
In Theory and Pra
ti
e of Logi
 Programming, 4(1&2): 1{39, 2004 1Polymorphi
 Lemmas and De�nitions in�Prolog and TwelfANDREW W. APPELDepartment of Computer S
ien
e, Prin
eton University, USA(e-mail: appel�prin
eton.edu)AMY P. FELTYS
hool of Information Te
hnology and Engineering, University of Ottawa, Canada(e-mail: afelty�site.uottawa.
a)Abstra
t�Prolog is known to be well-suited for expressing and implementing logi
s and inferen
esystems. We show that lemmas and de�nitions in su
h logi
s
an be implemented with agreat e
onomy of expression. We en
ode a higher-order logi
 using an en
oding that mapsboth terms and types of the obje
t logi
 (higher-order logi
) to terms of the metalanguage(�Prolog). We dis
uss both the Terzo and Teyjus implementations of �Prolog. We alsoen
ode the same logi
 in Twelf and
ompare the features of these two metalanguages forour purposes. 1 Introdu
tionIt has long been the goal of mathemati
ians to minimize the set of assumptionsand axioms in their systems. Implementers of theorem provers use this prin
iple:they use a logi
 with as few inferen
e rules as possible, and prove lemmas outsidethe
ore logi
 in preferen
e to adding new inferen
e rules. In appli
ations of logi
to
omputer se
urity { su
h as proof-
arrying
ode (Ne
97) and distributed authen-ti
ation frameworks (AF99a) { the implementation of the
ore logi
 is inside thetrusted
ode base (TCB), while proofs need not be in the TCB be
ause they
anbe
he
ked.Two aspe
ts of the
ore logi
 are in the TCB: a set of logi
al
onne
tives andinferen
e rules, and a program in some underlying programming language thatimplements proof
he
king { that is, interpreting the inferen
e rules and mat
hingthem against a theorem and its proof.De�nitions and lemmas are essential in
onstru
ting proofs of reasonable size and
larity. A proof system should have ma
hinery for
he
king lemmas, and applyinglemmas and de�nitions, in the
he
king of proofs. This ma
hinery also is withinthe TCB; see Figure 1. Many theorem provers support de�nitions and lemmasand provide a variety of advan
ed features designed to help with tasks su
h asorganizing de�nitions and lemmas into libraries, keeping tra
k of dependen
ies, andproviding modularization; in our work we are parti
ularly
on
erned with separating

2 Andrew W. Appel and Amy P. Felty
Proof Theorem

Logic

A
C

M
E

LEMM
A

C
O

Def'n

Lemma

Lemma

Trusted
ode baseFigure 1. Lemma ma
hinery is inside the TCB.that part of the ma
hinery ne
essary for proof
he
king (i.e., in the TCB) fromthe programming-environment support that is used in proof development. Thisseparation was parti
ularly important for a proof-
arrying
ode system we builtinitially in �Prolog (AF00). In this paper we will demonstrate a de�nition/lemmaimplementation that is about three dozen lines of
ode.The �Prolog language (NM88) has several features that allow
on
ise and
leanimplementation of logi
s, proof
he
kers, and theorem provers (Fel93). In a previ-ous paper (AF99b), we presented a lemma and de�nition me
hanism implementedin �Prolog. In this paper, we extend that work and des
ribe it more fully. Wepresent the lemma me
hanism and a generalization of our de�nition me
hanism,again implemented in �Prolog. Sin
e we now have more experien
e using the Twelfsystem (Pfe91; PS99), we in
lude a detailed
omparison of the Twelf and �Prologversions of the en
oding of our logi
, lemmas, and de�nitions. An important purposeof this paper is to show whi
h language features allow a small TCB and eÆ
ientrepresentation of proofs. We also give a
omparison of programming issues that areimportant to our proof-
arrying
ode appli
ation.Although the lemma and de�nition me
hanism is general, we illustrate it using animplementation of higher-order logi
. We
all this logi
 the obje
t logi
 to distinguishit from the metalogi
 implemented by �Prolog or Twelf. Our obje
t logi
 is notpolymorphi
, but our lemma and de�nition me
hanisms are polymorphi
 in thesense that they
an express properties that hold at any type of the obje
t logi
.The symmetry of equality, for example, is one su
h lemma we will en
ounter.2 En
oding a higher-order logi
The �Prolog version of the
lauses we present use the syntax of the Terzo implemen-tation (Wi
99). We also dis
uss the Teyjus implementation (NM99) and
omparethe two for our purposes. Terzo is interpreted and provides more
exibility, butTeyjus has a
ompiler in whi
h our
ode runs mu
h more eÆ
iently.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 3�Prolog is a higher-order logi
 programming language whi
h extends Prolog inessentially two ways. First, it repla
es �rst-order terms with the more expressivesimply-typed �-terms; �Prolog implementations generally extend simple types toin
lude ML-style prenex polymorphism (DM82; NP92). Se
ond, it permits impli-
ation and universal quanti�
ation (over obje
ts of any type) in goal formulas.We introdu
e types and
onstants using kind and type de
larations, respe
tively.For example, a new primitive type t and a new
onstant f of type t ! t ! t arede
lared as follows.kind t type.type f t -> t -> t.Capital letters in type de
larations denote type variables and are used in polymor-phi
 types. In program goals and
lauses, �-abstra
tion is written using ba
kslash\ as an in�x operator. Capitalized tokens not bound by �-abstra
tion denote freevariables. All other unbound tokens denote
onstants. Universal quanti�
ation iswritten using the
onstant pi in
onjun
tion with a �-abstra
tion (e.g., pi X\represents universal quanti�
ation over variable X). The symbols
omma and =>represent
onjun
tion and impli
ation. The symbol :- denotes the
onverse of =>and is used to write the top-level impli
ation in
lauses. The type o is the type of
lauses and goals of �Prolog. We usually omit universal quanti�ers at the top levelin de�nite
lauses, and assume impli
it quanti�
ation over all free variables.We will en
ode a natural dedu
tion proof system for our higher-order obje
tlogi
. (In our earlier work (AF99b), we implemented a sequent
al
ulus version.)We implement a proof
he
ker for this logi
 that is similar to the one des
ribed byFelty (Fel93). Program 2
ontains the type de
larations used in our en
oding.We introdu
e three primitive types: tp for obje
t-level types, tm for obje
t-levelterms (in
luding formulas) and pf for proofs in the obje
t logi
.We introdu
e
onstants for the obje
t-level type
onstru
tors. The main type
onstru
tor for our obje
t language is the arrow
onstru
tor taking two types asarguments. We also in
lude obje
ts of type tp to represent base types, su
h as formand intty.To represent formulas, we introdu
e
onstants su
h as imp to represent impli
a-tion in the obje
t logi
, and eq whi
h takes two terms and a type and is used torepresent equality at any type. We use in�x notation for the type arrow and binarylogi
al
onne
tives. The binding strength of ea
h in�x operator is de
lared usingan infix de
laration. The
onstant forall represents universal quanti�
ation. Ittakes a type representing the type of the bound variable and a fun
tional argument,whi
h allows obje
t-level binding of variables by quanti�ers to be de�ned in termsof meta-level �-abstra
tion. An example of its use is the following formula, whi
hexpresses the
ommutativity of equality for integers:forall intty (X\ forall intty (Y\ (eq intty X Y) imp (eq intty Y X))).The parser uses the usual rule for the synta
ti
 extent of a lambda, so this expressionis equivalent toforall intty X\ forall intty Y\ eq intty X Y imp eq intty Y X.

4 Andrew W. Appel and Amy P. Feltykind tp type.kind tm type.kind pf type.type form tp.type intty tp.type arrow tp -> tp -> tp. infixr arrow 8.type pair tp -> tp -> tp.type eq tp -> tm -> tm -> tm.type imp tm -> tm -> tm. infixr imp 7.type forall tp -> (tm -> tm) -> tm.type false tm.type lam (tm -> tm) -> tm.type app tp -> tm -> tm -> tm.type mkpair tm -> tm -> tm.type fst tp -> tm -> tm.type snd tp -> tm -> tm.type hastype tm -> tp -> o.type proves pf -> tm -> o.type assump o -> o.type refl pf.type beta pf.type fstpair pf.type sndpair pf.type surjpair pf.type
ongr tp -> tm -> tm -> (tm -> tm) -> pf -> pf -> pf.type imp_i (pf -> pf) -> pf.type imp_e tm -> pf -> pf -> pf.type forall_i (tm -> pf) -> pf.type forall_e tp -> (tm -> tm) -> pf -> tm -> pf.Program 2. Type de
larations for
ore logi
.This use of higher-order data stru
tures is
alled higher-order abstra
t syntax (PE88);with it, we don't need to des
ribe the me
hani
s of substitution expli
itly in theobje
t logi
 (Fel93).To represent terms, we introdu
e the app and lam
onstants for appli
ation andabstra
tion, as well as
onstants for pairing and proje
tions. The app
onstru
tortakes three arguments. The se
ond argument is a term of fun
tional type and thethird argument is the term it is applied to. The �rst argument is the type of theargument to the fun
tion. The lam
onstant has a type, whi
h like forall, usesmeta-level abstra
tion to represent obje
t-level binding.The
onstants at the end of Program 2 are used to build terms representingproofs. We
all these
onstants as well as any other terms whose type ends in \->pf" proof
onstru
tors.Programs 2 and 3 together implement a full proof
he
ker for our obje
t logi
.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 5hastype (eq T X Y) form :- hastype X T, hastype Y T.hastype (A imp B) form :- hastype A form, hastype B form.hastype (forall T A) form :- pi x\ (hastype x T => hastype (A x) form).hastype false form.hastype (lam F) (T1 arrow T2) :- pi x\ (hastype x T1 => hastype (F x) T2).hastype (app T1 F X) T2 :- hastype F (T1 arrow T2), hastype X T1.hastype (mkpair X Y) (pair T1 T2) :- hastype X T1, hastype Y T2.hastype (fst T2 X) T1 :- hastype X (pair T1 T2).hastype (snd T1 X) T2 :- hastype X (pair T1 T2).proves Q A :- assump (proves Q A).proves refl (eq T X X).proves beta (eq T2 (app T1 (lam F) X) (F X)).proves fstpair (eq T1 (fst T2 (mkpair X Y)) X).proves sndpair (eq T2 (snd T1 (mkpair X Y)) Y).proves surjpair (eq (pair T1 T2) (mkpair (fst T2 Z) (snd T1 Z)) Z).proves (
ongr T X Z H P1 P2) (H X) :-hastype X T, hastype Z T,proves P1 (eq T X Z), proves P2 (H Z).proves (imp_i Q) (A imp B) :-pi p\ (assump (proves p A) => proves (Q p) B).proves (imp_e A Q1 Q2) B :-hastype A form, proves Q1 (A imp B), proves Q2 A.proves (forall_i Q) (forall T A) :-pi y\ (hastype y T => proves (Q y) (A y)).proves (forall_e T A Q X) (A X) :-pi x\ (hastype x T => hastype (A x) form),hastype X T,proves Q (forall T A).Program 3. Inferen
e rules of the
ore logi
.Program 3 implements both type
he
king and inferen
e rules. The last four
lausesof Program 3 implement the introdu
tion and elimination rules for impli
ation anduniversal quanti�
ation, whi
h are given in Figure 4. We do not in
lude inferen
e(A)B � -IA � B A A � B � -EB (y : �)[y=x℄A 8� -I8�xA 8�xA t : � 8� -E[t=x℄AThe 8-I rule has the proviso that the variable y
annot appear free in 8�xA, orin any assumption on whi
h the dedu
tion of [y=x℄A depends.Figure 4. Natural Dedu
tion Inferen
e Rulesrules for the other logi
al
onne
tives. Instead, we de�ne them in terms of existing
onne
tives using our de�nition me
hanism des
ribed later. The remaining
lausesfor the proves predi
ate implement inferen
e rules for equality. Type
he
king forterms is implemented by the hastype
lauses. Proof
he
king is implemented bythe proves
lauses. A goal of the form (proves P A) should be run only after A istype
he
ked, i.e., a proper
he
k has the form (hastype A form, proves P A).

