
An Implementation of a Verification Condition
Generator for Foundational Proof-Carrying Code

Jiangong Weng and Amy Felty
School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada

{jweng014,afelty}@site.uottawa.ca

Abstract—Proof-carrying code (PCC) is a technique that ad-
dresses the problem of mobile code safety. It is a mechanism
in which a code producer provides both code and a proof
certifying that the code will run safely on a code consumer’s
machine. The code consumer or the host system will validate the
proof against a safety policy before executing the source code.
Foundational proof-carrying code (FPCC) aims to minimize the
amount of code that must be trusted (the “trusted computing
base” or TCB) with the goal of providing more flexibility and
increased security. In both PCC and FPCC, the verification-
condition generator (VCG) constructs the statement of the safety
theorem from the source code, and is an important part of the
TCB. This paper presents an implementation of a VCG based on
a sound set of Hoare-style rules for machine instructions in the
context of FPCC. The implementation in OCaml is described
and examples illustrating the approach are given. The output
of our VCG is a list of verification conditions that are directly
inserted into a proof script that serves as input to the Coq proof
assistant, and represents an important part of the safety proofs
of our programs. We also present examples showing how these
verification conditions are used to complete the proofs of safety.
This work represents an important step in automating proofs for
PCC.

I. INTRODUCTION

The starting point for our work is foundational proof-
carrying code (FPCC) as it is presented in [1], which adopts
the approach introduced in [2], [3]. In [1], several examples
are presented in detail based on proofs done interactively using
the Coq Proof Assistant [4]. In particular, example machine
language programs are given, a set of Hoare-style rules are
presented and used to generate verification conditions by hand,
and the Coq proofs are described in some detail. The examples
illustrated the general structure of such proofs, much of which
is repetitive and can be automated. In this paper, we make
significant progress toward automating such proofs. Our goal
is to automate as much as possible, with full automation for
a large class of programs, but leaving open the possibility
of completing proofs interactively instead of giving up when
automation is difficult. Thus we build a tool that currently
generates Coq script that can be read into Coq as a proof with
holes that can be filled in by the user. We should ultimately
be able to completely automate a large class of proofs, but we
don’t want to give up when automation does not fully succeed.
In the latter case, the automatically generated incomplete proof
must be readable by users who will fill in the details. This
requirement has an important impact on the design of our
tool.

Our verification condition generator (VCG) is implemented
in Objective Caml (OCaml), chosen primarily because this
kind of functional language is good for manipulating formulas
and programs as data. The input is a machine code program, a
precondition, a postcondition, and possibly some hints, which
are formulas representing preconditions for particular lines of
code that are generated automatically by a certifying compiler.
The work described in this paper directly extends the original
proof-carrying code work [5], which includes a VCG and a
certifying compiler. Our VCG can be viewed as an extension
of the one in [5], [6] that handles the extensions required for
a semantic approach to FPCC. The actual implementation of
the VCG consists of the following three steps:

1) We build a lexer and parser using a parser generator.
This implementation is straightforward. We define data
types in OCaml for instructions and formulas. The input
is translated to the corresponding internal data structures.
In particular, the program becomes a list of instructions,
and the other inputs become a list of formulas annotated
by line numbers. The hints are annotated with the
(relative) address in memory where the corresponding
machine instruction is stored, the precondition is anno-
tated with 0, and the postcondition is annotated with the
address of the last instruction.

2) Starting with the last machine instruction and the post-
condition (VCpost), we first generate an output precon-
dition (VCpre) for this line using Hoare-style rules for
machines instructions. The output VCpre is seen as the
new input VCpost for next instruction moving backward,
and the rest of VCs are generated automatically using a
bottom-up strategy. Together, the calculated VCs repre-
sent a kind of program invariant, where each formula is
associated with a line of code and represents the part of
the invariant that holds just before that line is executed.
Any input hints become part of the invariant for the line
of code that they are associated with. Generating these
invariants is the main step that we discuss throughout
this paper.

