
PROOF EXPLANATION AND REVISIONAmy Felty and Dale MillerDepartment of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia, PA 19104-6389March 1987AbstractProof structures in traditional automatic theorem proving systems are generallydesigned for e�ciently supporting certain search strategies. They are not meant as auseful representation or presentation of complete proofs: usually only the experts whodesigned such systems can read them. As a result, complete proofs are of little valueand are generally discarded. The failure of such systems to manipulate proofs as valuesof their own right is one reason why theorem proving systems have not found more usein arti�cial intelligence and mathematical software. In this paper, we present the designof the �-proof system which attempts to correct this failure of theorem proving systems.Proofs in � are represented by natural and exible tree-structured deductions. Thesedeductions make very good presentations of proofs, and � has a very simple mechanismfor lexicalizing them into readable natural language text. Other proof structures, suchas resolution refutations, are used to provide the information necessary for buildingsuch proof trees. A programming language based on an extension of LCF tactics andtacticals is available for writing programs which manipulate proof trees. Such programsinclude interactive proof editors and fully automatic theorem provers. Finally, � iscapable of making substantial changes in the presentation of proofs: proofs can berevised or restructured in order to present their deductions in di�erent styles. Forexample, proofs which contain uses of the indirect proof method can occasionally beautomatically restructured into direct proofs.
Available as University of Pennsylvania Technical Report MS-CIS-88-17, LINC LAB 104.This work has been supported by NSF AI Center grants NSF-MCS-83-05221, US ArmyResearch o�ce grant ARO-DAA29-84-9-0027, and DARPA N000-14-85-K-0018.

1 IntroductionThe CHI or �-proof system is a framework for developing and testing procedures whichmanipulate proofs in classical logic. CHI is an acronym for the Curry-Howard Isomorphism,a proof-theoretic concept, also know as formulas-as-type [8], which provides a very simpleand elegant approach to the understanding of proofs as �rst-class, typed data structures.This concept inspired several aspects of this proof system. The current implementation of� was built by the �rst author to test the ideas of her Master's thesis [2]. This systemis currently implemented in Common Lisp and all the examples described in this paperwere generated using this implementation. This paper is not, however, a description of thisspeci�c implementation. We intend to present some very general issues about the design ofproof systems | at least for various forms of classical logic.Although we shall limit ourselves to proofs of classical �rst-order logic in this paper, itis known that many of the technical devices at the heart of � (expansion trees and matings,for example) can be extended to several other logics. For example, the papers [4, 7, 9]provide the theoretical foundations necessary to extend � to �rst-order equational logic,modal logic, and higher-order logic, respectively.Numerous proof systems have recently been developed and used in the area of programsynthesis. These systems generally formalize higher-order, intuitionistic logic and manip-ulate proofs in this logic to obtain their constructive content. Such systems, for exampleNuprl [1], treat proofs as objects and contain a wide range of procedures for computingwith them. One such operation is that of extracting programs from proofs. While � sharessome similarities with such proof systems, the aspects of � described in this paper deal withproofs in classical logic: such proofs are not generally speci�cations of programs. Instead,we are concerned with the presentation of proofs; particularly, their presentation to humanreaders.2 Sequential TreesMost traditional theorem proving systems represent proofs using such structures as reso-lution refutations, connection graphs, or general matings. These structures were designedto support particular kinds of automatic search paradigms e�ciently. They are often con-structed using such technical devices as Skolem normal and disjunctive normal forms andcontain unnatural inference rules which attempt to prove contradictions. As a result, gener-ally only the experts who constructed the theorem prover are able to understand the actualstructure of such proofs. Such proofs are generally discarded and the only explanation ofthe theorem proving process is simply a yes or no answer indicating whether or not the the-orem prover found a proof. Occasionally, \answer substitutions" accumulated in building aproof are extracted and presented to a user.The � system employs a sequential variant of natural deduction as one representation ofproofs. Proofs in a sequential system are tree structure arrangements of deductions and canbe designed to represent rich forms of formal deductions. Nodes in such trees are sequentsand these are connected by inference rules. A sequent is a pair, written as � �! A, where� is a list of formulas and A is single formula. Sequents are intended to represent theproposition \from the formulas in �, A can be proved." Since the proposition intended by1

