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aAbstra
t. This paper shows a new method whi
h promotes ownershipof data by people about whom the data was 
olle
ted. The data ownermay pre
lude the data from being used for some purposes, and allow it tobe used for other purposes. We show an approa
h, based on 
he
king theproofs of program properties, whi
h implements this idea and providesa tool for a veri�able implementation of the Use Limitation Prin
iple.The paper dis
usses in detail a s
heme whi
h implements data priva
yfollowing the proposed approa
h, presents the te
hni
al 
omponents ofthe solution, and shows a detailed example. We also dis
uss a me
hanismby whi
h the proposed method 
ould be introdu
ed in industrial pra
ti
e.1 Introdu
tionPriva
y prote
tion, generally understood as \...the right of individuals to 
ontrolthe 
olle
tion, use and dissemination of their personal information that is held byothers" [5℄, is one of the main issues 
ausing 
riti
ism and 
on
ern surroundingKDD and data mining. Cheap, ubiquitous and persistent database and KDDresour
es, te
hniques and tools provide 
ompanies, governments and individualswith means to 
olle
t, extra
t and analyze information about groups of peopleand individual persons. As su
h, these tools remove the use of person's datafrom their 
ontrol: a 
onsumer has very little 
ontrol over the uses of data abouther shopping behavior, and even less 
ontrol over operations that 
ombine thisdata with data about her driving or banking habits, and perform KDD-typeinferen
es on those 
ombined datasets. In that sense, there is no data ownershipby the person whom the data is about. This situation has been the topi
 ofgrowing 
on
ern among people sensitive to so
ietal e�e
ts of IT in general, andKDD in parti
ular. Consequently, both ma
ro-level and te
hni
al solutions havebeen proposed by the legal and IT 
ommunity, respe
tively.At the ma
ro-level, one of the main 
on
epts is based on the fa
t that inmost of the existing settings the data 
olle
tors are free to 
olle
t and use data? In Pro
eedings of the 6th European Conferen
e on Prin
iples of Data Mining andKnowledge Dis
overy, August 2002, 
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as long as these operations are not violating 
onstraints expli
itly stated bythe individuals whose data are used. The onus of expli
itly limiting the a

ess toone's data is on the data owner: this approa
h is 
alled \opting-out". It is widelyfelt (e.g. [8℄) that a better approa
h would be opting-in, where data 
ould onlybe 
olle
ted with an expli
it 
onsent for the 
olle
tion and spe
i�
 usage fromthe data owner.Another ma
ro 
on
ept is the Use Limitation Prin
iple (ULP), stating thatthe data should be used only for the expli
it purpose for whi
h it has been
olle
ted. It has been noted, however, that \...[ULP℄ is perhaps the most diÆ
ultto address in the 
ontext of data mining or, indeed, a host of other appli
ationsthat bene�t from the subsequent use of data in ways never 
ontemplated oranti
ipated at the time of the initial 
olle
tion." [7℄.At the te
hni
al level, there has been several attempts to address priva
y 
on-
erns related to data 
olle
tion by websites, and subsequent mining of this data.The main su
h proposal is the Platform for Priva
y Preferen
es (P3P) standard,developed by the WWW Consortium [11℄. The main idea behind the P3P is astandard by whi
h websites, 
olle
ting data from the users, will des
ribe theirpoli
ies and ULPs in XML. Users, or their browsers, will then de
ide whether thesite's data usage is 
onsistent with the user's 
onstraints on the use of their data,whi
h 
an also be spe
i�ed as part of a P3P priva
y spe
i�
ation. Although P3Pseems to be a step in the right dire
tion, it has some well-known short
omings.Firstly, the 
ore of a P3P de�nition for a given website is the des
ription of aULP, 
alled the P3P poli
y �le. This poli
y �le des
ribes, in unrestri
ted natu-ral language, what data is 
olle
ted on this site, how it is used, with whom it isshared, and so on. There are no provisions for enfor
ement of the P3P poli
ies,and it seems that su
h provisions 
ould not be in
orporated into P3P: the poli
ydes
ription in natural language 
annot be automati
ally veri�ed. The se
ondweakness, noted by [6℄, is the fa
t that while P3P provides tools for opting-out,it does not provide tools for opting-in.The data mining 
ommunity has devoted relatively little e�ort to addressthe priva
y 
on
erns at the te
hni
al level. A notable ex
eption is the work ofR. Agrawal and R. Srikant [2℄. In that paper the authors propose a pro
edurein whi
h some or all numeri
al attributes are perturbed by a randomized valuedistortion, so that both the original values and their distributions are 
hanged.The proposed pro
edure then performs a re
onstru
tion of the original distribu-tion. This re
onstru
tion does not reveal the original values of the data, and yetallows the learning of de
ision trees whi
h are 
omparable in their performan
eto the trees built on the original, \open" data. A subsequent paper [1℄ showsa re
onstru
tion method whi
h, for large data sets, does not entail informationloss with respe
t to the original distribution. Although this proposal, 
urrentlylimited to real-valued attributes (so not 
overing personal data su
h as SSN,phone numbers et
.) goes a long way towards prote
ting private data of an indi-vidual, the onus of perturbing the data and guaranteeing that the original datais not used rests with the organization performing the data mining. There is nome
hanism ensuring that priva
y is indeed followed by them.



