (mkpair (fst T2 Z) (snd T1 Z)) Z).proves (ongr T X Z H P1 P2) (H X) :-hastype X T, hastype Z T,proves P1 (eq T X Z), proves P2 (H Z).proves (imp_i Q) (A imp B) :-pi p\ (assump (proves p A) => proves (Q p) B).proves (imp_e A Q1 Q2) B :-hastype A form, proves Q1 (A imp B), proves Q2 A.proves (forall_i Q) (forall T A) :-pi y\ (hastype y T => proves (Q y) (A y)).proves (forall_e T A Q X) (A X) :-pi x\ (hastype x T => hastype (A x) form),hastype X T,proves Q (forall T A).Program 3. Inferene rules of the ore logi.Program 3 implements both typeheking and inferene rules. The last four lausesof Program 3 implement the introdution and elimination rules for impliation anduniversal quanti�ation, whih are given in Figure 4. We do not inlude inferene(A)B � -IA � B A A � B � -EB (y : �)[y=x℄A 8� -I8�xA 8�xA t : � 8� -E[t=x℄AThe 8-I rule has the proviso that the variable y annot appear free in 8�xA, orin any assumption on whih the dedution of [y=x℄A depends.Figure 4. Natural Dedution Inferene Rulesrules for the other logial onnetives. Instead, we de�ne them in terms of existingonnetives using our de�nition mehanism desribed later. The remaining lausesfor the proves prediate implement inferene rules for equality. Typeheking forterms is implemented by the hastype lauses. Proof heking is implemented bythe proves lauses. A goal of the form (proves P A) should be run only after A istypeheked, i.e., a proper hek has the form (hastype A form, proves P A).

6 Andrew W. Appel and Amy P. FeltyTo implement the disharge of assumptions in the impliation introdution rule,we use impliation and universal quanti�ation in �Prolog goals. The goal (D =>G) adds lause D to the �Prolog lause database, attempts to solve G, and then(upon either the suess or failure of G) removes D from the lause database. Thegoal (pi y\(G y)) introdues a new onstant with the same type as y, replaesy with , and attempts to solve the goal (G). For example, onsider the goalproves (imp_i q\q) (a imp a)where a is a propositional onstant (a onstant of type form); then �Prolog willexeute the (instantiated) body of the imp i lausepi p\ (assump (proves p a) => proves ((q\q) p) a)This generates a new onstant , and adds (assump (proves a) to the database;then the subgoal (proves ((q\q)) a), whih is �-equivalent to (proves a),mathes the �rst lause for the proves prediate. The subgoal (assump (proves a)) is generated and this goal mathes our dynamially added lause. We havehosen to use the assump prediate for adding atomi lauses to the program. Thisis not neessary, but we �nd it useful to distinguish between adding atomi lausesand adding non-atomi lauses, whih we will see later. Note that the typehekinglauses for forall and lam use meta-level impliation and universal quanti�ationin a manner similar to the proves lause for the �-I rule.It is important to show that our enoding of higher-order logi in �Prolog isadequate. To do so, we must show that a formula has a natural dedution proofif and only if its representation as a term has an assoiated proof term that anbe heked using the inferene rules of Program 3. The enoding we use is similarto the enoding of higher-order logi in the Logial Framework (HHP93) and theproof of adequay of our enoding is similar to the one disussed there. The maindi�erene between the two enodings is the types of the logial onnetives. Forexample, in their enoding, imp is given type tm and the fat that it is a onnetivewhih takes two formulas as arguments is expressed using objet level types; thehastype lause ishastype imp (form arrow form arrow form).An impliation must then be expressed using the app onstrutor, e.g., (app (appimp A) B). We found that this enoding of the onnetives quikly beame um-bersome and our enoding was more readable. On the other hand, our enoding isnot as eonomial as the one we used previously (AF99b). There we representedobjet-level types as meta-level types, whih allowed us to eliminate all the hastypelauses and subgoals. The types of our objet logi, however, did not math up wellwith the types of �Prolog, whih fored ertain limitations in the implementation ofour proof-arrying ode system. (See Appel and Felty (AF99b) for further analysis.)The enoding in the urrent paper seems to be the best ompromise.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 7proves(forall_i I\ (forall_i J\ (imp_i Q\(ongr intty I J (eq intty J) Q refl))))(forall intty I\ forall intty J\ (eq intty I J imp eq intty J I)).Theorem 5. 8int I 8int J ((I =int J) � (J =int I)).3 LemmasIn mathematis the use of lemmas an make a proof more readable by struturingthe proof, espeially when the lemma orresponds to some intuitive property. Forautomated proof heking (in ontrast to automated or traditional theorem proving)this use of lemmas is not essential, beause the omputer doesn't need to understandthe proof in order to hek it. But lemmas an also redue the size of a proof (andtherefore the time required for proof heking): when a lemma is used multiple timesit ats as a kind of \subroutine." This is partiularly important in appliations likeproof-arrying ode where proofs are transmitted over networks to lients who hekthem. We �rst present an example whih we use to illustrate our lemma mehanismin �Prolog (Setion 3.1), and then present this mehanism as we'd implement itin Terzo (Setion 3.2). We then explain the modi�ations required to meet theextra restritions imposed by Teyjus (Setion 3.3). We end this setion with someoptimizations that are important for keeping proofs that use lemmas as small aspossible (Setion 3.4) and then with some more examples (Setion 3.5).3.1 An exampleTheorem 5 shows the use of our ore logi to express a simple proof heking goal.The proof of this lemma uses the 8-I rule as well as ongruene and reexivity ofequality. Its proof an be heked as a suessful �Prolog query to our ore logiin Programs 2 and 3. Alternatively, we may want to prove it using the followinggeneral lemma about symmetry of equality at any type.A : � B : � B =� AA =� BThe proof of this lemma an be heked as the following �Prolog query.pi T\ pi A\ pi B\ pi P\(hastype A T, hastype B T, proves P (eq T B A)) =>proves (ongr T B A (eq T A) P refl) (eq T A B).This query introdues an arbitrary P, adds the typing lauses (hastype A T) and(hastype B T), and the assumption (proves P (eq T B A)) to the set of lauses,then heks the proof of ongruene using these fats. The syntax F => G meansexatly the same as G :- F , so we ould just as well write this query aspi T\ pi A\ pi B\ pi P\(proves (ongr T B A (eq T A) P refl) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A)).

8 Andrew W. Appel and Amy P. Feltytype lemma_pf (A -> o) -> A -> (A -> pf) -> pf.proves (lemma_pf Inferene LemmaProof RestProof) C :-Inferene LemmaProof,pi Name\ ((Inferene Name) => (proves (RestProof Name) C)).Program 6. The lemma pf proof onstrutor.Now, suppose we abstrat the proof (roughly, ongr T B A (eq T A) P refl)from this query.(Inferene = (PCon\ pi T\ pi A\ pi B\ pi P\proves (PCon T A B P) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A)),Proof = (T\A\B\P\ ongr T B A (eq T A) P refl),Query = (Inferene Proof),Query).The solution of this query proeeds in four steps: the variable Inferene is uni�edwith a �-term; Proof is uni�ed with a �-term; Query is uni�ed with the appliationof Inferene to Proof (whih is a term �-equivalent to the query of the previousparagraph), and �nally Query is solved as a goal (heking the proof of the lemma).One we know that the lemma is valid, we an make a new �Prolog atom symmto stand for its proof, and we an prove some other theorem in a ontext where thelause (Inferene symm) is in the lause database; remember that (Inferenesymm) is �-equivalent topi T\ pi A\ pi B\ pi P\(proves (symm T A B P) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A)).This series of transformations starting with a proof heking subgoal has led usto a lause that looks remarkably like an inferene rule. With this lause in thedatabase, we an use the new proof onstrutor symm just as if it were primitive.Instead of adding new lauses like this to our proof heker, whih would inreasethe size of our TCB, we show how to put suh lemmas inside proofs.3.2 Lemmas in proofsIn the example in the previous setion, symm is a new onstant, but when lemmasare proved and put inside proofs dynamially, we an instead \make a new atom"by simply pi-binding it. This leads to the reipe for lemmas shown in Program 6,whih is the heart of our lemma mehanism. (We will improve it slightly in thenext setion.) This program introdues a onstrutor lemma pf for storing lem-mas in proofs. This onstrutor takes three arguments: (1) a derived inferene ruleInferene (of type A -> o) parameterized by a proof onstrutor (of type A), (2) aterm LemmaProof of type A representing a proof of the lemma built from ore-logiproof onstrutors (or using other lemmas), and (3) a proof of the main theorem

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 9proves(lemma_pf(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm T A B P) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A))(T\A\B\P\ (ongr T B A (eq T A) P refl))(symm\ (forall_i I\ (forall_i J\ (imp_i Q\ (symm intty J I Q))))))(forall intty I\ forall intty J\ (eq intty I J imp eq intty J I)).Theorem 7. Modi�ation of Theorem 5 to use a lemma.RestProof that is parameterized by a proof onstrutor (of type A). Operationally,this lause �rst exeutes (Inferene LemmaProof) as a query, to hek the proofof the lemma itself; then it pi-binds Name in the lemma, adds it as a new lause, andruns RestProof (whih is parameterized on the lemma proof onstrutor) appliedto Name.The terms Inferene and Proof from the example in Setion 3.1 illustrate theform of the terms whih will appear as the �rst two arguments to lemma pf. Theo-rem 7 illustrates the use of lemma pf in an example; this theorem is a modi�ationof Theorem 5 that uses the symm lemma.3.3 Lemmas in TeyjusIf we restrit ourselves to the Terzo implementation of �Prolog, then meta-levelformulas an our inside proofs using any of the �Prolog onnetives. But if wewant to be able to use Teyjus as well, we must make one more hange. The Teyjussystem does not allow => or :- to appear in arguments of prediates. Thus the term(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm T A B P) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A))ourring in the symm lemma in Theorem 7 annot appear diretly as the �rstargument to lemma pf. Teyjus also does not allow variables to appear at the headof the left of an impliation. These restritions ome from the theory underlying�Prolog (MNPS91); without the latter one, a runtime hek is needed to insurethat every dynamially reated goal is an aeptable one.We an avoid putting :- inside arguments of prediates by writing the aboveterm as(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm T A B P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))where <<== is a new in�x operator of type o -> o. But this, in turn, means thatthe subgoal (Inferene LemmaProof) of the lemma pf lause in Program 6 willno longer hek the lemma, sine <<== has no operational meaning. To handlesuh goals, we add the three onstants delared at the beginning of Program 8,whih introdue both forward and bakward impliation arrows, and a new atomi