the sequent A �! A, where A is any arbitrary formula, is obviously true, this sequent istaken as an axiom. There are, in general, many other obvious sequents which could alsobe accepted as axioms. The actual set of axioms used would depend on criteria such asthe domain in which proofs are being constructed or the degree of expertise of the user.Trees of sequents are constructed by applying inference rules: the conclusion sequent of aparticular rule is the parent of one or more premise sequents. A proof of a formula A is a�nite tree constructed in this way with the sequent �! A at the root and axioms at allthe leaves.Sequential proof systems exist for many logics and have well understood metatheories.Gentzen in [5] presented such a system, called LK, and proved it to be sound and completefor �rst-order classical logic (see also [3]). In this paper, we assume that most of Gentzen'sLK inference rules are available as well as several additional derived inference rules whichare described in [2]. In principle, sequential systems allow the exibility to include manydi�erent kinds of inference rules. Some of these rules will be general in the sense that forany reader (human or machine), the conclusion will follow immediately from the premise(s).Other rules may be intended for experts and have interpretations that are not as straight-forward. Our examples in this paper will use only general inference rules although theactual collection of inference rules depends on the logic being formalized and the kind ofpresentation of proofs desired. Below we illustrate four of these general inference rules,namely conjunction, case analysis, modus ponens, and indirect proof.Consider the conjunction rule, here called and_r, for ^ introduction on the right.� �! B � �! C and r� �! B ^ CGiven the interpretation of sequents as propositions, this inference rule has the interpreta-tion: if from � we can prove B, and from � we can prove C, then from � we have provedB ^ C. Note that each rule in a sequential system is named and this name is attached tothe line between the premise(s) and conclusion.Case analysis is often used in proofs when it has been assumed or is known that for someformulas B and C, either B or C must be true. This inference rule requires two subproofs:B is assumed in one and C is assumed in the other. This is represented by the followingor_l rule: B;� �! A C;� �! A or lB _ C;� �! AThis rule is interpreted as: if we can prove A from B and �, and we can prove A from Cand �, then we have proved A from B _ C and �.Modus ponens is involved in the following inference rule:� �! B C;� �! A positiveB � C;� �! AThe interpretation of positive is: if we can prove B from � and A from C and �, then wehave proved A from B � C and �. Modus ponens is employed to conclude C from B and2

B � C.The indirect proof method is represented by the inference rule::A;� �! ? indirect� �! AHence, if assuming :A along with � leads to a contradiction (denoted by the special formula?), we have proved A from �.� represents these sequential proof trees by term structures. The axiom sequent,A �! A, for example, is represented by the simple term axiom(A). Each inference ruleis represented by a function symbol with the same name. This function symbol has oneargument position for each subproof proving its premises. Occasionally, additional argu-ments are needed to retain information such as the substitution terms needed for correctlyrepresenting quanti�er rules. For the sake of compactness, such extra arguments will besuppressed in this paper. The inference rule and_r, for example, is represented by a bi-nary function symbol and_r such that if T1 and T2 are the term representations of prooftrees for � �! B and � �! C respectively, then and_r(T1; T2) represents a proof treefor � �! B ^ C.Example 1 Consider the theorem which states that if R is a symmetric and transitiverelation, it is reexive on its domain. This can be expressed by the �rst order formula8x8y8z (R(x; y)^R(y; z)� R(x; z))^8x8y (R(x; y)� R(y; x)) � 8x(9y R(x; y) � R(x; x)):The following term represents a sequential proof of this formula.implies r(and l(forall r(implies r(exists l(forall l(forall l(forall l(forall l(forall l(positive(and r(positive(axiom(R(a; b)),thin(axiom(R(b; a)))),thin(axiom(R(a; b)))),thin(axiom(R(a; a))))))))))))))Although such a sequential proof is a faithful representation of the tree structured deductionneeded to establish this theorem, terms such as these are certainly not easy to read. Aswe now show, however, these proof terms can be lexicalized by a very simple mechanism toyield readable natural language text.3 Generation of Natural Language from Sequential TreesAlong with each inference rule presented in the preceding section, we gave its correspondingnatural language interpretation. For example, or_l reads: if we can prove A from � andB, and we can prove A from � and C, then we have proved A from � and B _ C. In thissection we present a simple algorithm which can string these kinds of interpretations forindividual inference rules into readable text for an entire proof. We will only be concernedwith \lexicalizing" inference rules. Formulas themselves will be left as formulas. Of course,if formulas were also lexicalized, the following presentations of proofs would be at timesvery readable. 3

