
Two-Level Meta-Reasoning in Coq ?Amy P. FeltyShool of Information Tehnology and EngineeringUniversity of Ottawa, Ottawa, Ontario K1N 6N5, Canadaafelty�site.uottawa.aAbstrat. The use of higher-order abstrat syntax is entral to the di-ret, onise, and modular spei�ation of languages and dedutive sys-tems in a logial framework. Developing a framework in whih it is alsopossible to reason about suh dedutive systems is partiularly halleng-ing. One diÆulty is that the use of higher-order abstrat syntax om-pliates reasoning by indution beause it leads to de�nitions for whihthere are no monotone indutive operators. In this paper, we presenta methodology whih allows Coq to be used as a framework for suhmeta-reasoning. This methodology is diretly inspired by the two-levelapproah to reasoning used in the FO��N (pronouned fold-n) logi. Inour setting, the Calulus of Indutive Construtions (CIC) implementedby Coq represents the highest level, or meta-logi, and a separate spei-�ation logi is enoded as an indutive de�nition in Coq. Then, in ourmethod as in FO��N, the dedutive systems that we want to reasonabout are the objet logis whih are enoded in the spei�ation logi.We �rst give an approah to reasoning in Coq whih very losely mimisreasoning in FO��N illustrating a lose orrespondene between the twoframeworks. We then generalize the approah to take advantage of otheronstruts in Coq suh as the use of diret strutural indution providedby indutive types.1 IntrodutionHigher-order abstrat syntax enodings of objet logis are usually given using atyped meta-language. The terms of the untyped �-alulus an be enoded usinghigher-order syntax, for instane, by introduing a type tm and two onstrutors:abs of type (tm! tm)! tm and app of type tm! tm! tm. As this exampleshows, it is often useful to use negative ourrenes of the type introdued forrepresenting the terms of the objet logi. (Here the single negative ourreneis in boldfae.) Prediates of the meta-logi are used to express judgments in theobjet logi suh as \term M has type t". Embedded impliation is often usedto represent hypothetial judgments, whih an result in negative ourrenesof suh prediates. For example the following rule whih de�nes typing for �-? In Proeedings of the 15th International Conferene on Theorem Proving in HigherOrder Logis, August 2002, Springer-Verlag.



abstration in the objet logi (x : �1)M : �2�x:M : �1 ! �2an be expressed using the typeof prediate in the following formula.8M : tm! tm:8�1; �2 : tm:(8x : tm:(typeof x �1) � (typeof (M x) �2))� (typeof (abs M) (�1 ! �2))The Coq system [21℄ implements the Calulus of Indutive Construtions (CIC)and is one of many systems in whih suh negative ourrenes ause diÆulty.In partiular, the indutive types of the language annot be used diretly forthis kind of enoding of syntax or inferene rules.FO��N is a logial framework apable of speifying a wide variety of dedu-tive systems [13℄. It is one of the �rst to overome various hallenges and allowboth spei�ation of dedutive systems and reasoning about them within a sin-gle framework. It is a higher-order intuitionisti logi with support for naturalnumber indution and de�nitions. A rule of de�nitional reetion is inluded andis entral to reasoning in the logi [8℄. This rule in partiular represents a signif-iant departure from the kinds of primitive inferene rules found in Coq and avariety of other systems that implement similar logis. Our methodology illus-trates that, for a large lass of theorems, reasoning via this rule an be replaedby reasoning with indutive types together with a small number of assumptionsabout the onstants that are introdued to enode a partiular dedutive system.We de�ne both the spei�ation logi and the objet logi as indutive de�-nitions in Coq. Although there are no indutive de�nitions in FO��N, our Coqde�nitions of spei�ation and objet logis losely resemble the orrespondingFO��N de�nitions of the same logis. The use of a two-level logi in both FO��Nand Coq solves the problem of indutive reasoning in the presene of negativeourrenes in hypothetial judgments. Hypothetial judgments are expressed atthe level of the objet logi, while indutive reasoning about these objet logistakes plae at the level of the spei�ation logi and meta-logi. More speif-ially, in FO��N, a ombination of natural number indution and de�nitionalreetion provides indution on the height of proofs in the spei�ation logi. Forthe lass of theorems we onsider, we an mimi the natural number indutionof FO��N fairly diretly in Coq. In addition, the Coq environment provides theextra exibility of allowing reasoning via diret indution using the theoremsgenerated by the indutive de�nitions. For example, we an use diret struturalindution on proof trees at both the spei�ation level and the objet-level.One of our main goals in this work is to provide a system that allows pro-gramming and reasoning about programs and programming languages within asingle framework. The Centaur System [3℄ is an early example of suh a system.We are interested in a proof and program development environment that sup-ports higher-order syntax. In partiular, we are interested in the appliation of2



