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t Dete
tionAMY P. FELTYUniversity of OttawaandKEDAR S. NAMJOSHIBell LaboratoriesLarge software systems, espe
ially in the tele
ommuni
ations �eld, are often spe
i�ed as a 
ol-le
tion of features. We present a formal spe
i�
ation language for des
ribing features, and amethod of automati
ally dete
ting 
on
i
ts (\undesirable intera
tions") amongst features at thespe
i�
ation stage. Con
i
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tion at this early stage 
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i�ed using temporal logi
; twofeatures 
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i
t essentially if their spe
i�
ations are mutually in
onsistent under axioms aboutthe underlying system behavior. We show how this in
onsisten
y 
he
k may be performed auto-mati
ally with existing model 
he
king tools. In addition, the model 
he
king tools 
an be usedto provide witness s
enarios, both when two features 
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i
t as well as when the features aremutually 
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i�
ations. We haveimplemented a 
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tion tool, FIX (Feature Intera
tion eXtra
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2 � A. Felty and K. Namjoshi1. INTRODUCTIONTele
ommuni
ations servi
es are marketed to 
ustomers by grouping together fea-tures su
h as 
all-waiting and 
all-forwarding. As the grouping is 
exible, an in-dividual feature is spe
i�ed without knowledge of whi
h other features it may begrouped with [Tel 1996℄. This fa
ilitates modular design and implementation; how-ever, problems arise when 
on
urrently a
tive features in a group attempt to satisfy
on
i
ting requirements. Implementors may resolve su
h 
on
i
ts as they are en-
ountered in di�erent ways, leading to unpredi
table behavior in the system as awhole. Moreover, it is 
ostly and time 
onsuming to dete
t and �x su
h 
on
i
tsduring or after implementation. It is therefore essential to dete
t and resolve su
hfeature 
on
i
ts as early as possible, preferably at the spe
i�
ation stage itself.With this motivation, we have developed a formal feature spe
i�
ation language,and a method of automati
ally dete
ting feature 
on
i
ts at the spe
i�
ation stage.We have implemented this method in a dete
tion tool 
alled FIX (for FeatureIntera
tion eXtra
tor). Features are spe
i�ed by des
ribing their temporal behavior.For instan
e, a typi
al informal spe
i�
ation for 
all forwarding is that \If entity xhas 
all forwarding enabled and 
alls to x are to be forwarded to z then, wheneverx is busy, any in
oming 
all from y to x is eventually forwarded to z". Thisinformal des
ription 
an be expressed pre
isely in our spe
i�
ation language, asdes
ribed in Se
tion 3. The language itself may be viewed as a sugared versionof temporal logi
 or !-automata. Spe
ifying features as temporal formulas hasthe ni
e property that it abstra
ts from spe
i�
 state-ma
hine implementations,allowing any implementation that satis�es the spe
i�
ations.The natural way to de�ne a feature 
on
i
t is that the feature spe
i�
ationsrepresent mutually in
onsistent properties; that is, no program exists that 
an im-plement both features. This is a question about whether the 
onjun
tion of twofeature spe
i�
ations is realizable. As dis
ussed in Se
tion 4.1, we also need to in-
lude axioms about the underlying system. The system axioms des
ribe propertiesthat should be true of any reasonable system implementation. Typi
al axioms fortelephony in
lude the following: (i) the system should not dis
onne
t an established
all, and (ii) if a 
all attempt is reje
ted, no 
onne
tion should be established untilthe next attempt. These axioms are spe
i�ed in the same spe
i�
ation language asthe features. Spe
ifying the system by axioms has the same ni
e property that itabstra
ts from parti
ular implementations, resulting in 
on
i
t reports that havewider appli
ability.Realizability 
he
king for linear-time temporal properties di�ers from satis�abil-ity 
he
king, sin
e it distinguishes between program and environment a
tions. Itis also a hard problem, whi
h is 2EXPTIME-
omplete [Pnueli and Rosner 1989℄.Its solution requires the transformation of a linear time property to a bran
hingtime formula, whi
h is then 
he
ked for satis�ability. This method is 
urrentlyinfeasible in pra
ti
e, due to the la
k of tools that are 
apable of handling largeformulas eÆ
iently. We take the approa
h, therefore, of approximating realizabil-ity by a 
onstrained satis�ability problem. By 
onsidering systems with a �xednumber of entities (i.e., telephones), feature spe
i�
ations be
ome propositionalformulas, and this 
onstrained satis�ability 
he
k 
an be performed automati
allyand eÆ
iently with model 
he
king tools. Our tool, FIX, reads in the spe
i�
a-ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spe
i�
ation and Automated Con
i
t Dete
tion � 3tions, 
onverts them to !-automata, and uses the model 
he
king tool COSPAN[Hardin et al. 1996℄ to perform the satis�ability test. This dete
tion pro
ess is fullyautomated. FIX provides witness 
omputations for either out
ome. If no 
on
i
tis dete
ted, the witness des
ribes a 
omputation where both feature spe
i�
ationshold; examining this 
omputation often reveals gaps in the assumptions about thesystem that need to be �lled in by modifying, or adding to, the system axioms. Ifa 
on
i
t is dete
ted, a s
enario is generated whi
h des
ribes a 
omputation wherethe features 
on
i
t. By examining this s
enario, one 
an determine either theproper resolution of the 
on
i
t, or whether this is a spurious 
on
i
t 
reated byspe
i�
ations that are too strong, and whi
h need to be modi�ed. Our spe
i�
ationmethod makes it easy to spe
ify dynami
 (i.e., state dependent) priorities between
on
i
ting features, whi
h are used to resolve 
on
i
ts.Our experien
e so far has been that this dete
tion pro
ess is reasonably eÆ
ientand quite a

urate. The pro
ess of debugging the system axioms and the featurespe
i�
ations, as des
ribed above, 
onverges rapidly. We have applied this methodto a large set of feature spe
i�
ations from the Tel
ordia (Bell
ore) standards, whi
hwere developed as part of a signi�
ant model 
he
king proje
t [Holzmann and Smith2000℄. For these features, we have been able to dete
t, in a matter of hours, mostof the intera
tions given in the Tel
ordia (Bell
ore) standards, as well as new ones.A tele
ommuni
ations system is, in a sense, an extreme example of designing withfeatures. Our method has proved to be quite su

essful for these systems. It shouldbe noted, though, that neither the spe
i�
ation language, nor the dete
tion method,are spe
ialized to tele
ommuni
ations systems. Many other software systems arespe
i�ed at an early stage of design as a 
olle
tion of features. For instan
e, a userinterfa
e may be spe
i�ed as a set of requirements of the form: \for this sequen
eof a
tions, the following response must o

ur," whi
h �ts our general s
heme. Webelieve, therefore, that our te
hniques for the early dete
tion of 
on
i
ts 
an beapplied to a wide range of systems.The rest of the arti
le is stru
tured as follows. Se
tion 2 
ontains a short ba
k-ground on temporal logi
, !-automata and model 
he
king. We motivate and de�neour spe
i�
ation language in Se
tion 3. The pre
ise formulation of feature 
on
i
tand the dete
tion method is des
ribed in Se
tion 4. The FIX tool is des
ribed inSe
tion 5. The appli
ation of FIX to the Tel
ordia feature spe
i�
ations is dis
ussedin Se
tion 6. The arti
le 
on
ludes with a dis
ussion of related work in Se
tion 7.2. BACKGROUNDIn this se
tion, we provide a short ba
kground on linear temporal logi
, !-automata,and model 
he
king.2.1 Linear Temporal Logi
Linear time temporal logi
 (usually abbreviated as LTL) was �rst suggested as aproto
ol spe
i�
ation language in Pnueli [1977℄. Formulas in the logi
 de�ne sets ofin�nite sequen
es; hen
e, the logi
 is parti
ularly well suited to des
ribe time de-pendent properties of 
on
urrent, rea
tive systems, su
h as our 
urrent appli
ationdomain of telephony networks. Formally, LTL formulas are parameterized by a setof atomi
 propositions, AP , and are de�ned by the following syntax:ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