A proof term can be viewed functionally: that is, each inference rule in the term can bethought of as being a function from text to text. Under this interpretation, a proof termfor a sequent would be interpreted as a textual argument for the proposition representedby that sequent. For example, a term of the form or_l(T1; T2) represents a proof usingcase analysis. Assume that T1 is interpreted as text1 which argues that A follows from Band �, and that T2 is interpreted as text2 which argues that A follows from C and �. Theinterpretation of or_l(T1; T2) would then need to be an argument that A follows from B_Cand �. This is easily done if we make the interpretation of or_l be the function which takestext1 and text2 into the following text:We have two cases. Case 1: Assume B. text1 Case 2: AssumeC. text2 Thus, in either case, we have A.Other rules are not as \wordy" as or_l: there are inference rules such as and_l that do notcontribute anything to an explanation. Formally this rule is written as:B;C;� �! A and lB ^ C;� �! AThese two sequents are conceptually the same because the comma and the ^ connective havethe same meaning on the left of the sequent. The rule and_l is, therefore, interperted as theidentity function on text. All inference rules can be given such functional interpretations.To handle the base case in this interpretation scheme, we need to attach to axioms sometext. This is very simple: no words are needed to argue that A follows from A. Theinterpretation of the term axiom(A) is simply the empty text string.Example 2 Putting all these elements together, the large proof term in Example 1 couldbe directly lexicalized into the following English language proof.Assume 8x8y8z(R(x; y) ^R(y; z) � R(x; z))^ 8x8y(R(x; y) � R(y; x)). As-sume 9y R(a; y). Choose b such that R(a; b). By modus ponens, we haveR(b; a). Hence, R(a; b) ^ R(b; a). By modus ponens, we have R(a; a). Sincea was arbitrary, we have 8x (9y R(x; y) � R(x; x)).Clearly, if we choose to lexicalize formulas by associating strings with formulas, forexample, associate \R is transitive" with the �rst assumption, we could obtain very readableproofs. While explanations are obtained directly from sequential proof trees and have thesame general structure, they are much easier to read. For this reason, we will present onlythe English explanation of example proofs in the rest of this paper. The relevant parts ofthe underlying sequential proof trees should be easily discernible from the text.One task which can be attempted in � is that of generating \good" natural languagetext for di�erent readers and di�erent purposes. Since the mechanism for translating aproof tree into text is so simple, much of the challenge in constructing natural text canbe transferred to constructing proof trees: to �rst generate good text, generate good proofterms. There are several criteria for judging the quality of explanations of proofs. Onesuch criterion is how focused and coherent the ow of the explanation is maintained: wehave not examined this aspect of constructing proof terms. Another criterion is whether ornot the proof contains natural uses of interesting inference rules. It is these aspects of theconstruction of proofs with which we will now be concerned.4

4 Construction of Sequential TreesProofs trees get constructed in � from the root (i.e. the theorem) backwards. The processof constructing proofs in this manner means trying to �nd an inference rule which canprove a given sequent and then repeating this process on that inference rule's premise(s).In constructing proofs in this way, there are at least two problems which are encountered:(1) Generally there are many inference rules which could be applied to yield a given sequent.Controlling the selection of inference rules must be done carefully. (2) Certain steps in proofconstruction, such as the instantiation of quanti�ers, require information which can not beobtained through the local analysis of sequents. Our solution to the �rst problem involvesusing tactics and tacticals to write programs which explicitly determine the order in whichinference rules are attempted. Our solution to the second problem is either to get the userinvolved in supplying the missing information or to invoke an automatic theorem prover.At any point in building a proof there are generally numerous ways to proceed. Forexample, we may choose to manipulate one of the hypotheses (i.e. introduce a connectiveon the left of a sequent) or simplify the conclusion (introduce a connective on the right).There may be as many applicable inference rules as there are formulas in the sequent.Furthermore, there may be multiple choices for manipulating any one formula in the sequent.