In this paper we propose a di�erent approa
h to enfor
e data ownership,understood as full 
ontrol of the use of the data by the person whom the datades
ribes. The proposed me
hanism 
an support both the opt-out and the opt-inapproa
h to data 
olle
tion. It uses a symboli
 representation of poli
ies, whi
hmakes poli
ies enfor
eable. Consequently, the proposed approa
h is a step intothe dire
tion of veri�able ULPs.2 Overall IdeaThe main idea of the proposed approa
h is the following pro
ess:1. Individuals make symboli
 statements des
ribing what 
an and/or 
annotbe done with spe
i�
 data about them. These permissions are atta
hed totheir data.2. Data mining and database software 
he
ks and respe
ts these statements.In order to obtain a guarantee that 2) holds regardless of who performs the datamining/database operations, we propose the following additional steps:a. Data mining software developers provide, with their software, tools andbuilding blo
ks with whi
h users of the software 
an build theorems in aformal language (with proofs), stating that the software respe
ts the user'spermissions.b. An independent organization is, on request, allowed (remote) a

ess to theenvironment that in
ludes the data mining software and the theorems withthe proofs, and by running a proof 
he
ker in this environment it 
an verifythat the permissions are indeed respe
ted by the software.We 
an express this idea more formally as a high-level pseudo-
ode, to whi
hwe will refer in the remainder of the paper. We assume that in our priva
y-oriented data mining s
enario there are the following players and obje
ts:1. C, an individual (viewed at the same time as a driver, a patient, a student,a 
onsumer, et
.)2. a set of databases D 
ontaining re
ords on di�erent aspe
ts of C's life, e.g.driving, health, edu
ation, shopping, video rentals , et
.3. a set of algorithms and data mining pro
edures A, involving re
ords anddatabases from D, e.g. join of two database tables, indu
e a 
lassi�
ationtree from examples, et
.4. a set (language) of permissions P for using data. P is a set of rules (state-ments) about elements of D and A. C develops her own set of permissions by
hoosing and/or 
ombining elements of P and obtains a PC . PC enfor
es C'sownership of the data. e.g. \my banking re
ord shall not be 
ross-referen
ed(joined) with my video rental re
ord" or \I agree to be in a de
ision treeleaf only with at least 100 other re
ords". Here, we view PC as a statementwhi
h is (or 
an be translated to) a predi
ate on programs expressed in aformal logi
.