4 � A. Felty and K. Namjoshi(1) Every proposition P in AP is a formula,(2) For formulas f and g, (f ^ g) (read as \f and g") and :(f) (read as \not f")are formulas,(3) For formulas f and g, X(f) (read as \next-time f") and (f U g) (read as \funtil g") are formulas.The temporal operators are X and U. Formulas are interpreted over in�nitesequen
es of atomi
 proposition valuations. Su
h a sequen
e is de�ned as a fun
tionfrom N to 2AP { for a sequen
e �, �(i) is the subset of propositions that are trueat position i. We write �; i j= f to mean that the sequen
e � satis�es the formulaf at position i. The language of f , denoted by L(f), is the set f� j �; 0 j= fg. Thesatisfa
tion relation is de�ned by indu
tion on the stru
ture of f as follows.(1) For a proposition P , �; i j= P i� P 2 �(i),(2) �; i j= :(f) i� �; i j= f is false,(3) �; i j= (f ^ g) i� both �; i j= f and �; i j= g are true,(4) �; i j= X(f) i� �; i+ 1 j= f ,(5) �; i j= (f U g) i� there exists j, j � i, su
h that �; j j= g and for every k,i � k < j, �; k j= f .Other operators 
an be de�ned in terms of these base operators: (f _ g) is:(:f ^ :g); (f ) g) is :f _ g; F(g) (\eventually g") is (true U g); G(f)(\always f") is :F(:f), and (f W g) (\f holds unless g") is (G(f) _ (f U g)).2.2 Automata on In�nite Sequen
esTemporal properties 
an also be spe
i�ed by �nite-state automata that re
ognizein�nite input sequen
es. Su
h automata are known as B�u
hi automata [Bu
hi 1962℄or as !-automata. A B�u
hi automaton A is spe
i�ed by a tuple (S;�;�; I; F ),where:� S is a �nite set of states,� � is a �nite set known as the alphabet,� �, a subset of � S � �� S, is the transition relation,� I , a nonempty subset of S, is the set of initial states,� F , a subset of S, is the set of a

epting states.A run of A on an in�nite sequen
e � : N! � is an in�nite sequen
e r : N! Sof states su
h that: (i) r(0) 2 I , and (ii) for ea
h i 2 N, (r(i); �(i); r(i + 1)) 2 �.A run r is a

epting i� one of the states in F appears in�nitely often along r. Thelanguage of the automaton, L(A), is the set of in�nite sequen
es on whi
h A hasan a

epting run. B�u
hi automata (with � = 2AP ) are stri
tly more powerful thanlinear temporal logi
 at de�ning sets of sequen
es. There is a translation from LTLformulas to equivalent B�u
hi automata that is exponential in the worst 
ase; seeThomas [1990℄ for a survey.2.3 Model Che
kingA program generates a set of 
omputation sequen
es. For rea
tive programs wherenontermination is desirable, su
h as operating systems and telephony proto
ols,ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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i�
ation and Automated Con
i
t Dete
tion � 5the sequen
es are in�nite, in general; hen
e, temporal logi
 or B�u
hi automatamay be used to des
ribe program properties. For instan
e, mutual ex
lusion maybe written as G(:(Criti
al 0 ^ Criti
al 1)), and eventual a

ess as G(Waiting )(Waiting U Granted)).For programs with �nitely many states, a fully automated pro
edure known asModel Che
king [Clarke and Emerson 1981; Queille and Sifakis 1982℄ 
an be usedto determine whether a property holds of all 
omputations of the program. A �nitestate program 
an be represented by a B�u
hi automaton with the trivial a

eptan
e
ondition F = S; hen
e, model 
he
king be
omes the language 
ontainment ques-tion L(Program) � L(Property) [Vardi and Wolper 1986℄. This question is typi
allyde
ided by forming an automaton NProperty for the negation of the property, andalgorithmi
ally 
he
king whether the produ
t automaton Program�NProperty hasan empty language.Model Che
king tools based on language 
ontainment in
lude COSPAN [Hardinet al. 1996℄ and VIS [Brayton et al. 1996℄. If the spe
i�
ation fails to hold of theprogram, the tool generates a 
omputation that is a witness to this failure; thatis, a 
omputation in L(Program) that is not in L(Property). We make use of this
apability in our 
on
i
t dete
tion method (Se
tion 4).3. FEATURE SPECIFICATIONIn this se
tion, we des
ribe and de�ne our feature spe
i�
ation language and themethodology we have used to set up the feature 
on
i
t 
he
k. The details of this
he
k are presented in the following se
tion.In order to spe
ify features, we have to begin with some informal understandingof the term \feature". In the rest of the paper, we restri
t ourselves to telephonyfeatures; however, our spe
i�
ation language and the 
on
i
t dete
tion algorithm
an also be applied to spe
i�
ations of features in other kinds of systems.In spe
ifying features, we began with the informal des
ription, mostly in theform of English text found in the Tel
ordia (Bell
ore) standards [Tel 1996℄. Of
ourse, the pro
ess of going from informal to formal spe
i�
ations itself 
annot beformalized, so 
are must be taken to 
orre
tly express the 
ontents of the informaldes
ription. This se
tion des
ribes our formal spe
i�
ation language. Se
tion 5in
ludes examples whi
h illustrate how this language is used by providing formalspe
i�
ations along with the informal des
riptions that they were derived from; italso des
ribes how the FIX tool 
an be used to help debug feature spe
i�
ations toin
rease their a

ura
y.A telephony feature, su
h as 
all waiting or 
all forwarding, typi
ally spe
i�esthe behavior over time of one or more entities in terms of their 
urrent stateand a set of input events. The informal spe
i�
ation given earlier for 
all for-warding is an example: \If entity x has 
all forwarding enabled and 
alls to xare to be forwarded to z then, whenever x is busy, any in
oming 
all from y tox is eventually forwarded to z". In this spe
i�
ation, we 
an distinguish sev-eral predi
ates that des
ribe the state of entity x: 
all forwarding enabled (x),forward from to(x; z), forwarded 
all from to(y; x; z), busy(x), and the predi
atein
oming 
all from to(y; x) that des
ribes the o

urren
e of an event. The rest ofthe senten
e uses Boolean and temporal operators (e.g., \and", \whenever", \even-ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



6 � A. Felty and K. Namjoshitually"). This is a pattern that is repeated throughout the Tel
ordia spe
i�
ationset. Hen
e, we believe that a parti
ularly appropriate way of spe
ifying a feature isby a 
olle
tion of temporal formulas (or automata), de�ned over a set of predi
atesthat denote states or events of the system.Our spe
i�
ation notation is a sugared version of LTL. Ea
h feature is spe
i�edseparately, as a 
olle
tion of temporal properties. The properties are de�ned interms of predi
ates that indi
ate relationships between entities in the system. Thefeature spe
i�
ation also 
ontains de�nitions for basi
 and derived predi
ates thatare used in the properties. Con
retely, ea
h feature is pla
ed in a separate �le; forinstan
e, 
all forwarding is spe
i�ed in the �le \
all forwarding.spe
". We use thesymbols +,&,~,=> to textually denote the Boolean operators _;^;:;) respe
tively.There are two prede�ned predi
ates: eq(x; y), whi
h denotes equality of the enti-ties x and y and, for ea
h feature F , a predi
ate disableF (x), whi
h indi
ates thatthe feature spe
i�
ation is to be disabled at entity x. The latter predi
ates areused for sele
tively disabling features in order to resolve 
on
i
ts. The identi�ersx; y et
. are variables whi
h 
an be instantiated by 
onstants representing entitiesin the system. We allow existential quanti�
ation over entities. We use it, for ex-ample, to spe
ify predi
ates su
h as is on hold (x) = (exists y : has on hold (y; x)).A restri
ted form of existential quanti�
ation represents quanti�ed variables by\ "; for instan
e, the above de�nition may also be written as is on hold (x) =has on hold ( ; x). The s
ope of an existential quanti�er in su
h an abbreviatedform in
ludes only the predi
ate 
ontaining the \ " symbol. The general form of aproperty spe
i�
ation is shown below.property <Name>{event: e0 persists: p0event: e1 persists: p1...event: eN-----------------------persists: p until: r dis
harge: d} The symbols e0, p0, e1, p1; : : : ; eN , p, r, d are Boolean expressions formed outof the basi
 predi
ates. The keyword until may be repla
ed with the keywordunless to de�ne a weaker spe
i�
ation. Variables su
h as x; y appearing in thepredi
ates of the property spe
i�
ation have s
ope that is lo
al to the property,and are impli
itly universally quanti�ed; that is, the temporal property should betrue for every value of x; y in a parti
ular system. The event and persists 
onditionsabove the dashed line indi
ate the pre
ondition of the property; the persists-until-dis
harge triple (or a persists-unless-dis
harge triple) indi
ates the post
onditionof the property. Informally, the property states that \whenever the pre
onditionpattern holds, it is followed by the post
ondition pattern".The pre
ondition has the following informal reading: \e0 holds, followed by aperiod where (p0 ^ :e1) is true, then e1 holds, followed by a period where (p1 ^:e2) is true, et
., until eN holds." In extended regular expression notation, this
an be written su

