Privacy-Oriented Data Mining by
Proof Checking *

Amy Felty' and Stan Matwin2**

! SITE, University of Ottawa, Ottawa, Ontario KIN 6N5, Canada
afelty@site.uottawa.ca
2 LRI - Bt 490, Université Paris-Sud, 91405 ORSAY CEDEX, France

stan@site.uottawa.ca

Abstract. This paper shows a new method which promotes ownership
of data by people about whom the data was collected. The data owner
may preclude the data from being used for some purposes, and allow it to
be used for other purposes. We show an approach, based on checking the
proofs of program properties, which implements this idea and provides
a tool for a verifiable implementation of the Use Limitation Principle.
The paper discusses in detail a scheme which implements data privacy
following the proposed approach, presents the technical components of
the solution, and shows a detailed example. We also discuss a mechanism
by which the proposed method could be introduced in industrial practice.

1 Introduction

Privacy protection, generally understood as “...the right of individuals to control
the collection, use and dissemination of their personal information that is held by
others” [5], is one of the main issues causing criticism and concern surrounding
KDD and data mining. Cheap, ubiquitous and persistent database and KDD
resources, techniques and tools provide companies, governments and individuals
with means to collect, extract and analyze information about groups of people
and individual persons. As such, these tools remove the use of person’s data
from their control: a consumer has very little control over the uses of data about
her shopping behavior, and even less control over operations that combine this
data with data about her driving or banking habits, and perform KDD-type
inferences on those combined datasets. In that sense, there is no data ownership
by the person whom the data is about. This situation has been the topic of
growing concern among people sensitive to societal effects of IT in general, and
KDD in particular. Consequently, both macro-level and technical solutions have
been proposed by the legal and IT community, respectively.

At the macro-level, one of the main concepts is based on the fact that in
most of the existing settings the data collectors are free to collect and use data

* In Proceedings of the 6th European Conference on Principles of Data Mining and
Knowledge Discovery, August 2002, (©Springer-Verlag.
** On leave from SITE, University of Ottawa, Canada

as long as these operations are not violating constraints explicitly stated by
the individuals whose data are used. The onus of explicitly limiting the access to
one’s data is on the data owner: this approach is called “opting-out”. It is widely
felt (e.g. [8]) that a better approach would be opting-in, where data could only
be collected with an explicit consent for the collection and specific usage from
the data owner.

Another macro concept is the Use Limitation Principle (ULP), stating that
the data should be used only for the explicit purpose for which it has been
collected. It has been noted, however, that “...[ULP] is perhaps the most difficult
to address in the context of data mining or, indeed, a host of other applications
that benefit from the subsequent use of data in ways never contemplated or
anticipated at the time of the initial collection.” [7].

At the technical level, there has been several attempts to address privacy con-
cerns related to data collection by websites, and subsequent mining of this data.
The main such proposal is the Platform for Privacy Preferences (P3P) standard,
developed by the WWW Consortium [11]. The main idea behind the P3P is a
standard by which websites, collecting data from the users, will describe their
policies and ULPs in XML. Users, or their browsers, will then decide whether the
site’s data usage is consistent with the user’s constraints on the use of their data,
which can also be specified as part of a P3P privacy specification. Although P3P
seems to be a step in the right direction, it has some well-known shortcomings.
Firstly, the core of a P3P definition for a given website is the description of a
ULP, called the P3P policy file. This policy file describes, in unrestricted natu-
ral language, what data is collected on this site, how it is used, with whom it is
shared, and so on. There are no provisions for enforcement of the P3P policies,
and it seems that such provisions could not be incorporated into P3P: the policy
description in natural language cannot be automatically verified. The second
weakness, noted by [6], is the fact that while P3P provides tools for opting-out,
it does not provide tools for opting-in.