� provides a programming language for specifying how these choices should be organizedand executed. This programming language is an extension to the LCF tactic and tacticalapproach to theorem proving [6].A primitive tactic is a (partial) function that takes a sequent, and checks if it can bethe conclusion of a particular inference rule. If the sequent can be such a conclusion, thepremise(s) of that instance of the rule are returned. If that particular inference rule cannot be used, the tactic fails. Compound tactics can be constructed by using tacticals;these being high level operations which are used to coordinate and control the applicationof tactics. Such compound tactics allow some combination of several inference rules tobe applied as a unit. For example, the following is a compound tactic for a very simpleinteractive prover in �:(define-tac interactive1(repeat(orelseaxiomatize and_r_tac or_l_tac query)))The and_r_tac and or_l_tac are primitive tactics which attempt to justify a sequentwith the and_r and or_l inference rules, respectively. axiomatize attempts to justifythe sequent as an axiom. If this tactic succeeds, that sequent is removed from furtherconsideration. The query primitive tactic is a special tactic which queries the user for whattactic to apply next. The tacticals repeat and orelse are similar to those found in LCF.This compound tactic, therefore, automatically applies three tactics, and when these are nolonger applicable, asks the user for assistance. A wide variety of interactive theorem proverscan be built in this fashion. See [2] and [10] for more examples of interesting compoundtactics.Although tactics provide a great deal of exibility in specifying how proofs should bebuilt, there are certain issues in building proofs which can not be answered by simply5

examining such local facts as whether or not a given inference rule can be applied. Forexample, consider the following two inference rules which make use of an implicationalhypothesis. � �! B C;� �! A positiveB � C;� �! A:B;� �! A C;� �! contraposB � C;� �! AAlthough these rules might be applicable, they might not lead to a proof even if a proof ex-ists. The simplest example of this situation is the sequent p � q �! :p _ q. Unless thereis additional information available, rules like these could not be used to construct proofs:they would have to be replaced by more \complete" but more unnatural rules for implica-tion. This would be very unfortunate since both positive and contrapos correspond tonatural and frequently used methods of presenting proofs.Extra information is also needed for the instantiation of quanti�ers. In particular,consider the following two quanti�er related inference rules.� �! [x=t]P exists r� �! 9x P [x=t]P;� �! A forall l8x P;� �! AThe appropriate selection of the term t in these inference rules is not available from a simpleanalysis of the lower sequent.This kind of additional information can be obtained from two sources: the user oran automatic theorem prover. The user can be asked by the query tactic to make thesedi�cult choices. More interestingly, however, would be to use an automatic theorem proverto discover these choices. Such an integration was the subject of [10]. We briey outlinethe approach taken there since an extension of it is required in the rest of this paper.Resolution refutations form a deduction system very di�erent from those of sequentialproof trees. Such refutations, however, do contain certain information | such as substitu-tions and connections among literals | which could be used in building sequential prooftrees. This information is distilled into two data structures, called expansion trees and mat-ings: an expansion tree conveniently stores substitution information while a mating speci�eswhich literals in the expansion tree are to be connected. The \essence" of a resolution refu-tation can then be captured in a pair containing an expansion tree and a mating. Such apair, called an expansion proof, captures a proof without referring to any deduction system.As a result, it makes a valuable tool for relating two such di�erent deduction systems asresolution refutations and sequential proofs.Example 3 An expansion proof for the theorem in Example 1 is given below.(8x8y8z (R(x; y)^ R(y; z) � R(x; z)); (a; b; a; (R(a; b)1^ R(b; a)1 � R(a; a)1)))^(8x8y R(x; y) � R(y; x); (a; b; R(a; b)2 � R(b; a)2)) �(8x(9y R(x; y) � R(x; x)); (a; b;R(a; b)3 � R(a; a)2));f(R(a; a)1; R(a; a)2); (R(b; a)1; R(b; a)2); (R(a; b)1; R(a; b)3); (R(a; b)2; R(a; b)3)g6