6 Andrew W. Appel and Amy P. FeltyTo implement the dis
harge of assumptions in the impli
ation introdu
tion rule,we use impli
ation and universal quanti�
ation in �Prolog goals. The goal (D =>G) adds
lause D to the �Prolog
lause database, attempts to solve G, and then(upon either the su

ess or failure of G) removes D from the
lause database. Thegoal (pi y\(G y)) introdu
es a new
onstant
 with the same type as y, repla
esy with
, and attempts to solve the goal (G
). For example,
onsider the goalproves (imp_i q\q) (a imp a)where a is a propositional
onstant (a
onstant of type form); then �Prolog willexe
ute the (instantiated) body of the imp i
lausepi p\ (assump (proves p a) => proves ((q\q) p) a)This generates a new
onstant
, and adds (assump (proves
 a) to the database;then the subgoal (proves ((q\q)
) a), whi
h is �-equivalent to (proves
 a),mat
hes the �rst
lause for the proves predi
ate. The subgoal (assump (proves
 a)) is generated and this goal mat
hes our dynami
ally added
lause. We have
hosen to use the assump predi
ate for adding atomi

lauses to the program. Thisis not ne
essary, but we �nd it useful to distinguish between adding atomi

lausesand adding non-atomi

lauses, whi
h we will see later. Note that the type
he
king
lauses for forall and lam use meta-level impli
ation and universal quanti�
ationin a manner similar to the proves
lause for the �-I rule.It is important to show that our en
oding of higher-order logi
 in �Prolog isadequate. To do so, we must show that a formula has a natural dedu
tion proofif and only if its representation as a term has an asso
iated proof term that
anbe
he
ked using the inferen
e rules of Program 3. The en
oding we use is similarto the en
oding of higher-order logi
 in the Logi
al Framework (HHP93) and theproof of adequa
y of our en
oding is similar to the one dis
ussed there. The maindi�eren
e between the two en
odings is the types of the logi
al
onne
tives. Forexample, in their en
oding, imp is given type tm and the fa
t that it is a
onne
tivewhi
h takes two formulas as arguments is expressed using obje
t level types; thehastype
lause ishastype imp (form arrow form arrow form).An impli
ation must then be expressed using the app
onstru
tor, e.g., (app (appimp A) B). We found that this en
oding of the
onne
tives qui
kly be
ame
um-bersome and our en
oding was more readable. On the other hand, our en
oding isnot as e
onomi
al as the one we used previously (AF99b). There we representedobje
t-level types as meta-level types, whi
h allowed us to eliminate all the hastype
lauses and subgoals. The types of our obje
t logi
, however, did not mat
h up wellwith the types of �Prolog, whi
h for
ed
ertain limitations in the implementation ofour proof-
arrying
ode system. (See Appel and Felty (AF99b) for further analysis.)The en
oding in the
urrent paper seems to be the best
ompromise.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 7proves(forall_i I\ (forall_i J\ (imp_i Q\(
ongr intty I J (eq intty J) Q refl))))(forall intty I\ forall intty J\ (eq intty I J imp eq intty J I)).Theorem 5. 8int I 8int J ((I =int J) � (J =int I)).3 LemmasIn mathemati
s the use of lemmas
an make a proof more readable by stru
turingthe proof, espe
ially when the lemma
orresponds to some intuitive property. Forautomated proof
he
king (in
ontrast to automated or traditional theorem proving)this use of lemmas is not essential, be
ause the
omputer doesn't need to understandthe proof in order to
he
k it. But lemmas
an also redu
e the size of a proof (andtherefore the time required for proof
he
king): when a lemma is used multiple timesit a
ts as a kind of \subroutine." This is parti
ularly important in appli
ations likeproof-
arrying
ode where proofs are transmitted over networks to
lients who
he
kthem. We �rst present an example whi
h we use to illustrate our lemma me
hanismin �Prolog (Se
tion 3.1), and then present this me
hanism as we'd implement itin Terzo (Se
tion 3.2). We then explain the modi�
ations required to meet theextra restri
tions imposed by Teyjus (Se
tion 3.3). We end this se
tion with someoptimizations that are important for keeping proofs that use lemmas as small aspossible (Se
tion 3.4) and then with some more examples (Se
tion 3.5).3.1 An exampleTheorem 5 shows the use of our
ore logi
 to express a simple proof
he
king goal.The proof of this lemma uses the 8-I rule as well as
ongruen
e and re
exivity ofequality. Its proof
an be
he
ked as a su

essful �Prolog query to our
ore logi
in Programs 2 and 3. Alternatively, we may want to prove it using the followinggeneral lemma about symmetry of equality at any type.A : � B : � B =� AA =� BThe proof of this lemma
an be
he
ked as the following �Prolog query.pi T\ pi A\ pi B\ pi P\(hastype A T, hastype B T, proves P (eq T B A)) =>proves (
ongr T B A (eq T A) P refl) (eq T A B).This query introdu
es an arbitrary P, adds the typing
lauses (hastype A T) and(hastype B T), and the assumption (proves P (eq T B A)) to the set of
lauses,then
he
ks the proof of
ongruen
e using these fa
ts. The syntax F => G meansexa
tly the same as G :- F , so we
ould just as well write this query aspi T\ pi A\ pi B\ pi P\(proves (
ongr T B A (eq T A) P refl) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A)).

8 Andrew W. Appel and Amy P. Feltytype lemma_pf (A -> o) -> A -> (A -> pf) -> pf.proves (lemma_pf Inferen
e LemmaProof RestProof) C :-Inferen
e LemmaProof,pi Name\ ((Inferen
e Name) => (proves (RestProof Name) C)).Program 6. The lemma pf proof
onstru
tor.Now, suppose we abstra
t the proof (roughly,
ongr T B A (eq T A) P refl)from this query.(Inferen
e = (PCon\ pi T\ pi A\ pi B\ pi P\proves (PCon T A B P) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A)),Proof = (T\A\B\P\
ongr T B A (eq T A) P refl),Query = (Inferen
e Proof),Query).The solution of this query pro
eeds in four steps: the variable Inferen
e is uni�edwith a �-term; Proof is uni�ed with a �-term; Query is uni�ed with the appli
ationof Inferen
e to Proof (whi
h is a term �-equivalent to the query of the previousparagraph), and �nally Query is solved as a goal (
he
king the proof of the lemma).On
e we know that the lemma is valid, we
an make a new �Prolog atom symmto stand for its proof, and we
an prove some other theorem in a
ontext where the
lause (Inferen
e symm) is in the
lause database; remember that (Inferen
esymm) is �-equivalent topi T\ pi A\ pi B\ pi P\(proves (symm T A B P) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A)).This series of transformations starting with a proof
he
king subgoal has led usto a
lause that looks remarkably like an inferen
e rule. With this
lause in thedatabase, we
an use the new proof
onstru
tor symm just as if it were primitive.Instead of adding new
lauses like this to our proof
he
ker, whi
h would in
reasethe size of our TCB, we show how to put su
h lemmas inside proofs.3.2 Lemmas in proofsIn the example in the previous se
tion, symm is a new
onstant, but when lemmasare proved and put inside proofs dynami
ally, we
an instead \make a new atom"by simply pi-binding it. This leads to the re
ipe for lemmas shown in Program 6,whi
h is the heart of our lemma me
hanism. (We will improve it slightly in thenext se
tion.) This program introdu
es a
onstru
tor lemma pf for storing lem-mas in proofs. This
onstru
tor takes three arguments: (1) a derived inferen
e ruleInferen
e (of type A -> o) parameterized by a proof
onstru
tor (of type A), (2) aterm LemmaProof of type A representing a proof of the lemma built from
ore-logi
proof
onstru
tors (or using other lemmas), and (3) a proof of the main theorem

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 9proves(lemma_pf(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm T A B P) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A))(T\A\B\P\ (
ongr T B A (eq T A) P refl))(symm\ (forall_i I\ (forall_i J\ (imp_i Q\ (symm intty J I Q))))))(forall intty I\ forall intty J\ (eq intty I J imp eq intty J I)).Theorem 7. Modi�
ation of Theorem 5 to use a lemma.RestProof that is parameterized by a proof
onstru
tor (of type A). Operationally,this
lause �rst exe
utes (Inferen
e LemmaProof) as a query, to
he
k the proofof the lemma itself; then it pi-binds Name in the lemma, adds it as a new
lause, andruns RestProof (whi
h is parameterized on the lemma proof
onstru
tor) appliedto Name.The terms Inferen
e and Proof from the example in Se
tion 3.1 illustrate theform of the terms whi
h will appear as the �rst two arguments to lemma pf. Theo-rem 7 illustrates the use of lemma pf in an example; this theorem is a modi�
ationof Theorem 5 that uses the symm lemma.3.3 Lemmas in TeyjusIf we restri
t ourselves to the Terzo implementation of �Prolog, then meta-levelformulas
an o

ur inside proofs using any of the �Prolog
onne
tives. But if wewant to be able to use Teyjus as well, we must make one more
hange. The Teyjussystem does not allow => or :- to appear in arguments of predi
ates. Thus the term(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm T A B P) (eq T A B) :-hastype A T, hastype B T, proves P (eq T B A))o

urring in the symm lemma in Theorem 7
annot appear dire
tly as the �rstargument to lemma pf. Teyjus also does not allow variables to appear at the headof the left of an impli
ation. These restri
tions
ome from the theory underlying�Prolog (MNPS91); without the latter one, a runtime
he
k is needed to insurethat every dynami
ally
reated goal is an a

eptable one.We
an avoid putting :- inside arguments of predi
ates by writing the aboveterm as(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm T A B P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))where <<== is a new in�x operator of type o -> o. But this, in turn, means thatthe subgoal (Inferen
e LemmaProof) of the lemma pf
lause in Program 6 willno longer
he
k the lemma, sin
e <<== has no operational meaning. To handlesu
h goals, we add the three
onstants de
lared at the beginning of Program 8,whi
h introdu
e both forward and ba
kward impli
ation arrows, and a new atomi

10 Andrew W. Appel and Amy P. Feltytype ==>> o -> o -> o. infixr ==>> 4.type <<== o -> o -> o. infixl <<== 0.type
l o -> o.(D ==>> G) :- (
l D) => G.(G <<== D) :- (
l D) => G.type ba
k
hain o -> o -> o.proves P A :-
l Cl, ba
k
hain (proves P A) Cl.hastype X T :-
l Cl, ba
k
hain (hastype X T) Cl.assump G :-
l Cl, ba
k
hain (assump G) Cl.ba
k
hain G G.ba
k
hain G (pi D) :- ba
k
hain G (D X).ba
k
hain G (A,B) :- ba
k
hain G A; ba
k
hain G B.ba
k
hain G (H <<== G1) :- ba
k
hain G H, G1.ba
k
hain G (G1 ==>> H) :- ba
k
hain G H, G1.Program 8. An interpreter for dynami

lauses.predi
ate
l of type o -> o, and we introdu
e the two
lauses that follow thesede
larations to interpret our new arrows as �Prolog impli
ation. Note that althoughit would have been more dire
t, we did not add:(D ==>> G) :- D => G.be
ause of the Teyjus restri
tion mentioned above that variables
annot appearat the head of the left of an impli
ation. The use of the
l \wrapper" solves theproblem
reated by this restri
tion, but requires us to implement an interpreter tohandle
lauses of the form (
l A). The remaining
lauses in Program 8 implementthis interpreter.Sin
e the type of (Inferen
e Proof) is o, the term Inferen
e might
on
eiv-ably
ontain subterms whi
h are �Prolog
lauses. Of
ourse, in Teyjus these
lauseswill not
ontain :- or =>, but they may
ontain <<== and ==>>, whi
h get inter-preted via the
lauses of Program 8. They
ould also, for example,
ontain any other�Prolog
ode in
luding input/output operations. Exe
uting (Inferen
e Proof)
annot lead to unsoundness { if the resulting proof
he
ks, it is still valid. Butthere are some
ontexts where we wish to restri
t the kind of program that
ano

ur inside a proof and be run when the proof is
he
ked. For example, in a proof-
arrying-
ode system, the
ode
onsumer might not want proof
he
king to
ause�Prolog to exe
ute
ode that a