3) We use a pretty-print method to produce Coq script
from the internal representation of the machine code and
verification conditions, to be used directly as input to
Coq. Again, this implementation is straightforward.

The generated Coq file contains a series of definitions as
well as a few simple lemmas whose proofs can be generated
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automatically. This file imports four libraries that were used
as the basis for the work in [1], two of which are modified
versions of libraries developed for the Coq formalization of
syntactic FPCC [7]. Our system, like any FPCC system, is built
in layers so that reasoning about particular programs is done
at a fairly high level. At the highest level is the safety theorem,
which is the main theorem proved in these libraries. It states
that (1) if the invariant holds before executing the program,
and the program satisfies the properties of (2) progress and
(3) preservation, then the program is safe to execute whenever
the precondition holds. In PCC in general, the definition of
safety can vary, and ideally depends on what code consumers
designate as safe execution on their own machines. The safety
policy is specified as a set of inference rules. Here, we
take memory safety as an example, which allows the code
consumer to restrict the parts of memory that can be read
from and written to. The Coq libraries contain the necessary
infrastructure for proving programs are safe with respect to this
safety policy. These libraries along with the Coq file generated
by our VCG provide all the infrastructure that is needed to
complete proofs of the above three properties for a specific
program. Completing a proof of safety means instantiating
the three hypotheses of the safety theorem with a particular
program and proving them, thus establishing that the program
is safe to execute. Progress states that whenever the invariant
holds, it is possible for execution to proceed with a safe step.
Preservation states that whenever a safe step is made, the new
state that is reached also satisfies the invariant. The proofs of
all three of these properties can be mostly automated, but this
remains as future work.

In Section II, we present the internal data structures that
are used to encode machine instructions and formulas. Then
in Section III, we discuss the VCG algorithm and give details
for two machine instructions, which is followed in Section IV
by an example illustrating the algorithm. In Section V, we
discuss the Coq proofs of safety, illustrating how the results
of the VCG fit into proofs as a whole, and in Section VI, we
conclude and discuss related and future work.

II. DATA TYPE DEFINITIONS

We begin by introducing formal definitions for basic terms,
machine instructions, and formulas used in defining invariants.
We present them in Fig. 1 with syntax close to OCaml’s
recursive definitions. The MemExp constructor in the type
for terms will be composed of a list of terms of the form
HasValue(n,v) and a term that denotes a memory. Here,
HasValue has two arguments n and v, which express a
mapping from address n to value v, and it is used to describe
memory states, e.g., after execution of a store instruction
which updates the memory. We use the mathematical notation
m[n 7→ v] to define such memory updates, where m is the
original memory, n is an address in m and v is its new
value. When we want to look up the value in memory m
at address a, we write m(a). The expression m[n 7→ v](a)
represents the value at address a in a new memory obtained
by updating m at address a with value v. (Thus if a is n, then

type term =
num of int

| reg of int.
| Var of string
| Plus of term * term
| HasValue of term * term
| MemExp of term list * term

type instr =
Addc of reg * reg * num

| Add of reg * reg * reg
| St of reg * num * reg
| Mov of reg * num
| Ld of reg * reg * num
| Jmp of reg
| Beq of reg * reg * num
| Bgt of reg * reg * num

type form ->
True

| False
| And of form * form
| Imp of form * form
| Forall of term * form
| Exists of term * form
| Geq of term * term ( >= )
| Eq of term * term (=)
| Noteq of term * term (!=)
| Gthan of term * term (>)
| Leq of term * term (<=)
| Preds of string * term list
| HasType of term * term list * term * string

Fig. 1. OCaml Definitions for Basic Data Types

the value is v.) In addition, if there are several updates, e.g.,
three store instructions in a row, then a new memory can be
expressed as m[n1 7→ v1, n2 7→ v2, n3 7→ v3]. We abbreviate
this new memory as m′ and refer to it in the examples
below. In our OCaml notation, m′ is represented as an or-
dered list: [HasValue(n3,v3)), HasValue(n2,v2),
HasValue(n1, v1)]. Note that m does not appear in the
OCaml term. In our programs, m is implicit and can always
be recovered from context.