in
tly as e0; (p0 ^ :e1)�; e1; (p1 ^ :e2)�; : : : ; eN . We saythat a property is enabled at a point on a 
omputation i� its pre
ondition is trueof a pre�x that ends at the point. An empty pre
ondition part defaults to theACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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i�
ation and Automated Con
i
t Dete
tion � 7pre
ondition true.The post
ondition should hold at every point on a 
omputation where the prop-erty is enabled. The \persists: p until: r dis
harge: d" notation translates to theLTL formula (p U (r _ d)); with unless in pla
e of until, it 
orresponds to the LTLformula (p W (r _ d)). Although the dis
harge 
ondition may seem te
hni
allyunne
essary, it makes a distin
tion that is important for the spe
i�er. The until
ondition is thought of as spe
ifying the desired out
ome, while the dis
harge 
on-dition is thought of as spe
ifying the ex
eption 
onditions that 
ause the propertyto be trivially satis�ed. We make use of this distin
tion in our 
on
i
t test. Anyof the three 
omponents of the post
ondition 
an be omitted; the 
hoi
e betweenuntil and unless defaults to unless, the persists 
ondition defaults to true, andthe unless and dis
harge 
onditions default to false.The easiest way to de�ne the 
omplete property in LTL asso
iated with thegeneral form is to 
onsider its negation: the property is false of an in�nite sequen
ei� there is a point where the pre
ondition pattern holds, but is not followed by thepost
ondition pattern. To illustrate the translation, 
onsider the property below.property Simple{event:e0 persists:p0 event:e1------------------------------persists:p until:r dis
harge:d} The LTL property :F(e0 ^ X((p0 ^ :e1) U (e1 ^ :(p U (r _ d))))) is equiv-alent to this spe
i�
ation. The general 
ase 
an be handled in a similar manner,in
reasing the depth of nesting for su

essive event-persists pairs. This translationindi
ates why it is better to use a sugared notation than to use LTL dire
tly. We
onsider su
h a formula with free variables x; y; : : : to represent the in�nite fam-ily of propositional LTL formulas de�ned by instantiating the free variables with
onstants. We use su
h instantiations in our 
on
i
t test, but the presen
e of freevariables makes it simple to 
onsider alternative bindings of 
onstants to variables.Our spe
i�
ation format was 
hosen, in part, be
ause it is easy to translate aproperty spe
i�
ation to an automaton. We show �rst how to translate a propertyto an automaton that a

epts its negation. The translated automaton has sizelinear in the size of the property, so that model 
he
king (see Se
tion 2.3) 
an bedone eÆ
iently { in time linear in the program size, and linear in the property size.Thus, the same properties that are used for early 
on
i
t dete
tion 
an be used toeÆ
iently model 
he
k a
tual implementations.The negation of the simple property above is expressed by the nondeterministi
B�u
hi automaton shown in Figure 1. In the �gure, states are represented by 
ir
les,the transition relation is de�ned by the 
onditions on the arrows between 
ir
les,and a

epting states are represented by 
on
entri
 
ir
les. The state labeled withS0 is the initial state. The automaton at state S0 
hooses (nondeterministi
ally)some point on a 
omputation, 
he
ks that the pre
ondition holds from that point(states S1; S2), and that the post
ondition fails thereafter (i.e., the automaton getsstu
k in states S2 or S3). The a

epting states of the automaton are fS2; S3g {the automaton stays in S2 if neither the response r or the dis
harge d hold and theACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



8 � A. Felty and K. Namjoshi
S0 S1 S2 S3

e0 p0 ^ :e1true
e1 ^ :p ^ :(r _ d)

:(r _ d) ^ p truee1 ^ p ^ :(r _ d) :(r _ d) ^ :p
Fig. 1. Automaton for the negation of the simple property.

S1S0

p ^ :(r _ d)
r _ dx ^ p ^ :(r _ d):x _ r _ d

Fig. 2. Automaton for the positive version of the simple property.persisten
e 
ondition p holds, and moves to S3 and stays there if the persisten
e
ondition fails before the response or dis
harge 
an hold. The automaton for thegeneral 
ase has the same linear form, with n+ 2 states for a pre
ondition with nevents. If \until" is repla
ed with \unless" in the post
ondition, the a

epting setbe
omes just fS3g, sin
e the unless property is satis�ed if the automaton stays inS2 forever.For our purposes, we also need the automaton for the property itself. This 
ouldbe obtained by negating the automaton given above, but algorithms for negatingB�u
hi automata are quite 
omplex (
f. Thomas [1990℄), so we prefer a dire
t
onstru
tion. First, we 
onstru
t a deterministi
 automaton Apre that re
ognizesall the points on a 
omputation where the pre
ondition holds. Then, we form theautomaton for G(Apre :a

ept ) (p U (r _ d))). This automaton is shown inFigure 2, where x stands for Apre :a

ept. This automaton is run in parallel withApre (by forming the produ
t automaton) to get the automaton for the property.To 
onstru
t the automaton Apre , we take the nondeterministi
 automaton on�nite strings that is indu
ed by states S0; S1 in Figure 1, with the a

eptan
e
ondition (state = S1) ^ e1. This nondeterministi
 automaton has an a

eptingrun to every point on a 
omputation where the pre
ondition holds. Now, we applythe subset 
onstru
tion to this automaton to determinize it and form Apre . Thedeterministi
 automaton Apre , by 
onstru
tion, has a single run on a 
omputationthat signals a

eptan
e at every point where the pre
ondition holds.ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spe
i�
ation and Automated Con
i
t Dete
tion � 9We have shown how features may be represented by formulas in LTL over aset of predi
ates. The predi
ates are, however, not independent { any underlyingtelephony system imposes some 
onstraints between the predi
ates. For instan
e,busy tone(x) and 
all waiting tone(x) are mutually ex
lusive. Constraints su
has these 
an be 
onsidered as an axiomatization of the swit
hing infrastru
tureof a telephony system. In the spe
i�
ation language, 
onstraints are spe
i�ed us-ing the same syntax as properties, ex
ept that the form begins with the keyword
onstraint instead of property.4. FEATURE CONFLICT DETECTIONGiven that a feature is spe
i�ed as a temporal logi
 formula, how 
an we de�ne\
on
i
t" (i.e., an \undesirable intera
tion")? We motivate our 
urrent de�nitionthrough an analysis of su