The data mining community has devoted relatively little effort to address
the privacy concerns at the technical level. A notable exception is the work of
R. Agrawal and R. Srikant [2]. In that paper the authors propose a procedure
in which some or all numerical attributes are perturbed by a randomized value
distortion, so that both the original values and their distributions are changed.
The proposed procedure then performs a reconstruction of the original distribu-
tion. This reconstruction does not reveal the original values of the data, and yet
allows the learning of decision trees which are comparable in their performance
to the trees built on the original, “open” data. A subsequent paper [1] shows
a reconstruction method which, for large data sets, does not entail information
loss with respect to the original distribution. Although this proposal, currently
limited to real-valued attributes (so not covering personal data such as SSN,
phone numbers etc.) goes a long way towards protecting private data of an indi-
vidual, the onus of perturbing the data and guaranteeing that the original data
is not used rests with the organization performing the data mining. There is no
mechanism ensuring that privacy is indeed followed by them.

In this paper we propose a different approach to enforce data ownership,
understood as full control of the use of the data by the person whom the data
describes. The proposed mechanism can support both the opt-out and the opt-in
approach to data collection. It uses a symbolic representation of policies, which
makes policies enforceable. Consequently, the proposed approach is a step into
the direction of verifiable ULPs.

2 Overall Idea

The main idea of the proposed approach is the following process:

1. Individuals make symbolic statements describing what can and/or cannot
be done with specific data about them. These permissions are attached to
their data.

2. Data mining and database software checks and respects these statements.

In order to obtain a guarantee that 2) holds regardless of who performs the data
mining/database operations, we propose the following additional steps:

a. Data mining software developers provide, with their software, tools and
building blocks with which users of the software can build theorems in a
formal language (with proofs), stating that the software respects the user’s
permissions.

b. An independent organization is, on request, allowed (remote) access to the
environment that includes the data mining software and the theorems with
the proofs, and by running a proof checker in this environment it can verify
that the permissions are indeed respected by the software.

We can express this idea more formally as a high-level pseudo-code, to which
we will refer in the remainder of the paper. We assume that in our privacy-
oriented data mining scenario there are the following players and objects:

1. C, an individual (viewed at the same time as a driver, a patient, a student,
a consumer, etc.)

2. a set of databases D containing records on different aspects of C’s life, e.g.
driving, health, education, shopping, video rentals , etc.

3. a set of algorithms and data mining procedures A, involving records and
databases from D, e.g. join of two database tables, induce a classification
tree from examples, etc.

4. a set (language) of permissions P for using data. P is a set of rules (state-
ments) about elements of D and A. C develops her own set of permissions by
choosing and/or combining elements of P and obtains a Po. P enforces C’s
ownership of the data. e.g. “my banking record shall not be cross-referenced
(joined) with my video rental record” or “I agree to be in a decision tree
leaf only with at least 100 other records”. Here, we view Pg as a statement
which is (or can be translated to) a predicate on programs expressed in a
formal logic.

5. Org is an organization, e.g. a data mining consultancy, performing operations
a € A on a large dataset containing data about many Cs.

6. S is the source code of a € A, belonging to the data mining tool developer,
and B is the executable of S. S may reside somewhere else than at Org’s,
while B resides with Oryg.

7. A certifiable link L(B,S) exists between B and S, i.e. Org and Veri (see
below) may verify that indeed S = source code of B.

8. Pc(S) is then a theorem stating that S is a program satisfying constraints
and/or permissions on the use of data about C.

9. H is a proof checker capable of checking proofs of theorems Px(S).

10. Veri, a Verifier, is a generally trusted organization whose mandate here is
to check that Org does not breach C’s permission.

The following behavior of the players C', Org and Veri in a typical data mining
exercise is then provably respectful of the permissions of C' with respect to their
data:

1. Org wants to mine some data from D (such that C’s records are involved)
with B. This data is referred to as datac.

2. datac comes packaged with a set of C’s permissions: datac || Po.

3. Org was given by the data mining tool developer (or Org itself has built) a
proof R(S, Pc) that S respects Po whenever C’s data is processed. Conse-
quently, due to 7) above, B also respects Pc.

4. Org makes R(S, Pc) visible to Veri.

5. Veri uses Pc and S to obtain Pc(S), and then Veri uses H to check that
R(S, Pc) is the proof of Po(S), which means that S respects Pc.