In the definition of type instr, the types reg and num
are actually synonyms for term, used to indicate what form
of term appears in each argument. For example, consider
the instruction ADDC r1 := r8 + 0. The first constructor
Addc of type instr in Fig. 1 takes three arguments. For
this example, the first represents r1 as Reg(1), the second
term represents r8 as Reg(8), while the third represents 0
as Num(0). Hence, the corresponding OCaml term would be
Addc(Reg(1), Reg(8), Num(0)). The other instruc-
tions are similar.

In the definition of the type form, clearly And and Imp
represent conjunction and implication each taking two argu-
ments. The quantifiers Forall and Exists both have a term
argument to represent the bound variable, built using construc-
tor Var from the definition of term. The second argument
contains a formula that may have occurrences of this bound



variable. For instance, the statement ∀x, x = 1 ⇒ x > 0 has
the OCaml notation:

Forall(Var(x), Imp(Eq(Var(x), Num(1)),
Gthan(Var(x), Num(0)))).

Constructors for binary predicates on terms are also given in
Fig. 1 along with the mathematical notation for the operators
they represent. Note that Preds takes a string and a term
list. The former represents a predicate name which takes as
arguments all the terms in the latter. For example, we can write
Preds("writable", [Num(n)]) to represent the fact
that the memory address n is writable. The Preds constructor
is not limited to defining memory attributes, but could also be
used to express any user-defined predicates used in the safety
proof. Thus, introducing Preds allows our implementation to
be parameterized.
HasType is used for the typing judgment, which in math-

ematical notation is (w :m,A t), meaning that w is a term
having type t in memory m with allocation set A (denoting
a set of allocated memory addresses). Reasoning about types
is important for proving memory safety, which as mentioned,
is the central component of the safety policy considered in
this paper. In this context, typing judgments are fairly low-
level, and depend on the contents of memory and on the set of
allocated memory addresses. For instance, the typing judgment
(r1 :m′,A′ intlist) states that the contents of r1 is an address
whose valuse has type intlist in m′ with A′, where we define
A′ to be the allocation set {w|r8 < w ∧ w < start} for
some fixed address start and some allocation pointer r8. This
judgment is represented in OCaml as:

HasType(Reg(8), [HasValue(n1, v1),
HasValue(n2, v2),
HasValue(n3, v3)],

Reg(1),"intlist")

where the allocation set is represented simply by the allocation
pointer Reg(8) as the first argument and memory m′ is
represented as discussed earlier as the second argument.

III. IMPLEMENTATION OF THE VCG

As mentioned earlier, a bottom up approach is used for
generating each verification condition (step 2 in Section I),
and the generation is based on Hoare-style rules for machine
instructions, which are shown here in Fig. 2. There is one
rule for each machine instruction and these rules are axioms.
The mov rule is a version of the usual assignment rule where
the precondition is obtained by starting with the postcondition
and replacing occurrences of the destination register rd with
constant c. The two rules for addition are similar to the mov
rule. In the ld rule, rs + c is an address, and the value at that
address in memory is the value that replaces rd. In addition
rs + c must be a readable address, i.e., readable(rs + c) must
be provable from the safety policy. In the st rule, it is the entire
memory in the postcondition that is replaced by an expression
representing a new memory, to obtain the precondition. This
new memory is the same as the old except for an update at

one address (address rd + c). In addition, the precondition
assures that address rd + c is writable. The formula Pc in the
rules for the conditional jump instructions (bgt and beq) is
the precondition of the statement at relative location c, which
is the precondition of the line of code at the jump point. In
fact, we require input hints for all jump points, which insures
that the precondition for these jump instructions can always
be computed.