essively stronger formulations. We then des
ribe ourdete
tion method and analyze its strengths and weaknesses. In the following, itshould be understood that we are referring to spe
i�
 instantiations of the features(i.e., binding the free variables with 
onstants). This is indi
ated by using theletters a; b; : : : instead of x; y; : : : in the formulas. We say that a feature is enabledif one of the properties of the feature is enabled. We identify the name of a feature,say A, with its spe
i�
ation in terms of properties.4.1 Formulating \Con
i
t" Pre
iselyConsider the following de�nition of feature 
on
i
t: features A and B 
on
i
t i�there does not exist a system where every 
omputation satis�es the spe
i�
ationsfor both A and B.Thus, feature 
on
i
t is essentially a realizability question: features A and B
on
i
t if and only if a program realizing their joint spe
i�
ation A ^ B does notexist. Noti
e that we are interested here in just the de
ision question: does su
h aprogram exist? The problem of synthesizing su
h a program is a 
lassi
al problemwhi
h has potential pra
ti
al appli
ations. Any program that satis�es A ^ B willbe an open rea
tive program [Harel and Pnueli 1985℄ whi
h 
onstantly intera
tswith its environment. For instan
e, a program satisfying the 
all-forwarding spe
-i�
ation will have to respond to in
oming 
all events and produ
e outgoing 
allevents. Unfortunately, the realizability question for open rea
tive programs hasa very high 
omplexity (2EXPTIME-hard), and the known solutions are based onshowing satis�ability of a bran
hing time formula obtained from the linear time for-mulas des
ribing A and B [Pnueli and Rosner 1989℄. Instead of using these de
isionalgorithms, for eÆ
ien
y reasons, we opt to approximate bran
hing time satis�a-bility by 
onstrained linear time satis�ability. Linear time satis�ability 
he
king issupported by many model 
he
king tools, su
h as the tool we used, COSPAN. Inlater se
tions, we des
ribe in more detail how COSPAN is used to perform these
he
ks. The availability of su
h tools for LTL, but not for other temporal logi
s,su
h as bran
hing time logi
s like CTL [Clarke and Emerson 1981℄ and CTL� [Emer-son and Halpern 1986℄, or the Temporal Logi
 of A
tions (TLA) [Lamport 1994℄,was a major fa
tor in our 
hoi
e of LTL as the spe
i�
ation language.t turns out that 
he
king A ^ B for linear time satis�ability is too mu
h ofan approximation to the bran
hing time formulation of realizability. We need torule out several paths in the bran
hing tree that 
ause A ^ B to be satis�edACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



10 � A. Felty and K. Namjoshitrivially. Our �nal 
riterion is des
ribed below as the end result of re�ning a seriesof approximations, starting with linear time satis�ability. This 
riterion suÆ
es todete
t a number of feature 
on
i
t problems, as des
ribed later in Se
tion 5. Theinitial formulation is in terms of linear time satis�ability.De�nition 4.1. FeaturesA and B 
on
i
t i� the formula (A ^ B) is unsatis�able;that is, in every 
omputation, some feature property does not hold.This de�nition, however, turns out to be inadequate. Consider the two featuresA and B de�ned below.A : G(
alls(a; b) ) F(
onne
ted(a; b) _ dis
onne
t(a)))(\Whenever a 
alls b, a and b are 
onne
ted, unless a dis
onne
ts"),B : G(
alls(a; b) ) F(forwards(a; b; 
) _ dis
onne
t(a)))(\Whenever a 
alls b, the 
all is forwarded to 
, unless a dis
onne
ts").Informally, these spe
i�
ations are 
on
i
ting, sin
e forwarding from b and 
on-ne
ting to b should not both happen for the same 
all. Yet the 
onjun
tion of theformulas is satis�able: 
onsider the 
omputation in whi
h 
alls(a; b) is always false!The problem here is that it is always possible to trivially satisfy a feature spe
i�
a-tion if the feature is always disabled. Hen
e, we would like to 
onsider only thosesystems for whi
h there exist 
omputations where both features 
an be enabled to-gether. We 
hoose to 
onsider only 
omputations where both features are enabledtogether in�nitely often { a 
omputation where the features are enabled togetheron
e, but disabled forever from some point on is, in a sense, arti�
ially restri
ted.De�nition 4.2. Features A and B 
on
i
t i� the two features 
an be enabledtogether in�nitely often, but in every su
h 
omputation, some feature propertydoes not hold.Even with the strengthened de�nition, the two features in our example are stillnon
on
i
ting! Consider the 
omputation in whi
h whenever 
alls(a; b) is true,eventually 
onne
ted(a; b) holds, followed by forwards(a; b; 
). The problem here isthat we have failed to a

ount for the 
onstraint that prevents the same 
all beingboth 
onne
ted and forwarded. This is not a feature property: it should be partof the system axioms. We would like to 
onstrain the possible implementationsfurther so that they satisfy these axioms along all 
omputations.De�nition 4.3. Features A and B 
on
i
t i� the two features 
an be enabledtogether in�nitely often under the system axioms, but in every 
omputation wherethe features are enabled together in�nitely often and the system axioms also hold,some feature property does not hold.It is still true that the example features are non
on
i
ting! Consider the 
om-putation in whi
h after 
alls(a; b) holds, dis
onne
t(a) is true before either of thepredi
ates 
onne
ted(a; b) or forwards(a; b; 
) holds. Both spe
i�
ations are thussatis�ed trivially be
ause the dis
harge 
ondition is asserted before any useful a
-tions are performed. It is for su
h a situation that we make use of the distin
tionbetween until/unless and dis
harge 
onditions. We would like to rule out those
omputations where dis
harge events o

ur while the feature is pending, that is,enabled but not satis�ed. The following de�nition is the one that we use in ourdete
tion method.ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spe
i�
ation and Automated Con
i
t Dete
tion � 11De�nition 4.4 (Feature Con
i
t). Features A and B 
on
i
t i� A and B 
an beenabled together in�nitely often under the system axioms, and for every 
omputa-tion where(1) The system axioms hold, and(2) A and B are enabled together in�nitely often, and(3) A dis
harge 
ondition does not o

ur while the feature is pending,some feature property does not hold.Conditions 2 and 3 
an be expressed with simple formulas of temporal logi
. Forinstan
e, \p holds in�nitely often" is expressed by GXF(p) and \d does not o

urbetween o

urren
es of p and q" is expressed by G(p ) (:d W q)).4.2 Automati
 Dete
tionEa
h 
on
i
t test is performed on a spe
i�
 instantiation of the features. Theparameterized form of the feature spe
i�
ation makes it easy to instantiate di�erent
on�gurations { for instan
e, one where entity a has 
all-forwarding and entityb has 
all-waiting. In general, two LTL properties f and g are in
onsistent i�L(f) \ L(g) = ;, whi
h is true i� L(f) � L(g). This is exa
tly the model 
he
kingquestion with f as the program and :g as the property. Hen
e, a model 
he
ker 
anbe used to dete
t feature 
on
i
ts. Let A and B be two features, let Ax denote thesystem axioms, and CAB the 
onstraints given by 
onditions 2 and 3 of De�nition4.4. The in
onsisten
y 
he
k 
an be written as L(A) \ L(B) \ L(Ax) \ L(CAB) =;, whi
h is equivalent to L(Ax ) \ L(CAB) � L(A) [ L(B). This is the form usedin our implementation.The FIX tool that we have developed uses the model 
he
ker COSPAN [Hardinet al. 1996℄ for the 
on
i
t 
he
k. In COSPAN, both properties and 
onstraintsare represented by !-automata. FIX translates the 
onstraints Ax and the featurespe
i�
ations A;B into COSPAN automata that a

ept the spe
i�ed languages, asexplained in Se
tion 3. Ea
h feature is translated to a parameterized automaton(parameterized by the variables appearing in the properties) whi
h is instantiatedas needed for ea
h parti
ular test. Sin
e the automata representing 
onditions 2and 3 of the de�nition are independent of the parti
ular features, they are obtainedfrom a library and instantiated on ea
h use with the enabling 
ondition of theparti
ular features to obtain the automaton for CAB .The model 
he
ker de
lares failure if the set in
lusion above is false; that is, ifthe properties do not 
on
i
t. The non
on
i
t may be due to weak system axioms,or (rarely) be
ause the instantiation de�nes a system without enough entities toexhibit a 
on
i
t. Sin
e the model 
he
ker de
lares failure, it produ
es a witness
omputation for whi
h the axioms and both features hold. Inspe
tion of this wit-ness 
omputation often reveals 
onstraints that need to be in
luded in the systemaxioms. Even if this is not the 
ase, a \no 
on
i
t" report should be, in general, 
on-sidered in
on
lusive, as the 
he
k is performed for a parti
ular system 
on�guration(i.e., a �xed number of entities).On the other hand, a \
on
i
t" result is 
on
lusive; but, as the model 
he
kerde
lares su