esses private lo
al resour
es.To limit the kind and amount of exe
ution possible in the exe
utable part ofa lemma, we introdu
e the valid
lause predi
ate of type o -> o (Program 9).A
lause is valid if it
ontains pi,
omma, <<==, ==>>, proves, hastype, assump,and nothing else. Of
ourse, a proves or assump
lause
ontains subexpressions oftype pf and tm, and a hastype
lause has subexpressions of type tm and tp, soall the
onstants in proofs, terms, and types of our obje
t logi
 are also permitted.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 11valid_
lause (pi C) :- pi X\ valid_
lause (C X).valid_
lause (A,B) :- valid_
lause A, valid_
lause B.valid_
lause (A <<== B) :- valid_
lause A, valid_
lause B.valid_
lause (A ==>> B) :- valid_
lause A, valid_
lause B.valid_
lause (proves Q A).valid_
lause (hastype X T).valid_
lause (assump (proves Q A)).Program 9. Valid
lauses.proves (lemma_pf Inferen
e LemmaProof RestProof) C :-pi Name\ (valid_
lause (Inferen
e Name)),Inferen
e LemmaProof,pi Name\ (
l (Inferen
e Name) => (proves (RestProof Name) C)).Program 10. The
lause for lemmas in Teyjus.Absent from this list are �Prolog input/output (su
h as print) and the semi
olon(ba
ktra
king sear
h).The valid
lause restri
tion is the reason that we only need new
lauses forthe proves, hastype, and assump predi
ates in Program 8. We must add at leastthese three be
ause they are used for
he
king nodes in a proof that require usingthe
lauses added dynami
ally via the
l predi
ate. In
luding no other predi
atesin the valid
lause de�nition guarantees that we need no other new
lauses with
l subgoals.Be
ause of the introdu
tion of <<==, ==>>, and valid
lause, we modify the
lause in Program 6 for
he
king lemmas. The new
lause is shown in Program 10.The �rst subgoal is new; it pi-binds Name and
he
ks to see if the new lemmaapplied to Name is valid. The only other modi�
ation is in the last subgoal, whi
hadds the lemma as a new
lause via the
l predi
ate. Sin
e all lemmas will be addedvia
l, the only way to use them is via the proves
lause in Program 8. Using that
lause, the (
l Cl) subgoal looks up the lemmas that have been added, one ata time, and tries them out via the ba
k
hain predi
ate. This predi
ate pro
essesthe
lauses in a manner similar to the �Prolog language itself. In Terzo, using thisinterpreter is less eÆ
ient than the dire
t implementation in Program 6. In Teyjus,the interpreter is required, but when
ompiled, the
ode runs faster than eitherTerzo version.In summary, our te
hnique allows lemmas to be
ontained within the proof. Wedo not need to install new \global" lemmas into the proof
he
ker. The dynami
s
oping also means that the lemmas of one proof
annot interfere with the lemmas ofanother, even if they have the same names. This ma
hinery uses several interestingfeatures of �Prolog:Polymorphism. The type of the lemma pf
onstru
tor uses polymorphism to indi-
ate that proof
onstru
tors introdu
ed for lemmas
an have di�erent types.

12 Andrew W. Appel and Amy P. FeltyMeta-level formulas as terms. Lemmas su
h as symmetry of equality o

ur insideproofs as an argument to the lemma pf
onstru
tor in the following form.(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm T A B P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))It is just a data stru
ture (parameterized by Symm); it does not \exe
ute" anything,in spite of the fa
t that it
ontains the �Prolog quanti�er pi and our new
onne
tive<<==. This gives us the freedom to write lemmas using syntax very similar to thatused for writing primitive inferen
e rules. Handling the new
onstants for <<== and==>> is easy enough operationally. However, it is an in
onvenien
e for the user, whomust use di�erent syntax in lemmas than in inferen
e rules. This in
onvenien
e isavoided in Terzo.Dynami
ally
onstru
ted goals. When the
lause from Program 10 for the lemma pfproof
onstru
tor
he
ks the proof of a lemma by exe
uting the goal (Inferen
eLemmaProof), we are exe
uting a goal that is built from a run-time-
onstru
teddata stru
ture. Inferen
e will be instantiated with terms su
h as the one aboverepresenting the symmetry lemma. It is only when su
h a term is applied to itsproof and thus appears in \goal position" that it be
omes the
urrent subgoal onthe exe
ution sta
k.Dynami
ally
onstru
ted
lauses. When, having su

essfully
he
ked the proof of alemma, the lemma pf
lause exe
utes
l (Inferen
e Name) => (proves (RestProof Name) C)it is adding a dynami
ally
onstru
ted
lause to the �Prolog database.Although it is not the
ase for Terzo or Teyjus, if a metalanguage were to pro-hibit all terms having o in their types as arguments to a predi
ate, it would still bepossible to implement lemmas using our approa
h. Appendix A illustrates by show-ing an interpreter whi
h extends Program 8 to handle this extra restri
tion. New
onstants must be introdu
ed not only for impli
ation but also for every meta-level
onne
tive. Note that when meta-level formulas are not allowed, there is no possi-bility for dynami
ally
reated goals or
lauses. Twelf for example, does not allowmeta-level formulas as terms and is also not polymorphi
, and thus the approa
hdes
ribed in this se
tion
annot be used, but the approa
h of Appendix A
ould.Instead, as we will see in Se
tion 6, Twelf provides alternative features whi
h we
an use to implement lemmas.3.4 Some optimizations for implementing lemmasThe Symm proof
onstru
tor in Theorem 7 is a bit unwieldy, sin
e it requires T, A,and B as arguments. We
an imagine writing a primitive inferen
e ruleproves (symm P) (eq T A B) :-hastype A T, hastype B T, P proves (eq T B A).

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 13type elam (A -> pf) -> pf.type extra
t tm -> pf -> pf.type extra
tGoal o -> pf -> pf.proves (elam Q) A :- proves (Q B) A.proves (extra
t A P) A :- proves P A.proves (extra
tGoal G P) A :- valid_
lause G, G, proves P A.Program 11. Proof
onstru
tors for impli
it arguments of lemmas.proves(lemma_pf(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))(P\ elam T\ elam A\ elam B\(extra
t (eq T A B) (
ongr T B A (eq T A) P refl)))(symm\ (forall_i I\ (forall_i J\ (imp_i Q\ (symm Q))))))(forall intty I\ forall intty J\ (eq intty I J imp eq intty J I)).Theorem 12. 8int I 8int J ((I =int J) � (J =int I)).using the prin
iple that the proof
he
ker doesn't need to be told T, A, and B insidethe proof term, sin
e they
an be found in the formula to be
he
ked. Then, inTheorem 7, (Symm intty J I Q) would be (Symm Q).Therefore we add three new proof
onstru
tors|elam, extra
t, and extra
t-Goal|as shown in Program 11. These
an be used in the following stereotypedway to extra
t
omponents of the formula to be proved. First bind variables withelam, then mat
h the target formula with extra
t. Theorem 12 is a modi�
ationof Theorem 7 that makes use of these
onstru
tors.Note that we
ould eliminate the hastype subgoals from our new version of thesymm lemma be
ause we know them to be redundant as long as (eq T A B) wasalready type
he
ked. The reason for keeping them is that the se
ond subgoal of the
lause in Program 10 would fail without them; the proof
he
king of the lemmarequires these hastype assumptions. In en
oding our
ore logi
, it was possible toeliminate all su
h redundant subgoals. The fa
t that su
h a short
ut is not possiblein lemmas
auses a tradeo�; by keeping su
h lemmas out of the TCB and puttingthem in proofs, we are for
ing the proof
he
ker to do more work. There seems tobe no easy way to avoid this redundant work, though some ad-ho
 optimizationsto proof
he
king might be possible.The extra
tGoal proof
onstru
tor asks the
he
ker to run �Prolog
ode tohelp
onstru
t the proof. Its implementation uses valid
lause to restri
t whatkinds of �Prolog
ode
an be run. Note, however, that valid
lause does not al-ways eliminate
ode that loops and so its
urrent implementation
annot guaranteetermination. A stri
ter valid
lause would be ne
essary to a
hieve this.The extra
tGoal proof
onstru
tor was useful for handling assumptions in thesequent
al
ulus version of our obje
t logi
 (AF99b); for natural dedu
tion, thesame need does not arise in the implementation of our
ore logi
, but extra
tGoal

14 Andrew W. Appel and Amy P. Feltyproves(lemma_pf(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))(P\ elam T\ elam A\ elam B\(extra
t (eq T A B) (
ongr T B A (eq T A) P refl)))(symm\(lemma_pf(Trans\ pi T\ pi A\ pi B\ pi C\ pi Q1\ pi Q2\proves (Trans C Q1 Q2) (eq T A B) <<==hastype A T, hastype B T, hastype C T,proves Q1 (eq T A C), proves Q2 (eq T C B))(C\Q1\Q2\ elam A\ elam B\ elam T\(extra
t (eq T A B) (
ongr T B C (eq T A) (symm Q2) Q1)))(trans\ (forall_i I\ forall_i J\ forall_i K\(imp_i Q1\ (imp_i Q2\ (trans J (symm Q1) Q2))))))))(forall intty I\ forall intty J\ forall intty K\(eq intty J I imp eq intty J K imp eq intty I K))).Theorem 13. 8int I; J;K ((J =int I) � (J =int K) � (I =int K)).is useful for implementing more
omplex lemmas. Although we have not done so,it would be interesting to further explore the possibility of
reating more
ompa
tproofs by leaving out information that
an be
omputed easily via
ode given asarguments to extra
tGoal. 3.5 More examplesAs another example of the use of lemmas, we
an of
ourse use one lemma in theproof of another, as shown by Theorem 13. The proof of the trans lemma expressingtransitivity of equality uses the symm lemma.The symm lemma is naturally polymorphi
: it
an express the idea that (a =int3) � (3 =int a) just as well as (f =int!int �x:3) � (�x:3 =int!int f). Theorem 14illustrates part of a proof whi
h
ontains two lemmas whose proofs use symm atdi�erent types. In our previous work (AF99b), be
ause we represented obje
t-leveltypes as meta-level types, we were unable to allow polymorphism in lemmas atall. To do so would have required a metalanguage with more general non-prenexpolymorphism. To handle Theorem 14 required two
opies of the symm lemma, oneat ea
h type.In prin
iple, we do not need lemmas at all. Instead, we
an repla
e ea
h subproofof the form (lemma pf I L R) with the term (R L), whi
h repla
es ea
h use ofa lemma with its proof. This approa
h, however, adds undesirable
omplexity toproofs. But, using this fa
t it should be straightforward to prove the
orresponden
ebetween proofs with the lemma pf
onstru
tor and proofs without, whi
h woulddire
tly extend soundness and adequa
y results to our system with lemmas.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 15(lemma_pf(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))(P\ elam T\ elam A\ elam B\(extra
t (eq T A B) (
ongr T B A (eq T A) P refl)))(symm\(lemma_pf(Poly1\ proves Poly1(forall (intty arrow intty) f\ forall (intty arrow intty) g\(eq (intty arrow intty) f g) imp (eq (intty arrow intty) g f)))(forall_i f\ (forall_i g\ (imp_i q\ (symm q))))(poly1\(lemma_pf(Poly2\ proves Poly2(forall (intty arrow intty) f\ forall intty x\(eq intty (app intty f x) x) imp (eq intty x (app intty f x))))(forall_i f\ (forall_i x\ (imp_i q\ (symm q))))(poly2\ ...))))))Theorem 14. Proof with lemmas: 8int!int f; g ((f =int!int g) � (g =int!int f)) and8int!int f 8int x ((f(x) =int x) � (x =int f(x))).4 De�nitionsDe�nitions are another important me
hanism for stru
turing proofs to in
rease
larity and redu
e size. If some property (of a base-type obje
t, or of a higher-orderobje
t su
h as a predi
ate)
an be expressed as a logi
al formula, then we allow theintrodu
tion of an abbreviation to stand for that formula.We start by presenting a motivating example (Se
tion 4.1), whi
h leads us to ourde�nition me
hanism in �Prolog (Se
tion 4.2). We also dis
uss two simpler versionsof our de�nition me
hanism (Se
tions 4.3 and 4.4), whi
h allow us to have a smallerTCB, but whi
h require more work to use.4.1 A motivating exampleWe
an express the fa
t that f is an asso
iative fun
tion by the formula8� X;Y; Z (f X (f Y Z) =� f (f X Y)Z):This will only be a valid expression if f has type � ! � ! � . Putting this formulain �Prolog notation and expressing the type
onstraint on f , we get the followingprovable �Prolog type
he
king goal.pi F\ pi T\(pi X\ pi Y\ hastype X T => hastype Y T => hastype (F X Y) T) =>hastype (forall T X\ forall T Y\ forall T Z\eq T (F X (F Y Z)) (F (F X Y) Z)) form.To make this into a de�nition, the �rst step is to asso
iate some name, say asso
,with the de�nition body (whi
h is the �rst argument of the last hastype above).