The �rst item above is an expansion tree: quanti�ed subformulas are followed by substitu-tion terms and the corresponding instantiated formula. The last structure, a set of pairs ofatom occurrences, is the corresponding mating. An algorithm for transforming resolutionrefutations to expansion proofs can be found in [11].If we now add to a sequent an expansion proof for it, the above mentioned tactics areable to work locally to �nd the correct substitution term or decide if either the positiveor contrapos inference rule will yield a complete proof. This additional information is alsouseful to deciding numerous other sophisticated ways to build a proof (see [2]).When used in this setting, tactics can be viewed as proof transformers: they can takeexpansion proofs and automatically generate sequential proofs. Coupled with the trans-formation of resolution refutations into expansion proofs, automatically generated naturalproofs can be made from the results of resolution theorem provers. We now outline how �can be used to orchestrate such proof transformers into a useful and powerful logic tutoringsystem.5 � as an Intelligent Logic TutorThe fact that proofs and their presentations are central to � suggests that � can be used tobuild tutors to help students in learning formal proof techniques. There are several di�erentmodes in which �'s facilities can be organized into such useful tutors. We describe threesuch modes in this section.First of all, exible interactive proof editors can be built using compound tactics. Thesimplest tactic, which does nothing but ask the user to specify all primitive tactics, couldbe used by beginning students. Since each primitive tactic is sound, only correct proofscan be constructed. If the student attempts an illegal proof construction, the failure of thetactic immediately signals a problem. As a student becomes more familiar with proofs andtheir construction, s/he can build compound tactics which can automate part of the proofconstruction method. The organization and complexity of such compound tactics wouldsupply evidence of how well the student has managed to understand the \mechanical"aspects of proof building. Finally, the student can easily see the natural language textgenerated for his/her proof. The relationship between the tree structured skeleton of aproof which the student directly manipulates and the natural language form of it shouldmake it possible for him/her to understand how mathematical proofs, which are writtenin natural language, are organized. The pairing of natural language explanations withthe more formal sequential proof trees should also help students learn how to write proofsthemselves when they are not using the tutoring system. For example, it should becomeclear to the student in what contexts phrases such as \choose b such that : : :" and \let nbe an arbitrary number such that : : :" are to be used.Another mode for using � assumes that an automatic theorem prover is present whichsatis�es the following three properties: (1) that it succeeds for a high percentage of thetheorems asked of it, (2) that it terminates if no proof is found using \reasonable" resources,and (3) that any proof constructed by this prover can be converted to an expansion proof.If the tutor's domain is elementary logic, then traditional resolution theorem provers canbe used to satisfy all three of these constraints. In other, more di�cult domains, the tutorwould only be as good as the automatic theorem prover under it. Such a theorem prover7

can be used in the following fashion. If a student reaches a sequent with which s/he doesn'tknow how to proceed, the sequent could be given to the theorem prover to prove. If noproof is found after a reasonable amount of time, the student will be given an indicationthat a proof of that sequent is unlikely and that s/he should backtrack to an earlier stagein the proof. If a proof is found, it would be converted to an expansion proof. With thisexpansion proof, � could do several things. It could employ a compound tactic which wouldautomatically transform it into a complete proof of the troublesome sequent. Also, a tacticcould be employed which only revealed a hint into how the proof should proceed, leavingthe rest of its completion up to the student. Such a help facility would not have to rely on\canned scripts" or be restricted to providing help only if the user has proceeded in onepredetermined way. Furthermore, no extra e�ort on the part of the instructor would benecessary to \train " this kind of tutoring system.The student can also take advantage of the exibility of the programming language oftactics and tacticals to write and experiment with various tactics to construct di�erentsequential proofs from a given expansion proof. For example, direct and indirect proofsof the same theorem could be built and compared. Furthermore, it is possible to take aninteractively built proof and generate from it an expansion proof. Hence, a student's proofcould be reduced to its \essence" and then rewritten using these same kinds of tactics. Astudent could have his/her proof rewritten by a tactic which exempli�es a \good" style ofproof. The rewriting could be done automatically and quickly. We illustrate this revisionmechanism in the next section.6 Proof RevisionThe �rst step in revising a proof is to remove much of the detail of the given proof. This,of course, could be done if sequential proof trees could be converted into expansion proofs.From an expansion proof, a new proof tree could be constructed under the guidance ofcompound tactics identical to those described in Section 4. Such tactics can be designed