10 Andrew W. Appel and Amy P. Feltytype ==>> o -> o -> o. infixr ==>> 4.type <<== o -> o -> o. infixl <<== 0.type l o -> o.(D ==>> G) :- (l D) => G.(G <<== D) :- (l D) => G.type bakhain o -> o -> o.proves P A :- l Cl, bakhain (proves P A) Cl.hastype X T :- l Cl, bakhain (hastype X T) Cl.assump G :- l Cl, bakhain (assump G) Cl.bakhain G G.bakhain G (pi D) :- bakhain G (D X).bakhain G (A,B) :- bakhain G A; bakhain G B.bakhain G (H <<== G1) :- bakhain G H, G1.bakhain G (G1 ==>> H) :- bakhain G H, G1.Program 8. An interpreter for dynami lauses.prediate l of type o -> o, and we introdue the two lauses that follow thesedelarations to interpret our new arrows as �Prolog impliation. Note that althoughit would have been more diret, we did not add:(D ==>> G) :- D => G.beause of the Teyjus restrition mentioned above that variables annot appearat the head of the left of an impliation. The use of the l \wrapper" solves theproblem reated by this restrition, but requires us to implement an interpreter tohandle lauses of the form (l A). The remaining lauses in Program 8 implementthis interpreter.Sine the type of (Inferene Proof) is o, the term Inferene might oneiv-ably ontain subterms whih are �Prolog lauses. Of ourse, in Teyjus these lauseswill not ontain :- or =>, but they may ontain <<== and ==>>, whih get inter-preted via the lauses of Program 8. They ould also, for example, ontain any other�Prolog ode inluding input/output operations. Exeuting (Inferene Proof)annot lead to unsoundness { if the resulting proof heks, it is still valid. Butthere are some ontexts where we wish to restrit the kind of program that anour inside a proof and be run when the proof is heked. For example, in a proof-arrying-ode system, the ode onsumer might not want proof heking to ause�Prolog to exeute ode that aesses private loal resoures.To limit the kind and amount of exeution possible in the exeutable part ofa lemma, we introdue the valid lause prediate of type o -> o (Program 9).A lause is valid if it ontains pi, omma, <<==, ==>>, proves, hastype, assump,and nothing else. Of ourse, a proves or assump lause ontains subexpressions oftype pf and tm, and a hastype lause has subexpressions of type tm and tp, soall the onstants in proofs, terms, and types of our objet logi are also permitted.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 11valid_lause (pi C) :- pi X\ valid_lause (C X).valid_lause (A,B) :- valid_lause A, valid_lause B.valid_lause (A <<== B) :- valid_lause A, valid_lause B.valid_lause (A ==>> B) :- valid_lause A, valid_lause B.valid_lause (proves Q A).valid_lause (hastype X T).valid_lause (assump (proves Q A)).Program 9. Valid lauses.proves (lemma_pf Inferene LemmaProof RestProof) C :-pi Name\ (valid_lause (Inferene Name)),Inferene LemmaProof,pi Name\ (l (Inferene Name) => (proves (RestProof Name) C)).Program 10. The lause for lemmas in Teyjus.Absent from this list are �Prolog input/output (suh as print) and the semiolon(baktraking searh).The valid lause restrition is the reason that we only need new lauses forthe proves, hastype, and assump prediates in Program 8. We must add at leastthese three beause they are used for heking nodes in a proof that require usingthe lauses added dynamially via the l prediate. Inluding no other prediatesin the valid lause de�nition guarantees that we need no other new lauses withl subgoals.Beause of the introdution of <<==, ==>>, and valid lause, we modify thelause in Program 6 for heking lemmas. The new lause is shown in Program 10.The �rst subgoal is new; it pi-binds Name and heks to see if the new lemmaapplied to Name is valid. The only other modi�ation is in the last subgoal, whihadds the lemma as a new lause via the l prediate. Sine all lemmas will be addedvia l, the only way to use them is via the proves lause in Program 8. Using thatlause, the (l Cl) subgoal looks up the lemmas that have been added, one ata time, and tries them out via the bakhain prediate. This prediate proessesthe lauses in a manner similar to the �Prolog language itself. In Terzo, using thisinterpreter is less eÆient than the diret implementation in Program 6. In Teyjus,the interpreter is required, but when ompiled, the ode runs faster than eitherTerzo version.In summary, our tehnique allows lemmas to be ontained within the proof. Wedo not need to install new \global" lemmas into the proof heker. The dynamisoping also means that the lemmas of one proof annot interfere with the lemmas ofanother, even if they have the same names. This mahinery uses several interestingfeatures of �Prolog:Polymorphism. The type of the lemma pf onstrutor uses polymorphism to indi-ate that proof onstrutors introdued for lemmas an have di�erent types.

12 Andrew W. Appel and Amy P. FeltyMeta-level formulas as terms. Lemmas suh as symmetry of equality our insideproofs as an argument to the lemma pf onstrutor in the following form.(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm T A B P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))It is just a data struture (parameterized by Symm); it does not \exeute" anything,in spite of the fat that it ontains the �Prolog quanti�er pi and our new onnetive<<==. This gives us the freedom to write lemmas using syntax very similar to thatused for writing primitive inferene rules. Handling the new onstants for <<== and==>> is easy enough operationally. However, it is an inonveniene for the user, whomust use di�erent syntax in lemmas than in inferene rules. This inonveniene isavoided in Terzo.Dynamially onstruted goals. When the lause from Program 10 for the lemma pfproof onstrutor heks the proof of a lemma by exeuting the goal (InfereneLemmaProof), we are exeuting a goal that is built from a run-time-onstruteddata struture. Inferene will be instantiated with terms suh as the one aboverepresenting the symmetry lemma. It is only when suh a term is applied to itsproof and thus appears in \goal position" that it beomes the urrent subgoal onthe exeution stak.Dynamially onstruted lauses. When, having suessfully heked the proof of alemma, the lemma pf lause exeutesl (Inferene Name) => (proves (RestProof Name) C)it is adding a dynamially onstruted lause to the �Prolog database.Although it is not the ase for Terzo or Teyjus, if a metalanguage were to pro-hibit all terms having o in their types as arguments to a prediate, it would still bepossible to implement lemmas using our approah. Appendix A illustrates by show-ing an interpreter whih extends Program 8 to handle this extra restrition. Newonstants must be introdued not only for impliation but also for every meta-levelonnetive. Note that when meta-level formulas are not allowed, there is no possi-bility for dynamially reated goals or lauses. Twelf for example, does not allowmeta-level formulas as terms and is also not polymorphi, and thus the approahdesribed in this setion annot be used, but the approah of Appendix A ould.Instead, as we will see in Setion 6, Twelf provides alternative features whih wean use to implement lemmas.3.4 Some optimizations for implementing lemmasThe Symm proof onstrutor in Theorem 7 is a bit unwieldy, sine it requires T, A,and B as arguments. We an imagine writing a primitive inferene ruleproves (symm P) (eq T A B) :-hastype A T, hastype B T, P proves (eq T B A).

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 13type elam (A -> pf) -> pf.type extrat tm -> pf -> pf.type extratGoal o -> pf -> pf.proves (elam Q) A :- proves (Q B) A.proves (extrat A P) A :- proves P A.proves (extratGoal G P) A :- valid_lause G, G, proves P A.Program 11. Proof onstrutors for impliit arguments of lemmas.proves(lemma_pf(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))(P\ elam T\ elam A\ elam B\(extrat (eq T A B) (ongr T B A (eq T A) P refl)))(symm\ (forall_i I\ (forall_i J\ (imp_i Q\ (symm Q))))))(forall intty I\ forall intty J\ (eq intty I J imp eq intty J I)).Theorem 12. 8int I 8int J ((I =int J) � (J =int I)).using the priniple that the proof heker doesn't need to be told T, A, and B insidethe proof term, sine they an be found in the formula to be heked. Then, inTheorem 7, (Symm intty J I Q) would be (Symm Q).Therefore we add three new proof onstrutors|elam, extrat, and extrat-Goal|as shown in Program 11. These an be used in the following stereotypedway to extrat omponents of the formula to be proved. First bind variables withelam, then math the target formula with extrat. Theorem 12 is a modi�ationof Theorem 7 that makes use of these onstrutors.Note that we ould eliminate the hastype subgoals from our new version of thesymm lemma beause we know them to be redundant as long as (eq T A B) wasalready typeheked. The reason for keeping them is that the seond subgoal of thelause in Program 10 would fail without them; the proof heking of the lemmarequires these hastype assumptions. In enoding our ore logi, it was possible toeliminate all suh redundant subgoals. The fat that suh a shortut is not possiblein lemmas auses a tradeo�; by keeping suh lemmas out of the TCB and puttingthem in proofs, we are foring the proof heker to do more work. There seems tobe no easy way to avoid this redundant work, though some ad-ho optimizationsto proof heking might be possible.The extratGoal proof onstrutor asks the heker to run �Prolog ode tohelp onstrut the proof. Its implementation uses valid lause to restrit whatkinds of �Prolog ode an be run. Note, however, that valid lause does not al-ways eliminate ode that loops and so its urrent implementation annot guaranteetermination. A striter valid lause would be neessary to ahieve this.The extratGoal proof onstrutor was useful for handling assumptions in thesequent alulus version of our objet logi (AF99b); for natural dedution, thesame need does not arise in the implementation of our ore logi, but extratGoal