ess, no witness is produ
ed for the 
on
i
t. To produ
e a witness, weperform another 
he
k: L(Ax) \ L(CAB) \ L(A) � L(B). As there is a 
on
i
t,ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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he
k must fail,1 so the model 
he
ker produ
es a 
omputation that satis�esAx ;CAB and A but does not satisfy B. This 
omputation des
ribes a s
enario inwhi
h the system axioms hold, both features are enabled together in�nitely oftenand A holds, but B does not hold.5. FIX: A CONFLICT DETECTION TOOLThe FIX tool is used to both spe
ify the desired properties of features (using thelanguage des
ribed in Se
tion 3) and to dete
t 
on
i
ts among them, as des
ribedin the previous se
tion. FIX is intended to be used at the design and spe
i�
ationstage of the development of new features. Here, we des
ribe the tool in more detailand illustrate its use with the aid of examples from well-known features.The �rst step in using FIX is to provide a set of properties that spe
i�es thedesired behavior of the new feature. The spe
i�
ation language des
ribed in Se
-tion 3 was designed so that properties of features 
ould be spe
i�ed as naturallyand dire
tly as possible. The main 
omponents of the property templates | events,persisting 
onditions, required resolutions or 
onditions that must never o

ur aftera set of pre
onditions are met, and ex
eption or dis
harge 
onditions | were 
hosenbe
ause all of the properties of the well-known features that we examined 
ontainedsome or all of them. In addition, they are 
on
epts that are easily understood bya designer of a feature. There is no need to know the languages of linear temporallogi
 or B�u
hi automaton into whi
h the properties will be translated. At the sametime, there is a 
lose enough 
orresponden
e to these formal languages that theproperties are easily translated (as shown in Se
tion 3). When developing a newspe
i�
ation, the user has the freedom to introdu
e new predi
ates as needed. Theintrodu
tion of new predi
ates usually requires new system axioms to be added orexisting axioms to be updated, whi
h 
an also be done at this stage.The 
on
i
t 
he
k is the 
entral operation of FIX. As des
ribed in the previousse
tion, there are two kinds of 
he
ks: the in
onsisten
y 
he
k, and the 
he
k whi
hprodu
es a \
on
i
t witness" on
e an in
onsisten
y has been dete
ted. For bothkinds of 
he
ks, FIX expe
ts two properties, A and B, as input. The system axiomsAx are �xed and the auxiliary automaton CAB is 
reated automati
ally from A andB. The se
ond step in using FIX is to use the �rst kind of 
he
k as a debugging aid.In parti
ular, ea
h property of the new feature 
an be 
he
ked for dire
t 
on
i
twith the system axioms. To perform a 
he
k of a single property A against thesystem axioms, we simply instantiate B as the \always true" property, spe
i�ed as:property true_prop{-----------------------persists: true} A 
on
i
t arising from su
h a 
he
k represents a bug in either the property orin the system axioms. The user must then either modify A or Ax and repeat the
he
k.1This 
he
k will su

eed only in the pathologi
al situation that A always fails under the 
onditionL(Ax) \ L(CAB). Then it is possible to produ
e a 
omputation satisfying both Ax ;CAB butnot A by 
he
king L(Ax) \ L(CAB) � L(A).ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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i�
ation and Automated Con
i
t Dete
tion � 13Sin
e the 
on
i
t 
he
ks are 
on
lusive, on
e the initial spe
i�
ation phase is
omplete, the user 
an be sure that there are no 
on
i
ts between the featureproperties and the system axioms. On the other hand, be
ause a result of \no
on
i
t" is in
on
lusive, there is no guarantee that all potential 
on
i
ts betweenfeatures will be found. Of 
ourse it is important to make the spe
i�
ations strongenough to dete
t as many 
on
i
ts as possible. FIX 
an provide support for thistask in a se
ond debugging phase. The user 
an 
hoose one or two previouslyspe
i�ed features, 
he
k ea
h property of the new feature against ea
h propertyof the existing features, and examine the witness 
omputations that result whentwo properties do not 
on
i
t. In our experien
e, �nding non
on
i
ting pairs thatshould really be 
on
i
ting 
an help the user �nd and strengthen spe
i�
ationformulas that were not originally stated as strongly as they 
ould be. Also, thisphase often reveals system axioms that are not strong enough, parti
ularly thosethat were just added as a result of new predi
ates introdu
ed by the new feature.On
e the user has gained enough assuran
e that the spe
i�
ation and systemaxioms are 
orre
t, properties of the new feature 
an be 
he
ked against all otherfeatures fully automati
ally. At this stage, only the 
on
i
ts are important andthe 
on
i
t witnesses are useful for understanding and determining how to 
orre
tthem.To illustrate, we take some examples from our 
ase study, whi
h is des
ribedmore fully in the next se
tion. Two of the features that we 
onsider are Call For-warding Busy Line (CFBL) and Anonymous Call Reje
tion (ACR). For CFBL, thesubs
riber gives a number to whi
h all 
alls will be forwarded when the subs
riber'sline is busy. Calls to a subs
riber of the ACR feature will not go through whenthe 
aller prevents her number from being displayed on the subs
riber's 
aller IDdevi
e. For this example, we assume that CFBL was previously de�ned and ACRis a new feature to be spe
i�ed. The following is one of three properties of CFBL.property CFBL_Normal_Operation_1{event: CFBL(x) & ~idle(x) & ~forwarding(x,_,z) &same_swit
h(x,z) & le_five_forwards(y) & 
all_req(x,y)-----------------------persists: 
all_req(x,y)until: forwarding(x,y,z)dis
harge: onhook(y)} This property states that if x subs
ribes to CFBL, x is not idle, all previouslyforwarded 
alls from x to z have terminated, x and z are on the same swit
h, thein
oming 
all from y has been forwarded at most �ve times and there is an in
oming
all from y, then the in
oming 
all from y to x will be forwarded to z, unless ygoes ba
k on hook in the meantime. Note that 
all req o

urs both as an eventand a persisting 
ondition. In our model, events are not a primitive 
on
ept; theyare points in time at whi
h a formula be
omes true. For example, 
all req(x; y)be
omes true at some point after 
ompletion of dialing and 
ontinues to hold untilthere is some resolution of the 
all su
h as a 
onne
tion or forwarding.Two of the system axioms present in the system after CFBL is de�ned, but beforeACR is added are the following.ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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onstraint 
all_req_not_resolution{---------------persists: 
all_req(x,y) => (~busy_tone(y) & ~forwarding(x,y,_))}
onstraint distin
t_resolutions{---------------persists: ~(forwarding(_,y,_) & busy_tone(y))} The information expressed here is that (1) a 
all request is distin
t from a 
allresolution and (2) that two 
all resolutions 
annot o