We can observe that, by following this scheme, Veri can verify that any
permissions stated by C are respected by Org (more exactly, are respected by
the executable software run by Org). Consequently, we have a method in which
any ULP, expressed in terms of a Pg, becomes enforceable by Veri. The Po
permissions can be both “negative”, implementing an opt-out approach, and
“positive”, implementing an opt-in approach. The latter could be done for some
consideration (e.g. a micropayment) of C' by Org.

It is important to note that in the proposed scheme there is no need to
consider the owner of the data D: in fact, D on its own is useless because it
can only be used in the context of Pcs of the different C's who are described
by D. We can say that Cs represented in D effectively own the data about
themselves. Another important comment emphasizes the fact that there are two
theorem proving activities involved in the proposed approach: proof construction
is done by Org or the data mining developer, and proof checking is done by Veri.
Both have been the topics of active research for more than four decades, and
for both, automatic procedures exist. In our approach, we rely on an off-the-
shelf solution [10] described in the next section. Between the two, the relatively
hard proof construction is left as a one-time exercise for Org or for the tool
developer where it can be assisted by human personnel, while much easier and
faster automatic proof checking procedure is performed by the proposed system.

Let us observe that Veri needs the datac || Po, R(S, Pc), and S. S will need
to be obtained from the data mining tool developer, and Pc can be obtained
from C. Only R(S, Pc) is needed from Org (access to B will also be needed
for the purpose of checking L(B,S)). In general, Veri’s access to Org needs to
be minimal for the scheme to be acceptable to Org. In that respect, we can
observe that Ver: runs proof checking H on a control basis, i.e. not with every
execution of B by Org, but only occasionally, perhaps at random time intervals,
and even then only using a randomly sampled C. A brief comment seems in
order to discuss the performance of the system with a large number of users,
i.e. when A works on a D which contains data about many C's. The overhead
associated with the processing many C's is linear in their number. In fact, for
each C' € D this overhead can be conceptually split into two parts: 1. the proof
checking part (i.e. checking the proof of P(S)), and 2. the execution part (i.e.
extra checks resulting from C’s permissions are executed in the code B). The
first overhead, which is the expensive one, needs to be performed only once for
each C involved in the database. This could be handled in a preprocessing run.

At the implementation level, H could behave like an applet that Org down-
loads from Veri.

3 Implementation

Our current prototype implementation uses the Coq Proof Assistant [10]. Coq
implements the Calculus of Inductive Constructions (CIC), which is a highly
expressive logic. It contains within it a functional programming language that we
use to express the source code, S, of the data mining program examples discussed
in this paper. Permissions, Po, are expressed as logical properties about these
programs, also using CIC. The Coq system is interactive and provides step-
by-step assistance in building proofs. We discuss its use below in building and
checking a proof R(S, Pc) of a property Pc of an example program S.

Our main criterion in choosing a proof assistant was that it had to implement
a logic that was expressive enough to include a programming language in which
we could write our data mining programs, and also include enough reasoning
power to reason about such programs. In addition, the programming language
should be similar to well-known commonly used programming languages. Among
the several that met these criteria, we chose the one we were most familiar with.

3.1 Proof Checking

Proof checking is our enforcement mechanism, insuring that programs meet the
permissions specified by individuals. In Coq, proofs are built by entering com-
mands, one at a time, that each contribute to the construction of a CIC term
representing the proof. The proof term is built in the background as the proving
process proceeds. Once a proof is completed, the term representing the complete
proof can be displayed and stored. Coq provides commands to replay and com-
pile completed proofs. Both of these commands include a complete check of the

proof. Veri can use them to check whether a given proof term is indeed a proof
of a specified property. Coq is a large system, and the code for checking proofs
is only a small part of it. All of the code used for building proofs need not be
trusted since the proof it builds can be checked after completion. The code for
checking proofs is the only part of our enforcement mechanism that needs to be
trusted. As stated, Veri is a generally trusted organization, so to ensure this
trust Ver: must certify to all others that it trusts the proof checker it is using,
perhaps by implementing it itself.

