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1. INTRODUCTION

Telecommunications services are marketed to customers by grouping together fea-
tures such as call-waiting and call-forwarding. As the grouping is flexible, an in-
dividual feature is specified without knowledge of which other features it may be
grouped with [Tel 1996]. This facilitates modular design and implementation; how-
ever, problems arise when concurrently active features in a group attempt to satisfy
conflicting requirements. Implementors may resolve such conflicts as they are en-
countered in different ways, leading to unpredictable behavior in the system as a
whole. Moreover, it is costly and time consuming to detect and fix such conflicts
during or after implementation. It is therefore essential to detect and resolve such
feature conflicts as early as possible, preferably at the specification stage itself.

With this motivation, we have developed a formal feature specification language,
and a method of automatically detecting feature conflicts at the specification stage.
We have implemented this method in a detection tool called FIX (for Feature
Interaction eXtractor). Features are specified by describing their ternporal behavior.
For instance, a typical informal specification for call forwarding is that “If entity =
has call forwarding enabled and calls to z are to be forwarded to z then, whenever
z is busy, any incoming call from y to z is eventually forwarded to z”. This
informal description can be expressed precisely in our specification language, as
described in Section 3. The language itself may be viewed as a sugared version
of temporal logic or w-automata. Specifying features as temporal formulas has
the nice property that it abstracts from specific state-machine implementations,
allowing any implementation that satisfies the specifications.

The natural way to define a feature conflict is that the feature specifications
represent mutually inconsistent properties; that is, no program exists that can im-
plement both features. This is a question about whether the conjunction of two
feature specifications is realizable. As discussed in Section 4.1, we also need to in-
clude azioms about the underlying system. The system axioms describe properties
that should be true of any reasonable system implementation. Typical axioms for
telephony include the following: (i) the system should not disconnect an established
call, and (ii) if a call attempt is rejected, no connection should be established until
the next attempt. These axioms are specified in the same specification language as
the features. Specifying the system by axioms has the same nice property that it
abstracts from particular implementations, resulting in conflict reports that have
wider applicability.

Realizability checking for linear-time temporal properties differs from satisfiabil-
ity checking, since it distinguishes between program and environment actions. It
is also a hard problem, which is 2EXPTIME-complete [Pnueli and Rosner 1989].
Its solution requires the transformation of a linear time property to a branching
time formula, which is then checked for satisfiability. This method is currently
infeasible in practice, due to the lack of tools that are capable of handling large
formulas efficiently. We take the approach, therefore, of approximating realizabil-
ity by a constrained satisfiability problem. By considering systems with a fixed
number of entities (i.e., telephones), feature specifications become propositional
formulas, and this constrained satisfiability check can be performed automatically
and efficiently with model checking tools. Our tool, FIX, reads in the specifica-
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tions, converts them to w-automata, and uses the model checking tool COSPAN
[Hardin et al. 1996] to perform the satisfiability test. This detection process is fully
automated. FIX provides witness computations for either outcome. If no conflict
is detected, the witness describes a computation where both feature specifications
hold; examining this computation often reveals gaps in the assumptions about the
system that need to be filled in by modifying, or adding to, the system axioms. If
a conflict is detected, a scenario is generated which describes a computation where
the features conflict. By examining this scenario, one can determine either the
proper resolution of the conflict, or whether this is a spurious conflict created by
specifications that are too strong, and which need to be modified. Our specification
method makes it easy to specify dynamic (i.e., state dependent) priorities between
conflicting features, which are used to resolve conflicts.

Our experience so far has been that this detection process is reasonably efficient
and quite accurate. The process of debugging the system axioms and the feature
specifications, as described above, converges rapidly. We have applied this method
to a large set of feature specifications from the Telcordia (Bellcore) standards, which
were developed as part of a significant model checking project [Holzmann and Smith
2000]. For these features, we have been able to detect, in a matter of hours, most
of the interactions given in the Telcordia (Bellcore) standards, as well as new ones.

A telecommunications system is, in a sense, an extreme example of designing with
features. Our method has proved to be quite successful for these systems. It should
be noted, though, that neither the specification language, nor the detection method,
are specialized to telecommunications systems. Many other software systems are
specified at an early stage of design as a collection of features. For instance, a user
interface may be specified as a set of requirements of the form: “for this sequence
of actions, the following response must occur,” which fits our general scheme. We
believe, therefore, that our techniques for the early detection of conflicts can be
applied to a wide range of systems.

The rest of the article is structured as follows. Section 2 contains a short back-
ground on temporal logic, w-automata and model checking. We motivate and define
our specification language in Section 3. The precise formulation of feature conflict
and the detection method is described in Section 4. The FIX tool is described in
Section 5. The application of FIX to the Telcordia feature specifications is discussed
in Section 6. The article concludes with a discussion of related work in Section 7.

2. BACKGROUND

In this section, we provide a short background on linear temporal logic, w-automata,
and model checking.

2.1 Linear Temporal Logic

Linear time temporal logic (usually abbreviated as LTL) was first suggested as a
protocol specification language in Pnueli [1977]. Formulas in the logic define sets of
infinite sequences; hence, the logic is particularly well suited to describe time de-
pendent properties of concurrent, reactive systems, such as our current application
domain of telephony networks. Formally, LTL formulas are parameterized by a set
of atomic propositions, AP, and are defined by the following syntax:
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(1) Every proposition P in AP is a formula,

(2) For formulas f and g, (f A g) (read as “f and ¢”) and —=(f) (read as “not f”)
are formulas,

(3) For formulas f and g, X(f) (read as “next-time f”) and (f U g) (read as “f
until ¢”) are formulas.

The temporal operators are X and U. Formulas are interpreted over infinite
sequences of atomic proposition valuations. Such a sequence is defined as a function
from N to 24P — for a sequence o, o(i) is the subset of propositions that are true
at position i. We write 0,7 = f to mean that the sequence o satisfies the formula
f at position i. The language of f, denoted by L(f), is the set {o | 0,0 = f}. The
satisfaction relation is defined by induction on the structure of f as follows.

1) For a proposition P, 0,7 = P iff P € o(i),

) o,i | (f) iff 0,0 = f is false,

) o,i = (f A g)iff both 0,i |= f and o,i |= g are true,
4) oi EX(f) iffo,i +1 = f,

) o,i = (f U g) iff there exists j, j > i, such that 0,j | g and for every &,
i<k<j,okl=f.