16 Andrew W. Appel and Amy P. FeltyWe asso
iate a name to a body of a de�nition in the same way we asso
iated a newproof
onstru
tor with the proof it stood for. If we follow exa
tly the pattern of thesymm lemma introdu
ed at the beginning of Se
tion 3, we abstra
t out the body ofthe de�nition and obtain the following query.(TypeInf = (asso
\ pi F\ pi T\hastype (asso
 F T) form <<==pi X\ pi Y\ (hastype X T ==>>hastype Y T ==>> hastype (F X Y) T)),Def = (F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))),Query = (TypeInf Def),Query)TypeInf is the type
he
king query above with => repla
ed by ==>> or <<==, andthe abstra
tion asso
 repla
ing the body of the de�nition. Def
ontains the bodyabstra
ted with respe
t to the fun
tion F and type T and (TypeInf Def) is exa
tlythe type
he
king subgoal above (ex
ept for the use of ==>> and <<==). If all wewanted was a type
he
king lemma to type
he
k expressions of the form given byDef, then we
ould use our lemma me
hanism dire
tly.(lemma_pf(Asso
\ pi F\ pi T\hastype (Asso
 F T) form <<==pi X\ pi Y\ (hastype X T ==>> hastype Y T ==>> hastype (F X Y) T))(F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z))))(asso
\ ...This example shows that we
an have type
he
king lemmas in addition to proof
he
king lemmas. It also motivates our de�nition me
hanism shown next, whi
h weobtain by adding the ability to repla
e a name with the expression it representsand vi
e versa. 4.2 Implementing de�nitionsWe introdu
e a new proof
onstru
tor def pf and a new proof term def to rep-resent equality between a name and its de�nition. This de�nition me
hanism isimplemented by the
lauses in Program 15. The arguments to def pf are similarto the arguments to lemma pf, but also in
lude one more for the type of the bodyof the de�nition (after it is applied to all its arguments). In the
lause for proof
he
king def pf nodes, the �rst two subgoals are similar to lemma pf nodes. Here,they
he
k that the type
he
king
lause is valid and that Term (the body of thede�nition) is
orre
tly typed. The third
lause
omputes the
lause for expressingde�nitional equality using the def to eq
lause program. The fourth subgoal forproof
he
king de�nitions adds both the type
he
king
lause and the equality
lausebefore
he
king the rest of the proof.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 17type def_pf tp -> (A -> o) -> A -> (A -> pf) -> pf.type def pf.type def_to_eq
lause tp -> A -> A -> o -> o.def_to_eq
lause T DName Def (pi Clause) :-pi x\ (def_to_eq
lause T (DName x) (Def x) (Clause x)).def_to_eq
lause T DName Def (proves def (eq T DName Def)).proves (def_pf T TypeInf Term RestProof) C :-pi Name\(valid_
lause (TypeInf Name),TypeInf Term,def_to_eq
lause T Name Term (EqClause Name),
l (TypeInf Name) =>
l (EqClause Name) => (proves (RestProof Name) C)).Program 15. Ma
hinery for de�nitions.Like ML, �Prolog has parametri
 polymorphism (in the synta
ti
 sense). But un-like ML, �Prolog does not have the parametri
ity property. A polymorphi
 fun
tion
an examine the stru
ture of its argument. We illustrate with a simple example: afun
tion that tells the arity (number of fun
tion arguments) of an arbitrary value.type arity A -> int -> o.arity F N :- arity (F X) N1, N is N1 + 1.arity X 0.The �rst
lause
an only be used when F is a fun
tion; the se
ond
lause mat
hes anyvalue. The def to eq
lause
lauses uses this exa
t feature of �Prolog's polymor-phism. It �rst uses the meta-level type of Def to apply Def to as many argumentsas possible. The �rst
lause introdu
es new variables to serve as these arguments.On
e it is applied to all of its arguments, the se
ond
lause forms the equality
lause using the type, the name, and the body of the de�nition. For our example,the
omputed
lause isEqClause = (asso
\ (pi F\ pi T\proves def (eq form (asso
 F T)(forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))))).To ensure that there is only one solution to the arity predi
ate above and like-wise the def to eq
lause predi
ate in Program 15, we
ould have used the logi
programming
ut (!) operator at the end of the �rst
lause for ea
h predi
ate. Wehave omitted it here be
ause def to eq
lause is only be used in our proof
he
ker,whi
h is written to avoid the need for ba
ktra
king.To use de�nitions in proofs we introdu
e two new lemmas: def i to repla
e a for-mula with the de�nition that stands for it (or viewed in terms of ba
kward proof,to repla
e a de�ned name with the term it stands for), and def e to expand a de�-nition in the forward dire
tion during proof
onstru
tion. Their proofs are shown inProgram 16. Theorem 17 shows a proof using de�nitions. In this proof, f is a fun
-

18 Andrew W. Appel and Amy P. Felty(lemma_pf(Def_i\ pi T\ pi Name\ pi B\ pi P\ pi Q1\ pi Q2\proves (Def_i T Name B P Q1 Q2) (P Name) <<==proves Q1 (eq T Name B),hastype Name T, hastype B T,proves Q2 (P B))(T\Name\B\P\Q1\Q2\ (
ongr T Name B P Q1 Q2))(def_i\(lemma_pf(Def_e\ pi T\ pi Name\ pi B\ pi P\ pi Q1\ pi Q2\proves (Def_e T Name B P Q1 Q2) (P B) <<==proves Q1 (eq T Name B),hastype Name T, hastype B T,proves Q2 (P Name))(T\Name\B\P\Q1\Q2\ (
ongr T B Name P(
ongr T Name B (eq T B) Q1 refl) Q2))(def_e\... Program 16. Lemmas for folding and unfolding de�nitions.tion symbol and t is a type, and the theorem is represented as a �Prolog subgoalwith a top-level impli
ation, where the right hand side is a proves subgoal and theleft hand side spe
i�es the typing information about f whi
h must hold in order forthe proof in the proves subgoal to be valid. The proof (the �rst argument to theproves predi
ate)
ontains a series of four lemmas whi
h we have already seen, fol-lowed by the de�nition of asso
iativity, followed by a �fth lemma about asso
iativity(asso
 inst), followed by the main body of the proof. The def i lemma is usedin the main body of the proof. In general, proof
he
king using the def i lemmameans that the proof being
he
ked must mat
h the term (Def i T Name B P Q1Q2), whi
h is the �rst argument (the proof term) of the head of the proves
lauseimplementing the def i lemma in Program 16. This mat
h determines the termsmat
hing P and Name. The formula being proved must be a formula that mat
hesthe term (P Name), whi
h is the se
ond argument of the head of the proves
lauseimplementing the def i lemma in Program 16. Here Name is not always simply avariable name, but is a
tually the de�nition name applied to all of its argumentsto form a term of type tm. In our example, asso
 has type(tm -> tm -> tm) -> tp -> tm.At the point that proof
he
king of the body of the proof uses the def i lemma,the formula to be
he
ked is (asso
 f t). The term that
orresponds to (P Name)in this example is (x\x)(asso
 f t), whi
h mat
hes this formula. Proof
he
kingpro
eeds by �nding a proof of the goal of the form(proves Q1 (eq form (asso
 f t) B))whi
h is proved simply by mat
hing with the �Prolog equality assumption addedwhen the asso
 de�nition was pro
essed by the proves
lause for def pf. Next, thetwo type
he
king subgoals of the def i
lause are solved. Solving the �rst, (hastype(asso
 f t) form), requires using the �Prolog type inferen
e assumption whi
h

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 19pi f\ pi t\(pi x\ pi y\ hastype x t => hastype y t => hastype (f x y) t) =>(proves(lemma_pf ... symm\(lemma_pf ... trans\(lemma_pf ... def_i\(lemma_pf ... def_e\(def_pf form(Asso
\ pi F\ pi T\hastype (Asso
 F T) form <<==pi X\ pi Y\(hastype X T ==>> hastype Y T ==>> hastype (F X Y) T))(F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z))))(asso
\(lemma_pf(Asso
_inst\ pi F\ pi T\ pi A\ pi B\ pi C\ pi Q\proves (Asso
_inst F Q) (eq T (F A (F B C)) (F (F A B) C)) <<==hastype A T, hastype B T, hastype C T,pi X\ pi Y\ (hastype X T ==>> hastype Y T ==>> hastype (F X Y) T),proves Q (asso
 F T))(F\Q\(elam T\ elam A\ elam B\ elam C\(extra
t (eq T (F A (F B C)) (F (F A B) C))(forall_e T (Z\ (eq T (F A (F B Z)) (F (F A B) Z)))(forall_e T (Y\ (forall T Z\ (eq T (F A (F Y Z)) (F (F A Y) Z))))(forall_e T (X\ (forall T Y\ (forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))))(def_e form (asso
 F T)(forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z))) (x\x) def Q) A) B) C))))(asso
_inst\(imp_i q1\ (forall_i a\ (imp_e (asso
 f t)(imp_i q2\ (trans (f (f a a) (f a a))(asso
_inst f q2) (asso
_inst f q2)))(def_i form (asso
 f t)(forall t a\ forall t b\ forall t
\(eq t (f a (f b
)) (f (f a b)
))) (x\x) def q1))))))))))))((forall t a\ forall t b\ forall t
\eq t (f a (f b
)) (f (f a b)
)) imp(forall t a\ eq t (f a (f a (f a a))) (f (f (f a a) a) a))))Theorem 17. (8a; b;
 fa(fb
) = f(fab)
) � 8a fa(fa(faa)) = f(f(faa)a)a.was also added when the asso
 de�nition was pro
essed by the proves
lause fordef pf. Finally, the rest of the proof, is
he
ked via the subgoal of the form (provesQ2 (P B)), where the formula to be
he
ked has the de�nition name repla
ed byits body.The def e lemma is used in the proof of the asso
 inst lemma. Its use in proof
he
king is similar to def i. The main di�eren
e is that the formula to be
he
kedmust mat
h the term (P B), i.e., the formula
ontains an instan
e or instan
es

20 Andrew W. Appel and Amy P. Felty(def_pf form(And\ pi A\ pi B\hastype (And A B) form <<==hastype A form, hastype B form)(A\B\ (forall form C\ ((A imp B imp C) imp C)))(and\ ...Program 18. De�nition of logi
al
onjun
tion in the obje
t logi
....(lemma_pf ... def_e\(lemma_pf(Define_Asso
\ pi Q\ pi B\proves (Define_Asso
 Q) B <<==pi d\ pi q\(pi F\ pi T\(proves q (eq form (d F T)(forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z))))))==>>(pi F\ pi T\ hastype (d F T) form <<==pi X\ pi Y\ hastype X T ==>> hastype Y T ==>>hastype (F X Y) T)==>> proves (Q d q) B)(Q\ (Q (F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))) refl))(define_asso
\(define_asso
(asso
\q\(lemma_pf(Asso
_inst\ ...Theorem 19. Alternate proof of Theorem 17.of the body of the de�nition, and in the subgoal to be
he
ked, the body of thede�nition is repla
ed with the name of the de�nition.As another example of de�nitions, Program 18 shows the de�nition of logi
al
on-jun
tion for the obje
t logi
 using the def pf proof
onstru
tor. Other
onne
tivessu
h as disjun
tion, negation, and existential quanti�
ation
an also be de�ned,and the rules for introdu
tion and elimination of these
onne
tives
an be provedas lemmas. 4.3 An alternative implementation of de�nitionsThe new primitives and
lauses in Program 15 provide a
onvenient way of in-
orporating de�nitions, but a
tually are not needed at all. Instead, for ea
h newde�nition, it is possible to introdu
e a spe
ial lemma to handle that de�nition.These spe
ial lemmas are quite
omplex and we do not want to require the user to
ome up with them. For illustration, Theorem 19 shows the part of the proof thatrepla
es the def pf node in Theorem 17. This part of the proof in
ludes the spe
ial-