14 Andrew W. Appel and Amy P. Feltyproves(lemma_pf(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))(P\ elam T\ elam A\ elam B\(extrat (eq T A B) (ongr T B A (eq T A) P refl)))(symm\(lemma_pf(Trans\ pi T\ pi A\ pi B\ pi C\ pi Q1\ pi Q2\proves (Trans C Q1 Q2) (eq T A B) <<==hastype A T, hastype B T, hastype C T,proves Q1 (eq T A C), proves Q2 (eq T C B))(C\Q1\Q2\ elam A\ elam B\ elam T\(extrat (eq T A B) (ongr T B C (eq T A) (symm Q2) Q1)))(trans\ (forall_i I\ forall_i J\ forall_i K\(imp_i Q1\ (imp_i Q2\ (trans J (symm Q1) Q2))))))))(forall intty I\ forall intty J\ forall intty K\(eq intty J I imp eq intty J K imp eq intty I K))).Theorem 13. 8int I; J;K ((J =int I) � (J =int K) � (I =int K)).is useful for implementing more omplex lemmas. Although we have not done so,it would be interesting to further explore the possibility of reating more ompatproofs by leaving out information that an be omputed easily via ode given asarguments to extratGoal. 3.5 More examplesAs another example of the use of lemmas, we an of ourse use one lemma in theproof of another, as shown by Theorem 13. The proof of the trans lemma expressingtransitivity of equality uses the symm lemma.The symm lemma is naturally polymorphi: it an express the idea that (a =int3) � (3 =int a) just as well as (f =int!int �x:3) � (�x:3 =int!int f). Theorem 14illustrates part of a proof whih ontains two lemmas whose proofs use symm atdi�erent types. In our previous work (AF99b), beause we represented objet-leveltypes as meta-level types, we were unable to allow polymorphism in lemmas atall. To do so would have required a metalanguage with more general non-prenexpolymorphism. To handle Theorem 14 required two opies of the symm lemma, oneat eah type.In priniple, we do not need lemmas at all. Instead, we an replae eah subproofof the form (lemma pf I L R) with the term (R L), whih replaes eah use ofa lemma with its proof. This approah, however, adds undesirable omplexity toproofs. But, using this fat it should be straightforward to prove the orrespondenebetween proofs with the lemma pf onstrutor and proofs without, whih woulddiretly extend soundness and adequay results to our system with lemmas.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 15(lemma_pf(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))(P\ elam T\ elam A\ elam B\(extrat (eq T A B) (ongr T B A (eq T A) P refl)))(symm\(lemma_pf(Poly1\ proves Poly1(forall (intty arrow intty) f\ forall (intty arrow intty) g\(eq (intty arrow intty) f g) imp (eq (intty arrow intty) g f)))(forall_i f\ (forall_i g\ (imp_i q\ (symm q))))(poly1\(lemma_pf(Poly2\ proves Poly2(forall (intty arrow intty) f\ forall intty x\(eq intty (app intty f x) x) imp (eq intty x (app intty f x))))(forall_i f\ (forall_i x\ (imp_i q\ (symm q))))(poly2\ ...))))))Theorem 14. Proof with lemmas: 8int!int f; g ((f =int!int g) � (g =int!int f)) and8int!int f 8int x ((f(x) =int x) � (x =int f(x))).4 De�nitionsDe�nitions are another important mehanism for struturing proofs to inreaselarity and redue size. If some property (of a base-type objet, or of a higher-orderobjet suh as a prediate) an be expressed as a logial formula, then we allow theintrodution of an abbreviation to stand for that formula.We start by presenting a motivating example (Setion 4.1), whih leads us to ourde�nition mehanism in �Prolog (Setion 4.2). We also disuss two simpler versionsof our de�nition mehanism (Setions 4.3 and 4.4), whih allow us to have a smallerTCB, but whih require more work to use.4.1 A motivating exampleWe an express the fat that f is an assoiative funtion by the formula8� X;Y; Z (f X (f Y Z) =� f (f X Y)Z):This will only be a valid expression if f has type � ! � ! � . Putting this formulain �Prolog notation and expressing the type onstraint on f , we get the followingprovable �Prolog typeheking goal.pi F\ pi T\(pi X\ pi Y\ hastype X T => hastype Y T => hastype (F X Y) T) =>hastype (forall T X\ forall T Y\ forall T Z\eq T (F X (F Y Z)) (F (F X Y) Z)) form.To make this into a de�nition, the �rst step is to assoiate some name, say asso,with the de�nition body (whih is the �rst argument of the last hastype above).

16 Andrew W. Appel and Amy P. FeltyWe assoiate a name to a body of a de�nition in the same way we assoiated a newproof onstrutor with the proof it stood for. If we follow exatly the pattern of thesymm lemma introdued at the beginning of Setion 3, we abstrat out the body ofthe de�nition and obtain the following query.(TypeInf = (asso\ pi F\ pi T\hastype (asso F T) form <<==pi X\ pi Y\ (hastype X T ==>>hastype Y T ==>> hastype (F X Y) T)),Def = (F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))),Query = (TypeInf Def),Query)TypeInf is the typeheking query above with => replaed by ==>> or <<==, andthe abstration asso replaing the body of the de�nition. Def ontains the bodyabstrated with respet to the funtion F and type T and (TypeInf Def) is exatlythe typeheking subgoal above (exept for the use of ==>> and <<==). If all wewanted was a typeheking lemma to typehek expressions of the form given byDef, then we ould use our lemma mehanism diretly.(lemma_pf(Asso\ pi F\ pi T\hastype (Asso F T) form <<==pi X\ pi Y\ (hastype X T ==>> hastype Y T ==>> hastype (F X Y) T))(F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z))))(asso\ ...This example shows that we an have typeheking lemmas in addition to proofheking lemmas. It also motivates our de�nition mehanism shown next, whih weobtain by adding the ability to replae a name with the expression it representsand vie versa. 4.2 Implementing de�nitionsWe introdue a new proof onstrutor def pf and a new proof term def to rep-resent equality between a name and its de�nition. This de�nition mehanism isimplemented by the lauses in Program 15. The arguments to def pf are similarto the arguments to lemma pf, but also inlude one more for the type of the bodyof the de�nition (after it is applied to all its arguments). In the lause for proofheking def pf nodes, the �rst two subgoals are similar to lemma pf nodes. Here,they hek that the typeheking lause is valid and that Term (the body of thede�nition) is orretly typed. The third lause omputes the lause for expressingde�nitional equality using the def to eqlause program. The fourth subgoal forproof heking de�nitions adds both the typeheking lause and the equality lausebefore heking the rest of the proof.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 17type def_pf tp -> (A -> o) -> A -> (A -> pf) -> pf.type def pf.type def_to_eqlause tp -> A -> A -> o -> o.def_to_eqlause T DName Def (pi Clause) :-pi x\ (def_to_eqlause T (DName x) (Def x) (Clause x)).def_to_eqlause T DName Def (proves def (eq T DName Def)).proves (def_pf T TypeInf Term RestProof) C :-pi Name\(valid_lause (TypeInf Name),TypeInf Term,def_to_eqlause T Name Term (EqClause Name),l (TypeInf Name) => l (EqClause Name) => (proves (RestProof Name) C)).Program 15. Mahinery for de�nitions.Like ML, �Prolog has parametri polymorphism (in the syntati sense). But un-like ML, �Prolog does not have the parametriity property. A polymorphi funtionan examine the struture of its argument. We illustrate with a simple example: afuntion that tells the arity (number of funtion arguments) of an arbitrary value.type arity A -> int -> o.arity F N :- arity (F X) N1, N is N1 + 1.arity X 0.The �rst lause an only be used when F is a funtion; the seond lause mathes anyvalue. The def to eqlause lauses uses this exat feature of �Prolog's polymor-phism. It �rst uses the meta-level type of Def to apply Def to as many argumentsas possible. The �rst lause introdues new variables to serve as these arguments.One it is applied to all of its arguments, the seond lause forms the equalitylause using the type, the name, and the body of the de�nition. For our example,the omputed lause isEqClause = (asso\ (pi F\ pi T\proves def (eq form (asso F T)(forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))))).To ensure that there is only one solution to the arity prediate above and like-wise the def to eqlause prediate in Program 15, we ould have used the logiprogramming ut (!) operator at the end of the �rst lause for eah prediate. Wehave omitted it here beause def to eqlause is only be used in our proof heker,whih is written to avoid the need for baktraking.To use de�nitions in proofs we introdue two new lemmas: def i to replae a for-mula with the de�nition that stands for it (or viewed in terms of bakward proof,to replae a de�ned name with the term it stands for), and def e to expand a de�-nition in the forward diretion during proof onstrution. Their proofs are shown inProgram 16. Theorem 17 shows a proof using de�nitions. In this proof, f is a fun-

18 Andrew W. Appel and Amy P. Felty(lemma_pf(Def_i\ pi T\ pi Name\ pi B\ pi P\ pi Q1\ pi Q2\proves (Def_i T Name B P Q1 Q2) (P Name) <<==proves Q1 (eq T Name B),hastype Name T, hastype B T,proves Q2 (P B))(T\Name\B\P\Q1\Q2\ (ongr T Name B P Q1 Q2))(def_i\(lemma_pf(Def_e\ pi T\ pi Name\ pi B\ pi P\ pi Q1\ pi Q2\proves (Def_e T Name B P Q1 Q2) (P B) <<==proves Q1 (eq T Name B),hastype Name T, hastype B T,proves Q2 (P Name))(T\Name\B\P\Q1\Q2\ (ongr T B Name P(ongr T Name B (eq T B) Q1 refl) Q2))(def_e\... Program 16. Lemmas for folding and unfolding de�nitions.tion symbol and t is a type, and the theorem is represented as a �Prolog subgoalwith a top-level impliation, where the right hand side is a proves subgoal and theleft hand side spei�es the typing information about f whih must hold in order forthe proof in the proves subgoal to be valid. The proof (the �rst argument to theproves prediate) ontains a series of four lemmas whih we have already seen, fol-lowed by the de�nition of assoiativity, followed by a �fth lemma about assoiativity(asso inst), followed by the main body of the proof. The def i lemma is usedin the main body of the proof. In general, proof heking using the def i lemmameans that the proof being heked must math the term (Def i T Name B P Q1Q2), whih is the �rst argument (the proof term) of the head of the proves lauseimplementing the def i lemma in Program 16. This math determines the termsmathing P and Name. The formula being proved must be a formula that mathesthe term (P Name), whih is the seond argument of the head of the proves lauseimplementing the def i lemma in Program 16. Here Name is not always simply avariable name, but is atually the de�nition name applied to all of its argumentsto form a term of type tm. In our example, asso has type(tm -> tm -> tm) -> tp -> tm.At the point that proof heking of the body of the proof uses the def i lemma,the formula to be heked is (asso f t). The term that orresponds to (P Name)in this example is (x\x)(asso f t), whih mathes this formula. Proof hekingproeeds by �nding a proof of the goal of the form(proves Q1 (eq form (asso f t) B))whih is proved simply by mathing with the �Prolog equality assumption addedwhen the asso de�nition was proessed by the proves lause for def pf. Next, thetwo typeheking subgoals of the def i lause are solved. Solving the �rst, (hastype(asso f t) form), requires using the �Prolog type inferene assumption whih