3.2 Verifiable Link Between the Source Code and the Object Code

As pointed out in Sect. 2, the scheme proposed here relies on a verifiable link
L(B, S) between the source code and the object code of the data mining program.
Since theorems and proofs refer to the source programs, while the operations are
performed by the object program, and the source S and object B reside with
different players of the proposed scheme, we must have a guarantee that all the
properties obtained for the source program are true for the code that is actually
executed. This is not a data mining problem, but a literature search and personal
queries did not reveal an existing solution, so we propose one here.

In a simplistic way, since Ver: has access to S, Veri could compile S with
the same compiler that was used to obtain B and compare the result with what
Org is running. But compilation would be an extremely costly operation to be
performed with each verification of L(B, S). We propose a more efficient scheme,
based on the concept of digital watermarking. S, which, in practice, is a rich
library structure, containing libraries, makefiles etc., is first tar’ed. Then the
resulting sequential file tar(S) is hashed by means of one of the standard hash
functions used in the Secure Sockets Layer standard SSL, implemented in all the
current Internet browsers. The Message Digest function MD5 [9] is an example
of such a file fingerprinting function. The resulting, 128-bit long fingerprint of
S is then embedded in random locations within B in the form of DO NOTHING
instructions whose address part is filled with the consecutive bits forming the
result of MD5.

This encoding inside B will originally be produced by a compiler, engineered
for this purpose. Locations containing the fingerprint—a short sequence of inte-
ger numbers—are part of the definition of L(B,S) and are known to Veri. Veri
needs to produce MD5(tar(S)) and check these locations within B accordingly.
The whole process of checking of L(B,S) can be performed by a specialized
applet, ensuring that B is not modified or copied.

3.3 Permissions Language

The logic implemented by Coq is currently used as our language of permissions.
More specifically, any predicate expressible in Coq which takes a program as an
argument is currently allowed. Each such predicate comes with type restrictions
on the program. It specifies what the types of the input arguments to the program
must be, as well as the type of the result. An example is given in the next section.

3.4 Issues

The permissions language is currently very general. We plan to design a language
that is easy for users to understand and use, and can be translated to statements
of theorems in Coq (or some other theorem prover).

As mentioned, a proof in Coq is built interactively with the user supplying
every step. Having a smaller permissions language targeted to the data mining
application will allow us to clearly identify the class of theorems we want to
be able to prove. We will examine this restricted class and develop techniques
for automating proof search for it, thus relieving much of the burden of finding
proofs currently placed on either the data mining tool developer or Org. These
automated search procedures would become part of the tools and building blocks
provided by data mining software developers.

In our Coq solution described so far, and illustrated by example in the next
section, we implement source code S using the programming language in Coq.
We actually began with a Java program, and translated it by hand to Coq so
that we could carry out the proof. In practice, proofs done directly on actual
code supplied by data mining software developers would be much more difficult,
but it is important to keep a connection between the two. We would like to more
precisely define our translation algorithm from Java to Coq, and automate as
much of it as possible. For now, we propose that the data mining tool developers
perform the translation manually, and include a description of it as part of the
documentation provided with their tools.

In the domain of Java and security, Coq has also been used to reason about
the JavaCard programming language for multiple application smartcards [3], and
to prove correctness properties of a Java byte-code verifier [4].

4 Example

We present an example program which performs a database join operation. This
program accommodates users who have requested that their data not be used
in a join operation by ignoring the data for all such users; none of their data
will be present in the data output by the program. We present the program and
discuss the proof in Coq. We first present the syntax of the terms of CIC used
here. Let and y represent variables and M, N represent terms of CIC. The
class of CIC terms are defined using the following grammar.

Prop | Set |
M=N| MAN | MVN | M- N | =M | Vz:M.N | Jz: M.N
x| MN | [z: M|N | = {y1: My;...;9n: My} |
Casex: M of My = Ny,..., M, = N,
This set of terms includes both logical formulas and terms of the functional pro-

gramming language. Prop is the type of logical propositions, whereas Set is the
type of data types. For instance, two data types that we use in our example are

the primitive type for natural numbers and user-defined records. In Coq these
types are considered to be members of Set. All the usual logical connectives for
well-formed formulas are found on the second line. Note that in the quantified
formulas, the type of the bound variable, namely M is given explicitly. N is the
rest of the formula which may contain occurrences of the bound variable. CIC
is a higher-order logic, which means for instance, that quantification over predi-
cates and functions is allowed. On the third line, M N represents application, for
example of a function or predicate M to its argument N. We write M Ny ... N,
to represent (((MNy)...)N,). The syntax [z : M]N represents a parameterized
term. For instance, in our example, N often represents a function that takes an
argument z of type M.