Other operators can be defined in terms of these base operators: (f V g) is

—~(=f A 2g); (f = g9)is =f vV g; F(g) (Yeventually ¢7) is (true U g); G(f)
(“always f”) is =F(=f), and (f W g) (“f holds unless ¢”) is (G(f) V (f U g)).

2.2 Automata on Infinite Sequences

Temporal properties can also be specified by finite-state automata that recognize
infinite input sequences. Such automata are known as Biichi automata [Buchi 1962]
or as w-automata. A Biichi automaton A is specified by a tuple (S,X, A, I, F),
where:

S is a finite set of states,

Y is a finite set known as the alphabet,

A, a subset of C S x X x S, is the transition relation,
I, a nonempty subset of S, is the set of initial states,
F, a subset of S, is the set of accepting states.

A run of A on an infinite sequence o : N — ¥ is an infinite sequence r : N — §
of states such that: (i) r(0) € I, and (ii) for each i € N, (r(¢),0(i),r(i + 1)) € A.
A run 7 is accepting iff one of the states in F' appears infinitely often along r. The
language of the automaton, £(.A), is the set of infinite sequences on which A has
an accepting run. Biichi automata (with ¥ = 24F) are strictly more powerful than
linear temporal logic at defining sets of sequences. There is a translation from LTL
formulas to equivalent Biichi automata that is exponential in the worst case; see
Thomas [1990] for a survey.

2.3 Model Checking

A program generates a set of computation sequences. For reactive programs where
nontermination is desirable, such as operating systems and telephony protocols,
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the sequences are infinite, in general; hence, temporal logic or Biichi automata
may be used to describe program properties. For instance, mutual exclusion may
be written as G(—(Criticaly A Criticaly)), and eventual access as G( Waiting =
(Waiting U Granted)).

For programs with finitely many states, a fully automated procedure known as
Model Checking [Clarke and Emerson 1981; Queille and Sifakis 1982] can be used
to determine whether a property holds of all computations of the program. A finite
state program can be represented by a Biichi automaton with the trivial acceptance
condition F' = S; hence, model checking becomes the language containment ques-
tion L(Program) C L(Property) [Vardi and Wolper 1986]. This question is typically
decided by forming an automaton NProperty for the negation of the property, and
algorithmically checking whether the product automaton Program x NProperty has
an empty language.

Model Checking tools based on language containment include COSPAN [Hardin
et al. 1996] and VIS [Brayton et al. 1996]. If the specification fails to hold of the
program, the tool generates a computation that is a witness to this failure; that
is, a computation in £(Program) that is not in L(Property). We make use of this
capability in our conflict detection method (Section 4).

3. FEATURE SPECIFICATION

In this section, we describe and define our feature specification language and the
methodology we have used to set up the feature conflict check. The details of this
check are presented in the following section.

In order to specify features, we have to begin with some informal understanding
of the term “feature”. In the rest of the paper, we restrict ourselves to telephony
features; however, our specification language and the conflict detection algorithm
can also be applied to specifications of features in other kinds of systems.

In specifying features, we began with the informal description, mostly in the
form of English text found in the Telcordia (Bellcore) standards [Tel 1996]. Of
course, the process of going from informal to formal specifications itself cannot be
formalized, so care must be taken to correctly express the contents of the informal
description. This section describes our formal specification language. Section 5
includes examples which illustrate how this language is used by providing formal
specifications along with the informal descriptions that they were derived from; it
also describes how the FIX tool can be used to help debug feature specifications to
increase their accuracy.

A telephony feature, such as call waiting or call forwarding, typically specifies
the behavior over time of one or more entities in terms of their current state
and a set of input events. The informal specification given earlier for call for-
warding is an example: “If entity = has call forwarding enabled and calls to z
are to be forwarded to z then, whenever z is busy, any incoming call from y to
z is eventually forwarded to 2”. In this specification, we can distinguish sev-
eral predicates that describe the state of entity x: call_forwarding_enabled(z),
forward_from_to(x, z), forwarded_call_from_to(y,x,z), busy(z), and the predicate
incoming_call_from_to(y, x) that describes the occurrence of an event. The rest of
the sentence uses Boolean and temporal operators (e.g., “and”, “whenever”, “even-
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tually”). This is a pattern that is repeated throughout the Telcordia specification
set. Hence, we believe that a particularly appropriate way of specifying a feature is
by a collection of temporal formulas (or automata), defined over a set of predicates
that denote states or events of the system.

Our specification notation is a sugared version of LTL. Each feature is specified
separately, as a collection of temporal properties. The properties are defined in
terms of predicates that indicate relationships between entities in the system. The
feature specification also contains definitions for basic and derived predicates that
are used in the properties. Concretely, each feature is placed in a separate file; for
instance, call forwarding is specified in the file “call forwarding.spec”. We use the
symbols +,&,”,=> to textually denote the Boolean operators V, A, =, = respectively.

There are two predefined predicates: eq(z,y), which denotes equality of the enti-
ties # and y and, for each feature F, a predicate disablep (x), which indicates that
the feature specification is to be disabled at entity x. The latter predicates are
used for selectively disabling features in order to resolve conflicts. The identifiers
x,y etc. are variables which can be instantiated by constants representing entities
in the system. We allow existential quantification over entities. We use it, for ex-
ample, to specify predicates such as is_on_hold(z) = (exists y : has_on_hold(y, z)).
A restricted form of existential quantification represents quantified variables by
“”. for instance, the above definition may also be written as is_on_hold(z) =
has_on_hold(_,z). The scope of an existential quantifier in such an abbreviated
form includes only the predicate containing the “.” symbol. The general form of a
property specification is shown below.

property <Name>

{

event: e0 persists: p0
event: el  persists: pl

persists: p until: r discharge: d

}

The symbols €0, p0, el, pl,...,eN, p, r, d are Boolean expressions formed out
of the basic predicates. The keyword until may be replaced with the keyword
unless to define a weaker specification. Variables such as x,y appearing in the
predicates of the property specification have scope that is local to the property,
and are implicitly universally quantified; that is, the temporal property should be
true for every value of x,y in a particular system. The event and persists conditions
above the dashed line indicate the precondition of the property; the persists-until-
discharge triple (or a persists-unless-discharge triple) indicates the postcondition
of the property. Informally, the property states that “whenever the precondition
pattern holds, it is followed by the postcondition pattern”.