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 19pi f\ pi t\(pi x\ pi y\ hastype x t => hastype y t => hastype (f x y) t) =>(proves(lemma_pf ... symm\(lemma_pf ... trans\(lemma_pf ... def_i\(lemma_pf ... def_e\(def_pf form(Asso\ pi F\ pi T\hastype (Asso F T) form <<==pi X\ pi Y\(hastype X T ==>> hastype Y T ==>> hastype (F X Y) T))(F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z))))(asso\(lemma_pf(Asso_inst\ pi F\ pi T\ pi A\ pi B\ pi C\ pi Q\proves (Asso_inst F Q) (eq T (F A (F B C)) (F (F A B) C)) <<==hastype A T, hastype B T, hastype C T,pi X\ pi Y\ (hastype X T ==>> hastype Y T ==>> hastype (F X Y) T),proves Q (asso F T))(F\Q\(elam T\ elam A\ elam B\ elam C\(extrat (eq T (F A (F B C)) (F (F A B) C))(forall_e T (Z\ (eq T (F A (F B Z)) (F (F A B) Z)))(forall_e T (Y\ (forall T Z\ (eq T (F A (F Y Z)) (F (F A Y) Z))))(forall_e T (X\ (forall T Y\ (forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))))(def_e form (asso F T)(forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z))) (x\x) def Q) A) B) C))))(asso_inst\(imp_i q1\ (forall_i a\ (imp_e (asso f t)(imp_i q2\ (trans (f (f a a) (f a a))(asso_inst f q2) (asso_inst f q2)))(def_i form (asso f t)(forall t a\ forall t b\ forall t \(eq t (f a (f b)) (f (f a b)))) (x\x) def q1))))))))))))((forall t a\ forall t b\ forall t \eq t (f a (f b)) (f (f a b))) imp(forall t a\ eq t (f a (f a (f a a))) (f (f (f a a) a) a))))Theorem 17. (8a; b; fa(fb) = f(fab)) � 8a fa(fa(faa)) = f(f(faa)a)a.was also added when the asso de�nition was proessed by the proves lause fordef pf. Finally, the rest of the proof, is heked via the subgoal of the form (provesQ2 (P B)), where the formula to be heked has the de�nition name replaed byits body.The def e lemma is used in the proof of the asso inst lemma. Its use in proofheking is similar to def i. The main di�erene is that the formula to be hekedmust math the term (P B), i.e., the formula ontains an instane or instanes

20 Andrew W. Appel and Amy P. Felty(def_pf form(And\ pi A\ pi B\hastype (And A B) form <<==hastype A form, hastype B form)(A\B\ (forall form C\ ((A imp B imp C) imp C)))(and\ ...Program 18. De�nition of logial onjuntion in the objet logi....(lemma_pf ... def_e\(lemma_pf(Define_Asso\ pi Q\ pi B\proves (Define_Asso Q) B <<==pi d\ pi q\(pi F\ pi T\(proves q (eq form (d F T)(forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z))))))==>>(pi F\ pi T\ hastype (d F T) form <<==pi X\ pi Y\ hastype X T ==>> hastype Y T ==>>hastype (F X Y) T)==>> proves (Q d q) B)(Q\ (Q (F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))) refl))(define_asso\(define_asso(asso\q\(lemma_pf(Asso_inst\ ...Theorem 19. Alternate proof of Theorem 17.of the body of the de�nition, and in the subgoal to be heked, the body of thede�nition is replaed with the name of the de�nition.As another example of de�nitions, Program 18 shows the de�nition of logial on-juntion for the objet logi using the def pf proof onstrutor. Other onnetivessuh as disjuntion, negation, and existential quanti�ation an also be de�ned,and the rules for introdution and elimination of these onnetives an be provedas lemmas. 4.3 An alternative implementation of de�nitionsThe new primitives and lauses in Program 15 provide a onvenient way of in-orporating de�nitions, but atually are not needed at all. Instead, for eah newde�nition, it is possible to introdue a speial lemma to handle that de�nition.These speial lemmas are quite omplex and we do not want to require the user toome up with them. For illustration, Theorem 19 shows the part of the proof thatreplaes the def pf node in Theorem 17. This part of the proof inludes the speial-

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 21ized lemma, alled Define Asso, and shows that it is used immediately after it isde�ned. The bound variable asso represents the name for the new de�nition, andthe bound variable q represents a proof of equality between the de�nition name andits body. The new proof ontains no use of the def pf or def proof onstrutors.Ourrenes of def in Theorem 17 are replaed with q. This hange, although notshown in Theorem 19, is the only other hange required to obtain the ompletealternate proof. We omit a detailed explanation of the Define Asso lemma andsimply note that it is fairly omplex and inreases the size of this example proof.Also, this lemma is similar in struture to the simpler define lemma desribedbelow in Setion 4.4Additional programming an make this alternative way of inorporating de�ni-tions easier to use. In partiular, it is possible to write a program to transformproofs that use def pf and def to proofs that use only speialized lemmas suh asthe one in Theorem 19. Suh a program would allow us to remove Program 15 fromthe TCB. 4.4 Handling atomi de�nitionsFor the speial lass of de�ned terms that have meta-level type tm, whih we allatomi de�nitions, it is easy to eliminate the need for def pf and def beause itis possible to inlude one new general lemma that replaes them. For example, wean express assoiativity of integers as the following termlam F\ forall intty X\ forall intty Y\ forall intty Z\eq intty (app intty (app intty F X) (app intty (app intty F Y) Z))(app intty (app F intty (app intty (app intty F X) Y)) Z)))where F has meta-type tm and objet type (intty arrow intty arrow intty),and the app onstrutor is used to apply F to its arguments. If we speialize The-orem 17 to integers, Theorem 20 shows the part of the proof of this new theoremthat replaes what is shown in Theorem 19. The parts of the proof not shown aresimilar to Theorems 17 and 19, but modi�ed to use the new type of the boundvariable f, whih has the same type as the bound F in the de�nition.In general, to hek a proof using the define lemma, whih has the followingform(define T Term (Name\ EqProof\ (RestProof Name EqProof)))the system interprets the \pi d" within the define lemma to reate a new atom dto stand for the Name. The new atom q is also introdued to stand for a proof thatthe name is equal to the body of the de�nition, and (proves q (eq T d Term))is added to the lause database. Finally, �-onversion substitutes d for Name and qfor EqProof within RestProof and the resulting proof is heked.In proof heking the new proof, instead of subproofs of the form(proves def (eq form (asso f t) B))that would be generated by proof heking Thereom 17, or subproofs of the form

22 Andrew W. Appel and Amy P. Felty...(lemma_pf ... def_e\(lemma_pf(Define\ pi T\ pi F\ pi Q\ pi B\proves (Define T F Q) B <<==hastype F T,pi d\ pi q\ (hastype d T ==>>proves q (eq T d F) ==>> proves (Q d q) B))(T\F\P\ (P F refl))(define\(define ((intty arrow intty arrow intty) arrow form)(lam F\ forall intty X\ forall intty Y\ forall intty Z\eq intty (app intty (app intty F X) (app intty (app intty F Y) Z))(app intty (app intty F (app intty (app intty F X) Y)) Z)))(asso\q\(lemma_pf(Asso_inst\ ...Theorem 20. Alternate proof of Theorem 17 speialized to integers.(proves q (eq form (asso f t) B))that would be generated by proof heking Thereom 19, in Theorem 20 we havesubproofs of the form(proves q (eq ((intty arrow intty arrow intty) arrow form) asso B))where q here is the name of the proof term introdued inside the define proofnode.In general, having a single define lemma that an be used by all atomi de�ni-tions is simpler, but the atomi forms of de�nitions are larger and harder to read.In the ase of asso, the atomi version is three lines, while the original versionis one line long. In our previous work (AF99b), having to hoose between the ver-sion of asso that used app and the one that didn't was not an issue, sine therewere no app and lam onstrutors. Instead appliation and abstration were en-oded diretly using appliation and abstration at the meta-level. Also, there wasno reason to inlude a separate def pf proof onstrutor; the define lemma wassuÆient for introduing all de�nitions. Although this allowed a simpler version ofde�nitions, we were unable to allow polymorphism in de�nitions, whih is desirablein de�nitions for the same reason it is desirable in lemmas. Our previous enodingalso did not allow de�nitions for objet-level types. For example, in the domain ofproof-arrying ode, we have delarations like this onehastype has_mltype((exp arrow form) arrow (exp arrow exp) arrow exp arrow((exp arrow form) arrow (exp arrow exp) arrow exp arrowform) arrow form.Types like this arise beause we enode types of the programming language we arereasoning about (in this ase ML) as prediates whih themselves take prediatesas arguments. In our new version, it is possible to handle de�nitions at meta-type