The term x {y1 : M1;...;yn : My} allows us to define record types, where
Y1,...,Yn are the field names, My,..., M, are their types, and z is the name
of the constant used to build records. For example, a new record is formed by
writing £Vy, ..., N, where for t = 1,...,n, the term N; has type M; and is the
value for field y;. For our example program, we will use three records. One of
these records, for example is the following used to store payroll information.

Record Payroll : Set :=
mkPay {PID : nat; JoinInd : bool; Position : string; Salary : nat}.

The Record keyword introduces a new record in Coq. In this case its name is
Payroll. The types nat and bool are primitive types in Coq, and string is a
type we have defined. The JoinInd field is the one which indicates whether or
not (value true or false, respectively) the person who owns this data has given
permission to use it in a join operation. The mkPay constant is used to build
individual records. For example, if n,b, s, and m are values of types nat, bool,
string, and nat, respectively, then the term (mkPay n b s m) is a Payroll record
whose PID value is n, JoinInd value is b, etc.
A partial definition of the other two records we use is below.

Record Employee : Set :=
mkEmp {Name : string; EID : nat; ...}.
Record Combined : Set :=
mkComb {CID : nat; CName : string; CSalary : nat;...}.

The Employee record is the one that will be joined with Payroll. The PID and
EID fields must have the same value and JoinInd must have value ¢rue in order
to perform the join. The Combined record is the result of the join. The CID
field represents the common value of PID and EID. All other fields come from
either one or the other record.

In general, how do the different players know the names of the fields in
different Ds? Firstly, names of the sensitive fields could be standardized, which in
a way is already happening with XML. Alternatively, in a few databases generally
relied on, e.g. government health records or driving records, these names would
be disclosed to Veri. In this example, for simplicity we specify exactly what
fields are in each record. We could alternatively express it so that the user’s
privacy could be ensured independently of the exact form of these records (as
long as they both have an ID field, and at least one of them has a JoinInd field).

The Definition keyword introduces a definition in Coq. The following defines a
function which takes an Employee and Payroll record and returns the Combined
record resulting from their join.

Definition mk_Combined : Employee — Payroll — Combined :=
[E : Employee][P : Payroll]
(mkComb (EID E) (Name E) (Salary P) ...).

The term (EID E) evaluates to the value of the EID field in record E. The CID

field of the new record is obtained by taking EID from E, CName is obtained

by taking Name from E, CSalary is obtained by taking Salary from P, etc.
The main function implementing the join operation is defined in Coq as:

Fixpoint Join [Ps : list Payroll] : (list Employee) — (list Combined) :=
[E's : list Employee]

Cases Ps of
nil = (nil Combined)
| (cons p ps) = (app (check_JoinInd_and_find_employee_record p Es)
(Join ps Es))
end.

FixPoint indicates a recursive definition. We represent the set of payroll records
in the database using the built in datatype for lists in Coq, and similarly for the
other sets. Join takes lists Ps of payroll records and E's of employee records as
arguments, and is defined by case on the structure of Ps using the Case syntax
presented above. In general, to evaluate the expression

Casex: M of M1 = Ny,..., M, = N,

the argument x of type M is matched against the patterns My, ..., M,. If the
first one that matches is M;, then the value N; is returned. In this example,
Ps is either the empty list (nil) or the list (cons p ps) with head p and rest
of the list ps. In the first case, an empty list of combined records is returned.
In the second case, the function check_JoinInd_and_find_employee_record (not
shown here) is called. Note that it takes a single Payroll record p and the entire
list of Employee records Es as arguments. It is defined by recursion on Es. If
a record in Es is found (1) whose EID matches the PID of p, and (2) whose
JoinInd field has value true, then mk_Combined is called to join the two records.
A list of length 1 containing this record is returned. Otherwise, an empty list of
Combined records is returned. Function app is Coq’s append function used to
combine the results of this function call with the recursive call to Join.