The precondition has the following informal reading: “e0 holds, followed by a
period where (p0 A —el) is true, then el holds, followed by a period where (p1 A
—e2) is true, etc., until eN holds.” In extended regular expression notation, this
can be written succinctly as €0; (p0 A —el)*;el;(pl A —e2)*;...;eN. We say
that a property is enabled at a point on a computation iff its precondition is true
of a prefix that ends at the point. An empty precondition part defaults to the
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precondition true.

The postcondition should hold at every point on a computation where the prop-
erty is enabled. The “persists: p until: r discharge: d” notation translates to the
LTL formula (p U (r V d)); with unless in place of until, it corresponds to the LTL
formula (p W (r Vv d)). Although the discharge condition may seem technically
unnecessary, it makes a distinction that is important for the specifier. The until
condition is thought of as specifying the desired outcome, while the discharge con-
dition is thought of as specifying the exception conditions that cause the property
to be trivially satisfied. We make use of this distinction in our conflict test. Any
of the three components of the postcondition can be omitted; the choice between
until and unless defaults to unless, the persists condition defaults to ¢rue, and
the unless and discharge conditions default to false.

The easiest way to define the complete property in LTL associated with the
general form is to consider its negation: the property is false of an infinite sequence
iff there is a point where the precondition pattern holds, but is not followed by the
postcondition pattern. To illustrate the translation, consider the property below.

property Simple
{

event:e0 persists:p0O event:el

persists:p until:r discharge:d

}

The LTL property =F(e0 A X((p0 A —el) U (el A =(p U (r V d))))) is equiv-
alent to this specification. The general case can be handled in a similar manner,
increasing the depth of nesting for successive event-persists pairs. This translation
indicates why it is better to use a sugared notation than to use LTL directly. We
consider such a formula with free variables z,y, ... to represent the infinite fam-
ily of propositional LTL formulas defined by instantiating the free variables with
constants. We use such instantiations in our conflict test, but the presence of free
variables makes it simple to consider alternative bindings of constants to variables.

Our specification format was chosen, in part, because it is easy to translate a
property specification to an automaton. We show first how to translate a property
to an automaton that accepts its negation. The translated automaton has size
linear in the size of the property, so that model checking (see Section 2.3) can be
done efficiently — in time linear in the program size, and linear in the property size.
Thus, the same properties that are used for early conflict detection can be used to
efficiently model check actual implementations.

The negation of the simple property above is expressed by the nondeterministic
Biichi automaton shown in Figure 1. In the figure, states are represented by circles,
the transition relation is defined by the conditions on the arrows between circles,
and accepting states are represented by concentric circles. The state labeled with
S0 is the initial state. The automaton at state SO chooses (nondeterministically)
some point on a computation, checks that the precondition holds from that point
(states S1,52), and that the postcondition fails thereafter (i.e., the automaton gets
stuck in states S2 or S3). The accepting states of the automaton are {S2,53} —
the automaton stays in S2 if neither the response r or the discharge d hold and the
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true pO A —el =(rvd)Ap true

el A—pA=(rvd)

Fig. 1. Automaton for the negation of the simple property.

—zVrVd pA=(rVd)

Q xApA—(rvVd)
0 -

T

rvd

Fig. 2. Automaton for the positive version of the simple property.

persistence condition p holds, and moves to S3 and stays there if the persistence
condition fails before the response or discharge can hold. The automaton for the
general case has the same linear form, with n + 2 states for a precondition with n
events. If “until” is replaced with “unless” in the postcondition, the accepting set
becomes just {S3}, since the unless property is satisfied if the automaton stays in
S2 forever.

For our purposes, we also need the automaton for the property itself. This could
be obtained by negating the automaton given above, but algorithms for negating
Biichi automata are quite complex (cf. Thomas [1990]), so we prefer a direct
construction. First, we construct a deterministic automaton A,,. that recognizes
all the points on a computation where the precondition holds. Then, we form the
automaton for G(Apre.accept = (p U (r V d))). This automaton is shown in
Figure 2, where z stands for A,,..accept. This automaton is run in parallel with
Apre (by forming the product automaton) to get the automaton for the property.

To construct the automaton A, we take the nondeterministic automaton on
finite strings that is induced by states S0,S1 in Figure 1, with the acceptance
condition (state = S1) A el. This nondeterministic automaton has an accepting
run to every point on a computation where the precondition holds. Now, we apply
the subset construction to this automaton to determinize it and form Ap... The
deterministic automaton A, by construction, has a single run on a computation
that signals acceptance at every point where the precondition holds.
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We have shown how features may be represented by formulas in LTL over a
set of predicates. The predicates are, however, not independent — any underlying
telephony system imposes some constraints between the predicates. For instance,
busy_tone(x) and call_waiting_tone(x) are mutually exclusive. Constraints such
as these can be considered as an aziomatization of the switching infrastructure
of a telephony system. In the specification language, constraints are specified us-
ing the same syntax as properties, except that the form begins with the keyword
constraint instead of property.

4. FEATURE CONFLICT DETECTION

Given that a feature is specified as a temporal logic formula, how can we define
“conflict” (i.e., an “undesirable interaction”)? We motivate our current definition
through an analysis of successively stronger formulations. We then describe our
detection method and analyze its strengths and weaknesses. In the following, it
should be understood that we are referring to specific instantiations of the features
(i.e., binding the free variables with constants). This is indicated by using the
letters a, b, ... instead of z,y, ... in the formulas. We say that a feature is enabled
if one of the properties of the feature is enabled. We identify the name of a feature,
say A, with its specification in terms of properties.

4.1 Formulating “Conflict” Precisely

Consider the following definition of feature conflict: features A and B conflict iff
there does not exist a system where every computation satisfies the specifications
for both A and B.