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 23type def_lemma A -> (A -> o) -> A -> o.type def_definition tp -> A -> (A -> o) -> A -> o.type symm pf -> pf.def_lemma symm(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))(P\ elam A\ elam B\ elam T\(extrat (eq T A B) (ongr T B A (eq T A) P refl))).type asso (tm -> tm -> tm) -> tp -> tm.def_definition form asso(Asso\ pi F\ pi T\hastype (Asso F T) form <<==pi X\ pi Y\(hastype X T ==>> hastype Y T ==>> hastype (F X Y) T))(F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))).Program 21. Storing lemmas and de�nitions.tp; we would need a new proof onstrutor and a new proof heking lause similarto the one for the def pf proof onstrutor in Program 15. Adding type de�nitionswould also require adding reasoning about equality of types into our typehekinglauses. 5 Programming with lemmas and de�nitionsThe lemma and de�nition mehanisms provide ways to store lemmas and de�nitionsinside proofs. Pakaging proofs in this way makes it straightforward to ommuni-ate proofs, and keeps the proof heking mahinery (the TCB) simple, whih isimportant for our proof-arrying ode appliation. Thus far, all the �Prolog odein Programs 2, 3, 6, 8, 9, 10, 11, and 15 is inside the TCB. A good environmentfor building proofs is also essential, and this part of the ode an be outside theTCB. We don't have to be as areful beause we know that any proofs we build inour theorem proving environment have to be hekable by the proof heking odepresented so far.As we build a library of lemmas and de�nitions, we learly don't want to storeevery lemma and de�nition inside every proof that uses them. Instead, for lemmasthat have general appliability like symm, we would like to store them eah one andallow them to be used in other proofs as needed. To do so, we provide prediates forstating eah de�nition and lemma. To use these prediates, we must introdue newonstants for de�nition and lemma names. Program 21 ontains the delarations ofthese new prediates, and two examples whih use them. �Prolog's polymorphism isused in these prediates. The �rst argument to def lemma is the lemma name, andthe next two arguments orrespond to the Inferene and LemmaProof argumentsto the lemma pf onstrutor. The arguments to def definition are the de�nition

24 Andrew W. Appel and Amy P. Feltytype done_def A -> o.type done_lemma A -> o.type hek_lem A -> o.type hek_lem_aux B -> A -> (A -> o) -> A -> o.hek_lem Name :-def_definition T DName Inferene Def,not (done_def DName), !,def_to_eqlause T DName Def EqClause,done_def DName => l (Inferene DName) => l EqClause => hek_lem Name.hek_lem Name :-def_lemma LName Inferene LemmaProof,hek_lem_aux Name LName Inferene LemmaProof.hek_lem_aux Name Name Inferene LemmaProof :- !,pi name\ (valid_lause (Inferene name)),(Inferene LemmaProof).hek_lem_aux Name LName Inferene LemmaProof :- !,not (done_lemma LName), !,done_lemma LName => l (Inferene LName) => hek_lem Name.Program 22. Cheking a proof whih uses stored lemmas and de�nitions.
name (the seond argument) and arguments that orrespond to the �rst threearguments of the def pf onstrutor (arguments 1, 3, and 4 here).Then we an write programs to manipulate these lemmas and de�nitions in var-ious ways. For example, if we want to pakage a proof as a single term with allthe de�nitions and lemmas it depends on inside it, we must write a program todo so. The resulting proof should not ontain any onstants like symm and asso;instead lemma and de�nition names must be bound variables inside ourrenes ofthe lemma pf and def pf proof onstrutors. We do not present the \pakaging"program here, but instead present a simpler program that illustrates some of theprogramming tehniques required for manipulating lemmas and de�nitions storedin this way. Program 22 ontains a program for heking a proof. It doesn't hekthe lemmas that the proof depends on, but ould be easily modi�ed to do so. Thetrik of using Prolog ut (!) along with the prediates done def and done lemmaallows us to proess a list of lauses in the order they appear in the database. The�rst lause for hek lem looks for the next de�nition and eah time it �nds a newone, it adds the orresponding typeheking lause and equality lause. The seondhek lem lause is used one all de�nitions have been added. It �nds the nextlemma and uses hek lem aux to see if the next lemma is the one that should beheked. If so, the proof is heked; if not, the proof heking lause for the lemmais added to the database and hek lem is alled to proess the next lemma.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 256 Enoding the ore logi in TwelfThe Logial Framework (LF) (HHP93) is another example of a metalanguage inwhih it is possible to enode a wide variety of logis. The Twelf system (PS99) is animplementation of LF whih provides logi programming apabilities, many of whihare similar to �Prolog. In this setion, we ompare the enoding of our ore logiin �Prolog to a orresponding enoding in Twelf, disuss lemmas and de�nitions inTwelf, and ompare the programming environments of these two languages.6.1 The ore logi in TwelfLF is a �-alulus with dependent types. A dependent type in LF has the struturefx : AgB where A and B are types and x is a variable of type A bound in thisexpression. The type B may ontain ourrenes of x. This struture represents a\funtional type." If f is a funtion of this type, and N is a term of type A, thenfN (f applied to N) has the type [N=x℄B, whih represents the type B where allourrenes of x are replaed by N . Thus the argument type is A and the resulttype depends on the value input to the funtion. If x doesn't our in B, this typeis often abbreviated using the usual type arrow: A! B.The extra expressiveness of dependent types allows objet-level types to be ex-pressed more diretly, eliminating the need for any typeheking lauses like thehastype lauses of Program 3. The Twelf onstrutor delarations in Program 23illustrate the use of dependent types for enoding our objet logi. Felty andMiller (FM90) show how to transform an LF objet logi into an enoding in ahigher-order logi whih is a sublogi of the one implemented by �Prolog. The dis-ussion in this setion is informal, but in Appendix B, we use this transformationto provide a formal basis for omparing our two enodings.Although typeheking lauses are not needed here, the proof heking operationis more ompliated in Twelf sine it requires type reonstrution for dependenttypes. 6.2 Lemmas and de�nitions in TwelfTwelf has its own built-in de�nition mehanism, whih an be used for both lemmasand de�nitions in the objet logi. Program 24 ontains a Twelf version of thede�nition of asso and the symm lemma. The abbrev diretive is required in somede�nitions for tehnial reasons, whih we do not desribe here. There are threeparts to a de�nition: a onstant naming the de�nition, its type, and its body (anLF term). A lemma is similar and ontains its name, the formula representing thestatement of the lemma (whih is a type in LF), and the proof (an LF term).In Twelf, a proof is simply a series of delarations and de�nitions, where the lastone is the statement and proof of the main theorem. This proof possibly dependson the lemmas and de�nitions that ome before it. Eah de�nition in the sequenehas the form mentioned above: a name, a type, and the term whih the nameabbreviates when it appears in subsequent delarations. The delarations de�ningthe logial onstants and primitive inferene rules shown in Program 23 (whih eah

26 Andrew W. Appel and Amy P. Feltytp : type.tm : tp -> type.form : tp.pf : tm form -> type.intty : tp.arrow : tp -> tp -> tp. %infix right 14 arrow.pair : tp -> tp -> tp.eq : tm T -> tm T -> tm form.imp : tm form -> tm form -> tm form. %infix right 10 imp.forall : (tm T -> tm form) -> tm form.false : tm form.lam : (tm T1 -> tm T2) -> tm (T1 arrow T2).app : tm (T1 arrow T2) -> tm T1 -> tm T2.mkpair : tm T1 -> tm T2 -> tm (pair T1 T2).fst : tm (pair T1 T2) -> tm T1.snd : tm (pair T1 T2) -> tm T2.refl : pf (eq X X).beta : pf (eq (app (lam F) X) (F X)).fstpair : pf (eq (fst (mkpair X Y)) X).sndpair : pf (eq (snd (mkpair X Y)) Y).surjpair : pf (eq (mkpair (fst Z) (snd Z)) Z).ongr : {H: tm T -> tm form}pf (eq X Z) -> pf (H Z) -> pf (H X).imp_i : (pf A -> pf B) -> pf (A imp B).imp_e : pf (A imp B) -> pf A -> pf B.forall_i : ({y:tm T}pf (A y)) -> pf (forall A).forall_e : pf (forall A) -> {y:tm T}pf (A y).Program 23. Core logi in Twelf.%abbrevasso : (tm T -> tm T -> tm T) -> tm form =[f:(tm T -> tm T -> tm T)℄(forall [a:tm T℄ forall [b:tm T℄ forall [:tm T℄(eq (f a (f b)) (f (f a b)))).symm: pf (eq X Y) -> pf (eq Y X) =[q:pf (eq X Y)℄ (ongr ([z:tm T℄ (eq Y z)) q refl).Program 24. Example lemmas and de�nitions in Twelf.have a type but no de�ning term) are at the beginning of the sequene. In Twelf,we annot pakage up a lemma and its proof, or a de�nition and its body, alongwith the rest of the proof, in the same way we did in �Prolog. The reason for thisis that we annot introdue a lemma pf or def pf onstrutor beause they requirepolymorphism at the meta-level, whih Twelf does not have.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 27In our �Prolog version, we disussed naming eah lemma and de�nition, inludingone opy of eah in a library, and using it whenever needed. We then presented aprogram whih was able to hek the proof of a theorem, assuming that lemmas andde�nitions were organized in this way. In Twelf, we don't need a speial program forheking proofs of lemmas. One of the entral meta-operations of Twelf is to readin a series of delarations and de�nitions, and hek eah one as it is enountered.Proofs are fully heked by this operation.In Twelf, other kinds of operations on proofs are limited. Many proof transfor-mations that we an implement in �Prolog are not programmable in Twelf eitherbeause they require polymorphism or beause they require manipulation of meta-level formulas. Manipulation of meta-level formulas is not possible in Twelf beauseit requires quanti�ation over suh formulas (i.e., quanti�ation over types ontain-ing type), whih is not allowed. 7 Other issuesAlthough we have foussed on the lemma and de�nition mehanisms in �Prologand Twelf, other aspets of the metalanguage are also relevant to our needs forproof generation and heking. 7.1 ArithmetiFor our appliation, proof-arrying ode, we wish to prove theorems about mahineinstrutions that add, subtrat, and multiply; and about load/store instrutionsthat add o�sets to registers. Therefore we require some rudimentary integer arith-meti in our logi.Some logial frameworks have powerful arithmeti primitives, suh as the abilityto solve linear programs (Ne98) or to handle general arithmeti onstraints (JL87).For example, Twelf provides a omplete theory of the rationals, implemented usinglinear programming (Vir99). On the one hand, linear programming is a powerfuland general proof tehnique, although it an inrease the omplexity of the TCB.On the other hand, synthesizing arithmeti from srath is not easy. We have alsoexperimented with arithmeti in �Prolog where we use the is prediate to providesome automati simpli�ations.7.2 Representing proof termsParameterizable data strutures with higher-order uni�ation modulo �-equivaleneprovide an expressive way of representing formulas, prediates, and proofs. We makeheavy use of higher-order data strutures with both diret sharing and sharingmodulo �-redution. The implementation of the metalanguage must preserve thissharing; otherwise our proof terms will blow up in size.Any logi programming system is likely to implement sharing of terms obtainedby opying multiple pointers to the same subterm. In Terzo, this an be seen as theimplementation of a redution algorithm desribed by Wadsworth (Wad71). But