Our formal proofs in Coq do not implement these rules
directly. Instead, the Coq libraries implement the FPCC ap-
proach which encodes the low-level semantics of machine
instructions directly, and defines safety directly from this
semantics. The rules are presented here to illustrate the form
of the invariant generated by our VCG. This invariant is used
directly in the proof; it is needed to complete the proofs of
progress and preservation.

The input for each step of the VCG is a machine instruction
and its postcondition (the second and third elements of the
Hoare triples in Fig. 2), and from these we compute the
precondition (the first element of a Hoare triple), which is
then used as the postcondition for the preceding instruction.
Thus our VCG starts with the postcondition of the program
as a whole and the last machine instruction, and continues
backward, until it computes the precondition of the first in-
struction. The output is a list containing all of these verification
conditions. We present the details for two instructions. The
others implement the rules from Fig. 2 in a similar fashion.

Fig. 3 contains the top-level function, which calls a helper
function specific to the input instruction. Note that for the ST
instruction, there is an additional conjunct added to express
the constraint that the memory location that will be written
to is indeed a writable location. Similarly, the clause for the
LD instruction includes the constraint that reading from the
specified memory location is allowed. Figures 4 and 5 contain
the two helper functions specific for the ADDC and ST
instructions, each having auxiliary functions used to process
terms that appear as arguments to Preds and HasType.
When the input instruction has the form ADDC rd := rs+ c,
note that the main work is done by updAddcTerm in the
clause for Reg(i). In the case when i is d, rd is replaced
by rs + c. The definition of updAddcTerms is omitted.
This function is a standard map function on lists, in this case
applying updAddcTerm to each of the elements of the input
list.

Note that most of the definition of updSt in Fig. 5 is omit-
ted since its structure is the same as updAddc in Fig. 4. In the
definition of updSt, the main work is done on subformulas
of the form HasType(ta,ts,tb,ty) or subterms of the
form MemExp(ts,t) occurring in the postcondition. In these
cases updStMem is called to add a new HasValue pair to
the list representing memory. The function append is the
standard one for concatenating lists.

IV. EXAMPLES

To illustrate the operation of the VCG, we give some
examples. The first illustrates the execution of the algorithm



mov
{P [c/rd]} MOV rd := c {P}

addc{P [rs + c/rd]} ADDC rd := rs + c {P} add{P [rs1 + rs2/rd]} ADD rd := rs1 + rs2 {P}

ld{P [m(rs + c)/rd] ∧ readable(rs + c)} LD rd := m(rs + c) {P}

st
{P [m[rd + c 7→ rs]/m] ∧ writable(rd + c)} ST m(rd + c) := rs {P}

bgt
{(rs1 > rs2 → Pc) ∧ (¬(rs1 > rs2)→ P )} BGT (rs1 > rs2) c {P}

beq
{(rs1 = rs2 → Pc) ∧ (rs1 6= rs2 → P )} BEQ (rs1 = rs2) c {P}

{A}S1{C} {C}S2{B} sequence
{A}S1;S2{B}

A⇒ A′ {A′}S{B′} B′ ⇒ B Implied
{A}S{B}

Fig. 2. Hoare-style Rules for Machine Instructions

Main update algorithm:
Input: 1) I (a machine instruction) 2) VCpost (the postcondition of I)
Output: VCPre (a verification condition representing the precondition of I)

match I with
Addc(_, _, _) -> updAddc(I,VCpost)

| Add(_, _, _) -> updAdd(I,VCpost)
| St(Reg(r), Num(n), _) -> And(updSt(I,VCpost), writable(Plus(Reg(r),Num(n))))
| Mov(_, _) -> updMov(I,VCpost)
| Ld(_, Reg(r), Num(n)) -> And(updLd(I,VCpost), readable(Plus(Reg(r),Num(n))))
| Jmp(_) -> updJmp(I,VCpost)
| Bgt(_, _, _) -> updBgt(I,VCpost)
| Beq(_, _, _) -> updBeq(I,VCpost)

Fig. 3. Algorithm for Computing Preconditions

with input instruction ADDC r3 := r7+1 and postcondition:

(r3 > 0 ∧ r1 :m[r2 7→r3,r6 7→0],A′ intlist)

where A′ represents the allocation set {w|r8 < w∧w < start}
as before. We call the main update algorithm in Fig. 3 with
the above arguments as inputs I and VCpost, shown below
in OCaml notation.