ur at the same time. For thisexample, re
eiving a busy tone and having a 
all forwarded are the two resolutions
onsidered so far. The �rst property states that at any point in time when x hasan outstanding 
all request from y, y is neither re
eiving a busy tone nor havingits 
all to x forwarded. The se
ond property states that a 
all from y is not beingforwarded at the same time that y is re
eiving a busy tone. It is possible for a
all to have several steps to its resolution. For example, a 
all from y to x may beforwarded to z followed by y re
eiving a busy tone after it is determined that z isbusy, but the forwarding and re
eiving of the busy tone do not happen at the sametime.property ACR_Normal_Operation_3{event: ACR(x) & 
all_req(x,y) & ~DN_allowed(y) &resour
es_for_ACR_ann
(x)-----------------------persists: 
all_req(x,y)until: ACR_ann
(y,x)dis
harge: onhook(y)} The property above is one of six properties we add to spe
ify ACR. Informally,it states that if x subs
ribes to ACR and if there is a 
all request to x from y, andif furthermore the presentation of y's number is restri
ted and resour
es for theACR denial announ
ement are available, this should 
ause y to re
eive the ACRannoun
ement, unless y gives up and goes ba
k on hook �rst.This property and the CFBL property stated above provide one example of thekind of 
on
i
t that may arise. Consider the 
ase when x and y in the ACRproperty are instantiated with a and b, respe
tively and x, y, z of the CFBLproperty are instantiated with a, b, and 
, respe
tively. Furthermore, suppose thatthe pre
onditions of both properties hold simultaneously. Thus, a subs
ribes toboth ACR and CFBL and has an in
oming 
all from b. The two features requirethat the in
oming 
all be resolved in di�erent ways: ACR requires that b re
eivethe ACR denial announ
ement, while CFBL requires that the 
all be forwarded to
. When we run the in
onsisten
y 
he
k on these two properties using the sys-tem axioms that we have dis
ussed so far, no 
on
i
t is dete
ted. One possibleACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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i�
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i
t Dete
tion � 15witness 
omputation that may arise is one in whi
h the 
all from y to x is for-warded and given the ACR denial announ
ement at the same time. This is possi-ble be
ause the spe
i�
ation of ACR has introdu
ed three new predi
ates (ACR,resour
es for ACR ann
, ACR ann
) that have not yet been in
orporated intothe system axioms. In order for FIX to dete
t this parti
ular 
on
i
t, it is enoughto integrate ACR ann
 as a new kind of 
all resolution. One way to do this is toupdate the �rst 
onstraint listed above, and repla
e the se
ond with three new onesas follows.
onstraint 
all_req_not_resolution{---------------persists: 
all_req(x,y) => (~busy_tone(y) & ~forwarding(x,y,_) &~ACR_ann
(y,x))}
onstraint resolution_forwarding_only{---------------persists: forwarding(x,y,_) => (~busy_tone(y) & ~ACR_ann
(y,x))}
onstraint resolution_busy_tone_only{---------------persists: busy_tone(y) => (~forwarding(x,y,_) & ~ACR_ann
(y,x))}
onstraint resolution_ACR_ann
_only{---------------persists: ACR_ann
(y,x) => (~busy_tone(y) & ~forwarding(x,y,_))} The last three 
onstraints show a fairly general form for distinguishing 
all reso-lutions; ea
h time a new 
all resolution predi
ate is introdu
ed, one new 
onstraintmust be introdu
ed distinguishing it from all the rest, and the old 
onstraints mustbe updated to in
lude the new resolution in the persists 
ondition.Note that although we have to debug and maintain an axiom system, as wasmentioned earlier, we do not have to maintain an implementation. We have de-s
ribed here how to \debug" the axioms, and in our experien
e, although �ndingbugs in axioms is di�erent than debugging an implementation, it is no harder oreasier. Corre
ting an error in an implementation requires 
onsidering the e�e
tof the 
orre
tion on the rest of the implementation and making sure it does notintrodu
e new errors, while 
orre
ting errors in axioms a�e
ts only one axiom ata time. Of 
ourse, any single 
orre
tion to an axiom has a global e�e
t, but webelieve it less error prone than 
hanging an implementation.We do not try to produ
e a \
omplete" set of axioms in any sense: we introdu
ejust enough axioms to dete
t meaningful 
on
i
ts. Our 
ase study des
ribed in thenext se
tion shows that we are able to do so. Sin
e both system axioms and featureACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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i�
ation formulas are expressed in the same formalism, debugging and main-taining these two kinds of formulas is the same a
tivity. The distin
tion betweenthe two is only informal; system axioms express properties that should hold nomatter what features are introdu
ed, while spe
i�
ation formulas formally expressrequirements of a parti
ular feature.This 
on
i
t between ACR and CFBL is a known 
on
i
t whose resolution isdes
ribed in the Tel
ordia do
uments. When the presentation of the number is notallowed, ACR should take pre
eden
e over CFBL and the denial announ
ementshould be given. In our setting, we 
an express this kind of pre
eden
e by addingthe 
ondition (ACR(x) ) DN allowed(y)) as an additional 
onjun
t to the eventpart of the CFBL property. This 
onjun
t will be false exa
tly when both ACR(x)and �DN allowed(y) hold, thus falsifying the entire pre
ondition of the CFBLproperty in exa
tly the 
ases when the ACR property should take pre
eden
e.When solving intera
tions between two features is simply a 
ase of establishing apriority between them, it is a
tually not ne
essary to modify the spe
i�
ations. Asmentioned, FIX provides a me
hanism for spe
ifying priorities globally, whi
h weillustrate later.FIX has a variety of options. In the default 
ase, for any pair of properties, the xo

urring in both properties is instantiated by the same 
onstant, and similarly fory and z. The system axioms are, however, instantiated in all possible ways usingthree 
onstants.Also as part of the default, FIX will �rst 
he
k that the two input properties
an be enabled together. If not, there is no 
on
i
t. Otherwise the 
on
i
t 
he
kis 
ompleted. Options provided in the tool in
lude enhan
ements for greater eÆ-
ien
y and for more 
omplete 
overage in �nding 
on
i
ts. One option for more
omprehensive 
he
ks is the 
apability to provide alternative variable bindings. Forexample, x in a property of one feature 
an be instantiated with the same 
onstantas y in another.It is possible to in
rease the e�e
tiveness of the 
on
i
t 
he
ks by adding newpredi
ates and new arguments to existing predi
ates so that properties 
an beexpressed more pre
isely. For example, we write busy tone(x) for x hearing a busysignal, but writing busy tone(x; y) to mean that x hears a busy signal in responseto an attempt to 
all y would be more pre
ise. There is, however, a trade-o�:making the set of predi
ates more 
ompli
ated in
reases the exe
ution time requiredfor model 
he
king. We have attempted to keep the set of predi
ates simple andin
rease the pre
ision 
arefully as needed.6. CASE STUDYWe have applied our tool to a 
olle
tion of feature spe
i�
ations derived from theTel
ordia standards [Tel 1996℄. We report on the results for ten of these features,ea
h 
he
ked against the nine others.Table I des
ribes the 10 features we 
onsider here. Their names, des
riptions,and number of properties in ea
h of their spe
i�
ations are given in the table.The features are 
onsidered in pairs, and ea
h property of one of the featuresin a pair is 
he
ked against every property of the other feature. The 
he
ks are
arried out using a database of about 50 system axioms expressed as 
onstraintsACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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i�
ation and Automated Con
i
t Dete
tion � 17Table I. Features, Number of Properties used in Spe
i�
ation, and Des
riptionsACR AnonymousCallReje
tion 6 Allows subs
riber to reje
t 
alls from parties whohave a priva
y feature that prevents the deliv-ery of their 
alling number to the 
alled party.When a
tive, the 
all is routed to a denial an-noun
ement and terminated.CFBL Call ForwardingBusy Line 3 A telephone-
ompany-a
tivated feature that for-wards in
oming 
alls to a subs
riber to anotherline when the subs
riber is busy.CFDA Call ForwardingDon't Answer 4 In
oming 
alls to the subs
riber are forwardedwhen the subs
riber doesn't answer after a spe
-i�ed time interval.CFMB Call ForwardingMake Busy 1 Allows subs
riber to press a key to put phone intoa busy state so that all 
alls will be forwarded.CFV Call ForwardingVariable 7 Allows subs
riber to spe
ify a number to whi
hall 
alls will be forwarded.CW Call Waiting 16 Informs a busy subs
riber that another 
all iswaiting by playing a tone. The subs
riber may
ash, pla
ing the original 
all on hold and answerthe new 
all, or may go on hook, in whi
h 
asethe subs
riber is rung and 
onne
ted to the new
all upon answer.DOS DeniedOriginatingServi
e 2 Provides the 
apability to deny a subs
riber frommaking 
alls.DTS DeniedTerminatingServi
e 2 Provides the 
apability to deny terminating 
allsto a subs
riber.PKUP Call Pi
kup 2 Allows one station to answer a 
all dire
ted toanother station within a business group.RDA ResidentialDistin
tiveAlerting 2 Allows the subs
riber to designate spe
ial tele-phone numbers that may be identi�ed using dis-tin
tive alerting treatment.like those dis
ussed in the previous se
tion. The 
onstraints in the previous se
tionare spe
ial 
ases of a group of 
onstraints in the database that have a similar form,but involve all possible resolutions of a 
all. Handling the 10 features of our 
asestudy required 13 possible 
all resolutions: 2 kinds of announ
ements, 5 kinds oftones heard by the 
aller, 4 kinds of rings, forwarding, and su