suh a system to building proof-arrying ode (PCC) systems. PCC [17℄ is anapproah to software safety where a produer of ode delivers both a programand a formal proof that veri�es that the ode meets desired safety poliies. Wehave built prototype PCC systems [1, 2℄ in both �Prolog [16℄ and Twelf [19℄ andhave found higher-order syntax to be useful in both programming and express-ing safety properties. De�nitional reetion as in FO��N is diÆult to programdiretly in �Prolog and Twelf. On the other hand, support for indutive typessimilar to that of Coq is straightforward to implement. We hope to arry over themethodology we desribe here to provide more exibility in onstruting proofsin the PCC setting.In this paper, after presenting the Calulus of Indutive Construtions inSet. 2, we begin with the example proof of subjet redution for the untyped�-alulus from MDowell and Miller [13℄ (also used in Despeyroux et al. [5℄).For this example, we use a sequent alulus for a seond-order minimal logias our spei�ation logi. We present a version of the proof that uses naturalnumber indution in Set. 3. By using natural number indution, we are ableto mimi the orresponding FO��N proof, and in Set. 4 we disuss how theFO��N proof illustrates the orrespondene in reasoning in the two systems.In Set. 5, we present an alternate proof whih illustrates reasoning by diretstrutural indution in Coq. In Set. 6, we onlude as well as disuss relatedand future work.2 The Calulus of Indutive ConstrutionsWe assume some familiarity with the Calulus of Indutive Construtions. Wenote here the notation used in this paper, muh of whih is taken from the Coqsystem. Let x represent variables and M , N represent terms of CIC. The syntaxof terms is as follows.Prop j Set j Type j x j MN j �x : M:N j8x : M:N j M ! N j M ^N j M _N j9x : M:N j :M j M = N j True j Ind x : M fN1j � � � jNng jRe M N j Case x : M of M1 ) N1; : : : ;Mn ) NnHere 8 is the dependent type onstrutor and the arrow (!) is the usual abbre-viation when the bound variable does not our in the body. Of the remainingonstants, Prop, Set, Type, �, Ind, Re, and Case are primitive, while the oth-ers are de�ned. Prop is the type of logial propositions, whereas Set is the typeof data types. Type is the type of both Prop and Set. Ind is used to build in-dutive de�nitions where M is the type of the lass of terms being de�ned andN1; : : : ; Nn where n � 0 are the types of the onstrutors. Re and Case arethe operators for de�ning reursive and indutive funtions, respetively, overindutive types. Equality on Set (=) is Leibnitz equality.A onstant is introdued using the Parameter keyword and ordinary de�ni-tions whih introdue a new onstant and the term it represents are de�ned us-ing the De�nition keyword. Indutive de�nitions are introdued with an Indutive3



delaration where eah onstrutor is given with its type separated by vertialbars. When an indutive de�nition is made, Coq automatially generates opera-tors for reasoning by strutural indution and for de�ning reursive funtions onobjets of the new type. We use the setion mehanism of the system whih pro-vides support for developing theories modularly. The Variable keyword provides away to introdue onstants that will be disharged at the end of a setion. Axiomis used to introdue formulas that are assumed to hold and Theorem introduesformulas whih are immediately followed by a proof or a series of ommands(tatis) that indiate how to onstrut the proof.3 An Example: Subjet Redution for the Untyped�-CalulusA variety of spei�ation logis an be de�ned. In this paper, we use a simpleminimal logi taken from MDowell and Miller [13℄. In Coq, we introdue thetype prp to enode formulas of the spei�ation logi, and the type atm (left asa parameter at this stage) to enode the atomi formulas of the objet logi.Variable atm : Set:Variable tau : Set:Indutive prp : Set :=hi : atm! prp j tt : prp j & : prp! prp! prp j): atm! prp! prp j V : (tau! prp)! prp j W : (tau! prp)! prp:The operator hi is used to oere objets of type atm to prp. The other on-strutors of the indutive de�nition of prp de�ne the logial onnetives of thespei�ation logi. We use a higher-order syntax enoding of the quanti�ers V(forall) and W (exists), i.e., eah quanti�er takes one argument whih is a �-termso that binding of quanti�ers in the spei�ation logi is enoded as �-binding atthe meta-level. Note that we parameterize the quanti�ation type; this versionof the spei�ation logi limits quanti�ation to a single type tau. This is nota serious restrition here sine we enode all syntati objets in our examplesusing the single type tm; also, it an be extended to inlude other types if ne-essary. Here, we freely use in�x and pre�x/post�x operators, without disussingthe details of using them in Coq.For illustration purposes, we show the indution priniple generated by Coqresulting from the above de�nition of prp.8P : prp! Prop:[(8A : atm:P hAi)!P (tt)!(8B : prp:PB ! 8C : prp:PC ! P (B&C))!(8A : atm:8B : prp:PB ! P (A) B))!(8B : tau! prp:(8x : tau:P (Bx))! P (VB))!(8B : tau! prp:(8x : tau:P (Bx))! P (WB))℄! 8B : prp:PBAfter losing the setion ontaining the above de�nitions, prp will have typeSet! Set! Set beause atm and tau are disharged.4