Addc(Reg(3), Reg(7), Num(1))
And(Gthan(Reg(3), Num(0)),

HasType(Reg(8),
[HasValue(Reg(2),Reg(3)),
HasValue(Reg(6), Num(0))],
Reg(1), Var("intlist")))

This function applies updAddc in Fig. 4 to VCPost to
obtain VCpre. The steps are shown below. The first argument
I to all function calls that are shown is omitted, since it does
not change. The successive function calls are underlined, and
term replacements done by updAddcTerm are shown in bold.

And(updAddc(Gthan(Reg(3), Num(0))),
updAddc(HasType(Reg(8),

[HasValue(Reg(2),Reg(3)),
HasValue(Reg(6), Num(0))],

Reg(1), Var("intlist")))

And(Gthan(updAddcTerm(Reg(3)),
updAddcTerm(Num(0))),

HasType(updAddcTerm(Reg(8)),
updAddcTerms(
[HasValue(Reg(2),Reg(3)),
HasValue(Reg(6), Num(0))]),

updAddcTerm(Reg(1)),
Var("intlist")))

And(Gthan(Plus(Reg(7),Num(1)), Num(0)),
HasType(Reg(8),

[updAddcTerm(
HasValue(Reg(2),Reg(3))),



Update algorithm for Addc (updAddc):
Input: 1) I (a machine instruction) 2) VCpost (the postcondition of I)
Output: VCPre (a verification condition representing the precondition of I)

match VCpost with
And(P1, P2) -> And(updAddc(I,P1), updAddc(I,P2))

| Imp(P1, P2) -> Imp(updAddc(I,P1), updAddc(I,P2))
| Forall(Var(str), P) -> Forall(Var(str), updAddc(I,P))
| Exists(Var(str), P) -> Exists(Var(str), updAddc(I,P))
| Geq(t1, t2) -> Geq(updAddcTerm(I,t1), updAddcTerm(I,t2))
| Eq(t1, t2) -> Eq(updAddcTerm(I,t1), updAddcTerm(I,t2))
| Noteq(t1, t2) -> Noteq(updAddcTerm(I,t1), updAddcTerm(I,t2))
| Gthan(t1, t2) -> Gthan(updAddcTerm(I,t1), updAddcTerm(I,t2))
| Leq(t1, t2) -> Leq(updAddcTerm(I,t1), updAddcTerm(I,t2))
| Preds(Var(str), ts) -> Preds(Var(str), updAddCTerms(I,ts))
| HasType(ta, ts, tb, Var(str)) ->

HasType(updAddcTerm(I,ta), updAddCTerms(I,ts),
updAddcTerm(I,tb),Var(str))

Update algorithm for terms in VCpost of Addc (updAddcTerm):
Input: 1) I (a machine instruction) 2) term
Output: an updated term

match term with
Num(n) -> Num(n)

| Var(str) -> Var(str)
| Reg(i) -> match I with

Addc(Reg(d), Reg(s), Num(c)) ->
if (i=d) then Plus(Reg(s), Num(c)) else Reg(i)

| Plus (t1, t2) -> Plus(updAddcTerm (I,t1), updAddcTerm (I,t2))
| HasValue (t1, t2) -> HasValue(updAddcTerm (I,t1), updAddcTerm (I,t2))
| MemExp (ts, t) -> MemExp(updAddcTerms(I,ts), updAddcTerm(I,t))