5. Org is an organization, e.g. a data mining 
onsultan
y, performing operationsa 2 A on a large dataset 
ontaining data about many Cs.6. S is the sour
e 
ode of a 2 A, belonging to the data mining tool developer,and B is the exe
utable of S. S may reside somewhere else than at Org's,while B resides with Org.7. A 
erti�able link L(B;S) exists between B and S, i.e. Org and V eri (seebelow) may verify that indeed S = sour
e 
ode of B.8. PC(S) is then a theorem stating that S is a program satisfying 
onstraintsand/or permissions on the use of data about C.9. H is a proof 
he
ker 
apable of 
he
king proofs of theorems PC(S).10. V eri, a Veri�er, is a generally trusted organization whose mandate here isto 
he
k that Org does not brea
h C's permission.The following behavior of the players C, Org and V eri in a typi
al data miningexer
ise is then provably respe
tful of the permissions of C with respe
t to theirdata:1. Org wants to mine some data from D (su
h that C's re
ords are involved)with B. This data is referred to as dataC .2. dataC 
omes pa
kaged with a set of C's permissions: dataC jj PC .3. Org was given by the data mining tool developer (or Org itself has built) aproof R(S; PC) that S respe
ts PC whenever C's data is pro
essed. Conse-quently, due to 7) above, B also respe
ts PC .4. Org makes R(S; PC) visible to V eri.5. V eri uses PC and S to obtain PC(S), and then V eri uses H to 
he
k thatR(S; PC) is the proof of PC(S), whi
h means that S respe
ts PC .We 
an observe that, by following this s
heme, V eri 
an verify that anypermissions stated by C are respe
ted by Org (more exa
tly, are respe
ted bythe exe
utable software run by Org). Consequently, we have a method in whi
hany ULP, expressed in terms of a PC , be
omes enfor
eable by V eri. The PCpermissions 
an be both \negative", implementing an opt-out approa
h, and\positive", implementing an opt-in approa
h. The latter 
ould be done for some
onsideration (e.g. a mi
ropayment) of C by Org.It is important to note that in the proposed s
heme there is no need to
onsider the owner of the data D: in fa
t, D on its own is useless be
ause it
an only be used in the 
ontext of PCs of the di�erent Cs who are des
ribedby D. We 
an say that Cs represented in D e�e
tively own the data aboutthemselves. Another important 
omment emphasizes the fa
t that there are twotheorem proving a
tivities involved in the proposed approa
h: proof 
onstru
tionis done by Org or the data mining developer, and proof 
he
king is done by V eri.Both have been the topi
s of a
tive resear
h for more than four de
ades, andfor both, automati
 pro
edures exist. In our approa
h, we rely on an o�-the-shelf solution [10℄ des
ribed in the next se
tion. Between the two, the relativelyhard proof 
onstru
tion is left as a one-time exer
ise for Org or for the tooldeveloper where it 
an be assisted by human personnel, while mu
h easier andfaster automati
 proof 
he
king pro
edure is performed by the proposed system.



Let us observe that V eri needs the dataC jj PC , R(S; PC), and S. S will needto be obtained from the data mining tool developer, and PC 
an be obtainedfrom C. Only R(S; PC) is needed from Org (a

ess to B will also be neededfor the purpose of 
he
king L(B;S)). In general, V eri's a

ess to Org needs tobe minimal for the s
heme to be a

eptable to Org. In that respe
t, we 
anobserve that V eri runs proof 
he
king H on a 
ontrol basis, i.e. not with everyexe
ution of B by Org, but only o