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 21ized lemma,
alled Define Asso
, and shows that it is used immediately after it isde�ned. The bound variable asso
 represents the name for the new de�nition, andthe bound variable q represents a proof of equality between the de�nition name andits body. The new proof
ontains no use of the def pf or def proof
onstru
tors.O

urren
es of def in Theorem 17 are repla
ed with q. This
hange, although notshown in Theorem 19, is the only other
hange required to obtain the
ompletealternate proof. We omit a detailed explanation of the Define Asso
 lemma andsimply note that it is fairly
omplex and in
reases the size of this example proof.Also, this lemma is similar in stru
ture to the simpler define lemma des
ribedbelow in Se
tion 4.4Additional programming
an make this alternative way of in
orporating de�ni-tions easier to use. In parti
ular, it is possible to write a program to transformproofs that use def pf and def to proofs that use only spe
ialized lemmas su
h asthe one in Theorem 19. Su
h a program would allow us to remove Program 15 fromthe TCB. 4.4 Handling atomi
 de�nitionsFor the spe
ial
lass of de�ned terms that have meta-level type tm, whi
h we
allatomi
 de�nitions, it is easy to eliminate the need for def pf and def be
ause itis possible to in
lude one new general lemma that repla
es them. For example, we
an express asso
iativity of integers as the following termlam F\ forall intty X\ forall intty Y\ forall intty Z\eq intty (app intty (app intty F X) (app intty (app intty F Y) Z))(app intty (app F intty (app intty (app intty F X) Y)) Z)))where F has meta-type tm and obje
t type (intty arrow intty arrow intty),and the app
onstru
tor is used to apply F to its arguments. If we spe
ialize The-orem 17 to integers, Theorem 20 shows the part of the proof of this new theoremthat repla
es what is shown in Theorem 19. The parts of the proof not shown aresimilar to Theorems 17 and 19, but modi�ed to use the new type of the boundvariable f, whi
h has the same type as the bound F in the de�nition.In general, to
he
k a proof using the define lemma, whi
h has the followingform(define T Term (Name\ EqProof\ (RestProof Name EqProof)))the system interprets the \pi d" within the define lemma to
reate a new atom dto stand for the Name. The new atom q is also introdu
ed to stand for a proof thatthe name is equal to the body of the de�nition, and (proves q (eq T d Term))is added to the
lause database. Finally, �-
onversion substitutes d for Name and qfor EqProof within RestProof and the resulting proof is
he
ked.In proof
he
king the new proof, instead of subproofs of the form(proves def (eq form (asso
 f t) B))that would be generated by proof
he
king Thereom 17, or subproofs of the form

22 Andrew W. Appel and Amy P. Felty...(lemma_pf ... def_e\(lemma_pf(Define\ pi T\ pi F\ pi Q\ pi B\proves (Define T F Q) B <<==hastype F T,pi d\ pi q\ (hastype d T ==>>proves q (eq T d F) ==>> proves (Q d q) B))(T\F\P\ (P F refl))(define\(define ((intty arrow intty arrow intty) arrow form)(lam F\ forall intty X\ forall intty Y\ forall intty Z\eq intty (app intty (app intty F X) (app intty (app intty F Y) Z))(app intty (app intty F (app intty (app intty F X) Y)) Z)))(asso
\q\(lemma_pf(Asso
_inst\ ...Theorem 20. Alternate proof of Theorem 17 spe
ialized to integers.(proves q (eq form (asso
 f t) B))that would be generated by proof
he
king Thereom 19, in Theorem 20 we havesubproofs of the form(proves q (eq ((intty arrow intty arrow intty) arrow form) asso
 B))where q here is the name of the proof term introdu
ed inside the define proofnode.In general, having a single define lemma that
an be used by all atomi
 de�ni-tions is simpler, but the atomi
 forms of de�nitions are larger and harder to read.In the
ase of asso
, the atomi
 version is three lines, while the original versionis one line long. In our previous work (AF99b), having to
hoose between the ver-sion of asso
 that used app and the one that didn't was not an issue, sin
e therewere no app and lam
onstru
tors. Instead appli
ation and abstra
tion were en-
oded dire
tly using appli
ation and abstra
tion at the meta-level. Also, there wasno reason to in
lude a separate def pf proof
onstru
tor; the define lemma wassuÆ
ient for introdu
ing all de�nitions. Although this allowed a simpler version ofde�nitions, we were unable to allow polymorphism in de�nitions, whi
h is desirablein de�nitions for the same reason it is desirable in lemmas. Our previous en
odingalso did not allow de�nitions for obje
t-level types. For example, in the domain ofproof-
arrying
ode, we have de
larations like this onehastype has_mltype((exp arrow form) arrow (exp arrow exp) arrow exp arrow((exp arrow form) arrow (exp arrow exp) arrow exp arrowform) arrow form.Types like this arise be
ause we en
ode types of the programming language we arereasoning about (in this
ase ML) as predi
ates whi
h themselves take predi
atesas arguments. In our new version, it is possible to handle de�nitions at meta-type

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 23type def_lemma A -> (A -> o) -> A -> o.type def_definition tp -> A -> (A -> o) -> A -> o.type symm pf -> pf.def_lemma symm(Symm\ pi T\ pi A\ pi B\ pi P\proves (Symm P) (eq T A B) <<==hastype A T, hastype B T, proves P (eq T B A))(P\ elam A\ elam B\ elam T\(extra
t (eq T A B) (
ongr T B A (eq T A) P refl))).type asso
 (tm -> tm -> tm) -> tp -> tm.def_definition form asso
(Asso
\ pi F\ pi T\hastype (Asso
 F T) form <<==pi X\ pi Y\(hastype X T ==>> hastype Y T ==>> hastype (F X Y) T))(F\T\ (forall T X\ forall T Y\ forall T Z\(eq T (F X (F Y Z)) (F (F X Y) Z)))).Program 21. Storing lemmas and de�nitions.tp; we would need a new proof
onstru
tor and a new proof
he
king
lause similarto the one for the def pf proof
onstru
tor in Program 15. Adding type de�nitionswould also require adding reasoning about equality of types into our type
he
king
lauses. 5 Programming with lemmas and de�nitionsThe lemma and de�nition me
hanisms provide ways to store lemmas and de�nitionsinside proofs. Pa
kaging proofs in this way makes it straightforward to
ommuni-
ate proofs, and keeps the proof
he
king ma
hinery (the TCB) simple, whi
h isimportant for our proof-
arrying
ode appli
ation. Thus far, all the �Prolog
odein Programs 2, 3, 6, 8, 9, 10, 11, and 15 is inside the TCB. A good environmentfor building proofs is also essential, and this part of the
ode
an be outside theTCB. We don't have to be as
areful be
ause we know that any proofs we build inour theorem proving environment have to be
he
kable by the proof
he
king
odepresented so far.As we build a library of lemmas and de�nitions, we
learly don't want to storeevery lemma and de�nition inside every proof that uses them. Instead, for lemmasthat have general appli
ability like symm, we would like to store them ea
h on
e andallow them to be used in other proofs as needed. To do so, we provide predi
ates forstating ea
h de�nition and lemma. To use these predi
ates, we must introdu
e new
onstants for de�nition and lemma names. Program 21
ontains the de
larations ofthese new predi
ates, and two examples whi
h use them. �Prolog's polymorphism isused in these predi
ates. The �rst argument to def lemma is the lemma name, andthe next two arguments
orrespond to the Inferen
e and LemmaProof argumentsto the lemma pf
onstru
tor. The arguments to def definition are the de�nition

24 Andrew W. Appel and Amy P. Feltytype done_def A -> o.type done_lemma A -> o.type
he
k_lem A -> o.type
he
k_lem_aux B -> A -> (A -> o) -> A -> o.
he
k_lem Name :-def_definition T DName Inferen
e Def,not (done_def DName), !,def_to_eq
lause T DName Def EqClause,done_def DName =>
l (Inferen
e DName) =>
l EqClause =>
he
k_lem Name.
he
k_lem Name :-def_lemma LName Inferen
e LemmaProof,
he
k_lem_aux Name LName Inferen
e LemmaProof.
he
k_lem_aux Name Name Inferen
e LemmaProof :- !,pi name\ (valid_
lause (Inferen
e name)),(Inferen
e LemmaProof).
he
k_lem_aux Name LName Inferen
e LemmaProof :- !,not (done_lemma LName), !,done_lemma LName =>
l (Inferen
e LName) =>
he
k_lem Name.Program 22. Che
king a proof whi
h uses stored lemmas and de�nitions.
name (the se
ond argument) and arguments that
orrespond to the �rst threearguments of the def pf
onstru
tor (arguments 1, 3, and 4 here).Then we
an write programs to manipulate these lemmas and de�nitions in var-ious ways. For example, if we want to pa
kage a proof as a single term with allthe de�nitions and lemmas it depends on inside it, we must write a program todo so. The resulting proof should not
ontain any
onstants like symm and asso
;instead lemma and de�nition names must be bound variables inside o

urren
es ofthe lemma pf and def pf proof
onstru
tors. We do not present the \pa
kaging"program here, but instead present a simpler program that illustrates some of theprogramming te
hniques required for manipulating lemmas and de�nitions storedin this way. Program 22
ontains a program for
he
king a proof. It doesn't
he
kthe lemmas that the proof depends on, but
ould be easily modi�ed to do so. Thetri
k of using Prolog
ut (!) along with the predi
ates done def and done lemmaallows us to pro
ess a list of
lauses in the order they appear in the database. The�rst
lause for
he
k lem looks for the next de�nition and ea
h time it �nds a newone, it adds the
orresponding type
he
king
lause and equality
lause. The se
ond
he
k lem
lause is used on
e all de�nitions have been added. It �nds the nextlemma and uses
he
k lem aux to see if the next lemma is the one that should be
he
ked. If so, the proof is
he
ked; if not, the proof
he
king
lause for the lemmais added to the database and
he
k lem is
alled to pro
ess the next lemma.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 256 En
oding the
ore logi
 in TwelfThe Logi
al Framework (LF) (HHP93) is another example of a metalanguage inwhi
h it is possible to en
ode a wide variety of logi
s. The Twelf system (PS99) is animplementation of LF whi
h provides logi
 programming
apabilities, many of whi
hare similar to �Prolog. In this se
tion, we
ompare the en
oding of our
ore logi
in �Prolog to a
orresponding en
oding in Twelf, dis
uss lemmas and de�nitions inTwelf, and
ompare the programming environments of these two languages.6.1 The
ore logi
 in TwelfLF is a �-
al
ulus with dependent types. A dependent type in LF has the stru
turefx : AgB where A and B are types and x is a variable of type A bound in thisexpression. The type B may
ontain o

urren
es of x. This stru
ture represents a\fun
tional type." If f is a fun
tion of this type, and N is a term of type A, thenfN (f applied to N) has the type [N=x℄B, whi
h represents the type B where allo

urren
es of x are repla
ed by N . Thus the argument type is A and the resulttype depends on the value input to the fun
tion. If x doesn't o

ur in B, this typeis often abbreviated using the usual type arrow: A! B.The extra expressiveness of dependent types allows obje
t-level types to be ex-pressed more dire
tly, eliminating the need for any type
he
king
lauses like thehastype
lauses of Program 3. The Twelf
onstru
tor de
larations in Program 23illustrate the use of dependent types for en
oding our obje
t logi
. Felty andMiller (FM90) show how to transform an LF obje
t logi
 into an en
oding in ahigher-order logi
 whi
h is a sublogi
 of the one implemented by �Prolog. The dis-
ussion in this se
tion is informal, but in Appendix B, we use this transformationto provide a formal basis for
omparing our two en
odings.Although type
he
king
lauses are not needed here, the proof
he
king operationis more
ompli
ated in Twelf sin
e it requires type re
onstru
tion for dependenttypes. 6.2 Lemmas and de�nitions in TwelfTwelf has its own built-in de�nition me
hanism, whi
h
an be used for both lemmasand de�nitions in the obje
t logi
. Program 24
ontains a Twelf version of thede�nition of asso
 and the symm lemma. The abbrev dire
tive is required in somede�nitions for te
hni
al reasons, whi
h we do not des
ribe here. There are threeparts to a de�nition: a
onstant naming the de�nition, its type, and its body (anLF term). A lemma is similar and
ontains its name, the formula representing thestatement of the lemma (whi
h is a type in LF), and the proof (an LF term).In Twelf, a proof is simply a series of de
larations and de�nitions, where the lastone is the statement and proof of the main theorem. This proof possibly dependson the lemmas and de�nitions that
ome before it. Ea
h de�nition in the sequen
ehas the form mentioned above: a name, a type, and the term whi
h the nameabbreviates when it appears in subsequent de
larations. The de
larations de�ningthe logi
al
onstants and primitive inferen
e rules shown in Program 23 (whi
h ea
h