As stated in the previous section, player C' states permissions as a predicate
P¢ that must hold of programs S. In this example, Join is the program S. Pg
can be expressed as the following definition where S is the formal parameter:

Definition Pc :=
[S : ((list Payroll) — (list Employee) — (list Combined)) — Prop]
VPs : list Payroll.VEs : list Employee.(UniqueJoinInd Ps) —
VP : Payroll.(In P Ps) — ((JoinInd P) = false) —
=3C : Combined((In C (S Ps Es)) A ((CID C) = (PID P))).

This predicate states that for any payroll record P with a JoinInd field with
value false, there will be no combined record C in the output of the code S such
that the CID field of C has a value the same as the PID field of P.

The theorem that is written Pc(S) in the previous section is obtained in
this case by applying the Coq term Pc to Join (written (Pc Join) in Coq). By
replacing the formal paramter S by the actual parameter Join and expanding
the definition of P¢, we obtain the theorem that we have proved in Coqg. A
request to Coq’s proof checking operation to check this proof is thus a request
to verify that the preferences of the user are enforced by the Join program.

In the theorem, the constant In represents list membership in Coq. The
UniqueJoinInd predicate is a condition which will be satisfied by any well-formed
database with only one payroll record for each PID. We omit its definition.

The proof of (Pc Join) proceeds by structural induction on the list Ps. It
makes use of seven lemmas, and the whole proof development is roughly 300
lines of Coq script. Compiling this proof script (which includes fully checking it)
takes 1 second on a 600MHz Pentium III running linux.

5 Acceptance

In a design of a system which would be used by many different players, close
attention needs to be paid to their concerns and interests, lest the system will
not be accepted. Firstly, individuals C need to be given an easy tool in which to
express their positive and negative permissions. In the design of the permissions
language, we are taking into account the kind of data being mined (different Ds),
and the schema of processing (joins, different classifiers, etc). Initially, a closed
set of permissions could be given to them, from which they would choose their
preferences. Such permissions could be encoded either on a person’s smart card,
orin C’s entry in the Public Key Authority directory. More advanced users could
use a symbolic language in which to design their permissions. Such a language
needs to be designed, containing the typical database and data mining/machine
learning operations.

Secondly, who could be the Veri organization? It would need to be a gen-
erally trusted body with strong enough IT resources and expertise to use a
special-purpose proof checker and perform the verifications on which the scheme
proposed here is based. One could see a large consumer’s association playing
this role. Alternatively, it could be a company which makes its mandate fighting
privacy abuses, e.g. Junkbusters.

Thirdly, if the scheme gains wider acceptance, developers of data mining
tools can be expected to provide theorems (with proofs) that their software S
respects the standard permissions that Cs specify and Veri supports. These
theorems and their proofs will be developed in a standard language known by
both the developers and Veri; we use Coq as the first conceptual prototype of
such a language.

Fourthly, what can be done to make organizations involved in data mining
(Org in this proposal), and tools providers, accept the proposed scheme? We

believe that it would be enough to recruit one large Org and one recognized tool
provider to follow the scheme. The fact that, e.g., a large insurance company
follows this approach would need to be well publicized in the media. In addition,
Veri would grant a special logo, e.g. “Green Data Miner”, to any Org certified to
follow the scheme. The existence of one large Org that adheres to this proposal
would create a subtle but strong social pressure on others to join. Otherwise,
the public would be led to believe that Orgs that do not join in fact do not
respect privacy of the people whose data they collect and use. This kind of
snowball model exists in other domains; it is, e.g., followed by Transparency
International.

6 Discussion and Future Work

The paper introduces a new method which implements a mechanism enforcing
data ownership by the individuals to whom the data belongs. This is a pre-
liminary description of the proposed idea which, as far as we know, is the first
technical solution guaranteeing privacy of data owners understood as their full
control over the use of the data, providing verifiable Use Limitation Principle,
and supplying a mechanism for opt-in data collection.