tostress good styles of proof.The transformation from sequential proof tree to an expansion proof can be done byrecursion on the structure of proof trees. This transformation can thus be accomplishedby a functional style interpretation of inference rules, in much the same way that text wasgenerated from sequential trees in Section 3. The expansion proof for an axiom are trivial:the simple formulaA1 � A2 and the set f(A1; A2)g are the expansion tree and mating (resp.)for the axiom A �! A. Each inference rule is interpreted as a function which performsone step in the transformation by taking the translations for its premise(s) and yielding anexpansion proof for its conclusion. For example, the or_l function takes expansion proofsfor B;� �! A and C;� �! A and produces an expansion proof for B _ C;� �! A.All the inference rules used in � can be given similar interpretations and as a result, allproof trees can be reduced to expansion proofs in this fashion. For example, the sequentialproof tree in Example 1 is reduced to the expansion proof in Example 3.Once an expansion proof is distilled from a proof tree, various tactics could be appliedto it in order to transform it into a proof tree again. With the following example, wewill illustrate a compound tactic which tries to avoid repeating subproofs along di�erentbranches of the proof as well as favoring direct proofs over indirect proofs.8

To illustrate proof revision, consider the following abstract form of the theorem whichstates that there exists no largest prime number.(8x (f(x) > x) ^ 8x8y (div(x; f(y)) � (x > y))^8x (:prime(x) � 9y (prime(y) ^ div(y; x))))�8n (9x ((x > n) ^ prime(x))).Although the intended domain here is the set of positive integers, all the facts necessaryto reason about the integers are contained in the statement of the theorem. The theoremassumes the existence of a function f on positive integers such that for any x, f(x) > x andfor any x and y, if x divides f(y), then x > y. In the domain of arithmetic, such a functiondoes in fact exists: f(x) = x! + 1 would be such a function. The remaining assumptionsimply states that if a number is not prime, it has a prime divisor. From these hypotheses,it can be shown that there is a prime larger than any given number.Suppose a student successfully proves this theorem, creating a proof term with thefollowing natural language rendering.Assume 8x (f(x) > x) ^ 8x 8y (div(x; f(y)) � (x > y)) ^ 8x (:prime(x) �9y (prime(y) ^ div(y; x)). Assume :9x((x > a) ^ prime(x)). Hence 8x(:(x >a) _ :prime(x)). We have two cases. Case 1: Assume :(f(a) > a). We have a con-tradiction. Case 2: Assume :prime(f(a)). By modus ponens, we have 9y(prime(y)^div(y; f(a)). Choose b such that prime(b)^ div(b; f(a)). By modus ponens, we have(b > a). We have two cases. Case 2.1: Assume :(b > a). We have a contradic-tion. Case 2.2: Assume :prime(b). We have a contradiction. Thus, in either case,we have a contradiction. Thus, in either case, we have a contradiction. Hence, byindirect proof, we have 9x((x > a) ^ prime(x)). Since a was arbitrary, we have8n(9x((x > n) ^ prime(x))).In constructing this proof, the student applied the indirect tactic fairly early, causingthe negation of the conclusion :9x ((x > a) ^ prime(x)) to become an assumption. Thatnegation was equivalent to 8x (:(x > a) _ :prime(x)). This quanti�ed disjunction allowedthe proof to be broken up into cases twice. First, it was instantiated with f(a). The �rstcase resulted in an immediate contradiction, while the second broke into two further cases,since this disjunction was instantiated with b. These two subcases immediately result incontradictions, completing the indirect proof. Such indirect proofs are not at all uncommonamong students who are learning formal proofs for the �rst time.It should be clear that this proof could be written more clearly. By applying ourabove mentioned tactic to the expansion proof of this proof tree, the following proof wasconstructed.Assume 8x (f(x) > x) ^ 8x 8y (div(x; f(y)) � (x > y)) ^ 8x (:prime(x) �9y (prime(y) ^ div(y; x)). We have two cases. Case 1: Assume :prime(f(a)). Bymodus ponens, we have 9y (prime(y)^ div(y; f(a))). Choose b such that prime(b)^div(b; f(a)). By modus ponens, we have (b > a). Hence, (b > a) ^ prime(b).Thus, 9x ((x > a) ^ prime(x)). Case 2: Assume prime(f(a)). Hence, (f(a) >a) ^ prime(f(a)). Thus, 9x ((x > a) ^ prime(x)). Thus, in either case, we have9x ((x > a)^prime(x)). Since a was arbitrary, we have 8n (9x ((x > n)^prime(x))).Although these proofs are signi�cantly di�erent, much of the student original proof is re-tained in the expansion proof and thus reappears in the revised proof. For example, all of9