asionally, perhaps at random time intervals,and even then only using a randomly sampled C. A brief 
omment seems inorder to dis
uss the performan
e of the system with a large number of users,i.e. when A works on a D whi
h 
ontains data about many Cs. The overheadasso
iated with the pro
essing many Cs is linear in their number. In fa
t, forea
h C 2 D this overhead 
an be 
on
eptually split into two parts: 1. the proof
he
king part (i.e. 
he
king the proof of PC(S)), and 2. the exe
ution part (i.e.extra 
he
ks resulting from C's permissions are exe
uted in the 
ode B). The�rst overhead, whi
h is the expensive one, needs to be performed only on
e forea
h C involved in the database. This 
ould be handled in a prepro
essing run.At the implementation level, H 
ould behave like an applet that Org down-loads from V eri.3 ImplementationOur 
urrent prototype implementation uses the Coq Proof Assistant [10℄. Coqimplements the Cal
ulus of Indu
tive Constru
tions (CIC), whi
h is a highlyexpressive logi
. It 
ontains within it a fun
tional programming language that weuse to express the sour
e 
ode, S, of the data mining program examples dis
ussedin this paper. Permissions, PC , are expressed as logi
al properties about theseprograms, also using CIC. The Coq system is intera
tive and provides step-by-step assistan
e in building proofs. We dis
uss its use below in building and
he
king a proof R(S; PC) of a property PC of an example program S.Our main 
riterion in 
hoosing a proof assistant was that it had to implementa logi
 that was expressive enough to in
lude a programming language in whi
hwe 
ould write our data mining programs, and also in
lude enough reasoningpower to reason about su
h programs. In addition, the programming languageshould be similar to well-known 
ommonly used programming languages. Amongthe several that met these 
riteria, we 
hose the one we were most familiar with.3.1 Proof Che
kingProof 
he
king is our enfor
ement me
hanism, insuring that programs meet thepermissions spe
i�ed by individuals. In Coq, proofs are built by entering 
om-mands, one at a time, that ea
h 
ontribute to the 
onstru
tion of a CIC termrepresenting the proof. The proof term is built in the ba
kground as the provingpro
ess pro
eeds. On
e a proof is 
ompleted, the term representing the 
ompleteproof 
an be displayed and stored. Coq provides 
ommands to replay and 
om-pile 
ompleted proofs. Both of these 
ommands in
lude a 
omplete 
he
k of the



proof. V eri 
an use them to 
he
k whether a given proof term is indeed a proofof a spe
i�ed property. Coq is a large system, and the 
ode for 
he
king proofsis only a small part of it. All of the 
ode used for building proofs need not betrusted sin
e the proof it builds 
an be 
he
ked after 
ompletion. The 
ode for
he
king proofs is the only part of our enfor
ement me
hanism that needs to betrusted. As stated, V eri is a generally trusted organization, so to ensure thistrust V eri must 
ertify to all others that it trusts the proof 
he
ker it is using,perhaps by implementing it itself.3.2 Veri�able Link Between the Sour
e Code and the Obje
t CodeAs pointed out in Se
t. 2, the s
heme proposed here relies on a veri�able linkL(B;S) between the sour
e 
ode and the obje
t 
ode of the data mining program.Sin
e theorems and proofs refer to the sour
e programs, while the operations areperformed by the obje
t program, and the sour
e S and obje
t B reside withdi�erent players of the proposed s
heme, we must have a guarantee that all theproperties obtained for the sour
e program are true for the 
ode that is a
tuallyexe
uted. This is not a data mining problem, but a literature sear
h and personalqueries did not reveal an existing solution, so we propose one here.In a simplisti
 way, sin
e V eri has a

ess to S, V eri 
ould 
ompile S withthe same 
ompiler that was used to obtain B and 
ompare the result with whatOrg is running. But 
ompilation would be an extremely 
ostly operation to beperformed with ea
h veri�
ation of L(B;S). We propose a more eÆ
ient s
heme,based on the 
on
ept of digital watermarking. S, whi
h, in pra
ti
e, is a ri
hlibrary stru
ture, 
ontaining libraries, make�les et
., is �rst tar'ed. Then theresulting sequential �le tar(S) is hashed by means of one of the standard hashfun
tions used in the Se
ure So
kets Layer standard SSL, implemented in all the
urrent Internet browsers. The Message Digest fun
tion MD5 [9℄ is an exampleof su
h a �le �ngerprinting fun
tion. The resulting, 128-bit long �ngerprint ofS is then embedded in random lo
ations within B in the form of DO NOTHINGinstru
tions whose address part is �lled with the 
onse
utive bits forming theresult of MD5.This en
oding inside B will originally be produ
ed by a 
ompiler, engineeredfor this purpose. Lo
ations 
ontaining the �ngerprint|a short sequen
e of inte-ger numbers|are part of the de�nition of L(B;S) and are known to V eri. V erineeds to produ
e MD5(tar(S)) and 
he
k these lo
ations within B a