28 Andrew W. Appel and Amy P. Feltywe require even more sharing. The similar terms obtained by applying a �-termto di�erent arguments should retain as muh sharing as possible. Therefore someintelligent implementation of higher-order terms within the metalanguage|suh asTeyjus's use of expliit substitutions (NW90; NW98)|seems essential.7.3 Programming the proverIn this paper, we have onentrated on an enoding of the logi used for proof hek-ing, and disussed some operations on proofs. But of ourse, we will also need toonstrut proofs. For the proof-arrying ode appliation, we need an automati the-orem prover to prove the safety of programs. For implementing this prover, we havefound that the Prolog-style ontrol primitives (suh as the ut (!) operator and theis prediate), whih are also available in �Prolog, are quite important. �Prolog alsoprovides an environment for implementing tati-style interative provers (Fel93).This kind of prover is useful for proving the lemmas that are used by the automatiprover.Twelf does not have many ontrol primitives; in fat, implementation of ontrolprimitives does not �t well into the Twelf system design. We have begun to exper-iment with an operator in Twelf similar to Prolog ut, to see if it will allow us toimplement the automati prover in the same way as in �Prolog. There is also nosupport for building interative provers in Twelf, so proofs of lemmas used by theautomati prover must be onstruted by hand.8 ConlusionThe logial frameworks disussed in this paper are promising vehiles for proof-arrying ode, or in general where it is desired to keep the proof heker as smalland simple as possible. We have proposed a representation for lemmas and de�-nitions that should help keep proofs small and well-strutured, and eah of theseframeworks has features that are useful in implementing, or implementing eÆiently,our mahinery.We have found the oniseness of the enoding in Twelf to be partiularly on-venient, and beause of that, we have used Twelf for extensive proof developmentin our proof-arrying ode appliation. As programming with proofs beomes moreimportant in the next phases of our system, �Prolog will have more advantages.We are urrently investigating ways to ombine the use of the two metalanguages.The translation disussed in Appendix B will serve as the foundation for this om-bination. A A full interpreter for proof hekingTo write a full interpreter, we extend Program 8 in Setion 3.3 by introduing anew type goal and onnetives whih build terms of this type. In partiular, wenow give <<== and ==>> the type goal -> goal -> goal. We also introdue a newonstant ^^ for onjuntion having the same type as the impliation onstrutors.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 29kind goal type.type ==>> goal -> goal -> goal. infixr ==>> 4.type <<== goal -> goal -> goal. infixl <<== 0.type ^^ goal -> goal -> goal. infixl ^^ 3.type all (A -> goal) -> goal.type l goal -> o.type bakhain goal -> goal -> o.type solveg goal -> o.type proves pf -> form -> goal.type assume form -> goal.type valid_lause goal -> goal.solveg (all G) :- pi x\ (solveg (G x)).solveg (G1 ^^ G2) :- solveg G1, solveg G2.solveg (D ==>> G) :- (l D) => solveg G.solveg (G <<== D) :- (l D) => solveg G.solveg G :- l D, bakhain G D.bakhain G G.bakhain G (all D) :- bakhain G (D X).bakhain G (A ^^ B) :- bakhain G A; bakhain G B.bakhain G (H <<== G1) :- bakhain G H, solveg G1.bakhain G (G1 ==>> H) :- bakhain G H, solveg G1.Program A1. A full interpreter.Finally, we introdue all for universal quanti�ation having type (A -> goal)-> goal. In addition, we hange the type of bakhain to goal -> goal -> o,and modify the lauses for the omma and pi to use the new onstants. In thebakhain lauses for <<== and ==>> in Program 8, the goal G1 whih appearsas an argument inside the head of the lause also appears as a goal in the bodyof the lause. In the full interpreter, we annot do this. G1 no longer has type o;it has type goal and is onstruted using the new onnetives. Instead, we replaeG1 with (solveg G1) and implement the solveg prediate to handle the solvingof goals. The new ode for solveg and the modi�ed ode for bakhain is inProgram A1. In order to use this interpreter to solve goals of the form (provesP A), the proves prediate must be a onstrutor for terms of type goal, andthe meta-level goal presented to �Prolog must have the form (solveg (proves PA)). Similarly, inferene rules must also be represented as objets of type goal andwrapped inside l to form �Prolog lauses. Several examples of lauses for inferenerules are given in Program A2 to illustrate. The last lause is the new lause forhandling lemmas in this setting. Note that in this version, valid lause onstrutsobjets of type goal; thus all the lauses for valid lause must also be wrappedin l.

30 Andrew W. Appel and Amy P. Feltyl (proves Q A <<== assump (proves Q A)).l (proves (imp_i Q) (A imp B) <<==all p\ (assump (proves p A) ==>> proves (Q p) B)).l (proves (forall_i Q) (forall T A) <<==all y\ (hastype y T ==>> proves (Q y) (A y))).l (proves (lemma_pf Inferene LemmaProof RestProof) C <<==all Name\(valid_lause (Inferene Name) ^^Inferene LemmaProof ^^(Inferene Name) ==>> (proves (RestProof Name) C))).Program A2. Clauses used by the full interpreter.B Comparison of the ore logi in Twelf and �PrologAs stated, the transformation in Felty and Miller (FM90) an provide a formal basisfor omparing our two enodings. In order to perform this transformation, we mustonsider a \full" LF enoding, whih does not take advantage of the abbreviationsthat Twelf allows. Just as the full LF enoding an be improved by using Twelf'sabbreviations, the �Prolog program that results from the transformation an beimproved by making several optimizations. We disuss how the enoding presentedin Programs 2 and 3 an be viewed as the appliation of the transformation, followedby performing several suh optimizations.In both �Prolog and Twelf, all tokens in a lause or delaration beginning withupperase letters are impliitly bound by universal quanti�ers at the outermostlevel. In Twelf, this impliit quanti�ation is important for providing an enodingof the objet logi that is readable and usable. To see why, onsider the surjpairrule, whih uses the mkpair, fst, and snd onstants. We an make the outermostquanti�ation expliit in Twelf, resulting in the delarations:mkpair : {T1:tp}{T2:tp}tm T1 -> tm T2 -> tm (pair T1 T2).fst : {T1:tp}{T2:tp}tm (pair T1 T2) -> tm T1.snd : {T1:tp}{T2:tp}tm (pair T1 T2) -> tm T2.surjpair :{T1:tp}{T2:tp}{Z:tm (pair T1 T2)}pf (eq (pair T1 T2) (mkpair T1 T2 (fst T1 T2 Z) (snd T1 T2 Z)) Z).This version of surjpair is quite a bit bigger than the one in Program 23. Expliitlyinluding T1 and T2 means that mkpair, fst, and snd eah take two extra typearguments, while surjpair takes three. Terms ontaining these onstants mustthen take extra arguments whih in this example auses redundany in the typeof surjpair beause the same types appear many times. Impliit quanti�ers makethe enoding easier to read and work with. In fat, in the version we used in ourexperiments, the fat that app ould be represented as a binary onstrutor withoutloss of information allowed us to replae the app onstant with an in�x symbol,resulting in enoded terms that were syntatially even loser to the terms theyrepresented. We annot make app in the �Prolog enoding in�x beause it takesthree arguments. (We disuss why it must take three arguments below.)

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 31kind ltp type.kind ltm type.type ltype ltp -> o.type hasltype ltm -> ltp -> o.type well_typed ltm -> ltp -> o.type tp ltp.type tm ltm -> ltp.type form ltm.type pf ltm -> ltp.type intty ltm.type arrow ltm -> ltm -> ltm. infixr arrow 8.type lam ltm -> ltm -> (ltm -> ltm) -> ltm.type app ltm -> ltm -> ltm -> ltm -> ltm.type eq ltm -> ltm -> ltm -> ltm.type imp ltm -> ltm -> ltm. infixr imp 7.type forall ltm -> (ltm -> ltm) -> ltm.type false ltm.type refl ltm -> ltm -> ltm.type beta ltm -> ltm -> (ltm -> ltm) -> ltm -> ltm.type ongr ltm -> ltm -> ltm -> (ltm -> ltm) ->ltm -> ltm -> ltm.type imp_i ltm -> ltm -> (ltm -> ltm) -> ltm.type imp_e ltm -> ltm -> ltm -> ltm -> ltm.type forall_i ltm -> (ltm -> ltm) -> (ltm -> ltm) -> ltm.type forall_e ltm -> (ltm -> ltm) -> ltm -> ltm -> ltm.Program B1. Type delarations for transformation of Twelf to �Prolog.The expliit quanti�ers that we have left out in Program 23 are those that Twelfan easily reonstrut. Beause of this reonstrution, however, a Twelf typeheker(proof heker) has to work harder than it would if we used an expliit version.These enodings illustrate a tradeo� we enounter in proof and term size versusomplexity of the proof heker. Reduing the proof size fores the heker (theTCB) to beome more omplex.When onsidering the formal transformation, we start from a modi�ed versionof Program 23 that makes all quanti�ers expliit. To illustrate, we apply the trans-formation to all of the delarations in the Twelf enoding exept for the onstantsand inferene rules for pairing. Applying the transformation to these delarations,we get the �Prolog type delarations and lauses in Programs B 1 and B2. Beforedisussing the details, it is already possible to see some of the similarities betweenthe Twelf and �Prolog enodings, and between the �Prolog enoding resulting fromthe transformation and the one in Programs 2 and 3. For example, in Twelf the fullversion of the ongr rule is