the substitution terms (i.e. a, b, and f(a)) used in the �rst proof appear exactly the samein the second.Notice that this proof also breaks up into cases, this time given by the formula:prime(f(a)) _ prime(f(a)). Although this formula is not a member of the original listof assumptions, it is trivially true and thus could be taken as an assumption. Discoveringthat this additional assumption was important to introduce in order to make the presen-tation of this proof more natural requires rather sophisticated manipulations of expansionproofs. In � this processing step is represented by a tactical which attempts to build theproof using the following inference rule::B _ B;� �! A excluded middle� �! AThis tactic is very di�erent from others we have considered so far for two reasons. First,it can always be applied to any sequent, so it must be applied only when it genuinelyimproves the presentation of the proof. Second, an appropriate formula B must be chosen.This selection is solved by an algorithm called symmetric simpli�cation which is describedby Pfenning in [12]. Symmetric simpli�cation is a powerful technique which, when used inproof revision, often has the e�ect of transforming an indirect proof to a direct proof.7 ConclusionWe have presented the high-level details of the �-proof system. This system makes use oftwo proof structures not commonly represented explicitly in traditional theorem provingsystems, namely, sequential proof trees and expansion proofs. Proof trees and their lexical-izations are used for presenting deductions to human readers. Expansion proofs are usedto represent the essence of proofs in a deduction-free setting. This system also containsnumerous proof transformation mechanisms. Some of these transformers | the two thatconvert resolution refutations and sequential proof trees into expansion proofs | do notrequire any choices to be made, since they involve deleting details form those proofs. Thetransformation of expansion proofs to sequential proof trees, however, is a process of addingdetails to a proof. The choice and organization of these details is, of course, crucial for theproofs to be readable. These latter transformations are, therefore, written in the tacticprogramming language which is capable of specifying these choices.The �-proof system can be seen as an enrichment of more traditional theorem provingsystems. � can permits exible interfaces to an automatic theorem prover as well as severaltools for manipulating any proofs which are discovered. This system could also be used tointegrate several di�erent kinds of automatic theorem proving systems: a special tactic coulddecide which prover would be appropriate for proving a given sequent. Finally, � could alsobe viewed as a more generic way to manipulate proofs: the kinds of inference rules containedin sequential proofs as well as the actual number and kind of logical constants present inthe logic need not be exactly those presented in this paper. Our current implementation of� is now, for example, being modi�ed to handle modal and higher-order logics.10

Acknowledgements The authors would like to thank Frank Pfenning and Greg Hagerfor technical discussions concerning the ideas in this paper and the construction of the �-proof system. We would also like to thank Bonnie Webber and Aravind Joshi for suggestingthat this work was worth pursuing and for providing an environment in which to nurtureit. This work has been supported by NSF AI Center grants NSF-MCS-83-05221, US ArmyResearch o�ce grant ARO-DAA29-84-9-0027, and DARPA N000-14-85-K-0018.References[1] R. L. Constable et. al., Implementing Mathematics with the Nuprl Proof DevelopmentSystem, Prentice{Hall, 1986.[2] Amy Felty, \Using Extended Tactics to Do Proof Transformations," Master's thesis,December 1986, University of Pennsylvania. Technical report MS-CIS-86-89.[3] Jean H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem Prov-ing, Harper & Row, 1986.[4] Jean H. Gallier, Stan Raatz, and Wayne Snyder, \Theorem Proving Using Rigid E-Uni�cation: Equational Matings," to appear in the 1987 IEEE Symposium on Logicin Computer Science.[5] Gerhard Gentzen, Investigations into Logical Deductions in The Collected Papers ofGerhard Gentzen edited by M. E. Szabo, North-Holland Publishing Co., Amsterdam,1969, 68 { 131.[6] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth, \EdinburghLCF," Lecture Notes in Computer Science, No. 78, Springer-Verlag, 1979.[7] Gregory D. Hager, \Computational Aspects of Proofs in Modal Logic," Master's thesis,University of Pennsylvania, 1985.[8] W. A. Howard, \The formulae-as-type notion of construction," 1969. Published in J.P. Seldin and R. Hindley, ed. To H. B. Curry: Essays in Combinatory Logic, LambdaCalculus, and Formalism, 479 { 490, Academic Press, New York, 1980.[9] Dale A. Miller, \Expansion Trees and Their Conversion to Natural Deduction Proofs,"7th Conference on Automated Deduction, Napa CA, edited by R. E. Shostak, LectureNotes in Computer Science, No. 170, Springer-Verlag, 1984, 375 { 393.[10] Dale Miller and Amy Felty, \An Integration of Resolution and Natural DeductionTheorem Proving," 1986 National Conference on Arti�cial Intelligence, 198 { 202.[11] Frank Pfenning, \Analytic and Non-analytic Proofs," 7th Conference on AutomatedDeduction, Napa CA, edited by R. E. Shostak, Lecture Notes in Computer Science,No. 170, Springer-Verlag, 1984, 394 { 413.[12] Frank Pfenning, \Proof Transformations in Higher-Order logic," Ph. D. Dissertation,Carnegie-Mellon University, January 1987.11