Thus, feature conflict is essentially a realizability question: features A and B
conflict if and only if a program realizing their joint specification A A B does not
exist. Notice that we are interested here in just the decision question: does such a
program exist? The problem of synthesizing such a program is a classical problem
which has potential practical applications. Any program that satisfies A A B will
be an open reactive program [Harel and Pnueli 1985] which constantly interacts
with its environment. For instance, a program satisfying the call-forwarding spec-
ification will have to respond to incoming call events and produce outgoing call
events. Unfortunately, the realizability question for open reactive programs has
a very high complexity (2EXPTIME-hard), and the known solutions are based on
showing satisfiability of a branching time formula obtained from the linear time for-
mulas describing A and B [Pnueli and Rosner 1989]. Instead of using these decision
algorithms, for efficiency reasons, we opt to approximate branching time satisfia-
bility by constrained linear time satisfiability. Linear time satisfiability checking is
supported by many model checking tools, such as the tool we used, COSPAN. In
later sections, we describe in more detail how COSPAN is used to perform these
checks. The availability of such tools for LTL, but not for other temporal logics,
such as branching time logics like CTL [Clarke and Emerson 1981] and CTL* [Emer-
son and Halpern 1986], or the Temporal Logic of Actions (TLA) [Lamport 1994],
was a major factor in our choice of LTL as the specification language.

t turns out that checking A A B for linear time satisfiability is too much of
an approximation to the branching time formulation of realizability. We need to
rule out several paths in the branching tree that cause A A B to be satisfied
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trivially. Our final criterion is described below as the end result of refining a series
of approximations, starting with linear time satisfiability. This criterion suffices to
detect a number of feature conflict problems, as described later in Section 5. The
initial formulation is in terms of linear time satisfiability.

Definition 4.1. Features A and B conflict iff the formula (A A B) is unsatisfiable;
that is, in every computation, some feature property does not hold.

This definition, however, turns out to be inadequate. Consider the two features
A and B defined below.

A : G(calls(a,b) = F(connected(a,b) V disconnect(a)))
(“Whenever a calls b, a and b are connected, unless a disconnects”),

B : G(calls(a,b) = F(forwards(a,b,c) V disconnect(a)))
(“Whenever a calls b, the call is forwarded to ¢, unless a disconnects”).

Informally, these specifications are conflicting, since forwarding from b and con-
necting to b should not both happen for the same call. Yet the conjunction of the
formulas is satisfiable: consider the computation in which calls(a, b) is always false!
The problem here is that it is always possible to trivially satisfy a feature specifica-
tion if the feature is always disabled. Hence, we would like to consider only those
systems for which there exist computations where both features can be enabled to-
gether. We choose to consider only computations where both features are enabled
together infinitely often — a computation where the features are enabled together
once, but disabled forever from some point on is, in a sense, artificially restricted.

Definition 4.2. Features A and B conflict iff the two features can be enabled
together infinitely often, but in every such computation, some feature property
does not hold.

Even with the strengthened definition, the two features in our example are still
nonconflicting! Consider the computation in which whenever calls(a,b) is true,
eventually connected(a,b) holds, followed by forwards(a,b,c). The problem here is
that we have failed to account for the constraint that prevents the same call being
both connected and forwarded. This is not a feature property: it should be part
of the system axioms. We would like to constrain the possible implementations
further so that they satisfy these axioms along all computations.

Definition 4.3. Features A and B conflict iff the two features can be enabled
together infinitely often under the system axioms, but in every computation where
the features are enabled together infinitely often and the system axioms also hold,
some feature property does not hold.

It is still true that the example features are nonconflicting! Consider the com-
putation in which after calls(a,b) holds, disconnect(a) is true before either of the
predicates connected(a,b) or forwards(a,b,c) holds. Both specifications are thus
satisfied trivially because the discharge condition is asserted before any useful ac-
tions are performed. It is for such a situation that we make use of the distinction
between until/unless and discharge conditions. We would like to rule out those
computations where discharge events occur while the feature is pending, that is,
enabled but not satisfied. The following definition is the one that we use in our
detection method.
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Definition 4.4 (Feature Conflict). Features A and B conflict iff A and B can be
enabled together infinitely often under the system axioms, and for every computa-
tion where

(1) The system axioms hold, and
(2) A and B are enabled together infinitely often, and
(3) A discharge condition does not occur while the feature is pending,

some feature property does not hold.

Conditions 2 and 3 can be expressed with simple formulas of temporal logic. For
instance, “p holds infinitely often” is expressed by GXF(p) and “d does not occur
between occurrences of p and ¢” is expressed by G(p = (-d W q)).

4.2 Automatic Detection

Each conflict test is performed on a specific instantiation of the features. The
parameterized form of the feature specification makes it easy to instantiate different
configurations — for instance, one where entity a has call-forwarding and entity
b has call-waiting. In general, two LTL properties f and g are inconsistent iff
L(f) N L(g) = 0, which is true iff L(f) C L(g). This is exactly the model checking
question with f as the program and —g as the property. Hence, a model checker can
be used to detect feature conflicts. Let A and B be two features, let Az denote the
system axioms, and C4p the constraints given by conditions 2 and 3 of Definition
4.4. The inconsistency check can be written as L(A4) N L(B) N L(Az) N L(Cap) =
(), which is equivalent to £L(Az) N L(Cap) C L(A) U L(B). This is the form used
in our implementation.

The FIX tool that we have developed uses the model checker COSPAN [Hardin
et al. 1996] for the conflict check. In COSPAN, both properties and constraints
are represented by w-automata. FIX translates the constraints Az and the feature
specifications A, B into COSPAN automata that accept the specified languages, as
explained in Section 3. Each feature is translated to a parameterized automaton
(parameterized by the variables appearing in the properties) which is instantiated
as needed for each particular test. Since the automata representing conditions 2
and 3 of the definition are independent of the particular features, they are obtained
from a library and instantiated on each use with the enabling condition of the
particular features to obtain the automaton for Cxp.

The model checker declares failure if the set inclusion above is false; that is, if
the properties do not conflict. The nonconflict may be due to weak system axioms,
or (rarely) because the instantiation defines a system without enough entities to
exhibit a conflict. Since the model checker declares failure, it produces a witness
computation for which the axioms and both features hold. Inspection of this wit-
ness computation often reveals constraints that need to be included in the system
axioms. Even if this is not the case, a “no conflict” report should be, in general, con-
sidered inconclusive, as the check is performed for a particular system configuration
(i.e., a fixed number of entities).

On the other hand, a “conflict” result is conclusive; but, as the model checker
declares success, no witness is produced for the conflict. To produce a witness, we
perform another check: £L(Az) N L(Cap) N L(A) C L(B). As there is a conflict,
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this check must fail,’ so the model checker produces a computation that satisfies
Az, Cap and A but does not satisfy B. This computation describes a scenario in
which the system axioms hold, both features are enabled together infinitely often
and A holds, but B does not hold.