The method is based on encoding permissions on the use of the data as the-
orems about programs that process and mine the data. Theorem proving tech-
niques are then used to express the fact that these programs actually respect
the permissions. This initial proposal outlines the method, describes its compo-
nents, and shows the detailed example of the encoding. We rely on some of the
existing tools and techniques for representing the permissions and for checking
the theorems about the code that claims to respect them. We also discuss some
of the auxiliary techniques needed for the verification.

We are currently working on a prototype of the system described in this
paper. This prototype uses some of the Weka’s data mining functions as A.
We translate the permission-implementing modification of the Weka code into
CIC’s functional language and build the proof that the CIC code respects the
permission stated above. Coq proof checking then automatically checks that the
theorem about the modified code is true, which guarantees that the user’s con-
straint is respected by the modified Weka code. Furthermore, we are considering
how the experience with Weka could be extended to one of the commercial data
mining systems.

A lot of work is left to implement the proposed method in a robust and ef-
ficient manner, allowing its wide adoption by data mining tool developers and
organizations that perform data mining, as well as by the general public. A per-
mission language acceptable for an average user must be designed and tested.
A number of tools assisting and/or automating the activities of different players
need to be developed. Firstly, a compiler of the permissions language into the
formal (here, CIC) statements is needed. Another tool assisting the translation
of live code (e.g. Java) into the formal representation (CIC) must also be devel-
oped. Our vision is that with the acceptance of the proposed method such for-

mal representation will become part of the standard documentation of the data
mining software. Finally, a tool assisting construction of proofs that programs
respect the permissions, and eventually building these proofs automatically, is
also needed.

An organization sympathetic to the proposed approach and willing to imple-
ment and deploy it on a prototype basis needs to be found. This Org will not only
protect the owners of the data, but can also act as a for-profit data provider. The
latter aspect is possible as the proposed method supports an opt-in approach to
data collection, based on the user’s explicit consent. A commercial mechanism
rewarding the opting-in individuals could be worked out by this organization
and tested in practice.

Acknowledgements. The authors acknowledge the support of the Natural Sci-
ences and Engineering Research Council of Canada, Computing and Informa-
tion Technologies Ontario, and the Centre National de la Recherche Scientifique
(France). Rob Holte, Francesco Bergadano, Doug Howe, Wladimir Sachs, and
Nathalie Japkowicz are thanked for discussing some aspects of the work with us.

References

[1] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy pre-
serving data mining algorithms. In Twentieth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 247-255. ACM, May 2001.

[2] R. Agrawal and R. Srikant. Privacy-preserving data mining. In W. Chen, J. F.
Naughton, and P. A. Bernstein, editors, 2000 ACM SIGMOD International Con-
ference on Management of Data, pages 439-450. ACM, May 2000.

[3] G. Barthe, G. Dufay, L. Jakubiec, B. Serpette, and S. Sousa. A formal executable
semantics of the JavaCard platform. In European Symposium on Programming,
pages 302-319. Springer-Verlag, 2001.

[4] Y. Bertot. Formalizing a JVML verifier for initialization in a theorem prover. In
Computer-Aided Verification, pages 14-24. Springer-Verlag, 2001.

[5] Electronic Privacy Information Center and Junkbusters. Pretty
poor privacy: An assessment of P3P and internet privacy.
http://www.epic.org/reports/prettypoorprivacy.html, June 2000.

[6] K. Coyle. P3P:pretty poor privacy?: A social analysis of the platform for privacy
preferences (P3P). http://www.kcoyle.net/p3p.html, June 1999.

[7] Information and Privacy Commissioner/Ontario.
Data mining: Staking a claim on your privacy.
http://www.ipc.on.ca/english /pubpres/papers/datamine.htm#Examples, Jan-
uary 1998.

[8] D. G. Ries. Protecting consumer online privacy — an overview.

http://www.pbi.org/Goodies/privacy/privacy _ries.htm, May 2001.
[9] R. L. Rivest. RFC 1321: The MD5 message-digest algorithm. Internet Activities
Board, 1992.
[10] The Coq Development Team. The Coq Proof Assistant reference manual: Version
7.2. Technical report, INRIA, 2002.
[11] W3C. Platform for privacy preferences. http://www.w3.org/P3P /introduction.html,
1999.