The Coq indutive de�nition in Fig. 1 is a diret enoding of the spei�ationlogi. The prediate prog is used to delare the objet-level dedutive system. ItVariable prog : atm! prp! Prop:Indutive seq : nat! list atm! prp! Prop :=sb : 8i : nat:8A : atm:8L : list atm:8b : prp:(prog A b)! (seq i L b)! (seq (S i) L hAi)j sinit : 8i : nat:8A;A0 : atm:8L : list atm:(element A (A0 :: L))! (seq i (A0 :: L) hAi)j strue : 8i : nat:8L : list atm:(seq i L tt)j sand : 8i : nat:8B;C : prp:8L : list atm:(seq i L B)! (seq i L C)! (seq (S i) L (B&C))j simp : 8i : nat:8A : atm:8B : prp:8L : list atm:(seq i (A :: L) B)! (seq (S i) L (A) B))j sall : 8i : nat:8B : tau! prp:8L : list atm:(8x : tau:(seq i L (B x)))! (seq (S i) L (VB))j ssome : 8i : nat:8B : tau! prp:8L : list atm:8x : tau:(seq i L (B x))! (seq (S i) L (W B)):De�nition � : list atm! prp! Prop := �l : list atm:�B : prp:9i : nat:(seq i l B):De�nition �0 : prp! Prop := �B : prp:9i : nat:(seq i nil B):Fig. 1. De�nition of the Spei�ation Logi in Coqis a parameter at this stage. A formula of the form (prog A b) as part of theobjet logi means roughly that b implies A where A is an atom. We will seeshortly how prog is used to de�ne an objet logi. Most of the lauses of thisde�nition enode rules of a sequent alulus whih introdue onnetives on theright of a sequent. For example, the sand lause spei�es the following ^-R rule.L �! B L �! C ^-RL �! B ^ CIn the Coq de�nition, the natural number i indiates that the proofs of thepremises have height at most i and the proof of the onlusion has height atmost i+1. (S is the suessor funtion from the Coq libraries.) The sinit lausespei�es when a sequent is initial (i.e., the formula on the right appears inthe list of hypotheses on the left). We omit the de�nition of element, whih isstraightforward. The sb lause represents bakhaining. A bakward reading ofthis rule states that A is provable from hypotheses L in at most i + 1 steps ifb is provable from hypotheses L in at most i steps, where \A implies B" is astatement in the objet logi. The de�nitions of � and �0 at the end of the �gureare made for onveniene in expressing properties later. The former is writtenusing in�x notation.Theorems whih invert this de�nition an be diretly proved using the in-dution and reursion operators for the type seq. For example, it is lear that ifa proof ends in a sequent with an atomi formula on the right, then the sequentwas either derived using the rule for prog (sb) or the atom is an element of the5



list of formulas on the left (sinit). This theorem is expressed as follows.Theorem seq atom inv : 8i : nat:8A : atm:8l : list atm:(seq i l hAi)![9j : nat:9b : prp:(i = (S j) ^ (prog A b) ^ (seq j l b)) _9A0 : atm:9l0 : list atm:(l = (A0 :: l0) ^ (element A l))℄:Indution priniples generated by Coq are also useful for reasoning by aseanalysis. For example, ase analysis on seq an be used to prove the seq utproperty below, whih is an essential part of our proof development.Theorem seq ut : 8a : atm:8b : prp:8l : list atm:(a :: l)� b! l� hai ! l � b:This theorem an also be proven by ase analysis on prp using the indutionpriniple shown earlier. In fat, for this partiular theorem, ase analysis on prpleads to a somewhat simpler proof than ase analysis on seq.Our objet logi onsists of untyped �-terms, types, and rules for assigningtypes to terms. Terms and types are enoded using the parameter delarationsbelow.Parameter tm : Set:Parameter gnd : tm: Parameter abs : (tm! tm)! tm:Parameter arr : tm! tm! tm: Parameter app : tm! tm! tm:Axiom gnd arr : 8t; u : tm::(gnd = (arr t u)):Axiom abs app : 8R : tm! tm:8M;N : tm::((abs R) = (app M N)):Axiom arr inj : 8t; t0; u; u0 : tm:(arr t u) = (arr t0 u0)! t = t0 ^ u = u0:Axiom abs inj : 8R;R0 : tm! tm:(abs R) = (abs R0)! R = R0:Axiom app inj : 8M;M 0; N;N 0 : tm:(app M N) = (app M 0 N 0)!M = M 0 ^N = N 0:The �ve axioms following them express properties about distintness and inje-tivity of onstrutors. For example, a term beginning with abs is always distintfrom one beginning with app. Also, if two terms (abs R) and (abs R0) are equalthen so are R and R0. For objets de�ned indutively in Coq, suh propertiesare derivable. Here, we annot de�ne tm indutively beause of the negativeourrene in the type of the abs onstant, so we must inlude them expliitly.They are the only axioms we require for proving properties about this objetlogi. The type tm is the type whih instantiates tau in the de�nitions of prpand seq above.Note that by introduing onstants and axioms, we are restriting the on-text in whih reasoning in Coq is valid and atually orresponds to reasoningabout the dedution systems we enode. For example, we annot disharge theseonstants and instantiate them with arbitrary objets suh as indutively de-�ned elements of Set. We do not want to be able to prove any properties aboutthese onstants other than the ones we assume and properties that follow fromthem.The de�nitions for atomi formulas and for the prog prediate, whih enodetyping and evaluation of our objet logi are given in Fig. 2. An example ofan inversion theorem that follows from this de�nition is the following. Its proof6