26 Andrew W. Appel and Amy P. Feltytp : type.tm : tp -> type.form : tp.pf : tm form -> type.intty : tp.arrow : tp -> tp -> tp. %infix right 14 arrow.pair : tp -> tp -> tp.eq : tm T -> tm T -> tm form.imp : tm form -> tm form -> tm form. %infix right 10 imp.forall : (tm T -> tm form) -> tm form.false : tm form.lam : (tm T1 -> tm T2) -> tm (T1 arrow T2).app : tm (T1 arrow T2) -> tm T1 -> tm T2.mkpair : tm T1 -> tm T2 -> tm (pair T1 T2).fst : tm (pair T1 T2) -> tm T1.snd : tm (pair T1 T2) -> tm T2.refl : pf (eq X X).beta : pf (eq (app (lam F) X) (F X)).fstpair : pf (eq (fst (mkpair X Y)) X).sndpair : pf (eq (snd (mkpair X Y)) Y).surjpair : pf (eq (mkpair (fst Z) (snd Z)) Z).
ongr : {H: tm T -> tm form}pf (eq X Z) -> pf (H Z) -> pf (H X).imp_i : (pf A -> pf B) -> pf (A imp B).imp_e : pf (A imp B) -> pf A -> pf B.forall_i : ({y:tm T}pf (A y)) -> pf (forall A).forall_e : pf (forall A) -> {y:tm T}pf (A y).Program 23. Core logi
 in Twelf.%abbrevasso
 : (tm T -> tm T -> tm T) -> tm form =[f:(tm T -> tm T -> tm T)℄(forall [a:tm T℄ forall [b:tm T℄ forall [
:tm T℄(eq (f a (f b
)) (f (f a b)
))).symm: pf (eq X Y) -> pf (eq Y X) =[q:pf (eq X Y)℄ (
ongr ([z:tm T℄ (eq Y z)) q refl).Program 24. Example lemmas and de�nitions in Twelf.have a type but no de�ning term) are at the beginning of the sequen
e. In Twelf,we
annot pa
kage up a lemma and its proof, or a de�nition and its body, alongwith the rest of the proof, in the same way we did in �Prolog. The reason for thisis that we
annot introdu
e a lemma pf or def pf
onstru
tor be
ause they requirepolymorphism at the meta-level, whi
h Twelf does not have.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 27In our �Prolog version, we dis
ussed naming ea
h lemma and de�nition, in
ludingone
opy of ea
h in a library, and using it whenever needed. We then presented aprogram whi
h was able to
he
k the proof of a theorem, assuming that lemmas andde�nitions were organized in this way. In Twelf, we don't need a spe
ial program for
he
king proofs of lemmas. One of the
entral meta-operations of Twelf is to readin a series of de
larations and de�nitions, and
he
k ea
h one as it is en
ountered.Proofs are fully
he
ked by this operation.In Twelf, other kinds of operations on proofs are limited. Many proof transfor-mations that we
an implement in �Prolog are not programmable in Twelf eitherbe
ause they require polymorphism or be
ause they require manipulation of meta-level formulas. Manipulation of meta-level formulas is not possible in Twelf be
auseit requires quanti�
ation over su
h formulas (i.e., quanti�
ation over types
ontain-ing type), whi
h is not allowed. 7 Other issuesAlthough we have fo
ussed on the lemma and de�nition me
hanisms in �Prologand Twelf, other aspe
ts of the metalanguage are also relevant to our needs forproof generation and
he
king. 7.1 Arithmeti
For our appli
ation, proof-
arrying
ode, we wish to prove theorems about ma
hineinstru
tions that add, subtra
t, and multiply; and about load/store instru
tionsthat add o�sets to registers. Therefore we require some rudimentary integer arith-meti
 in our logi
.Some logi
al frameworks have powerful arithmeti
 primitives, su
h as the abilityto solve linear programs (Ne
98) or to handle general arithmeti

onstraints (JL87).For example, Twelf provides a
omplete theory of the rationals, implemented usinglinear programming (Vir99). On the one hand, linear programming is a powerfuland general proof te
hnique, although it
an in
rease the
omplexity of the TCB.On the other hand, synthesizing arithmeti
 from s
rat
h is not easy. We have alsoexperimented with arithmeti
 in �Prolog where we use the is predi
ate to providesome automati
 simpli�
ations.7.2 Representing proof termsParameterizable data stru
tures with higher-order uni�
ation modulo �-equivalen
eprovide an expressive way of representing formulas, predi
ates, and proofs. We makeheavy use of higher-order data stru
tures with both dire
t sharing and sharingmodulo �-redu
tion. The implementation of the metalanguage must preserve thissharing; otherwise our proof terms will blow up in size.Any logi
 programming system is likely to implement sharing of terms obtainedby
opying multiple pointers to the same subterm. In Terzo, this
an be seen as theimplementation of a redu
tion algorithm des
ribed by Wadsworth (Wad71). But

28 Andrew W. Appel and Amy P. Feltywe require even more sharing. The similar terms obtained by applying a �-termto di�erent arguments should retain as mu
h sharing as possible. Therefore someintelligent implementation of higher-order terms within the metalanguage|su
h asTeyjus's use of expli
it substitutions (NW90; NW98)|seems essential.7.3 Programming the proverIn this paper, we have
on
entrated on an en
oding of the logi
 used for proof
he
k-ing, and dis
ussed some operations on proofs. But of
ourse, we will also need to
onstru
t proofs. For the proof-
arrying
ode appli
ation, we need an automati
 the-orem prover to prove the safety of programs. For implementing this prover, we havefound that the Prolog-style
ontrol primitives (su
h as the
ut (!) operator and theis predi
ate), whi
h are also available in �Prolog, are quite important. �Prolog alsoprovides an environment for implementing ta
ti
-style intera
tive provers (Fel93).This kind of prover is useful for proving the lemmas that are used by the automati
prover.Twelf does not have many
ontrol primitives; in fa
t, implementation of
ontrolprimitives does not �t well into the Twelf system design. We have begun to exper-iment with an operator in Twelf similar to Prolog
ut, to see if it will allow us toimplement the automati
 prover in the same way as in �Prolog. There is also nosupport for building intera
tive provers in Twelf, so proofs of lemmas used by theautomati
 prover must be
onstru
ted by hand.8 Con
lusionThe logi
al frameworks dis
ussed in this paper are promising vehi
les for proof-
arrying
ode, or in general where it is desired to keep the proof
he
ker as smalland simple as possible. We have proposed a representation for lemmas and de�-nitions that should help keep proofs small and well-stru
tured, and ea
h of theseframeworks has features that are useful in implementing, or implementing eÆ
iently,our ma
hinery.We have found the
on
iseness of the en
oding in Twelf to be parti
ularly
on-venient, and be
ause of that, we have used Twelf for extensive proof developmentin our proof-
arrying
ode appli
ation. As programming with proofs be
omes moreimportant in the next phases of our system, �Prolog will have more advantages.We are
urrently investigating ways to
ombine the use of the two metalanguages.The translation dis
ussed in Appendix B will serve as the foundation for this
om-bination. A A full interpreter for proof
he
kingTo write a full interpreter, we extend Program 8 in Se
tion 3.3 by introdu
ing anew type goal and
onne
tives whi
h build terms of this type. In parti
ular, wenow give <<== and ==>> the type goal -> goal -> goal. We also introdu
e a new
onstant ^^ for
onjun
tion having the same type as the impli
ation
onstru
tors.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 29kind goal type.type ==>> goal -> goal -> goal. infixr ==>> 4.type <<== goal -> goal -> goal. infixl <<== 0.type ^^ goal -> goal -> goal. infixl ^^ 3.type all (A -> goal) -> goal.type
l goal -> o.type ba
k
hain goal -> goal -> o.type solveg goal -> o.type proves pf -> form -> goal.type assume form -> goal.type valid_
lause goal -> goal.solveg (all G) :- pi x\ (solveg (G x)).solveg (G1 ^^ G2) :- solveg G1, solveg G2.solveg (D ==>> G) :- (
l D) => solveg G.solveg (G <<== D) :- (
l D) => solveg G.solveg G :-
l D, ba
k
hain G D.ba
k
hain G G.ba
k
hain G (all D) :- ba
k
hain G (D X).ba
k
hain G (A ^^ B) :- ba
k
hain G A; ba
k
hain G B.ba
k
hain G (H <<== G1) :- ba
k
hain G H, solveg G1.ba
k
hain G (G1 ==>> H) :- ba
k
hain G H, solveg G1.Program A1. A full interpreter.Finally, we introdu
e all for universal quanti�
ation having type (A -> goal)-> goal. In addition, we
hange the type of ba
k
hain to goal -> goal -> o,and modify the
lauses for the
omma and pi to use the new
onstants. In theba
k
hain
lauses for <<== and ==>> in Program 8, the goal G1 whi
h appearsas an argument inside the head of the
lause also appears as a goal in the bodyof the
lause. In the full interpreter, we
annot do this. G1 no longer has type o;it has type goal and is
onstru
ted using the new
onne
tives. Instead, we repla
eG1 with (solveg G1) and implement the solveg predi
ate to handle the solvingof goals. The new
ode for solveg and the modi�ed
ode for ba
k
hain is inProgram A1. In order to use this interpreter to solve goals of the form (provesP A), the proves predi
ate must be a
onstru
tor for terms of type goal, andthe meta-level goal presented to �Prolog must have the form (solveg (proves PA)). Similarly, inferen
e rules must also be represented as obje
ts of type goal andwrapped inside
l to form �Prolog
lauses. Several examples of
lauses for inferen
erules are given in Program A2 to illustrate. The last
lause is the new
lause forhandling lemmas in this setting. Note that in this version, valid
lause
onstru
tsobje
ts of type goal; thus all the
lauses for valid
lause must also be wrappedin
l.

30 Andrew W. Appel and Amy P. Felty
l (proves Q A <<== assump (proves Q A)).
l (proves (imp_i Q) (A imp B) <<==all p\ (assump (proves p A) ==>> proves (Q p) B)).
l (proves (forall_i Q) (forall T A) <<==all y\ (hastype y T ==>> proves (Q y) (A y))).
l (proves (lemma_pf Inferen
e LemmaProof RestProof) C <<==all Name\(valid_
lause (Inferen
e Name) ^^Inferen
e LemmaProof ^^(Inferen
e Name) ==>> (proves (RestProof Name) C))).Program A2. Clauses used by the full interpreter.B Comparison of the
ore logi
 in Twelf and �PrologAs stated, the transformation in Felty and Miller (FM90)
an provide a formal basisfor
omparing our two en
odings. In order to perform this transformation, we must
onsider a \full" LF en
oding, whi
h does not take advantage of the abbreviationsthat Twelf allows. Just as the full LF en
oding
an be improved by using Twelf'sabbreviations, the �Prolog program that results from the transformation
an beimproved by making several optimizations. We dis
uss how the en
oding presentedin Programs 2 and 3
an be viewed as the appli
ation of the transformation, followedby performing several su
h optimizations.In both �Prolog and Twelf, all tokens in a
lause or de
laration beginning withupper
ase letters are impli
itly bound by universal quanti�ers at the outermostlevel. In Twelf, this impli
it quanti�
ation is important for providing an en
odingof the obje
t logi
 that is readable and usable. To see why,
onsider the surjpairrule, whi
h uses the mkpair, fst, and snd
onstants. We
an make the outermostquanti�
ation expli
it in Twelf, resulting in the de
larations:mkpair : {T1:tp}{T2:tp}tm T1 -> tm T2 -> tm (pair T1 T2).fst : {T1:tp}{T2:tp}tm (pair T1 T2) -> tm T1.snd : {T1:tp}{T2:tp}tm (pair T1 T2) -> tm T2.surjpair :{T1:tp}{T2:tp}{Z:tm (pair T1 T2)}pf (eq (pair T1 T2) (mkpair T1 T2 (fst T1 T2 Z) (snd T1 T2 Z)) Z).This version of surjpair is quite a bit bigger than the one in Program 23. Expli
itlyin
luding T1 and T2 means that mkpair, fst, and snd ea
h take two extra typearguments, while surjpair takes three. Terms
ontaining these
onstants mustthen take extra arguments whi
h in this example
auses redundan
y in the typeof surjpair be
ause the same types appear many times. Impli
it quanti�ers makethe en
oding easier to read and work with. In fa
t, in the version we used in ourexperiments, the fa
t that app
ould be represented as a binary
onstru
tor withoutloss of information allowed us to repla
e the app
onstant with an in�x symbol,resulting in en
oded terms that were synta
ti
ally even
loser to the terms theyrepresented. We
annot make app in the �Prolog en
oding in�x be
ause it takesthree arguments. (We dis
uss why it must take three arguments below.)