32 Andrew W. Appel and Amy P. Feltywell_typed M A :- ltype A, hasltype M A.ltype tp.ltype (tm T) :- hasltype T tp.ltype (pf A) :- hasltype A (tm form).hasltype intty tp.hasltype form tp.hasltype (T1 arrow T2) tp :- hasltype T1 tp, hasltype T2 tp.hasltype (lam T1 T2 F) (tm (T1 arrow T2)) :- hasltype T1 tp, hasltype T2 tp,pi x\ (hasltype x (tm T1) => hasltype (F x) (tm T2)).hasltype (app T1 T2 F X) (tm T2) :- hasltype T1 tp, hasltype T2 tp,hasltype F (tm (T1 arrow T2)), hasltype X (tm T1).hasltype (eq T X Y) (tm form) :-hasltype T tp, hasltype X (tm T), hasltype Y (tm T).hasltype (A imp B) (tm form) :- hasltype A (tm form), hasltype B (tm form).hasltype (forall T A) (tm form) :- hasltype T tp,pi x\ (hasltype x (tm T) => hasltype (A x) (tm form)).hasltype false (tm form).hasltype (refl T X) (pf (eq T X X)) :- hasltype T tp, hasltype X (tm T).hasltype (beta T1 T2 F X) (pf (eq T2 (app T1 T2 (lam T1 T2 F) X) (F X))) :-hasltype T1 tp, hasltype T2 tp,pi x\ (hasltype x (tm T1) => hasltype (F x) (tm T2)).hasltype (ongr T X Z H P1 P2) (pf (H X)) :-hasltype T tp, hasltype X (tm T), hasltype Z (tm T),pi x\ (hasltype x (tm T) => hasltype (H x) (tm form)),hasltype P1 (pf (eq T X Z)), hasltype P2 (pf (H Z)).hasltype (imp_i A B Q) (pf (A imp B)) :-hasltype A (tm form), hasltype B (tm form).pi p\ (hasltype p (pf A) => hasltype (Q p) (pf B)).hasltype (imp_e A B Q1 Q2) (pf B) :-hasltype A (tm form), hasltype B (tm form),hasltype Q1 (pf (A imp B)), hasltype Q2 (pf A).hasltype (forall_i T A Q) (pf (forall T A)) :- hasltype T tp,pi y\ (hasltype y (tm T) => hasltype (A y) (tm form)),pi y\ (hasltype y (tm T) => hasltype (Q y) (pf (A y))).hasltype (forall_e T A Q Y) (pf (A Y)) :- hasltype T tp,pi y\ (hasltype y (tm T) => hasltype (A y) (tm form)),hasltype Q (pf (forall T A)), hasltype Y (tm T).Program B2. Transformation of Twelf delarations to �Prolog lauses.ongr : {T:tp}{X:tm T}{Z:tm T}{H:tm T -> tm form}pf (eq X Z) -> pf (H Z) -> pf (H X).The ongr proof onstrutor takes 6 arguments (T, X, Z, H, and two subproofs).In the �Prolog version of ongr in Programs B 1 and B2, ongr also takes 6arguments (4 terms and 2 subproofs) though their types are di�erent from the LFversion. Also, in our original �Prolog enoding (Program 3), the ongr lause has4 subgoals, while in the new one (Program B2) there are 6; it is easy to see the

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 33orrespondene between 4 of them in the two enodings. Note that in the versionin Program 3, two of them are typeheking subgoals and two are proof hekingsubgoals. In Twelf, typeheking and proof heking are uni�ed, so all subgoals inthe Twelf version are Twelf typeheking goals; in our example some of them hekterms whose types have the form (tm A), while others hek terms whose typeshave the form (pf A).In LF, there are several kinds of assertions. The two that are important for theformal transformation are: \A is a type" and \term M has type A". Two �Prologtypes ltp and ltm introdued in Program B1 are used to enode LF types andterms. The �Prolog prediates ltype and hasltype are introdued to express thetwo assertions, respetively. The �rst assertion is important for transforming thethree delarations in Program 23 that end in \type." They delare onstants thatare used to reate LF types, whih orrespond to �Prolog formulas (terms of typeo). The seond assertion is used for the rest. In order for an assertion of the seondkind to hold, it must also be the ase that A is a type. For this reason, the �Prologprediate well typed is inluded (Program B1) and has one lause (Program B2).The delarations and lause disussed so far are neessary no matter what Twelfenoding we begin with. The remaining delarations and lauses in Programs B 1and B2 are spei� to our partiular objet logi. For eah Twelf delaration inProgram 23 that we onsider, there is one type delaration in Program B1 and onelause in Program B2.The �rst hange we make to the �Prolog ode in Programs B 1 and B2 to getloser to an optimized version involves the well typed lause. Consider the �rstsubgoal of this lause, an ltype subgoal. Note that for our partiular enoding,there are three lauses for the ltype prediate. They orrespond to the three kindsof objets in the enoding of the objet logi: types, terms, and proofs. In solving anltype subgoal, at most one lause will ever apply at any point depending on whihof three forms the argument has. This observation permits us to replae well typedwith the following three lauses whih over every ase.well_typed T tp :- ltype tp, hasltype T tp.well_typed M (tm T) :- ltype (tm T), hasltype M (tm T).well_typed M (pf A) :- ltype (pf A), hasltype M (pf A).In the �rst lause, we an eliminate the ltype subgoal beause it is always provable.In the seond and third lauses, we an replae the ltype subgoal with the orre-sponding subgoal from the body of the only ltype lause that applies, to obtainthe lauses below.well_typed T tp :- hasltype T tp.well_typed M (tm T) :- hasltype T tp, hasltype M (tm T).well_typed M (pf A) :- hasltype A (tm form), hasltype M (pf A).Now, we no longer have a need for the ltype lauses and an eliminate them.Although hasltype is suÆient for representing any LF assertion of the form\term M has type A," in our enoding it is useful to distinguish three ways inwhih it is used. This fat leads to our seond modi�ation of Programs B1 and B2.

34 Andrew W. Appel and Amy P. Feltykind ltp type.kind ltm type.type istype ltm -> o.type hastype ltm -> ltp -> o.type proves ltm -> ltp -> o.type well_typed ltm -> ltp -> o.type tp ltp.type tm ltm -> ltp.type pf ltm -> ltp.type arrow ltm -> ltm -> ltm. infixr arrow 8.type forall ltm -> (ltm -> ltm) -> ltm.type forall_i ltm -> (ltm -> ltm) -> (ltm -> ltm) -> ltm.well_typed T tp :- istype T.well_typed M (tm T) :- istype T, hastype M (tm T).well_typed M (pf A) :- hastype A (tm form), proves M (pf A).istype (T1 arrow T2) :- istype T1, istype T2.hastype (forall T A) (tm form) :- istype T,pi x\ (hastype x (tm T) => hastype (A x) (tm form)).proves (forall_i T A Q) (pf (forall T A)) :- istype T,pi y\ (hastype y (tm T) => hastype (A y) (tm form)),pi y\ (hastype y (tm T) => proves (Q y) (pf (A y))).Program B3. Modi�ation of seleted �Prolog delarations and lauses fromPrograms B 1 and B 2.The seond argument to hasltype always has one of the following forms: tp, (tmT), or (pf A). Using this fat, we replae hasltype with three prediates: istype,hastype, and proves. Sine the seond argument to istype always is tp, we aneliminate this argument altogether so that istype has type ltm -> o. Program B3illustrates the modi�ations disussed so far on a subset of the hasltype lauses inProgram B2, whih inlude only those for arrow, forall, and forall i.Looking bak at Program 23, note the types of the four onstants that are used toonstrut terms of type tp. There are no dependent types here; they are all simpletypes, whih ould be transformed diretly to �Prolog types. This fat leads to ourthird modi�ation. Instead of transforming all Twelf terms and types to �Prologterms as is done by the transformation, we transform types with no dependen-ies diretly to �Prolog types, thus allowing the �Prolog typeheker to do moretypeheking work automatially. This diret transformation gives us the �Prologdelarationskind tp type.type form tp.type intty tp.

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 35kind ltp type.kind ltm type.kind tp type.type hastype ltm -> ltp -> o.type proves ltm -> ltp -> o.type well_typed ltm -> ltp -> o.type tm tp -> ltp.type pf ltm -> ltp.type arrow tp -> tp -> tp. infixr arrow 8.type forall tp -> (ltm -> ltm) -> ltm.type forall_i tp -> (ltm -> ltm) -> (ltm -> ltm) -> ltm.well_typed M (pf A) :- hastype A (tm form), proves M (pf A).hastype (forall T A) (tm form) :-pi x\ (hastype x (tm T) => hastype (A x) (tm form)).proves (forall_i T A Q) (pf (forall T A)) :-pi y\ (hastype y (tm T) => hastype (A y) (tm form)),pi y\ (hastype y (tm T) => proves (Q y) (pf (A y))).Program B4. Modi�ation of Program B3.type arrow tp -> tp -> tp.type pair tp -> tp -> tp.This hange fores several other hanges. The type of tm must be hanged to tp ->ltp. The well typed lause for tp is no longer neessary. The istype prediate andall of the lauses for it an be removed; all istype subgoals in other lauses an beeliminated. The well typed lause for tm an also be eliminated sine heking forwell-typedness amounts to simply using the hastype prediate. In the types of allof the onstants, wherever there appears a term T of type ltm suh that T representsan objet-logi type, the type of T must be hanged to tp. Program B4 illustratesthese hanges on the subset of delarations and lauses from Program B3. Notethat the types of forall and forall i are hanged to reet the fat that the �rstargument T has type tp.Our fourth modi�ation to the �Prolog ode allows the �Prolog type system tomake further useful distintions for our partiular objet logi. We introdued thehastype and proves prediate for the ases when the seond argument to our oldhasltype had the forms (tm T) and form (pf A), respetively. We an furthersimplify these lauses by eliminating the tm and pf onstants. Simply eliminatingthem means we must hange the types of the seond argument to these prediatesappropriately,type hastype ltm -> tp -> o.type proves ltm -> ltm -> o.but we an go a step further than that. Notie that after removing tm and pf,