Fig. 4. Computing the Preconditions for the ADDC Instruction

updAddcTerm(
HasValue(Reg(6), Num(0)))],

Reg(1), Var("intlist")))

And(Gthan(Plus(Reg(7),Num(1)), Num(0)),
HasType(Reg(8),

[HasValue(updAddcTerm(Reg(2)),
updAddcTerm(Reg(3))),

HasValue(updAddcTerm(Reg(6)),
updAddcTerm(Num(0)))],

Reg(1), Var("intlist")))

And(Gthan(Plus(Reg(7),Num(1)), Num(0)),
HasType(Reg(8),

[HasValue(Reg(2),
Plus(Reg(7),Num(1))),

HasValue(Reg(6), Num(0))],
Reg(1), Var("intlist")))

Thus, the result obtained as the value of VCPre at the last
step, in mathematical notation is:

(r7 + 1 > 0 ∧ r1 :m[r2 7→(r7+1),r6 7→0],A′ intlist)

The next example illustrates the algorithm applied to an
ST instruction. This time, the example input instruction is
ST m(r8 + 1) := r3 and the example postcondition is:

(r1 :m[r8+07→5],A′ intlist ∧m(r2) 6= 0)

with the same allocation set A′ as before. The input I and
VCpost to the main update algorithm in Fig. 3 in OCaml
notation is:

St(Reg(8), Num(1), Reg(3))
And(HasType(Reg(8),

[HasValue(Plus(Reg(8), Num(0)),
Num(5))],

Reg(1), Var("intlist")),
Noteq(MemExp([], Reg(2)), Num(0)))

This time, the top-level function applies updSt in Fig. 5,
and we have the following steps applied to VCpost to obtain
VCpre:

And(And(updSt(HasType(Reg(8),
[HasValue(Plus(Reg(8),

Num(0)),
Num(5))],



Update algorithm for St (updSt):
Input: 1) I (a machine instruction) 2) VCpost (the postcondition of I)
Output: VCPre (a verification condition representing the precondition of I)

match VCpost with
And(P1, P2) -> And(updSt(I,P1), updSt(I,P2))

| ...
| HasType(ta, ts, tb, Var(str)) ->

HasType(updStTerm(I,ta), updStMem(I,ts),
updStTerm(I,tb), Var(str))

Update algorithm for terms in VCpost of St (updStTerm):
Input: 1) I (a machine instruction) 2) term
Output: an updated term

match term with
Num(n) -> Num(n)

| Var(str) -> Var(str)
| Reg(i) -> Reg(i)
| Plus(t1, t2) -> Plus(updStTerm (I,t1), updStTerm (I,t2))
| HasValue(t1, t2) -> HasValue(updStTerm (I,t1), updStTerm (I,t2))
| MemExp(ts, t) -> MemExp(updStMem(I,ts), updStTerm(I,t))

Update algorithm for memory expressions in VCpost of St (updStMem):
Input: 1) I (a machine instruction) 2) ts (a list of terms)
Output: an updated list of terms

match I with
St(Reg(d), Num(c), Reg(s)) ->

append(updateStTerms(I, ts),[HasValue(Plus(Reg(d), Num(c)), Reg(s))])

Fig. 5. Computing the Preconditions for the ST Instruction

Reg(1), Var("intlist"))),
updSt(Noteq(MemExp([], Reg(2)),

Num(0)))),
writable(Plus(Reg(8), Num(1))))

Here, new subformulas and subterms are shown in bold as
they appear in each step. From this point on, we show only
the first 2 conjuncts, since the writable conjunct does not
change.