ordingly.The whole pro
ess of 
he
king of L(B;S) 
an be performed by a spe
ializedapplet, ensuring that B is not modi�ed or 
opied.3.3 Permissions LanguageThe logi
 implemented by Coq is 
urrently used as our language of permissions.More spe
i�
ally, any predi
ate expressible in Coq whi
h takes a program as anargument is 
urrently allowed. Ea
h su
h predi
ate 
omes with type restri
tionson the program. It spe
i�es what the types of the input arguments to the programmust be, as well as the type of the result. An example is given in the next se
tion.



3.4 IssuesThe permissions language is 
urrently very general. We plan to design a languagethat is easy for users to understand and use, and 
an be translated to statementsof theorems in Coq (or some other theorem prover).As mentioned, a proof in Coq is built intera
tively with the user supplyingevery step. Having a smaller permissions language targeted to the data miningappli
ation will allow us to 
learly identify the 
lass of theorems we want tobe able to prove. We will examine this restri
ted 
lass and develop te
hniquesfor automating proof sear
h for it, thus relieving mu
h of the burden of �ndingproofs 
urrently pla
ed on either the data mining tool developer or Org. Theseautomated sear
h pro
edures would be
ome part of the tools and building blo
ksprovided by data mining software developers.In our Coq solution des
ribed so far, and illustrated by example in the nextse
tion, we implement sour
e 
ode S using the programming language in Coq.We a
tually began with a Java program, and translated it by hand to Coq sothat we 
ould 
arry out the proof. In pra
ti
e, proofs done dire
tly on a
tual
ode supplied by data mining software developers would be mu
h more diÆ
ult,but it is important to keep a 
onne
tion between the two. We would like to morepre
isely de�ne our translation algorithm from Java to Coq, and automate asmu
h of it as possible. For now, we propose that the data mining tool developersperform the translation manually, and in
lude a des
ription of it as part of thedo
umentation provided with their tools.In the domain of Java and se
urity, Coq has also been used to reason aboutthe JavaCard programming language for multiple appli
ation smart
ards [3℄, andto prove 
orre
tness properties of a Java byte-
ode veri�er [4℄.4 ExampleWe present an example program whi
h performs a database join operation. Thisprogram a

ommodates users who have requested that their data not be usedin a join operation by ignoring the data for all su
h users; none of their datawill be present in the data output by the program. We present the program anddis
uss the proof in Coq. We �rst present the syntax of the terms of CIC usedhere. Let x and y represent variables and M , N represent terms of CIC. The
lass of CIC terms are de�ned using the following grammar.Prop j Set jM = N j M ^N j M _N j M ! N j :M j 8x :M:N j 9x :M:Nx j MN j [x : M ℄N j x fy1 :M1; : : : ; yn :Mng jCase x :M of M1 ) N1; : : : ;Mn ) NnThis set of terms in
ludes both logi
al formulas and terms of the fun
tional pro-gramming language. Prop is the type of logi
al propositions, whereas Set is thetype of data types. For instan
e, two data types that we use in our example are



the primitive type for natural numbers and user-de�ned re
ords. In Coq thesetypes are 
onsidered to be members of Set. All the usual logi
al 
onne
tives forwell-formed formulas are found on the se
ond line. Note that in the quanti�edformulas, the type of the bound variable, namely M is given expli
itly. N is therest of the formula whi
h may 
ontain o