essful 
onne
tion.The system axioms in
lude roughly three other groups of 
onstraints. The se
ondgroup was adapted from an English des
ription in the Tel
ordia do
uments spe
i-fying what it means for a parti
ular entity to be busy or idle. The originator of a
all is said to be busy from the time the phone goes o� hook until it goes ba
k onhook, whether or not the 
all is su

essfully 
ompleted. The party who is 
alled issaid to be busy from the time that ringing starts until either the 
all is aborted bythe 
aller, or the 
all terminates normally. Approximately 15 
onstraints des
ribethese 
on
epts.A third group of 
onstraints, also taken dire
tly from the Tel
ordia do
uments,spe
i�es properties for the predi
ates introdu
ed spe
i�
ally for 
all waiting, whi
his one of the more 
ompli
ated features. For this feature, the notions of stable 
allsand 
alls that are on hold are important. For example, if no 
all is in pro
ess for anACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



18 � A. Felty and K. NamjoshiTable II. Number of Con
i
ting Property Pairs for ea
h Pair of Feature Spe
i�
ationsCFBL CFDA CFMB CFV CW DOS DTS PKUP RDAACR 8 5 4 3 8 2 4 4 0CFBL | 0 2 2 4 1 0 2 0CFDA | | 2 4 0 0 2 0 0CFMB | | | 3 0 1 1 0 0CFV | | | | 2 1 2 1 0CW | | | | | 0 2 1 0DOS | | | | | | 0 3 0DTS | | | | | | | 1 0PKUP | | | | | | | | 0entity, then that entity is neither in a stable 
all state nor an unstable 
all state. Ananswered 
all is a stable 
all and a partially dialed 
all is an unstable 
all. Otherimportant 
onstraints in this group state that the time spent on hold is distin
tfrom the 
all request and 
all resolution phases of a 
all.The �nal group of 
onstraints deals with forwarded 
alls. When forwardingo

urs, it is never the �nal resolution of the 
all and there are restri
tions on whatthe remaining steps 
an be. The following is an example from this group statingthat a forwarded 
all should never subsequently be denied by the ACR feature.
onstraint forwarding_not_followed_by_ACR_ann
{event: offhook(x) & forwarding(_,x,_)---------------------------persists: ~ACR_ann
(x,_)unless: onhook(x)} The majority of the system axioms 
an be expressed using the simple form illus-trated in the last se
tion where only the persists 
ondition is important. The above
onstraint is an example showing that a more 
ompli
ated sequen
e is sometimesneeded to express a 
onstraint.Table II shows the results of 
he
king the ten features for 
on
i
ts. In the table,the numbers indi
ate the number of pairs of properties that resulted in a 
on
i
twhen 
he
king the pair of features against ea
h other. Some entries are blankto avoid dupli
ation. The results reported on here were done using the defaultsettings of FIX. An average size 
he
k, for example 
he
king ACR against CFBLwhi
h in
ludes 18 pairwise 
he
ks, takes 20 minutes on a SGI Challenge ma
hine.We examine the pair of features ACR and CFBL in more detail to further il-lustrate the 
on
i
ts that FIX dete
ts. CFBL is spe
i�ed by three properties. Inaddition to the property spe
ifying normal operation given in the previous se
tion,the following two properties spe
ify ex
eptions to normal operation.property CFBL_Ex
eption_1_to_Normal_Operation_1{event: CFBL(x) & ~idle(x) & forwarding(x,_,z) & same_swit
h(x,z) &
all_req(x,y)---------------------------persists: 
all_req(x,y)ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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tion � 19until: busy_tone(y) & ~forwarding(x,y,z)dis
harge: onhook(y)}property CFBL_Ex
eption_2_to_Normal_Operation_1{event: CFBL(x) & ~idle(x) & ~le_five_forwards(y) & 
all_req(x,y)-----------------------------persists: 
all_req(x,y)until: busy_tone(y) & ~forwarding(x,y,z)dis
harge: onhook(y)} Like the property already given, these properties also 
onsider the 
ase when, ini-tially, x is not idle and there is an in
oming 
all from y. The �rst ex
eption handlesthe 
ase when another 
all to x is in the pro
ess of being forwarded at the time wheny 
alls. The se
ond ex
eption handles the 
ase when the in
oming 
all from y hasbeen forwarded more than �ve times. This 
ondition is often 
aused by a forwardingloop. In both of these 
ases, the 
all should not be forwarded. Instead, y should re-
eive a busy tone. Both of these properties 
on
i
t with ACR Normal Operation 3,and in both 
ases it is be
ause the ACR property requires the 
aller to re
eive theACR denial announ
ement, while CFBL requires the 
aller to re
eive a busy tone.As before, ACR should have pre
eden
e over CFBL in these 
ases, and the 
on-
i
ts 
an be resolved by adding (ACR(x) ) DN allowed(y)) to the event partsof these properties.Next, 
onsider the following property of ACR, whi
h also spe
i�es normal oper-ation.property ACR_Normal_Operation_2{event: ACR(x) & 
all_req(x,y) & DN_allowed(y)-----------------------persists: 
all_req(x,y)until: audible_ringing(y) + busy_tone(y)dis
harge: answer(x,y) + onhook(y)} The main di�eren
e with the other ACR normal operation property is that thepresentation of y's number is allowed. In this 
ase, the 
all should pro
eed and yshould eventually re
eive either a ringing tone or a busy tone. Note that there isno 
on
i
t of this property with the ex
eption 
ases for CFBL. When x is not idleand y's number 
an be presented, the 
all must be resolved by y re
eiving a busytone.Note, however, that the new ACR property does 
on
i
t with the propertyCFBL Normal Operation 1 be
ause, on
e again, the two features require that thein
oming 
all be resolved in di�erent ways: ACR requires the 
aller to re
eive ei-ther ringing or a busy tone, while CFBL requires that the 
all be forwarded. TheTel
ordia do
uments spe
ify that when the presentation of the number is allowed,the 
all should be pro
essed a

ording to the requirements of CFBL. We 
an resolvethis 
on
i
t by adding �CFBL(x) to the event part of ACR Normal Operation 2.ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



20 � A. Felty and K. NamjoshiThis ACR property 
an be ignored when the CFBL feature is a
tive.All the properties we have stated so far are liveness properties, spe
ifying se-quen
es of events that must o

ur under 
ertain pre
onditions. Two of the sixproperties spe
ifying ACR are safety properties indi
ating sequen
es of events thatmust never o

ur.property ACR_Normal_Operation_1{event: ACR(x) & 
all_req(x,y) & DN_allowed(y)-----------------------persists: ~ACR_ann
(y,x)dis
harge: onhook(y) + dis
onne
t(y,x)}property ACR_Normal_Operation_4{event: ACR(x) & 
all_req(x,y) & ~DN_allowed(y)-----------------------persists: 
all_req(x,y) & ~busy_tone(y) & ~audible_ringing(y)unless: ACR_ann
(y,x)dis
harge: onhook(y)} The �rst states that when y's number 
an be presented, there is no ACR denialannoun
ement given during the duration of the 
all. The 
all ends either by y goingba
k on hook or being dis
onne
ted by the system. Re
all that the default whenthere is no unless/until keyword is unless: false. This property is fairly spe
i�
to ACR and there is no 
on
i
t with CFBL.The se
ond property expresses the requirement that there be no busy or ringingtone given to y when the presentation of y's number is restri
ted. This property
on
i
ts with the two CFBL properties whose resolution is that a busy tone mustbe given. These 
on
i
ts are already resolved by the solution given earlier whi
hadds the 
onjun
t (ACR(x) ) DN allowed(y)) to all the CFBL properties.In these examples, sele
tive disabling of the features to resolve intera
tions wasdone by adjusting the spe
i�
ations. An alternative method is to use the prede�neddisableF (x) predi
ate, and insert the following 
onstraint into the set of system 
on-straints. The 
onstraint ensures that the appropriate feature is disabled dependingon the state of the system.
onstraint resolve_ACR_CFBL_intera
tions{event: ACR(x) & CFBL(x) & 
all_req(x,y)---------------------------persists: (DN_allowed(y) => disable_ACR(x)) &(~DN_allowed(y) => disable_CFBL(x))unless: ~
all_req(x,y)} These examples have illustrated four of the six ACR properties and six of theeight 
on
i
ts between ACR and CFBL. The remaining two properties are similarto ACR Normal Operation 2 and when 
he
ked against CFBL Normal Operation 1,ACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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e 
on
i
ts similar to those already dis
ussed7. RELATED WORK AND CONCLUSIONSSeveral approa
hes have been proposed for the 
on
i
t dete
tion problem. Thereare two main 
ategories based on the spe
i�
ation formalism: state ma
hine basedmethods and temporal logi
 based methods. Our approa
h falls into the temporallogi
 