Indutive atm : Set := typeof : tm! tm! atm j +: tm! tm! atm:Indutive prog : atm! prp! Prop :=tabs : 8t; u : tm:8R : tm! tm:(prog (typeof (abs R) (arr t u))(V �n : tm:((typeof n t)) htypeof (R n) ui)))j tapp : 8M;N; t : tm:(prog (typeof (app M N) t)(W �u : tm:(htypeof M (arr u t)i&htypeof N ui)))j eabs : 8R : tm! tm:(prog ((abs R) + (abs R)) tt)j eapp : 8M;N; V : tm:8R : tm! tm:(prog ((app M N) + V ) (hM + (abs R)i&h(R N) + V i))Fig. 2. De�nition of the Objet Logi in Coqrequires seq atom inv above.Theorem eval nil inv : 8j : nat:8M;V : tm:(seq j nil hM + V i)![(9R : tm! tm:M = (abs R) ^ V = (abs R))_(9k : nat:9R : tm! tm:9P;N : tm:j = (S (S k)) ^M = (app P N) ^(seq k nil hP + (abs R)i) ^ (seq k nil h(R N) + V i))℄:We are now ready to express and prove the subjet redution property.Theorem sr : 8p; v : tm:�0 hp + vi ! 8t : tm:�0 htypeof p ti ! �0htypeof v ti:Our proof of this theorem orresponds diretly to the one given by Miller andMDowell [13℄. We show a few steps to illustrate. After one de�nition expansionof �0, several introdution rules for universal quanti�ation and impliation, andan elimination of the existential quanti�er on one of the assumptions, we obtainthe sequent (seq i nil hp + vi);�0htypeof p ti �! �0htypeof v ti: (1)(We display meta-level sequents di�erently than the Coq system. We omit typedelarations and names of hypotheses, and we separate the hypotheses fromthe onlusion with a sequent arrow.) We now apply omplete indution, whihomes from the basi Coq libraries and is stated:Theorem lt wf ind : 8k : nat:8P : nat! Prop:(8n : nat:(8m : nat:m < n! Pm)! Pn)! Pk:After solving the trivial subgoals, we are left to prove 8k:(k < j � (IP k)) �(IP j), where IP denotes the formula�i : nat:8p; v : tm:(seq i nil hp + vi)! 8t : tm:�0 htypeof p ti ! �0htypeof v ti:After learing the old assumptions and applying a few more intro/elim rules weget the following sequent.8k:k < j ! (IP k); (seq j nil hp + vi);�0htypeof p ti �! �0htypeof v ti: (2)7



Note that a proof of (seq j nil hp + vi) must end with the �rst lause for seq(ontaining prog). Here, we apply the eval nil inv inversion theorem to obtain8k:k < j ! (IP k);[(9R : tm! tm:p = (abs R) ^ v = (abs R))_(9k0 : nat:9R : tm! tm:9P;N : tm:j = (S (S k0)) ^ p = (app P N) ^(seq k0 nil hP + (abs R)i) ^ (seq k0 nil h(R N) + vi))℄;�0htypeof p ti �! �0htypeof v ti:Then after eliminating the disjuntion, existential quanti�ers, and onjuntion,as well as performing the substitutions using the equalities we obtain the follow-ing two sequents.8k:k < j ! (IP k);�0htypeof (abs R) ti �! �0htypeof (abs R) ti (3)8k:k < (S (S k0))! (IP k); (seq k0 nil hP + (abs R)i);(seq k0 nil h(R N) + vi);�0htypeof (app P N) ti �! �0htypeof v ti (4)Note that the �rst is diretly provable.We arry out one more step of the Coq proof of (4) to illustrate the use ofa distintness axiom. In partiular, we show the two sequents that result fromapplying an inversion theorem to the formula just before the sequent arrow in (4)and then applying all possible introdutions, eliminations, and substitutions. (Weabbreviate (S (S (S k00))) as (S3 k00) and similarly for other suh expressions.)8k:k < (S5 k00)! (IP k); (seq (S3 k00) nil hP + (abs R)i);(seq (S3 k00) nil h(R N) + vi); (app P N) = (abs R); t = (arr T 0 U);(seq k00 ((typeof M T 0) :: nil) h(typeof (R M) U)i)) �! �0htypeof v ti8k:k < (S5 k00)! (IP k); (seq (S3 k00) nil hP + (abs R)i);(seq (S3 k00) nil h(R N) + vi); (seq k00 nil htypeof P (arr u t)i)(seq k00 nil htypeof N ui)) �! �0htypeof v tiNote the ourrene of (app P N) = (abs R) in the �rst sequent. This sequentmust be ruled out using the abs app axiom.The remainder of the Coq proof ontinues using the same operations of ap-plying inversion theorems, and using introdution and elimination rules. It alsoinludes appliations of lemmas suh as seq ut mentioned above.4 A Comparison to FO��NThe basi logi of FO��N is an intuitionisti version of a subset of Churh'sSimple Theory of Types with logial onnetives ?, >, ^, _, �, 8� , and 9� .Quanti�ation is over any type � not ontaining o, whih is the type of meta-levelformulas. The inferene rules of the logi inlude the usual left and right sequentrules for the onnetives and rules that support natural number indution. Notethat these sequent rules are at the meta-level, and thus we have sequent aluliboth at the meta-level and spei�ation level in our example proof. FO��N also8