And(HasType(updStTerm(Reg(8)),
updStMem([HasValue(Plus(Reg(8),

Num(0)),
Num(5))]),

updStTerm(Reg(1)), Var("intlist")),
Noteq(updStTerm(MemExp([], Reg(2))),

updStTerm(Num(0))))

And(HasType(Reg(8),
[updStTerm(HasValue(Plus(Reg(8),

Num(0)),
Num(5))),

HasValue(Plus(Reg(8),
Num(1)),

Reg(3))],
Reg(1), Var("intlist")),

Noteq(MemExp(updStMem([]),
updStTerm(Reg(2))),

Num(0)))

And(HasType(Reg(8),
[HasValue(Plus(Reg(8), Num(0)),

Num(5)),
HasValue(Plus(Reg(8),Num(1)),

Reg(3))],
Reg(1), Var("intlist")),

Noteq(MemExp([HasValue(Plus(Reg(8),
Num(1)),

Reg(3))],
Reg(2)),

Num(0)))

Thus, the result obtained as the value of VCPre at the last
step, in mathematical notation is:

r1 :m[r8+07→5,r8+17→r3],A′ intlist ∧
m[r8 + 1 7→ r3](r2) 6= 0 ∧ writable(r8 + 1))

V. INTEGRATING THE VCG OUTPUT INTO A COQ PROOF

In this section, we briefly describe how the results of the
VCG, which as mentioned represent a program invariant, are
used in the Coq proof of safety for the program. As mentioned,
FPCC encodes the low-level semantics of machine instructions



safe(R,M, pc) := ∀R′,M ′, pc′.[(R,M, pc 7→∗ R′,M ′, pc′)⇒
∃R′′,M ′′, pc′′.(R′,M ′, pc′ 7→ R′′,M ′′, pc′′)]

Progress(Inv) := ∀R,M, pc.[Inv(R,M, pc)⇒
∃R′,M ′, pc′.(R,M, pc 7→ R′,M ′, pc′)]

Preservation(Inv) := ∀R,M, pc,R′,M ′, pc′.Inv(R,M, pc)⇒
(R,M, pc 7→ R′,M ′, pc′)⇒ Inv(R′,M ′, pc′)

Inv(R,M, pc) Progress(Inv) Preservation(Inv) safety
safe(R,M, pc)

Fig. 6. Definitions and Lemmas for Proving Safety

directly. The main building block for this semantics is the
definition of a step relation, which defines how the program
state changes during one step of computation. The state is
represented as a triple of the form (R,M, pc) where R is a
register bank, M is a memory, and pc represents the value of
the program counter. We write (R,M, pc 7→ R′,M ′, pc′) to
denote the step relation, where the triple on the left represents
the machine state before executing an instruction, and the triple
on the right represents the state after execution. We write
(R,M, pc 7→∗ R′,M ′, pc′) to denote its reflexive transitive
closure. For example, the state change resulting from a ST
instruction is expressed as the following clause in the definition
of the step relation:

ST m(rd + c) := rs ⇒
writable(Rd + c) ∧R′ = R ∧
M ′ = M [Rd + c 7→ Rs] ∧ pc′ = pc+ 1

where Rd and Rs are the values of the contents of rd and
rs, respectively, before the execution of the instruction. In the
new state after execution of a ST instruction, the register bank
remains unchanged, the memory is updated at address Rd +
c, and the program counter is incremented by 1. Note that
according to this definition, the step can only take place if the
location Rd + c is indeed writable.

The full invariant used in the proof has the general form:

Inv(R,M, pc) :=
[prog(M) ∧
((pc = 1 ∧ P1(R)) ∨ · · · ∨ (pc = n ∧ Pn(R)))] ∨
safe(R,M, pc)

Here, prog(M) is a predicate stating which instructions are
at which addresses in memory in the program, and is part of
the invariant because it is necessary to know that the code
does not get modified during execution. The main content
of the invariant is a formula with n disjuncts, where n is
the number of instructions. For i = 1, . . . , n, Pi represents
the verification condition generated for the ith instruction.
The last subformula, safe(R,M, pc) is included for the end
of the program, which can be viewed as a return statement
that is always safe. The part of the proof that uses it is
straightforward (and fully automated), so we do not discuss
it here. The definitions of safe , as well as those of progress
and preservation (described informally earlier), are shown in
Fig. 6 along with the precise statement of the safety theorem.