5. FIX: A CONFLICT DETECTION TOOL

The FIX tool is used to both specify the desired properties of features (using the
language described in Section 3) and to detect conflicts among them, as described
in the previous section. FIX is intended to be used at the design and specification
stage of the development of new features. Here, we describe the tool in more detail
and illustrate its use with the aid of examples from well-known features.

The first step in using FIX is to provide a set of properties that specifies the
desired behavior of the new feature. The specification language described in Sec-
tion 3 was designed so that properties of features could be specified as naturally
and directly as possible. The main components of the property templates — events,
persisting conditions, required resolutions or conditions that must never occur after
a set of preconditions are met, and exception or discharge conditions — were chosen
because all of the properties of the well-known features that we examined contained
some or all of them. In addition, they are concepts that are easily understood by
a designer of a feature. There is no need to know the languages of linear temporal
logic or Biichi automaton into which the properties will be translated. At the same
time, there is a close enough correspondence to these formal languages that the
properties are easily translated (as shown in Section 3). When developing a new
specification, the user has the freedom to introduce new predicates as needed. The
introduction of new predicates usually requires new system axioms to be added or
existing axioms to be updated, which can also be done at this stage.

The conflict check is the central operation of FIX. As described in the previous
section, there are two kinds of checks: the inconsistency check, and the check which
produces a “conflict witness” once an inconsistency has been detected. For both
kinds of checks, FIX expects two properties, A and B, as input. The system axioms
Az are fixed and the auxiliary automaton Cyp is created automatically from A and
B. The second step in using FIX is to use the first kind of check as a debugging aid.
In particular, each property of the new feature can be checked for direct conflict
with the system axioms. To perform a check of a single property A against the
system axioms, we simply instantiate B as the “always true” property, specified as:

property true_prop

persists: true

}

A conflict arising from such a check represents a bug in either the property or
in the system axioms. The user must then either modify A or Az and repeat the
check.

I This check will succeed only in the pathological situation that A always fails under the condition
L(Az) N L(Cxp). Then it is possible to produce a computation satisfying both Az, Cap but
not A by checking L(Az) N L(Cap) C L(A).
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Since the conflict checks are conclusive, once the initial specification phase is
complete, the user can be sure that there are no conflicts between the feature
properties and the system axioms. On the other hand, because a result of “no
conflict” is inconclusive, there is no guarantee that all potential conflicts between
features will be found. Of course it is important to make the specifications strong
enough to detect as many conflicts as possible. FIX can provide support for this
task in a second debugging phase. The user can choose one or two previously
specified features, check each property of the new feature against each property
of the existing features, and examine the witness computations that result when
two properties do not conflict. In our experience, finding nonconflicting pairs that
should really be conflicting can help the user find and strengthen specification
formulas that were not originally stated as strongly as they could be. Also, this
phase often reveals system axioms that are not strong enough, particularly those
that were just added as a result of new predicates introduced by the new feature.

Once the user has gained enough assurance that the specification and system
axioms are correct, properties of the new feature can be checked against all other
features fully automatically. At this stage, only the conflicts are important and
the conflict witnesses are useful for understanding and determining how to correct
them.

To illustrate, we take some examples from our case study, which is described
more fully in the next section. Two of the features that we consider are Call For-
warding Busy Line (CFBL) and Anonymous Call Rejection (ACR). For CFBL, the
subscriber gives a number to which all calls will be forwarded when the subscriber’s
line is busy. Calls to a subscriber of the ACR feature will not go through when
the caller prevents her number from being displayed on the subscriber’s caller ID
device. For this example, we assume that CFBL was previously defined and ACR,
is a new feature to be specified. The following is one of three properties of CFBL.

property CFBL_Normal_Operation_1

{
event: CFBL(x) & “idle(x) & “forwarding(x,_,z) &
same_switch(x,z) & le_five_forwards(y) & call_req(x,y)

persists: call_req(x,y)
until: forwarding(x,y,z)
discharge: onhook(y)

}

This property states that if = subscribes to CFBL, z is not idle, all previously
forwarded calls from z to z have terminated, x and z are on the same switch, the
incoming call from y has been forwarded at most five times and there is an incoming
call from y, then the incoming call from y to z will be forwarded to z, unless y
goes back on hook in the meantime. Note that call_req occurs both as an event
and a persisting condition. In our model, events are not a primitive concept; they
are points in time at which a formula becomes true. For example, call_req(z,y)
becomes true at some point after completion of dialing and continues to hold until
there is some resolution of the call such as a connection or forwarding.

Two of the system axioms present in the system after CFBL is defined, but before
ACR is added are the following.
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constraint call_req_not_resolution

persists: call_req(x,y) => (“busy_tone(y) & “forwarding(x,y,_))
}

constraint distinct_resolutions

persists: ~(forwarding(_,y,_) & busy_tone(y))
}

The information expressed here is that (1) a call request is distinct from a call
resolution and (2) that two call resolutions cannot occur at the same time. For this
example, receiving a busy tone and having a call forwarded are the two resolutions
considered so far. The first property states that at any point in time when x has
an outstanding call request from y, y is neither receiving a busy tone nor having
its call to « forwarded. The second property states that a call from y is not being
forwarded at the same time that y is receiving a busy tone. It is possible for a
call to have several steps to its resolution. For example, a call from y to  may be
forwarded to z followed by y receiving a busy tone after it is determined that z is
busy, but the forwarding and receiving of the busy tone do not happen at the same
time.

property ACR_Normal_Operation_3

{
event: ACR(x) & call_req(x,y) & “DN_allowed(y) &
resources_for_ACR_annc (x)

persists: call_req(x,y)
until: ACR_annc(y,x)
discharge: onhook(y)

}

The property above is one of six properties we add to specify ACR. Informally,
it states that if « subscribes to ACR and if there is a call request to z from y, and
if furthermore the presentation of y’s number is restricted and resources for the
ACR denial announcement are available, this should cause y to receive the ACR
announcement, unless y gives up and goes back on hook first.

This property and the CFBL property stated above provide one example of the
kind of conflict that may arise. Consider the case when z and y in the ACR
property are instantiated with a and b, respectively and z, y, z of the CFBL
property are instantiated with a, b, and ¢, respectively. Furthermore, suppose that
the preconditions of both properties hold simultaneously. Thus, a subscribes to
both ACR and CFBL and has an incoming call from b. The two features require
that the incoming call be resolved in different ways: ACR requires that b receive
the ACR denial announcement, while CFBL requires that the call be forwarded to
c.