36 Andrew W. Appel and Amy P. Feltykind tp type.kind tm type.kind pf type.type hastype tm -> tp -> o.type proves pf -> tm -> o.type well_typed pf -> tm -> o.type form tp.type intty tp.type arrow tp -> tp -> tp. infixr arrow 8.type lam tp -> tp -> (tm -> tm) -> tm.type app tp -> tp -> tm -> tm -> tm.type eq tp -> tm -> tm -> tm.type imp tm -> tm -> tm. infixr imp 7.type forall tp -> (tm -> tm) -> tm.type false tm.type refl tp -> tm -> pf.type beta tp -> tp -> (tm -> tm) -> tm -> pf.type ongr tp -> tm -> tm -> (tm -> tm) -> pf -> pf -> pf.type imp_i tm -> tm -> (pf -> pf) -> pf.type imp_e tm -> tm -> pf -> pf -> pf.type forall_i tp -> (tm -> tm) -> (tm -> pf) -> pf.type forall_e tp -> (tm -> tm) -> pf -> tm -> pf.Program B5. Modi�ed version of Program B 1.terms appear as the �rst argument to hastype and types as the seond, and thatproofs appear as the �rst argument to the proves prediate and formulas, whihare a subset of the terms, appear as the seond. To make these distintions in theprogram, we reintrodue the onstants tm and pf, but this time as �Prolog typeswhih replae ltm.kind tm type.kind pf type.type hastype tm -> tp -> o.type proves pf -> tm -> o.After making all the hanges disussed so far to the types and lauses in Pro-grams B 1 and B2, we obtain the somewhat simpler versions in Programs B 5and B6. Note that tm and pf no longer appear in lauses (Program B6), andinstead appear in types (Program B5). Also note the new type and lause forwell typed as ompared to what they were in Program B4.The types and lauses in Programs B5 and B6 are now quite lose to those ofPrograms 2 and 3 in Setion 2. The remaining hanges are optimizations that anbe best illustrated if we view the �Prolog ode as a proof heker. In partiular,for any subgoal of the form (proves P A), we assume the proof and the formulaare given at the outset (no logial variables) and that the subgoal (hastype A

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 37well_typed M A :- hastype A form, proves M A.hastype (lam T1 T2 F) (T1 arrow T2) :-pi x\ (hastype x T1 => hastype (F x) T2).hastype (app T1 T2 F X) T2 :- hastype F (T1 arrow T2), hastype X T1.hastype (eq T X Y) form :- hastype X T, hastype Y T.hastype (A imp B) form :- hastype A form, hastype B form.hastype (forall T A) form :- pi x\ (hastype x T => hastype (A x) form).hastype false form.proves (refl T X) (eq T X X) :- hastype X T.proves (beta T1 T2 F X) (eq T2 (app T1 T2 (lam T1 T2 F) X) (F X)) :-pi x\ (hastype x T1 => hastype (F x) T2).proves (ongr T X Z H P1 P2) (H X) :-hastype X T, hastype Z T, pi x\ (hastype x T => hastype (H x) form),proves P1 (eq T X Z), proves P2 (H Z).proves (imp_i A B Q) (A imp B) :- hastype A form, hastype B form.pi p\ (proves p A => proves (Q p) B).proves (imp_e A B Q1 Q2) B :- hastype A form, hastype B form,proves Q1 (A imp B), proves Q2 A.proves (forall_i T A Q) (forall T A) :-pi y\ (hastype y T => hastype (A y) form).pi y\ (hastype y T => proves (Q y) (A y)).proves (forall_e T A Q Y) (A Y) :-pi y\ (hastype y T => hastype (A y) form),proves Q (forall T A), hastype Y T.Program B6. Modi�ed version of Program B 2.form) will be asked �rst (e.g., via the well typed prediate). With this in mind,by looking at some of the lauses for the proves prediate, we �nd two kinds ofredundany. Consider, for example, the lause for refl. The arguments T and Xappear in both the proof and the formula. Assuming that a formula and proof arealways paired together, any arguments that appear in the formula do not have tobe repeated in the proof. Thus we an remove both arguments to refl. Also, sinewe assume that the formula has already been typeheked, the hastype subgoal isredundant and an be eliminated. Thus we ahieve the simple form for the reflrule as it appears in Program 3.Next onsider the lause for imp e. Sine B is the formula whose proof is to beheked, we don't need an extra opy among the arguments to imp e. We also don'tneed to typehek B sine this has been done via the initial all to well typed. Ifwe are to guarantee orret typing of the formula in any proves subgoal generatedduring proof heking, then we need to keep hastype subgoals for any formula thatdoes not appear as a subformula of the formula in the head of the lause. In theimp e lause, the goal (hastype A form) is asked before (proves Q2 A) and thishastype subgoal annot be removed. These hanges lead to the imp e lause inProgram 3.Analogously, we an examine the hastype lauses and remove redundant argu-ments from terms. For example, in the ase of app, the type T2 an be removed

38 Andrew W. Appel and Amy P. Feltybeause it appears as the seond argument to hastype. We must keep T1 if we wantto preserve the property that proof heking will not introdue logi variables.Note that when omparing Program B6 to Program 3, in the proves lause forongr, no arguments are removed from the proof term in either ase, even thoughH and X appear in the seond argument to proves. The reason is that bakhainingon this lause requires higher-order mathing, for whih there an be more than onesolution. One further riteria that we plae on our proof heker is that it annotbaktrak. Thus we must inlude H and X expliitly in the proof term to preventthe possibility that when bakhaining on this lause, a baktrak point is reatedby uni�ation. We an, however, eliminate the typeheking subgoal for H beauseits well-typedness follows from the fat that (H X) has type form and X has typeT. Eliminating this subgoal from the lause in Program B6 gives us the lause inProgram 3.After making analogous hanges to all of the lauses in Program B6, the onlyremaining di�erene in Program 3 is the use of assump to identify assumptionsadded during proof heking, whih as stated earlier, is not neessary, but is usefulfor various programming tasks in our proof-arrying ode system.Note that in making hanges to the �Prolog ode, we have been areful not toompliate proof heking by requiring any more power from �Prolog than wasneeded to exeute the ode obtained diretly from the transformation. The sameis not true for the Twelf ode. As stated earlier, the version that used abbrevia-tions (Program 23) needs more type reonstrution power than the version with allarguments expliitly inluded.In summary, using the formal orrespondene has provided a prinipled way toarrive at the versions of the enodings of the objet logi in Twelf (Program 23)and �Prolog (Program 3) that we have ompared. The main di�erenes are (1)the Twelf enoding is more onise beause dependent types eliminate the need forexpliit typeheking subgoals, and (2) in �Prolog, unlike Twelf, proof heking ofthe optimized version of the enoding is no more omplex than proof heking theoriginal. ReferenesAndrew W. Appel and Edward W. Felten. Proof-arrying authentiation. In 6th ACMConferene on Computer and Communiations Seurity, pages 52{62, November 1999.Andrew W. Appel and Amy P. Felty. Lightweight lemmas in �Prolog. In InternationalConferene on Logi Programming, pages 411{425, November 1999.Andrew W. Appel and Amy P. Felty. A semanti model of types and mahine instrutionsfor proof-arrying ode. In The 27th Annual ACM SIGPLAN-SIGACT Symposium onPriniples of Programming Languages, pages 243{253, 2000.Luis Damas and Robin Milner. Prinipal type-shemes for funtional programs. In NinthACM Symposium on Priniples of Programming Languages, pages 207{212, 1982.Amy Felty. Implementing tatis and tatials in a higher-order logi programming lan-guage. J. Automated Reasoning, 11(1):43{81, August 1993.Amy Felty and Dale Miller. Enoding a dependent-type �-alulus in a logi programming

Polymorphi Lemmas and De�nitions in �Prolog and Twelf 39language. In Tenth International Conferene on Automated Dedution, pages 221{235,July 1990.Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logis.Journal of the ACM, 40(1):143{184, January 1993.Joxan Ja�ar and Jean-Louis Lassez. Constraint logi programming. In ACM SIGACT-SIGPLAN Symposium on Priniples of Programming Languages, pages 111{119, Jan-uary 1987.Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Sedrov. Uniform proofs as afoundation for logi programming. Annals of Pure and Applied Logi, 51:125{157, 1991.George Neula. Proof-arrying ode. In 24th ACM SIGPLAN-SIGACT Symposium onPriniples of Programming Languages, pages 106{119, January 1997.George Ciprian Neula. Compiling with Proofs. PhD thesis, Shool of Computer Siene,Carnegie Mellon University, Pittsburgh, PA, September 1998.Gopalan Nadathur and Dale Miller. An overview of �Prolog. In Robert A. Kowalski andKenneth A. Bowen, editors, Fifth International Conferene and Symposium on LogiProgramming, pages 810{827. MIT Press, 1988.Gopalan Nadathur and Dustin. J. Mithell. System desription: Teyjus | a ompilerand abstrat mahine based implementation of �Prolog. In The 16th InternationalConferene on Automated Dedution, pages 287{291. Springer-Verlag, July 1999.Gopalan Nadathur and Frank Pfenning. The type system of a higher-order logi program-ming language. In Frank Pfenning, editor, Types in Logi Programming, pages 245{283.MIT Press, 1992.Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable foroperations on their intensions. In Proeedings of the 1990 ACM Conferene on Lisp andFuntional Programming, pages 341{348, 1990.Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A generalizationof environments. Theoretial Computer Siene, 198(1-2):49{98, 1998.Frank Pfenning and Conal Elliot. Higher-order abstrat syntax. In Proeedings of theACM-SIGPLAN Conferene on Programming Language Design and Implementation,pages 199{208, 1988.Frank Pfenning. Logi programming in the LF logial framework. In G�erard Huet and Gor-don Plotkin, editors, Logial Frameworks, pages 149{181. Cambridge University Press,1991.Frank Pfenning and Carsten Sh�urmann. System desription: Twelf | a meta-logialframework for dedutive systems. In The 16th International Conferene on AutomatedDedution, pages 202{206. Springer-Verlag, July 1999.Roberto Virga. Twelf(X): Extending Twelf to rationals and beyond. In preparation, 1999.C. P. Wadsworth. Semantis and Pragmatis of the Lambda Calulus. PhD thesis, OxfordUniversity, 1971.Philip Wikline. The Terzo implementation of �Prolog. http://www.se.psu.edu/-�dale/lProlog/terzo/index.html, 1999.