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 31kind ltp type.kind ltm type.type ltype ltp -> o.type hasltype ltm -> ltp -> o.type well_typed ltm -> ltp -> o.type tp ltp.type tm ltm -> ltp.type form ltm.type pf ltm -> ltp.type intty ltm.type arrow ltm -> ltm -> ltm. infixr arrow 8.type lam ltm -> ltm -> (ltm -> ltm) -> ltm.type app ltm -> ltm -> ltm -> ltm -> ltm.type eq ltm -> ltm -> ltm -> ltm.type imp ltm -> ltm -> ltm. infixr imp 7.type forall ltm -> (ltm -> ltm) -> ltm.type false ltm.type refl ltm -> ltm -> ltm.type beta ltm -> ltm -> (ltm -> ltm) -> ltm -> ltm.type
ongr ltm -> ltm -> ltm -> (ltm -> ltm) ->ltm -> ltm -> ltm.type imp_i ltm -> ltm -> (ltm -> ltm) -> ltm.type imp_e ltm -> ltm -> ltm -> ltm -> ltm.type forall_i ltm -> (ltm -> ltm) -> (ltm -> ltm) -> ltm.type forall_e ltm -> (ltm -> ltm) -> ltm -> ltm -> ltm.Program B1. Type de
larations for transformation of Twelf to �Prolog.The expli
it quanti�ers that we have left out in Program 23 are those that Twelf
an easily re
onstru
t. Be
ause of this re
onstru
tion, however, a Twelf type
he
ker(proof
he
ker) has to work harder than it would if we used an expli
it version.These en
odings illustrate a tradeo� we en
ounter in proof and term size versus
omplexity of the proof
he
ker. Redu
ing the proof size for
es the
he
ker (theTCB) to be
ome more
omplex.When
onsidering the formal transformation, we start from a modi�ed versionof Program 23 that makes all quanti�ers expli
it. To illustrate, we apply the trans-formation to all of the de
larations in the Twelf en
oding ex
ept for the
onstantsand inferen
e rules for pairing. Applying the transformation to these de
larations,we get the �Prolog type de
larations and
lauses in Programs B 1 and B2. Beforedis
ussing the details, it is already possible to see some of the similarities betweenthe Twelf and �Prolog en
odings, and between the �Prolog en
oding resulting fromthe transformation and the one in Programs 2 and 3. For example, in Twelf the fullversion of the
ongr rule is

32 Andrew W. Appel and Amy P. Feltywell_typed M A :- ltype A, hasltype M A.ltype tp.ltype (tm T) :- hasltype T tp.ltype (pf A) :- hasltype A (tm form).hasltype intty tp.hasltype form tp.hasltype (T1 arrow T2) tp :- hasltype T1 tp, hasltype T2 tp.hasltype (lam T1 T2 F) (tm (T1 arrow T2)) :- hasltype T1 tp, hasltype T2 tp,pi x\ (hasltype x (tm T1) => hasltype (F x) (tm T2)).hasltype (app T1 T2 F X) (tm T2) :- hasltype T1 tp, hasltype T2 tp,hasltype F (tm (T1 arrow T2)), hasltype X (tm T1).hasltype (eq T X Y) (tm form) :-hasltype T tp, hasltype X (tm T), hasltype Y (tm T).hasltype (A imp B) (tm form) :- hasltype A (tm form), hasltype B (tm form).hasltype (forall T A) (tm form) :- hasltype T tp,pi x\ (hasltype x (tm T) => hasltype (A x) (tm form)).hasltype false (tm form).hasltype (refl T X) (pf (eq T X X)) :- hasltype T tp, hasltype X (tm T).hasltype (beta T1 T2 F X) (pf (eq T2 (app T1 T2 (lam T1 T2 F) X) (F X))) :-hasltype T1 tp, hasltype T2 tp,pi x\ (hasltype x (tm T1) => hasltype (F x) (tm T2)).hasltype (
ongr T X Z H P1 P2) (pf (H X)) :-hasltype T tp, hasltype X (tm T), hasltype Z (tm T),pi x\ (hasltype x (tm T) => hasltype (H x) (tm form)),hasltype P1 (pf (eq T X Z)), hasltype P2 (pf (H Z)).hasltype (imp_i A B Q) (pf (A imp B)) :-hasltype A (tm form), hasltype B (tm form).pi p\ (hasltype p (pf A) => hasltype (Q p) (pf B)).hasltype (imp_e A B Q1 Q2) (pf B) :-hasltype A (tm form), hasltype B (tm form),hasltype Q1 (pf (A imp B)), hasltype Q2 (pf A).hasltype (forall_i T A Q) (pf (forall T A)) :- hasltype T tp,pi y\ (hasltype y (tm T) => hasltype (A y) (tm form)),pi y\ (hasltype y (tm T) => hasltype (Q y) (pf (A y))).hasltype (forall_e T A Q Y) (pf (A Y)) :- hasltype T tp,pi y\ (hasltype y (tm T) => hasltype (A y) (tm form)),hasltype Q (pf (forall T A)), hasltype Y (tm T).Program B2. Transformation of Twelf de
larations to �Prolog
lauses.
ongr : {T:tp}{X:tm T}{Z:tm T}{H:tm T -> tm form}pf (eq X Z) -> pf (H Z) -> pf (H X).The
ongr proof
onstru
tor takes 6 arguments (T, X, Z, H, and two subproofs).In the �Prolog version of
ongr in Programs B 1 and B2,
ongr also takes 6arguments (4 terms and 2 subproofs) though their types are di�erent from the LFversion. Also, in our original �Prolog en
oding (Program 3), the
ongr
lause has4 subgoals, while in the new one (Program B2) there are 6; it is easy to see the

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 33
orresponden
e between 4 of them in the two en
odings. Note that in the versionin Program 3, two of them are type
he
king subgoals and two are proof
he
kingsubgoals. In Twelf, type
he
king and proof
he
king are uni�ed, so all subgoals inthe Twelf version are Twelf type
he
king goals; in our example some of them
he
kterms whose types have the form (tm A), while others
he
k terms whose typeshave the form (pf A).In LF, there are several kinds of assertions. The two that are important for theformal transformation are: \A is a type" and \term M has type A". Two �Prologtypes ltp and ltm introdu
ed in Program B1 are used to en
ode LF types andterms. The �Prolog predi
ates ltype and hasltype are introdu
ed to express thetwo assertions, respe
tively. The �rst assertion is important for transforming thethree de
larations in Program 23 that end in \type." They de
lare
onstants thatare used to
reate LF types, whi
h
orrespond to �Prolog formulas (terms of typeo). The se
ond assertion is used for the rest. In order for an assertion of the se
ondkind to hold, it must also be the
ase that A is a type. For this reason, the �Prologpredi
ate well typed is in
luded (Program B1) and has one
lause (Program B2).The de
larations and
lause dis
ussed so far are ne
essary no matter what Twelfen
oding we begin with. The remaining de
larations and
lauses in Programs B 1and B2 are spe
i�
 to our parti
ular obje
t logi
. For ea
h Twelf de
laration inProgram 23 that we
onsider, there is one type de
laration in Program B1 and one
lause in Program B2.The �rst
hange we make to the �Prolog
ode in Programs B 1 and B2 to get
loser to an optimized version involves the well typed
lause. Consider the �rstsubgoal of this
lause, an ltype subgoal. Note that for our parti
ular en
oding,there are three
lauses for the ltype predi
ate. They
orrespond to the three kindsof obje
ts in the en
oding of the obje
t logi
: types, terms, and proofs. In solving anltype subgoal, at most one
lause will ever apply at any point depending on whi
hof three forms the argument has. This observation permits us to repla
e well typedwith the following three
lauses whi
h
over every
ase.well_typed T tp :- ltype tp, hasltype T tp.well_typed M (tm T) :- ltype (tm T), hasltype M (tm T).well_typed M (pf A) :- ltype (pf A), hasltype M (pf A).In the �rst
lause, we
an eliminate the ltype subgoal be
ause it is always provable.In the se
ond and third
lauses, we
an repla
e the ltype subgoal with the
orre-sponding subgoal from the body of the only ltype
lause that applies, to obtainthe
lauses below.well_typed T tp :- hasltype T tp.well_typed M (tm T) :- hasltype T tp, hasltype M (tm T).well_typed M (pf A) :- hasltype A (tm form), hasltype M (pf A).Now, we no longer have a need for the ltype
lauses and
an eliminate them.Although hasltype is suÆ
ient for representing any LF assertion of the form\term M has type A," in our en
oding it is useful to distinguish three ways inwhi
h it is used. This fa
t leads to our se
ond modi�
ation of Programs B1 and B2.

34 Andrew W. Appel and Amy P. Feltykind ltp type.kind ltm type.type istype ltm -> o.type hastype ltm -> ltp -> o.type proves ltm -> ltp -> o.type well_typed ltm -> ltp -> o.type tp ltp.type tm ltm -> ltp.type pf ltm -> ltp.type arrow ltm -> ltm -> ltm. infixr arrow 8.type forall ltm -> (ltm -> ltm) -> ltm.type forall_i ltm -> (ltm -> ltm) -> (ltm -> ltm) -> ltm.well_typed T tp :- istype T.well_typed M (tm T) :- istype T, hastype M (tm T).well_typed M (pf A) :- hastype A (tm form), proves M (pf A).istype (T1 arrow T2) :- istype T1, istype T2.hastype (forall T A) (tm form) :- istype T,pi x\ (hastype x (tm T) => hastype (A x) (tm form)).proves (forall_i T A Q) (pf (forall T A)) :- istype T,pi y\ (hastype y (tm T) => hastype (A y) (tm form)),pi y\ (hastype y (tm T) => proves (Q y) (pf (A y))).Program B3. Modi�
ation of sele
ted �Prolog de
larations and
lauses fromPrograms B 1 and B 2.The se
ond argument to hasltype always has one of the following forms: tp, (tmT), or (pf A). Using this fa
t, we repla
e hasltype with three predi
ates: istype,hastype, and proves. Sin
e the se
ond argument to istype always is tp, we
aneliminate this argument altogether so that istype has type ltm -> o. Program B3illustrates the modi�
ations dis
ussed so far on a subset of the hasltype
lauses inProgram B2, whi
h in
lude only those for arrow, forall, and forall i.Looking ba
k at Program 23, note the types of the four
onstants that are used to
onstru
t terms of type tp. There are no dependent types here; they are all simpletypes, whi
h
ould be transformed dire
tly to �Prolog types. This fa
t leads to ourthird modi�
ation. Instead of transforming all Twelf terms and types to �Prologterms as is done by the transformation, we transform types with no dependen-
ies dire
tly to �Prolog types, thus allowing the �Prolog type
he
ker to do moretype
he
king work automati
ally. This dire
t transformation gives us the �Prologde
larationskind tp type.type form tp.type intty tp.