When we run the inconsistency check on these two properties using the sys-
tem axioms that we have discussed so far, no conflict is detected. One possible
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witness computation that may arise is one in which the call from y to z is for-
warded and given the ACR denial announcement at the same time. This is possi-
ble because the specification of ACR has introduced three new predicates (ACR,
resources-for_ACR_annc, ACR_annc) that have not yet been incorporated into
the system axioms. In order for FIX to detect this particular conflict, it is enough
to integrate ACR_annc as a new kind of call resolution. One way to do this is to
update the first constraint listed above, and replace the second with three new ones
as follows.

constraint call_req_not_resolution

persists: call_req(x,y) => (“busy_tone(y) & “forwarding(x,y,_) &
~ACR_annc(y,x))
}

constraint resolution_forwarding_only

persists: forwarding(x,y,_) => (“busy_tone(y) & ~ACR_annc(y,x))
}

constraint resolution_busy_tone_only

persists: busy_tone(y) => ("forwarding(x,y,_) & “ACR_annc(y,x))
}

constraint resolution_ACR_annc_only

persists: ACR_annc(y,x) => (“busy_tone(y) & “forwarding(x,y,_))
}

The last three constraints show a fairly general form for distinguishing call reso-
lutions; each time a new call resolution predicate is introduced, one new constraint
must be introduced distinguishing it from all the rest, and the old constraints must
be updated to include the new resolution in the persists condition.

Note that although we have to debug and maintain an axiom system, as was
mentioned earlier, we do not have to maintain an implementation. We have de-
scribed here how to “debug” the axioms, and in our experience, although finding
bugs in axioms is different than debugging an implementation, it is no harder or
easier. Correcting an error in an implementation requires considering the effect
of the correction on the rest of the implementation and making sure it does not
introduce new errors, while correcting errors in axioms affects only one axiom at
a time. Of course, any single correction to an axiom has a global effect, but we
believe it less error prone than changing an implementation.

We do not try to produce a “complete” set of axioms in any sense: we introduce
just enough axioms to detect meaningful conflicts. Our case study described in the
next section shows that we are able to do so. Since both system axioms and feature
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specification formulas are expressed in the same formalism, debugging and main-
taining these two kinds of formulas is the same activity. The distinction between
the two is only informal; system axioms express properties that should hold no
matter what features are introduced, while specification formulas formally express
requirements of a particular feature.

This conflict between ACR and CFBL is a known conflict whose resolution is
described in the Telcordia documents. When the presentation of the number is not
allowed, ACR should take precedence over CFBL and the denial announcement
should be given. In our setting, we can express this kind of precedence by adding
the condition (ACR(z) = DN _allowed(y)) as an additional conjunct to the event
part of the CFBL property. This conjunct will be false exactly when both ACR(z)
and ~DN _allowed(y) hold, thus falsifying the entire precondition of the CFBL
property in exactly the cases when the ACR property should take precedence.
When solving interactions between two features is simply a case of establishing a
priority between them, it is actually not necessary to modify the specifications. As
mentioned, FIX provides a mechanism for specifying priorities globally, which we
illustrate later.

FIX has a variety of options. In the default case, for any pair of properties, the x
occurring in both properties is instantiated by the same constant, and similarly for
y and z. The system axioms are, however, instantiated in all possible ways using
three constants.

Also as part of the default, FIX will first check that the two input properties
can be enabled together. If not, there is no conflict. Otherwise the conflict check
is completed. Options provided in the tool include enhancements for greater effi-
ciency and for more complete coverage in finding conflicts. One option for more
comprehensive checks is the capability to provide alternative variable bindings. For
example, = in a property of one feature can be instantiated with the same constant
as y in another.

It is possible to increase the effectiveness of the conflict checks by adding new
predicates and new arguments to existing predicates so that properties can be
expressed more precisely. For example, we write busy_tone(z) for = hearing a busy
signal, but writing busy-tone(x,y) to mean that x hears a busy signal in response
to an attempt to call y would be more precise. There is, however, a trade-off:
making the set of predicates more complicated increases the execution time required
for model checking. We have attempted to keep the set of predicates simple and
increase the precision carefully as needed.

6. CASE STUDY

We have applied our tool to a collection of feature specifications derived from the
Telcordia standards [Tel 1996]. We report on the results for ten of these features,
each checked against the nine others.

Table I describes the 10 features we consider here. Their names, descriptions,
and number of properties in each of their specifications are given in the table.

The features are considered in pairs, and each property of one of the features
in a pair is checked against every property of the other feature. The checks are
carried out using a database of about 50 system axioms expressed as constraints
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Table I. Features, Number of Properties used in Specification, and Descriptions

ACR Anonymous 6 Allows subscriber to reject calls from parties who
Call have a privacy feature that prevents the deliv-
Rejection ery of their calling number to the called party.

When active, the call is routed to a denial an-
nouncement and terminated.

CFBL Call Forwarding 3 A telephone-company-activated feature that for-
Busy Line wards incoming calls to a subscriber to another
line when the subscriber is busy.
CFDA | Call Forwarding 4 | Incoming calls to the subscriber are forwarded
Don’t Answer when the subscriber doesn’t answer after a spec-
ified time interval.
CFMB | Call Forwarding 1 Allows subscriber to press a key to put phone into
Make Busy a busy state so that all calls will be forwarded.
CFV Call Forwarding 7 Allows subscriber to specify a number to which
Variable all calls will be forwarded.
CW Call Waiting 16 | Informs a busy subscriber that another call is

waiting by playing a tone. The subscriber may
flash, placing the original call on hold and answer
the new call, or may go on hook, in which case
the subscriber is rung and connected to the new
call upon answer.

DOS Denied 2 Provides the capability to deny a subscriber from
Originating making calls.
Service

DTS Denied 2 Provides the capability to deny terminating calls
Terminating to a subscriber.
Service

PKUP | Call Pickup 2 | Allows one station to answer a call directed to

another station within a business group.

RDA Residential 2 | Allows the subscriber to designate special tele-
Distinctive phone numbers that may be identified using dis-
Alerting tinctive alerting treatment.

like those discussed in the previous section. The constraints in the previous section
are special cases of a group of constraints in the database that have a similar form,
but involve all possible resolutions of a call. Handling the 10 features of our case
study required 13 possible call resolutions: 2 kinds of announcements, 5 kinds of
tones heard by the caller, 4 kinds of rings, forwarding, and successful connection.