urren
es of the bound variable. CICis a higher-order logi
, whi
h means for instan
e, that quanti�
ation over predi-
ates and fun
tions is allowed. On the third line,MN represents appli
ation, forexample of a fun
tion or predi
ate M to its argument N . We write MN1 : : : Nnto represent (((MN1) : : :)Nn). The syntax [x :M ℄N represents a parameterizedterm. For instan
e, in our example, N often represents a fun
tion that takes anargument x of type M .The term x fy1 : M1; : : : ; yn : Mng allows us to de�ne re
ord types, wherey1; : : : ; yn are the �eld names, M1; : : : ;Mn are their types, and x is the nameof the 
onstant used to build re
ords. For example, a new re
ord is formed bywriting xN1; : : : ; Nn, where for i = 1; : : : ; n, the term Ni has type Mi and is thevalue for �eld yi. For our example program, we will use three re
ords. One ofthese re
ords, for example is the following used to store payroll information.Re
ord Payroll : Set :=mkPay fPID : nat; JoinInd : bool ; Position : string ; Salary : natg:The Re
ord keyword introdu
es a new re
ord in Coq. In this 
ase its name isPayroll . The types nat and bool are primitive types in Coq, and string is atype we have de�ned. The JoinInd �eld is the one whi
h indi
ates whether ornot (value true or false , respe
tively) the person who owns this data has givenpermission to use it in a join operation. The mkPay 
onstant is used to buildindividual re
ords. For example, if n; b; s; and m are values of types nat, bool ,string , and nat , respe
tively, then the term (mkPay n b s m) is a Payroll re
ordwhose PID value is n, JoinInd value is b, et
.A partial de�nition of the other two re
ords we use is below.Re
ord Employee : Set :=mkEmp fName : string ; EID : nat; : : :g:Re
ord Combined : Set :=mkComb fCID : nat; CName : string ; CSalary : nat; : : :g:The Employee re
ord is the one that will be joined with Payroll . The PID andEID �elds must have the same value and JoinInd must have value true in orderto perform the join. The Combined re
ord is the result of the join. The CID�eld represents the 
ommon value of PID and EID. All other �elds 
ome fromeither one or the other re
ord.In general, how do the di�erent players know the names of the �elds indi�erentDs? Firstly, names of the sensitive �elds 
ould be standardized, whi
h ina way is already happening with XML. Alternatively, in a few databases generallyrelied on, e.g. government health re
ords or driving re
ords, these names wouldbe dis
losed to V eri. In this example, for simpli
ity we spe
ify exa
tly what�elds are in ea
h re
ord. We 
ould alternatively express it so that the user'spriva
y 
ould be ensured independently of the exa
t form of these re
ords (aslong as they both have an ID �eld, and at least one of them has a JoinInd �eld).



The De�nition keyword introdu
es a de�nition in Coq. The following de�nes afun
tion whi
h takes an Employee and Payroll re
ord and returns the Combinedre
ord resulting from their join.De�nition mk Combined : Employee ! Payroll ! Combined :=[E : Employee℄[P : Payroll ℄(mkComb (EID E) (Name E) (Salary P ) : : :):The term (EID E) evaluates to the value of the EID �eld in re
ord E. The CID�eld of the new re
ord is obtained by taking EID from E, CName is obtainedby taking Name from E, CSalary is obtained by taking Salary from P , et
.The main fun
tion implementing the join operation is de�ned in Coq as:Fixpoint Join [Ps : list Payroll ℄ : (list Employee)! (list Combined) :=[Es : list Employee℄Cases Ps ofnil ) (nil Combined)j (
ons p ps) ) (app (
he
k JoinInd and �nd employee re
ord p Es)(Join ps Es))end:FixPoint indi
ates a re
ursive de�nition. We represent the set of payroll re
ordsin the database using the built in datatype for lists in Coq, and similarly for theother sets. Join takes lists Ps of payroll re
ords and Es of employee re
ords asarguments, and is de�ned by 
ase on the stru
ture of Ps using the Case syntaxpresented above. In general, to evaluate the expressionCase x :M of M1 ) N1; : : : ;Mn ) Nnthe argument x of type M is mat
hed against the patterns M1; : : : ;Mn. If the�rst one that mat
hes is Mi, then the value Ni is returned. In this example,Ps is either the empty list (nil) or the list (
ons p ps) with head p and restof the list ps. In the �rst 
ase, an empty list of 
ombined re
ords is returned.In the se
ond 
ase, the fun
tion 
he
k JoinInd and �nd employee re
ord (notshown here) is 
alled. Note that it takes a single Payroll re
ord p and the entirelist of Employee re
ords Es as arguments. It is de�ned by re
ursion on Es. Ifa re
ord in Es is found (1) whose EID mat
hes the PID of p, and (2) whoseJoinInd �eld has value true, then mk Combined is 
alled to join the two re
ords.A list of length 1 
ontaining this re
ord is returned. Otherwise, an empty list ofCombined re
ords is returned. Fun
tion app is Coq's append fun
tion used to
ombine the results of this fun
tion 
all with the re
ursive 
all to Join.As stated in the previous se
tion, player C states permissions as a predi
atePC that must hold of programs S. In this example, Join is the program S. PC
an be expressed as the following de�nition where S is the formal parameter:De�nition P
 :=[S : ((list Payroll)! (list Employee)! (list Combined))! Prop℄8Ps : list Payroll :8Es : list Employee:(UniqueJoinInd Ps)!8P : Payroll :(In P Ps)! ((JoinInd P ) = false)!:9C : Combined((In C (S Ps Es)) ^ ((CID C) = (PID P ))):