ategory. We des
ribe the two approa
hes below, arguing that the temporallogi
 method has several advantages over the state ma
hine approa
h.In several spe
i�
ation methods [Blom et al. 1995; Combes and Pi
kin 1994;du Bousquet 1999; Fa
i and Logrippo 1994; Jonsson et al. 2000; Kamoun andLogrippo 1998; Khoumsi and Bevelo 2000; Lin and Lin 1994; Plath and Ryan 1998;Siddiqi and Atlee 2000℄, ea
h feature is spe
i�ed by a state ma
hine. Intera
tions aredete
ted by testing the 
omposition of the ma
hines, either for rea
hability of \bad"states, or for rea
hability of states where the features postulate 
on
i
ting a
tionson a new input, or against temporal properties spe
ifying the feature behavior. Fora more 
omplete survey of this and related approa
hes, see Ke
k and Kuehn [1998℄.In parti
ular, Plath and Ryan [2001℄ des
ribe a system based on extensions to themodel 
he
ker SMV [M
Millan 1993℄. Features are built by layering 
hanges on abase feature. The base feature is spe
i�ed as a state ma
hine, des
ribed impli
itlyin SMV syntax by a set of state variables and 
onditional assignments to thosevariables. The valuations of the state variables de�ne the states of the ma
hine,and the 
onditional assignments de�ne the transitions. Ea
h layer may introdu
enew state variables, with their own assignment statements, and additionally de�nea set of 
hanges to the updates of existing variables. Feature intera
tions aredete
ted by 
he
king temporal properties of features against the 
omposition of thestate ma
hines des
ribing the features.This approa
h uses existing model 
he
king tools in a dire
t way, but it has twomain disadvantages. In pra
ti
al terms, there is repetition of work in spe
ifying afeature both in temporal logi
 and as a state ma
hine. It is ne
essary to 
he
k the
onsisten
y of the two spe
i�
ations by model 
he
king. Se
ondly, a state ma
hinede�nes one parti
ular implementation of the feature. Thus, if the features arereported as 
on
i
ting, it is un
lear whether this 
on
i
t is spe
i�
 to the parti
ularstate ma
hine, or it exists in all implementations. Our approa
h addresses both ofthese diÆ
ulties. The �rst is eliminated by 
onsidering the temporal properties asbeing the only spe
i�
ation of a feature. The se
ond one is avoided by the dete
tionmethod. A 
on
i
t found by our method is appli
able to all implementations thatsatisfy the system axioms and the individual feature spe
i�
ations. Te
hni
ally,this generalization means that, as dis
ussed in Se
tion 4.1, we are solving|albeitapproximately|an instan
e of the more diÆ
ult realizability question.The existing temporal logi
 approa
hes [Blom et al. 1995; Gammelgaard and Kris-tensen 1994℄ use only a subset of temporal logi
, and their des
riptions of featuresare essentially state ma
hines presented in logi
al notation, so it is impossible toexpress liveness properties, for instan
e. A di�erent approa
h (
f. Aho et al. [1998℄and LaPorta et al. [1998℄) to dete
ting intera
tions between features A;B spe
i�edas state ma
hines, is to form the 
omposed systems A==Swit
h and A==B==Swit
h,and 
he
k if the behavior of A di�ers in the two systems: if this is so, the behaviorACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



22 � A. Felty and K. Namjoshiof A has been a�e
ted by the presen
e of B. While this is a promising method,it requires abstra
t models of the swit
h and of the features. Su
h models 
anbe more diÆ
ult to 
reate and maintain than logi
al spe
i�
ations. Although weuse automata in the 
on
i
t 
he
k, whi
h 
an be viewed as state ma
hines withfairness 
onstraints, the translation from LTL formulas to automata o

urs in amanner invisible to the end user. Furthermore, the behavior of a feature spe
i�edas a 
olle
tion of temporal properties 
an often be restri
ted by adding (in e�e
t,
onjoining) another formula. It is mu
h harder to get the same e�e
t for a statema
hine des
ription; the ma
hine may have to be modi�ed signi�
antly in orderto restri
t its behavior. On the other hand, if it is indeed possible to des
ribe thefeature easily using a state ma
hine, the ma
hine 
an be en
oded quite simply withtemporal logi
.In our work, we have des
ribed a method for dete
ting feature 
on
i
ts wherefeatures are spe
i�ed as a 
olle
tion of temporal logi
 formulas or !-automata, andintera
tions are dis
overed by �nding pairs of spe
i�
ation formulas that are 
on-tradi
tory with respe
t to axioms about system behavior. We showed how existingmodel 
he
kers 
an be used to perform this test. The main advantages of thisapproa
h are that (i) the spe
i�
ation language simpli�es the maintenan
e of spe
-i�
ations, (ii) the method avoids any 
ommitment to a parti
ular implementation,whi
h means that a dete
ted 
on
i
t applies to all implementations, and (iii) it 
anbe implemented to perform fully automated 
on
i
t dete
tion, using existing model
he
kers in an e�e
tive manner. We have implemented this method and applied itto the analysis of formal spe
i�
ations derived from the Tel
ordia standards. Ourexperien
e so far has been that this dete
tion pro
ess is reasonably eÆ
ient andquite a

urate; for the set of features to whi
h we have applied this method, wehave been able to dete
t most of the intera
tions given in the Tel
ordia standards,as well as some new ones. For this set of features, our tool FIX is able to dete
tthese intera
tions in a matter of a few hours of pro
essing time.An important 
omponent of future work is to handle more features, as well asto improve the performan
e of the tool. Adding feature spe
i�
ations does notin
rease the 
omplexity of ea
h 
on
i
t 
he
k, whi
h is still 
arried out pairwiseamong individual properties, but it does multiply the number of su
h 
he
ks thatmust be 
arried out if we want to 
he
k ea
h new feature against all existing features.On the other hand, sin
e the pairwise intera
tion 
he
ks 
an be run independently,it is feasible to use ma
hines in a network in parallel to dramati
ally redu
e the timeneeded to dete
t intera
tions. In order to address the problem of s
aling up, we willaddress the trade-o� of eÆ
ien
y vs. power in FIX. By power, we mean not onlyallowing a greater number of 
on
i
t 
he
ks, but also a
hieving more a

ura
y indete
ting 
on
i
ts. Along these lines, we plan to investigate the extensions dis
ussedin Se
tion 5: alternative variable bindings and building more pre
ision into thefeature spe
i�
ations themselves. We also plan to in
orporate 
he
ks that in
ludemore than two features at a time. Another line of resear
h is suggested by theformulation of feature intera
tion as a realizability question (Se
tion 4.1). It wouldbe interesting to implement the full bran
hing time solution and 
ompare the resultswith those we have obtained using a linear time approximation. If the synthesisproblem turns out to be eÆ
iently solvable in pra
ti
e, it would also be interestingACM Transa
tions on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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i�
ation and Automated Con
i
t Dete
tion � 23to investigate whether eÆ
ient programs meeting the feature spe
i�
ations 
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