The system axioms include roughly three other groups of constraints. The second
group was adapted from an English description in the Telcordia documents speci-
fying what it means for a particular entity to be busy or idle. The originator of a
call is said to be busy from the time the phone goes off hook until it goes back on
hook, whether or not the call is successfully completed. The party who is called is
said to be busy from the time that ringing starts until either the call is aborted by
the caller, or the call terminates normally. Approximately 15 constraints describe
these concepts.

A third group of constraints, also taken directly from the Telcordia documents,
specifies properties for the predicates introduced specifically for call waiting, which
is one of the more complicated features. For this feature, the notions of stable calls
and calls that are on hold are important. For example, if no call is in process for an
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Table II. Number of Conflicting Property Pairs for each Pair of Feature Specifications
| | CFBL | CFDA [ CFMB | CFV | CW [ DOS | DTS | PKUP | RDA
ACR 8 5 4 3 8 2 4 0

CFBL — 0 2 2
CFDA — — 2 4
CFMB — — — 3
CFV — — — —
CW — — — — —
DOS — — — — — —
DTS — — — — — — —
PKUP — — — — — — —
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entity, then that entity is neither in a stable call state nor an unstable call state. An
answered call is a stable call and a partially dialed call is an unstable call. Other
important constraints in this group state that the time spent on hold is distinct
from the call request and call resolution phases of a call.

The final group of constraints deals with forwarded calls. When forwarding
occurs, it is never the final resolution of the call and there are restrictions on what
the remaining steps can be. The following is an example from this group stating
that a forwarded call should never subsequently be denied by the ACR feature.

constraint forwarding_not_followed_by_ACR_annc
{
event: offhook(x) & forwarding(_,x,_)

persists: “ACR_annc(x,_)
unless: onhook (x)

}

The majority of the system axioms can be expressed using the simple form illus-
trated in the last section where only the persists condition is important. The above
constraint is an example showing that a more complicated sequence is sometimes
needed to express a constraint.

Table II shows the results of checking the ten features for conflicts. In the table,
the numbers indicate the number of pairs of properties that resulted in a conflict
when checking the pair of features against each other. Some entries are blank
to avoid duplication. The results reported on here were done using the default
settings of FIX. An average size check, for example checking ACR against CFBL
which includes 18 pairwise checks, takes 20 minutes on a SGI Challenge machine.

We examine the pair of features ACR and CFBL in more detail to further il-
lustrate the conflicts that FIX detects. CFBL is specified by three properties. In
addition to the property specifying normal operation given in the previous section,
the following two properties specify exceptions to normal operation.

property CFBL_Exception_1_to_Normal_Operation_1

{

event: CFBL(x) & “idle(x) & forwarding(x,_,z) & same_switch(x,z) &
call_req(x,y)

persists: call_req(x,y)
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until: busy_tone(y) & “forwarding(x,y,z)
discharge: onhook(y)
}

property CFBL_Exception_2_to_Normal_Operation_1

{
event: CFBL(x) & ~idle(x) & “le_five_forwards(y) & call_req(x,y)

persists: call_req(x,y)

until: busy_tone(y) & “forwarding(x,y,z)
discharge: onhook(y)

}

Like the property already given, these properties also consider the case when, ini-
tially, x is not idle and there is an incoming call from y. The first exception handles
the case when another call to z is in the process of being forwarded at the time when
y calls. The second exception handles the case when the incoming call from y has
been forwarded more than five times. This condition is often caused by a forwarding
loop. In both of these cases, the call should not be forwarded. Instead, y should re-
ceive a busy tone. Both of these properties conflict with ACR_Normal Operation_3,
and in both cases it is because the ACR property requires the caller to receive the
ACR denial announcement, while CFBL requires the caller to receive a busy tone.
As before, ACR should have precedence over CFBL in these cases, and the con-
flicts can be resolved by adding (ACR(z) = DN _allowed(y)) to the event parts
of these properties.

Next, consider the following property of ACR, which also specifies normal oper-
ation.

property ACR_Normal_Operation_2

{
event: ACR(x) & call_req(x,y) & DN_allowed(y)

persists: call_req(x,y)
until: audible_ringing(y) + busy_tone(y)
discharge: answer(x,y) + onhook(y)

}

The main difference with the other ACR normal operation property is that the
presentation of y’s number is allowed. In this case, the call should proceed and y
should eventually receive either a ringing tone or a busy tone. Note that there is
no conflict of this property with the exception cases for CFBL. When z is not idle
and y’s number can be presented, the call must be resolved by y receiving a busy
tone.

Note, however, that the new ACR property does conflict with the property
CFBL Normal Operation_1 because, once again, the two features require that the
incoming call be resolved in different ways: ACR requires the caller to receive ei-
ther ringing or a busy tone, while CFBL requires that the call be forwarded. The
Telcordia documents specify that when the presentation of the number is allowed,
the call should be processed according to the requirements of CFBL. We can resolve
this conflict by adding ~CFBL(xz) to the event part of ACR_Normal Operation 2.
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This ACR property can be ignored when the CFBL feature is active.

All the properties we have stated so far are liveness properties, specifying se-
quences of events that must occur under certain preconditions. Two of the six
properties specifying ACR are safety properties indicating sequences of events that
must never occur.

property ACR_Normal_Operation_1
{
event: ACR(x) & call_req(x,y) & DN_allowed(y)

persists: “ACR_annc(y,x)
discharge: onhook(y) + disconnect(y,x)

}

property ACR_Normal_ Operation_4
{
event: ACR(x) & call_req(x,y) & “DN_allowed(y)

persists: call_req(x,y) & “busy_tone(y) & ~audible_ringing(y)
unless: ACR_annc(y,x)

discharge: onhook(y)

}

The first states that when y’s number can be presented, there is no ACR denial
announcement given during the duration of the call. The call ends either by y going
back on hook or being disconnected by the system. Recall that the default when
there is no unless/until keyword is unless: false. This property is fairly specific
to ACR and there is no conflict with CFBL.

The second property expresses the requirement that there be no busy or ringing
tone given to y when the presentation of y’s number is restricted. This property
conflicts with the two CFBL properties whose resolution is that a busy tone must
be given. These conflicts are already resolved by the solution given earlier which
adds the conjunct (ACR(z) = DN _allowed(y)) to all the CFBL properties.