has the following rules to support de�nitions.� �! B� defR;� �! A where A = A0� for some lause 8�x[A0 =� B℄fB�;�� �! C�j� 2 CSU(A;A0) for some lause 8�x[A0 =� B℄g defLA;� �! CA de�nition is denoted by 8�x[A0 =� B℄ where the symbol =� is used to sepa-rate the objet being de�ned from the body of the de�nition. Here, A0 has theform (p �t) where p is a prediate onstant, every free variable in B is also freein (p �t), and all variables free in �t are ontained in the list �x. The �rst ruleprovides \bakhaining" on a lause of a de�nition. The seond rule is the ruleof de�nitional reetion and uses omplete sets of uni�ers (CSU). When this setis in�nite, there will be an in�nite number of premises. In pratie, suh as inthe proofs in MDowell and Miller's work [12, 13℄, this rule is used only in �niteases.Fig. 3 illustrates how seq and prog are spei�ed as FO��N de�nitions. Eahseq (SI) L hAi =� 9b:[prog A b ^ seq I L b℄seq I (A0 :: L) hAi =� element A (A0 :: L)seq I L tt =� >seq (SI) L (B&C) =� seq I L B ^ seq I L Cseq (SI) L (A) B) =� seq I (A :: L) Bseq (SI) L (V� B) =� 8�x:[seq I L (Bx)℄seq (SI) L (W� B) =� 9�x:[seq I L (Bx)℄prog (typeof (abs R) (arr T U)) Vtm �N:((typeof N T )) htypeof (R N) Ui)prog (typeof (ap M N) T ) Wtm �U:(htypeof M (arr U T )i&htypeof N Ui)prog ((abs R) + (abs R)) ttprog ((app M N) + V ) hM + (abs R)i&h(R N) + V iFig. 3. De�nitions of Spei�ation and Objet Logis in FO��Nof the lauses for prog ends in =� > whih is omitted.To a large extent, the inversion and ase analysis theorems we proved in Coqwere introdued to provide the possibility to reason in Coq in a manner whihorresponds losely to reasoning diretly in FO��N. In partiular, they allow usto mimi steps that are diretly provided by de�nitional reetion in FO��N.For types that annot be de�ned indutively in Coq suh as tm, the axiomsexpressing distintness and injetivity of onstrutors are needed for this kindof reasoning.To illustrate the orrespondene between proofs in FO��N and Coq, we dis-uss how several of the steps in the proof outlined in Set. 3 orrespond tosteps in a FO��N proof of the same theorem. For instane, appliation of se-quent rules in FO��N orrespond diretly to introdution and elimination rulesin Coq. Thus, we an begin the FO��N proof of the sr theorem similarly to theCoq proof, in this ase with appliations of 8-R, � -R, 9-L at the meta-level,from whih we obtain sequent (1) in Set. 3.9



Complete indution is derivable in FO��N, so using this theorem as well asadditional sequent rules allows us to obtain sequent (2) in the FO��N proofsimilarly to how it was obtained in the Coq proof.It is at this point that the �rst use of de�nitional reetion ours in theFO��N proof. Applying defL to the middle assumption on the left of the sequentarrow in (2), we see that this formula only uni�es with the left hand side of the�rst lause of the de�nition of sequents in Fig. 3. We obtain8k:k < (S j0)! (IP k); 9d:[(prog (p + v) d) ^ (seq j0 nil d)℄;�0htypeof p ti�! �0htypeof v ti:Then applying left sequent rules, followed by defL on (prog (p + v) d), we gettwo sequents.8k:k < (S j0)! (IP k); (seq j0 nil tt);�0 htypeof (abs R) ti �! �0htypeof (abs R) ti8k:k < (S j0)! (IP k); (seq j0 nil (hP + (abs R)i&h(R N) + vi));�0 htypeof (app P N) ti �! �0htypeof v tiLike sequent (3) in Set. 3, the �rst is diretly provable. The defL rule is appliedagain, this time on the middle assumption of the seond sequent. Only the fourthlause of the de�nition of sequents in Fig. 3 an be used in uni�ation. Followingthis appliation by onjuntion elimination yields a sequent very similar to (4).The eval nil inv theorem used in the Coq proof and applied to (2) at this stageenompasses all three defL appliations. Its proof, in fat, uses three inversiontheorems. Note that beause of the uni�ation operation, there is no need forexistential quanti�ers and equations as in the Coq version.The use of indutive types in Coq together with distintness and injetivityaxioms are suÆient to handle most of the examples in MDowell and Miller'spaper [13℄. One spei�ation logi given there relies on extensionality of equalitywhih holds in FO��N. In Coq, however, equality is not extensional, whih ausessome diÆulty in reasoning using this spei�ation logi. Assuming extensionalequality at ertain types in Coq will be neessary. Other axioms may be needed aswell. In the appliation of the de�nitional reetion rule, higher-order uni�ationis a entral operation. Examples whih we annot handle also inlude thosein MDowell's thesis [12℄ whih require omplex uses of suh uni�ation. Forinstane, we annot handle appliations for whih there are multiple solutionsto a single uni�ation problem.We have laimed that Coq provides extra exibility by allowing reasoningvia diret indution using the indution priniples generated by the system. Asimple example of this extra exibility is in the proof of the seq ut theoremmentioned in Set. 3. The FO��N proof is similar to the Coq proof that doesase analysis using the indution priniple for seq. In Coq, we were also ableto do a simpler proof via ase analysis provided by strutural indution on prp,whih is not possible in FO��N. The next setion illustrates other examples ofthis extra exibility. 10