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 35kind ltp type.kind ltm type.kind tp type.type hastype ltm -> ltp -> o.type proves ltm -> ltp -> o.type well_typed ltm -> ltp -> o.type tm tp -> ltp.type pf ltm -> ltp.type arrow tp -> tp -> tp. infixr arrow 8.type forall tp -> (ltm -> ltm) -> ltm.type forall_i tp -> (ltm -> ltm) -> (ltm -> ltm) -> ltm.well_typed M (pf A) :- hastype A (tm form), proves M (pf A).hastype (forall T A) (tm form) :-pi x\ (hastype x (tm T) => hastype (A x) (tm form)).proves (forall_i T A Q) (pf (forall T A)) :-pi y\ (hastype y (tm T) => hastype (A y) (tm form)),pi y\ (hastype y (tm T) => proves (Q y) (pf (A y))).Program B4. Modi�
ation of Program B3.type arrow tp -> tp -> tp.type pair tp -> tp -> tp.This
hange for
es several other
hanges. The type of tm must be
hanged to tp ->ltp. The well typed
lause for tp is no longer ne
essary. The istype predi
ate andall of the
lauses for it
an be removed; all istype subgoals in other
lauses
an beeliminated. The well typed
lause for tm
an also be eliminated sin
e
he
king forwell-typedness amounts to simply using the hastype predi
ate. In the types of allof the
onstants, wherever there appears a term T of type ltm su
h that T representsan obje
t-logi
 type, the type of T must be
hanged to tp. Program B4 illustratesthese
hanges on the subset of de
larations and
lauses from Program B3. Notethat the types of forall and forall i are
hanged to re
e
t the fa
t that the �rstargument T has type tp.Our fourth modi�
ation to the �Prolog
ode allows the �Prolog type system tomake further useful distin
tions for our parti
ular obje
t logi
. We introdu
ed thehastype and proves predi
ate for the
ases when the se
ond argument to our oldhasltype had the forms (tm T) and form (pf A), respe
tively. We
an furthersimplify these
lauses by eliminating the tm and pf
onstants. Simply eliminatingthem means we must
hange the types of the se
ond argument to these predi
atesappropriately,type hastype ltm -> tp -> o.type proves ltm -> ltm -> o.but we
an go a step further than that. Noti
e that after removing tm and pf,

36 Andrew W. Appel and Amy P. Feltykind tp type.kind tm type.kind pf type.type hastype tm -> tp -> o.type proves pf -> tm -> o.type well_typed pf -> tm -> o.type form tp.type intty tp.type arrow tp -> tp -> tp. infixr arrow 8.type lam tp -> tp -> (tm -> tm) -> tm.type app tp -> tp -> tm -> tm -> tm.type eq tp -> tm -> tm -> tm.type imp tm -> tm -> tm. infixr imp 7.type forall tp -> (tm -> tm) -> tm.type false tm.type refl tp -> tm -> pf.type beta tp -> tp -> (tm -> tm) -> tm -> pf.type
ongr tp -> tm -> tm -> (tm -> tm) -> pf -> pf -> pf.type imp_i tm -> tm -> (pf -> pf) -> pf.type imp_e tm -> tm -> pf -> pf -> pf.type forall_i tp -> (tm -> tm) -> (tm -> pf) -> pf.type forall_e tp -> (tm -> tm) -> pf -> tm -> pf.Program B5. Modi�ed version of Program B 1.terms appear as the �rst argument to hastype and types as the se
ond, and thatproofs appear as the �rst argument to the proves predi
ate and formulas, whi
hare a subset of the terms, appear as the se
ond. To make these distin
tions in theprogram, we reintrodu
e the
onstants tm and pf, but this time as �Prolog typeswhi
h repla
e ltm.kind tm type.kind pf type.type hastype tm -> tp -> o.type proves pf -> tm -> o.After making all the
hanges dis
ussed so far to the types and
lauses in Pro-grams B 1 and B2, we obtain the somewhat simpler versions in Programs B 5and B6. Note that tm and pf no longer appear in
lauses (Program B6), andinstead appear in types (Program B5). Also note the new type and
lause forwell typed as
ompared to what they were in Program B4.The types and
lauses in Programs B5 and B6 are now quite
lose to those ofPrograms 2 and 3 in Se
tion 2. The remaining
hanges are optimizations that
anbe best illustrated if we view the �Prolog
ode as a proof
he
ker. In parti
ular,for any subgoal of the form (proves P A), we assume the proof and the formulaare given at the outset (no logi
al variables) and that the subgoal (hastype A

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 37well_typed M A :- hastype A form, proves M A.hastype (lam T1 T2 F) (T1 arrow T2) :-pi x\ (hastype x T1 => hastype (F x) T2).hastype (app T1 T2 F X) T2 :- hastype F (T1 arrow T2), hastype X T1.hastype (eq T X Y) form :- hastype X T, hastype Y T.hastype (A imp B) form :- hastype A form, hastype B form.hastype (forall T A) form :- pi x\ (hastype x T => hastype (A x) form).hastype false form.proves (refl T X) (eq T X X) :- hastype X T.proves (beta T1 T2 F X) (eq T2 (app T1 T2 (lam T1 T2 F) X) (F X)) :-pi x\ (hastype x T1 => hastype (F x) T2).proves (
ongr T X Z H P1 P2) (H X) :-hastype X T, hastype Z T, pi x\ (hastype x T => hastype (H x) form),proves P1 (eq T X Z), proves P2 (H Z).proves (imp_i A B Q) (A imp B) :- hastype A form, hastype B form.pi p\ (proves p A => proves (Q p) B).proves (imp_e A B Q1 Q2) B :- hastype A form, hastype B form,proves Q1 (A imp B), proves Q2 A.proves (forall_i T A Q) (forall T A) :-pi y\ (hastype y T => hastype (A y) form).pi y\ (hastype y T => proves (Q y) (A y)).proves (forall_e T A Q Y) (A Y) :-pi y\ (hastype y T => hastype (A y) form),proves Q (forall T A), hastype Y T.Program B6. Modi�ed version of Program B 2.form) will be asked �rst (e.g., via the well typed predi
ate). With this in mind,by looking at some of the
lauses for the proves predi
ate, we �nd two kinds ofredundan
y. Consider, for example, the
lause for refl. The arguments T and Xappear in both the proof and the formula. Assuming that a formula and proof arealways paired together, any arguments that appear in the formula do not have tobe repeated in the proof. Thus we
an remove both arguments to refl. Also, sin
ewe assume that the formula has already been type
he
ked, the hastype subgoal isredundant and
an be eliminated. Thus we a
hieve the simple form for the reflrule as it appears in Program 3.Next
onsider the
lause for imp e. Sin
e B is the formula whose proof is to be
he
ked, we don't need an extra
opy among the arguments to imp e. We also don'tneed to type
he
k B sin
e this has been done via the initial
all to well typed. Ifwe are to guarantee
orre
t typing of the formula in any proves subgoal generatedduring proof
he
king, then we need to keep hastype subgoals for any formula thatdoes not appear as a subformula of the formula in the head of the
lause. In theimp e
lause, the goal (hastype A form) is asked before (proves Q2 A) and thishastype subgoal
annot be removed. These
hanges lead to the imp e
lause inProgram 3.Analogously, we
an examine the hastype
lauses and remove redundant argu-ments from terms. For example, in the
ase of app, the type T2
an be removed

38 Andrew W. Appel and Amy P. Feltybe
ause it appears as the se
ond argument to hastype. We must keep T1 if we wantto preserve the property that proof
he
king will not introdu
e logi
 variables.Note that when
omparing Program B6 to Program 3, in the proves
lause for
ongr, no arguments are removed from the proof term in either
ase, even thoughH and X appear in the se
ond argument to proves. The reason is that ba
k
hainingon this
lause requires higher-order mat
hing, for whi
h there
an be more than onesolution. One further
riteria that we pla
e on our proof
he
ker is that it
annotba
ktra
k. Thus we must in
lude H and X expli
itly in the proof term to preventthe possibility that when ba
k
haining on this
lause, a ba
ktra
k point is
reatedby uni�
ation. We
an, however, eliminate the type
he
king subgoal for H be
auseits well-typedness follows from the fa
t that (H X) has type form and X has typeT. Eliminating this subgoal from the
lause in Program B6 gives us the
lause inProgram 3.After making analogous
hanges to all of the
lauses in Program B6, the onlyremaining di�eren
e in Program 3 is the use of assump to identify assumptionsadded during proof
he
king, whi
h as stated earlier, is not ne
essary, but is usefulfor various programming tasks in our proof-
arrying
ode system.Note that in making
hanges to the �Prolog
ode, we have been
areful not to
ompli
ate proof
he
king by requiring any more power from �Prolog than wasneeded to exe
ute the
ode obtained dire
tly from the transformation. The sameis not true for the Twelf
ode. As stated earlier, the version that used abbrevia-tions (Program 23) needs more type re
onstru
tion power than the version with allarguments expli
itly in
luded.In summary, using the formal
orresponden
e has provided a prin
ipled way toarrive at the versions of the en
odings of the obje
t logi
 in Twelf (Program 23)and �Prolog (Program 3) that we have
ompared. The main di�eren
es are (1)the Twelf en
oding is more
on
ise be
ause dependent types eliminate the need forexpli
it type
he
king subgoals, and (2) in �Prolog, unlike Twelf, proof
he
king ofthe optimized version of the en
oding is no more
omplex than proof
he
king theoriginal. Referen
esAndrew W. Appel and Edward W. Felten. Proof-
arrying authenti
ation. In 6th ACMConferen
e on Computer and Communi
ations Se
urity, pages 52{62, November 1999.Andrew W. Appel and Amy P. Felty. Lightweight lemmas in �Prolog. In InternationalConferen
e on Logi
 Programming, pages 411{425, November 1999.Andrew W. Appel and Amy P. Felty. A semanti
 model of types and ma
hine instru
tionsfor proof-
arrying
ode. In The 27th Annual ACM SIGPLAN-SIGACT Symposium onPrin
iples of Programming Languages, pages 243{253, 2000.Luis Damas and Robin Milner. Prin
ipal type-s
hemes for fun
tional programs. In NinthACM Symposium on Prin
iples of Programming Languages, pages 207{212, 1982.Amy Felty. Implementing ta
ti
s and ta
ti
als in a higher-order logi
 programming lan-guage. J. Automated Reasoning, 11(1):43{81, August 1993.Amy Felty and Dale Miller. En
oding a dependent-type �-
al
ulus in a logi
 programming

Polymorphi
 Lemmas and De�nitions in �Prolog and Twelf 39language. In Tenth International Conferen
e on Automated Dedu
tion, pages 221{235,July 1990.Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logi
s.Journal of the ACM, 40(1):143{184, January 1993.Joxan Ja�ar and Jean-Louis Lassez. Constraint logi
 programming. In ACM SIGACT-SIGPLAN Symposium on Prin
iples of Programming Languages, pages 111{119, Jan-uary 1987.Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre S
edrov. Uniform proofs as afoundation for logi
 programming. Annals of Pure and Applied Logi
, 51:125{157, 1991.George Ne
ula. Proof-
arrying
ode. In 24th ACM SIGPLAN-SIGACT Symposium onPrin
iples of Programming Languages, pages 106{119, January 1997.George Ciprian Ne
ula. Compiling with Proofs. PhD thesis, S
hool of Computer S
ien
e,Carnegie Mellon University, Pittsburgh, PA, September 1998.Gopalan Nadathur and Dale Miller. An overview of �Prolog. In Robert A. Kowalski andKenneth A. Bowen, editors, Fifth International Conferen
e and Symposium on Logi
Programming, pages 810{827. MIT Press, 1988.Gopalan Nadathur and Dustin. J. Mit
hell. System des
ription: Teyjus | a
ompilerand abstra
t ma
hine based implementation of �Prolog. In The 16th InternationalConferen
e on Automated Dedu
tion, pages 287{291. Springer-Verlag, July 1999.Gopalan Nadathur and Frank Pfenning. The type system of a higher-order logi
 program-ming language. In Frank Pfenning, editor, Types in Logi
 Programming, pages 245{283.MIT Press, 1992.Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable foroperations on their intensions. In Pro
eedings of the 1990 ACM Conferen
e on Lisp andFun
tional Programming, pages 341{348, 1990.Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A generalizationof environments. Theoreti
al Computer S
ien
e, 198(1-2):49{98, 1998.Frank Pfenning and Conal Elliot. Higher-order abstra
t syntax. In Pro
eedings of theACM-SIGPLAN Conferen
e on Programming Language Design and Implementation,pages 199{208, 1988.Frank Pfenning. Logi
 programming in the LF logi
al framework. In G�erard Huet and Gor-don Plotkin, editors, Logi
al Frameworks, pages 149{181. Cambridge University Press,1991.Frank Pfenning and Carsten S
h�urmann. System des
ription: Twelf | a meta-logi
alframework for dedu
tive systems. In The 16th International Conferen
e on AutomatedDedu
tion, pages 202{206. Springer-Verlag, July 1999.Roberto Virga. Twelf(X): Extending Twelf to rationals and beyond. In preparation, 1999.C. P. Wadsworth. Semanti
s and Pragmati
s of the Lambda Cal
ulus. PhD thesis, OxfordUniversity, 1971.Philip Wi
kline. The Terzo implementation of �Prolog. http://www.
se.psu.edu/-�dale/lProlog/terzo/index.html, 1999.