In these examples, selective disabling of the features to resolve interactions was
done by adjusting the specifications. An alternative method is to use the predefined
disablep (z) predicate, and insert the following constraint into the set of system con-
straints. The constraint ensures that the appropriate feature is disabled depending
on the state of the system.

constraint resolve_ACR_CFBL_interactions

{
event: ACR(x) & CFBL(x) & call_req(x,y)

persists: (DN_allowed(y) => disable_ACR(x)) &
("DN_allowed(y) => disable_CFBL(x))
unless: “call_req(x,y)

}

These examples have illustrated four of the six ACR properties and six of the
eight conflicts between ACR and CFBL. The remaining two properties are similar
to ACR Normal Operation_2 and when checked against CFBL Normal Operation_1,
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produce conflicts similar to those already discussed

7. RELATED WORK AND CONCLUSIONS

Several approaches have been proposed for the conflict detection problem. There
are two main categories based on the specification formalism: state machine based
methods and temporal logic based methods. Our approach falls into the temporal
logic category. We describe the two approaches below, arguing that the temporal
logic method has several advantages over the state machine approach.

In several specification methods [Blom et al. 1995; Combes and Pickin 1994;
du Bousquet 1999; Faci and Logrippo 1994; Jonsson et al. 2000; Kamoun and
Logrippo 1998; Khoumsi and Bevelo 2000; Lin and Lin 1994; Plath and Ryan 1998;
Siddiqi and Atlee 2000], each feature is specified by a state machine. Interactions are
detected by testing the composition of the machines, either for reachability of “bad”
states, or for reachability of states where the features postulate conflicting actions
on a new input, or against temporal properties specifying the feature behavior. For
a more complete survey of this and related approaches, see Keck and Kuehn [1998].

In particular, Plath and Ryan [2001] describe a system based on extensions to the
model checker SMV [McMillan 1993]. Features are built by layering changes on a
base feature. The base feature is specified as a state machine, described implicitly
in SMV syntax by a set of state variables and conditional assignments to those
variables. The valuations of the state variables define the states of the machine,
and the conditional assignments define the transitions. Each layer may introduce
new state variables, with their own assignment statements, and additionally define
a set of changes to the updates of existing variables. Feature interactions are
detected by checking temporal properties of features against the composition of the
state machines describing the features.

This approach uses existing model checking tools in a direct way, but it has two
main disadvantages. In practical terms, there is repetition of work in specifying a
feature both in temporal logic and as a state machine. It is necessary to check the
consistency of the two specifications by model checking. Secondly, a state machine
defines one particular implementation of the feature. Thus, if the features are
reported as conflicting, it is unclear whether this conflict is specific to the particular
state machine, or it exists in all implementations. Our approach addresses both of
these difficulties. The first is eliminated by considering the temporal properties as
being the only specification of a feature. The second one is avoided by the detection
method. A conflict found by our method is applicable to all implementations that
satisfy the system axioms and the individual feature specifications. Technically,
this generalization means that, as discussed in Section 4.1, we are solving—albeit
approximately—an instance of the more difficult realizability question.

The existing temporal logic approaches [Blom et al. 1995; Gammelgaard and Kris-
tensen 1994] use only a subset of temporal logic, and their descriptions of features
are essentially state machines presented in logical notation, so it is impossible to
express liveness properties, for instance. A different approach (cf. Aho et al. [1998]
and LaPorta et al. [1998]) to detecting interactions between features A, B specified
as state machines, is to form the composed systems A//Switch and A//B//Switch,
and check if the behavior of A differs in the two systems: if this is so, the behavior
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of A has been affected by the presence of B. While this is a promising method,
it requires abstract models of the switch and of the features. Such models can
be more difficult to create and maintain than logical specifications. Although we
use automata in the conflict check, which can be viewed as state machines with
fairness constraints, the translation from LTL formulas to automata occurs in a
manner invisible to the end user. Furthermore, the behavior of a feature specified
as a collection of temporal properties can often be restricted by adding (in effect,
conjoining) another formula. It is much harder to get the same effect for a state
machine description; the machine may have to be modified significantly in order
to restrict its behavior. On the other hand, if it is indeed possible to describe the
feature easily using a state machine, the machine can be encoded quite simply with
temporal logic.

In our work, we have described a method for detecting feature conflicts where
features are specified as a collection of temporal logic formulas or w-automata, and
interactions are discovered by finding pairs of specification formulas that are con-
tradictory with respect to axioms about system behavior. We showed how existing
model checkers can be used to perform this test. The main advantages of this
approach are that (i) the specification language simplifies the maintenance of spec-
ifications, (ii) the method avoids any commitment to a particular implementation,
which means that a detected conflict applies to all implementations, and (iii) it can
be implemented to perform fully automated conflict detection, using existing model
checkers in an effective manner. We have implemented this method and applied it
to the analysis of formal specifications derived from the Telcordia standards. Our
experience so far has been that this detection process is reasonably efficient and
quite accurate; for the set of features to which we have applied this method, we
have been able to detect most of the interactions given in the Telcordia standards,
as well as some new ones. For this set of features, our tool FIX is able to detect
these interactions in a matter of a few hours of processing time.

An important component of future work is to handle more features, as well as
to improve the performance of the tool. Adding feature specifications does not
increase the complexity of each conflict check, which is still carried out pairwise
among individual properties, but it does multiply the number of such checks that
must be carried out if we want to check each new feature against all existing features.
On the other hand, since the pairwise interaction checks can be run independently,
it is feasible to use machines in a network in parallel to dramatically reduce the time
needed to detect interactions. In order to address the problem of scaling up, we will
address the trade-off of efficiency vs. power in FIX. By power, we mean not only
allowing a greater number of conflict checks, but also achieving more accuracy in
detecting conflicts. Along these lines, we plan to investigate the extensions discussed
in Section 5: alternative variable bindings and building more precision into the
feature specifications themselves. We also plan to incorporate checks that include
more than two features at a time. Another line of research is suggested by the
formulation of feature interaction as a realizability question (Section 4.1). It would
be interesting to implement the full branching time solution and compare the results
with those we have obtained using a linear time approximation. If the synthesis
problem turns out to be efficiently solvable in practice, it would also be interesting
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to investigate whether efficient programs meeting the feature specifications can be
synthesized out of the requirements.
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