5 Strutural Indution on SequentsIn this setion, we disuss an alternate proof of theorem sr that uses Coq'sindution priniple for seq. Sine we do not do indution on the height of theproof for this example, the natural number argument is not needed, so we omitit and use the de�nition given in Fig. 4 instead.Indutive seq : list atm! prp! Prop :=sb : 8A : atm:8L : list atm:8b : prp:(prog A b)! (seq L b)! (seq L hAi)j sinit : 8A;A0 : atm:8L : list atm:(element A (A0 :: L))! (seq (A0 :: L) hAi)j strue : 8L : list atm:(seq L tt)j sand : 8B;C : prp:8L : list atm:(seq L B)! (seq L C)! (seq L (B&C))j simp : 8A : atm:8B : prp:8L : list atm:(seq (A :: L) B)! (seq L (A) B))j sall : 8B : tau! prp:8L : list atm:(8x : tau:(seq L (B x)))! (seq L (VB))j ssome : 8B : tau! prp:8L : list atm:8x : tau:(seq L (B x))! (seq L (W B)):Fig. 4. De�nition of the Spei�ation Logi without Natural NumbersNote that in the statement of the sr theorem, all of the sequents have emptyassumption lists and atomi formulas on the right. Using the indution priniplefor seq to prove suh properties often requires generalizing the indution hy-pothesis to handle sequents with a non-empty assumption list and a non-atomiformula on the right. We provide an indutive de�nition to failitate proofs thatrequire these extensions and we parameterize this de�nition with two properties,one whih represents the desired property restrited to atomi formulas (denotedhere as P ), and one whih represents the property that must hold of formulasin the assumption list (denoted here as Phyp). We require that the property onatomi formulas follows from the property on assumptions, so that for the basease when the sinit rule is applied to a sequent of the form (seq L A), it willfollow from the fat that A is in L that the desired property holds. (In manyproofs, the two properties are the same, whih means that this requirement istrivially satis�ed.) The following are the two properties that we use in the proofof sr.De�nition P := �l : list atm:�A : atm:Cases A of(typeof m t)) Truej (p + v)) 8t : tm:(seq l htypeof p ti)! (seq l htypeof v ti) end:De�nition Phyp := �l : list atm:�A : atm:9p; t : tm:A = (typeof p t) ^(seq nil hAi) ^ (8v : tm:(seq l hp + vi)! (seq l htypeof v ti)):The proof of sr (in this and in the previous setion) uses indution on theheight of the proof of the evaluation judgment �0hp + vi. Thus in de�ning P ,11



we ignore typeof judgments. The lause for + simply states a version of thesubjet redution property but with assumption list l. The property that werequire of assumption lists is that they only ontain atomi formulas of the form(typeof p t) and that eah suh assumption an be proven from an empty set ofassumptions and itself satis�es the subjet redution property.The indutive de�nition whih handles generalized indution hypotheses (pa-rameterized by P and Phyp) is given in Fig. 5. The de�nition of mapP mimisVariable P : list atm! atm! Prop:Variable Phyp : list atm! atm! Prop:Indutive mapP : list atm! prp! Prop :=mb : 8A : atm:8L : list atm:(P L A)! (mapP L hAi)j minit : 8A : atm:8L : list atm:(element A L)! (mapP L hAi)j mtrue : 8L : list atm:(mapP L tt)j mand : 8B;C : prp:8L : list atm:(mapP L B)! (mapP L C)! (mapP L (B&C))j mimp : 8A : atm:8B : prp:8L : list atm:((Phyp L A)! (mapP (A :: L) B))! (mapP L (A) B))j mall : 8B : tau! prp:8L : list atm:(8x : tau:(mapP L (B x)))! (mapP L (VB))j msome : 8B : tau! prp:8L : list atm:8x : tau:(mapP L (B x))! (mapP L (W B)):Fig. 5. A De�nition for Extending Properties on Atoms to Properties on Propositionsthe de�nition of seq exept where atomi properties appear. For example, thelause mand an be read as: if the generalized property holds for sequents witharbitrary propositions B and C under assumptions L, then it holds for their on-juntion under the same set of assumptions. In mb, the general property holdsof an atomi proposition under the ondition that the property P holds of theatom. In minit, the general property holds simply beause the atom is in the listof assumptions. The only other lause involving an atom is mimp. The generalproperty holds of an impliation (A) B) as long as whenever Phyp holds of A,the general property holds of B under the list of assumptions extended with A.Using the de�nition of mapP , we an struture proofs of many properties sothat they involve a diret indution on the de�nition of the spei�ation logi,and a subindution on prog for the atomi formula ase. The theorem belowtakes are of the �rst indution.De�nition PhypL := �L : list atm:(8a : atm:(element a L)! (Phyp L a)):Theorem seq mapP :(8L : list atm:8A : atm:(PhypL L)!(Phyp L A)! 8A0 : atm:(element A0 (A :: L))! (Phyp (A :: L) A0))!(8L : list atm:8A : atm:8b : prp:(PhypL L)!(prog A b)! (seq L b)! (mapP L b)! (P L A))!8l : list atm:8B : prp:(PhypL l)! (seq l B)! (mapP l B):The �rst two lines of the seq mapP statement roughly state that Phyp must bepreserved as new atomi formulas are added to the list of assumptions. Here,12