This predi
ate states that for any payroll re
ord P with a JoinInd �eld withvalue false , there will be no 
ombined re
ord C in the output of the 
ode S su
hthat the CID �eld of C has a value the same as the PID �eld of P .The theorem that is written PC(S) in the previous se
tion is obtained inthis 
ase by applying the Coq term P
 to Join (written (P
 Join) in Coq). Byrepla
ing the formal paramter S by the a
tual parameter Join and expandingthe de�nition of P
, we obtain the theorem that we have proved in Coq. Arequest to Coq's proof 
he
king operation to 
he
k this proof is thus a requestto verify that the preferen
es of the user are enfor
ed by the Join program.In the theorem, the 
onstant In represents list membership in Coq. TheUniqueJoinInd predi
ate is a 
ondition whi
h will be satis�ed by any well-formeddatabase with only one payroll re
ord for ea
h PID. We omit its de�nition.The proof of (P
 Join) pro
eeds by stru
tural indu
tion on the list Ps. Itmakes use of seven lemmas, and the whole proof development is roughly 300lines of Coq s
ript. Compiling this proof s
ript (whi
h in
ludes fully 
he
king it)takes 1 se
ond on a 600MHz Pentium III running linux.5 A

eptan
eIn a design of a system whi
h would be used by many di�erent players, 
loseattention needs to be paid to their 
on
erns and interests, lest the system willnot be a

epted. Firstly, individuals C need to be given an easy tool in whi
h toexpress their positive and negative permissions. In the design of the permissionslanguage, we are taking into a

ount the kind of data being mined (di�erent Ds),and the s
hema of pro
essing (joins, di�erent 
lassi�ers, et
). Initially, a 
losedset of permissions 
ould be given to them, from whi
h they would 
hoose theirpreferen
es. Su
h permissions 
ould be en
oded either on a person's smart 
ard,or in C's entry in the Publi
 Key Authority dire
tory. More advan
ed users 
oulduse a symboli
 language in whi
h to design their permissions. Su
h a languageneeds to be designed, 
ontaining the typi
al database and data mining/ma
hinelearning operations.Se
ondly, who 
ould be the V eri organization? It would need to be a gen-erally trusted body with strong enough IT resour
es and expertise to use aspe
ial-purpose proof 
he
ker and perform the veri�
ations on whi
h the s
hemeproposed here is based. One 
ould see a large 
onsumer's asso
iation playingthis role. Alternatively, it 
ould be a 
ompany whi
h makes its mandate �ghtingpriva
y abuses, e.g. Junkbusters.Thirdly, if the s
heme gains wider a