PhypL states that Phyp holds of all elements of a list. More spei�ally, theselines state that whenever (Phyp L A0) holds for all A0 already in L, and it isalso the ase that (Phyp L A) holds for some new A, then (Phyp (A :: L) A0)also holds for every A0 in the list L extended with A. The next two lines of thetheorem state the base ase, whih is likely to be proved by a subindution onprog. Under these two onditions, we an onlude that the generalized propertyholds of l and B whenever Phyp holds of all assumptions in l.For the new proof of sr, the de�nitions of prp and prog remain exatlyas in Set. 3, as do the de�nitions of the parameters that represent syntaxalong with their distintness and injetivity axioms. Inversion theorems suhas seq atom inv and eval nil inv are stated and proved similarly as in the pre-vious setion, but without the additional natural number arguments.Now we an state the generalized version of the sr property whih is just:Theorem sr mapP : 8L : list atm:8B : prp:(seq L B)! (PhypL L)! (mapP L B):To prove this theorem, we diretly apply seq mapP . The proof that Phyp ispreserved under the addition of new assumptions is straightforward. The basease for atomi formulas is proved by indution on prog. This indution gives usfour ases. The two ases whih instantiate atom A from seq mapP to formulasof the form (typeof m t) ause (P L A) to be redued to True. The details ofthe two ases for (prog (p + v) b) are similar to the orresponding ases in theproof in Set. 3.Finally, we an show that the desired sr theorem is a fairly diret onsequeneof sr mapP .Theorem sr : 8p; v : tm:(seq nil hp + vi)!8t : tm:(seq nil htypeof p ti)! (seq nil htypeof v ti):The proof begins with an appliation of the sr mapP theorem to onlude that(mapP nil hp + vi) holds. Now note that the only way suh a formula anhold is by the �rst lause of the de�nition of mapP sine the assumption list isempty and the formula is atomi. This fat is aptured by the following inversiontheorem.Theorem mapP nil atom inv : 8A : atm:(mapP nil hAi)! (P nil A):Applying this theorem and expanding P , we an onlude that8t : tm:(seq nil htypeof p ti)! (seq nil htypeof p vi)whih is exatly what is needed to omplete the proof.We have also used the mapP de�nition to prove the following theorem for afuntional language whih inludes app and abs as well as many other primitivessuh as booleans, natural numbers, a onditional statement, and a reursionoperator: Theorem type uniity : 8M; t : tm(seq nil htypeof M ti)!8t0 : tm(seq nil htypeof M t0i)! (equiv t t0):13



where the equiv prediate is de�ned simply asIndutive equiv : tm! tm! Prop := refl : 8t : tm(equiv t t):To do this proof, we of ourse had to �rst de�ne P and Phyp speialized to thistheorem. We do not disuss the details here.6 Conlusion, Related Work, and Future WorkWe have desribed a methodology for proving properties of objets expressedusing higher-order syntax in Coq. Beause of the similarity of reasoning in Coqand reasoning in the objet logi we use in our PCC system, we hope to be ableto arry over this methodology to the PCC setting. In partiular, in both our�Prolog and Twelf prototypes, we use an objet logi that is urrently spei�eddiretly, but ould be spei�ed as prog lauses, allowing the kind of reasoningdesribed here.In addition to our pratial goal of building proofs in the PCC domain aswell as other domains whih use meta-theoretial reasoning about logis andprogramming languages, another goal of this paper was to provide insight intohow a lass of proofs in the relatively new logi FO��N orrespond to proofsin a lass of logis that have been around somewhat longer, namely logis thatontain dependent types and indutive de�nitions.Certainly, many more examples are needed to illustrate that our approahsales to prove all properties that we are interested in. In addition to arryingout more examples, our future work inludes providing more exible supportfor reasoning in this setting. The mapP prediate in Set. 5 was introdued toprovide one kind of support for indution on sequents. Other kinds of support areworth exploring. For example, we have started to investigate the possibility ofgenerating indution priniples for various objet-level prediates suh as typeof .One goal is to �nd indution priniples whose proofs would likely use mapP andseq, but when they are used in proofs, all traes of the middle layer spei�ationlogi would be absent.As in any formal enoding of one system in another, we need to expressand prove adequay theorems for both the spei�ation and objet-level logis.Proofs of adequay of these enodings should follow similarly to the one forthe �-alulus in Honsell et al. [11℄. Suh a proof would require that we do notdisharge the type tm in Coq, thus preventing it from being instantiated withan indutively de�ned type, whih ould violate adequay.In related work, there are several other syntati approahes to using higher-order syntax and indution in proofs, whih either do not sale well, or morework is needed to show that they an. For example, Coq was used by Despey-roux et al. [5℄ to do a proof of the subjet redution property for the untyped�-alulus. There, the problem of negative ourrenes in de�nitions used forsyntax enodings was handled by replaing suh ourrenes by a new type. Asa result, some additional operations were needed to enode and reason aboutthese types, whih at times was inonvenient. Miulan uses a similar approah14