eptan
e, developers of data miningtools 
an be expe
ted to provide theorems (with proofs) that their software Srespe
ts the standard permissions that Cs spe
ify and V eri supports. Thesetheorems and their proofs will be developed in a standard language known byboth the developers and V eri; we use Coq as the �rst 
on
eptual prototype ofsu
h a language.Fourthly, what 
an be done to make organizations involved in data mining(Org in this proposal), and tools providers, a

ept the proposed s
heme? We



believe that it would be enough to re
ruit one large Org and one re
ognized toolprovider to follow the s
heme. The fa
t that, e.g., a large insuran
e 
ompanyfollows this approa
h would need to be well publi
ized in the media. In addition,V eri would grant a spe
ial logo, e.g. \Green Data Miner", to any Org 
erti�ed tofollow the s
heme. The existen
e of one large Org that adheres to this proposalwould 
reate a subtle but strong so
ial pressure on others to join. Otherwise,the publi
 would be led to believe that Orgs that do not join in fa
t do notrespe
t priva
y of the people whose data they 
olle
t and use. This kind ofsnowball model exists in other domains; it is, e.g., followed by Transparen
yInternational.6 Dis
ussion and Future WorkThe paper introdu
es a new method whi
h implements a me
hanism enfor
ingdata ownership by the individuals to whom the data belongs. This is a pre-liminary des
ription of the proposed idea whi
h, as far as we know, is the �rstte
hni
al solution guaranteeing priva
y of data owners understood as their full
ontrol over the use of the data, providing veri�able Use Limitation Prin
iple,and supplying a me
hanism for opt-in data 
olle
tion.The method is based on en
oding permissions on the use of the data as the-orems about programs that pro
ess and mine the data. Theorem proving te
h-niques are then used to express the fa
t that these programs a
tually respe
tthe permissions. This initial proposal outlines the method, des
ribes its 
ompo-nents, and shows the detailed example of the en
oding. We rely on some of theexisting tools and te
hniques for representing the permissions and for 
he
kingthe theorems about the 
ode that 
laims to respe
t them. We also dis
uss someof the auxiliary te
hniques needed for the veri�
ation.We are 
urrently working on a prototype of the system des
ribed in thispaper. This prototype uses some of the Weka's data mining fun
tions as A.We translate the permission-implementing modi�
ation of the Weka 
ode intoCIC's fun
tional language and build the proof that the CIC 
ode respe
ts thepermission stated above. Coq proof 
he
king then automati
ally 
he
ks that thetheorem about the modi�ed 
ode is true, whi
h guarantees that the user's 
on-straint is respe
ted by the modi�ed Weka 
ode. Furthermore, we are 
onsideringhow the experien
e with Weka 
ould be extended to one of the 
ommer
ial datamining systems.A lot of work is left to implement the proposed method in a robust and ef-�
ient manner, allowing its wide adoption by data mining tool developers andorganizations that perform data mining, as well as by the general publi
. A per-mission language a

eptable for an average user must be designed and tested.A number of tools assisting and/or automating the a
tivities of di�erent playersneed to be developed. Firstly, a 
ompiler of the permissions language into theformal (here, CIC) statements is needed. Another tool assisting the translationof live 
ode (e.g. Java) into the formal representation (CIC) must also be devel-oped. Our vision is that with the a

eptan
e of the proposed method su
h for-



mal representation will be
ome part of the standard do
umentation of the datamining software. Finally, a tool assisting 
onstru
tion of proofs that programsrespe
t the permissions, and eventually building these proofs automati
ally, isalso needed.An organization sympatheti
 to the proposed approa
h and willing to imple-ment and deploy it on a prototype basis needs to be found. This Org will not onlyprote
t the owners of the data, but 
an also a
t as a for-pro�t data provider. Thelatter aspe
t is possible as the proposed method supports an opt-in approa
h todata 
olle
tion, based on the user's expli
it 
onsent. A 
ommer
ial me
hanismrewarding the opting-in individuals 
ould be worked out by this organizationand tested in pra
ti
e.A
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