to handling negative ourrenes in formalizing meta-theory of both modal �-alulus [15℄ and the lazy all-by-name �-alulus [14℄ in Coq. These proofs re-quire fairly extensive use of axioms, more omplex than those used here, whosesoundness are justi�ed intuitively.Honsell et al. [11℄ and Despeyroux [4℄ de�ne a higher-order enoding of thesyntax of the �-alulus in Coq and use it formalize various aspets of themetatheory. Although they use higher-order syntax to enode proesses, there isno negative ourrene of the type being de�ned, and so they are able to de�neproesses indutively.Despeyroux and Hirshowitz [6℄ studied another approah using Coq. Again,a di�erent type replaing negative ourrenes is used, but instead of diretlyrepresenting the syntax of (losed) terms of the enoded language by terms oftypes suh as tm, losed and open terms of the objet language are implementedtogether as funtions from lists of arguments (of type tm) to terms of type tm.Examples are desribed, but it is not lear how well the approah sales.Hofmann [10℄ shows that a partiular indution priniple for tm, whih isderived from a straightforward extension of the indutive types in Coq to in-lude negative ourrenes, an be justi�ed semantially under ertain ondi-tions (though not within Coq). Although he annot prove the subjet redutionproperty shown here, he shows that it is possible to express a straightfowardelegant proof of a di�erent property: that every typed �-term redues to a termin weak-head normal form.In Pfenning and Rohwedder [18℄, the tehnique of shema heking is added tothe Elf system, a preursor to the Twelf system mentioned earlier. Both systemsimplement the Logial Framework (LF) [9℄. Indution annot be expressed inLF, so proofs like those shown here annot be fully formalized inside the system.However, eah of the ases of a proof by indution an be represented. Theshema heking tehnique works outside the system and heks that all asesare handled.Despeyroux et al. [7℄ present a �-alulus with a modal operator whih allowsprimitive reursive funtionals over enodings with negative ourrenes. Thiswork is a �rst step toward a new type theory that is powerful enough to expressand reason about dedutive systems, but is not yet powerful enough to handlethe kinds of theorems presented here.Sh�urmann [20℄ has developed a logi whih extends LF with support formeta-reasoning about objet logis expressed in LF. It has been used to provethe Churh-Rosser theorem for the simply-typed �-alulus and many otherexamples. The design of the omponent for reasoning by indution does notinlude indution priniples for higher-order enodings. Instead, it is based on arealizability interpretation of proof terms. This logi has been implemented inTwelf, and inludes powerful automated support for indutive proofs.Referenes[1℄ A. W. Appel and A. P. Felty. Lightweight lemmas in �Prolog. In InternationalConferene on Logi Programming, Nov. 1999.15



[2℄ A. W. Appel and A. P. Felty. A semanti model of types and mahine instrutionsfor proof-arrying ode. In The 27th Annual ACM SIGPLAN-SIGACT Sympo-sium on Priniples of Programming Languages, 2000.[3℄ P. Borras, D. Cl�ement, T. Despeyroux, J. Inerpi, G. Kahn, B. Lang, and V. Pas-ual. Centaur: the system. In Proeedings of SIGSOFT'88: Third Annual Sym-posium on Software Development Environments (SDE3), Boston, 1988.[4℄ J. Despeyroux. A higher-order spei�ation of the �-alulus. In First IFIP In-ternational Conferene on Theoretial Computer Siene. Springer-Verlag LetureNotes in Computer Siene, 2000.[5℄ J. Despeyroux, A. Felty, and A. Hirshowitz. Higher-order abstrat syntax in Coq.In Seond International Conferene on Typed Lambda Caluli and Appliations.Springer-Verlag Leture Notes in Computer Siene, Apr. 1995.[6℄ J. Despeyroux and A. Hirshowitz. Higher-order syntax and indution in oq. InFifth International Conferene on Logi Programming and Automated Reasoning.Springer-Verlag Leture Notes in Computer Siene, 1994.[7℄ J. Despeyroux, F. Pfenning, and C. Sh�urmann. Primitive reursion for higher-order abstrat syntax. In Third International Conferene on Typed Lambda Caluliand Appliations. Springer-Verlag Leture Notes in Computer Siene, 1997.[8℄ L.-H. Eriksson. A �nitary version of the alulus of partial indutive de�nitions. InL.-H. Eriksson, L. Halln�as, and P. Shroeder-Heister, editors, Proeedings of theJanuary 1991 Workshop on Extensions to Logi Programming. Springer-VerlagLeture Notes in Arti�ial Intelligene, 1992.[9℄ R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logis. Journalof the ACM, 40(1), Jan. 1993.[10℄ M. Hofmann. Semantial analysis of higher-order abstrat syntax. In FourteenthAnnual Symposium on Logi in Computer Siene, 1999.[11℄ F. Honsell, M. Miulan, and I. Sagnetto. �-alulus in (o)indutive type theories.Theoretial Computer Siene, 253(2), 2001.[12℄ R. MDowell. Reasoning in a Logi with De�nitions and Indution. PhD thesis,University of Pennsylvania, Deember 1997.[13℄ R. MDowell and D. Miller. Reasoning with higher-order abstrat syntax in alogial framework. ACM Transations on Computational Logi, 3(1), Jan. 2002.[14℄ M. Miulan. Developing (meta)theory of �-alulus in the theory of ontexts.Eletroni Notes on Theoretial Computer Siene, 58, 2001.[15℄ M. Miulan. On the formalization of the modal �-alulus in the alulus ofindutive onstrutions. Information and Computation, 164(1), 2001.[16℄ G. Nadathur and D. Miller. An overview of �Prolog. In K. Bowen and R. Kowalski,editors, Fifth International Conferene and Symposium on Logi Programming.MIT Press, 1988.[17℄ G. Neula. Proof-arrying ode. In 24th ACM SIGPLAN-SIGACT Symposiumon Priniples of Programming Languages. ACM Press, Jan. 1997.[18℄ F. Pfenning and E. Rohwedder. Implementing the meta-theory of dedutive sys-tems. In Eleventh International Conferene on Automated Dedution, volume 607.Leture Notes in Computer Siene, 1992.[19℄ F. Pfenning and C. Sh�urmann. System desription: Twelf | a meta-logialframework for dedutive systems. In Sixteenth International Conferene on Auto-mated Dedution, volume 1632 of Leture Notes in Arti�ial Intelligene. Springer-Verlag, 1999.[20℄ C. Sh�urmann. Automating the Meta Theory of Dedutive Systems. PhD thesis,Carnegie Mellon University, 2000.[21℄ The Coq Development Team. The Coq Proof Assistant referene manual: Version7.2. Tehnial report, INRIA, 2002. 16