The definition of safe simply states that execution of a safe
program never gets stuck.

In proving the safety theorem, the proof that the invariant
follows from the precondition is usually very simple. The only
interesting parts of the proof left to be filled in after running
our VCG are the proofs of progress and preservation. Both
have the invariant as a hypothesis, which is used to break the
proof into cases. This is also done automatically, and the user
is left only to fill in the cases for each proof. Most cases of
the progress proof have the form:

(prog(M) ∧ pc = i ∧ Pi)⇒
∃R′ ∃M ′ ∃pc′ (R,M, i 7→ R′,M ′, pc′)

and most cases of the preservation proof have the form:

[(R,M, pc 7→ R′,M ′, pc′)∧ prog(M)∧ pc = i∧Pi]⇒ Pi+1.

Usually each case is simple and the proofs for each individual
instruction follow a particular pattern. For example, in a proof,
a case for a ST instruction is likely to be similar to other cases
for other ST instructions. If there were any difficulty in the
proof, it is likely to be at the jump points, though even these
are very often simple. Thus, as argued earlier, full automation
for a large class of programs should be possible.

It is worth noting that since we have implemented a seman-
tic approach to FPCC, primitive typing rules are not included.
Instead, we encode a semantics of types from first principles
and the typing rules are proved as lemmas. Proofs of safety
for individual programs will use typing rules, but whether they
are stated as axioms or proved as lemmas does not affect
the work described in this paper. Overall, though, since we
adopt an approach that replaces axioms with proofs from first
principles, the system as a whole is more trustworthy.

VI. RELATED AND FUTURE WORK

Though FPCC has the advantage of having a smaller TCB
than PCC as it was originally formulated, it still has some
components that must be trusted such as the proof checker,
which in our setting is Coq. We plan to examine replacing Coq
with simpler proof checkers such as the ones mentioned in [8]
that have been mechanically verified. Note that our VCG is
not part of the TCB, but is instead used to generate invariants
used in the premise of the safety theorem.

As discussed in Section III, jump instructions require hints
to be provided. Finding such hints by hand, especially for



a large program is a daunting task. Certifying compilers,
which can use information gained by analyzing the program
during compilation, can help by outputting hints that help with
reasoning. However, it might also be plausible for the code
producer to provide more details such as global invariants that
help can further help the compiler in finding such hints. This
is also the subject of future work.

One of the main areas of future work is to further automate
the proofs of progress and preservation. As discussed, these
two proofs are generally constructed by a series of rule
applications that follow a similar pattern. Exploiting these
patterns will allow more automation work to be done. In
particular, some additional proof tactics to automate this task
in Coq could be introduced.

Chang et. al. [9] argue that because there exist a variety of
code verification strategies, it is best to use a verifier that is
best suited to the code verification strategy. Most examples
of safety policies, including the ones considered here, have
been simple. The setting described here is general and flexible
and may be a good starting point for handling a variety of
strategies. This is also a subject of future work.

One subject of active current work is to extend the kinds
of safety policies that can be handled by this approach. We
are currently working on including pointers to our machine
language and defining the safety policy to rule out dangling
pointers. We also plan to incorporate the kinds of extended
policies considered in [8], which include non-interference and
resource control. As mentioned in that paper, FPCC has the
potential to support a wider range of security policies than
other approaches, and in addition can easily support various
different verification methods.

An important issue in PCC is the size of proofs (also
called certificates). It would be interesting to incorporate the
kind of certificate used in the reflective PCC approach [8],
which replaces deduction by computation (also using Coq),
and tends to result in smaller certificates. Certificate size is
also addressed in [10], where a proof is replaced by a smaller
proof generator program that is executed in a secure virtual
machine and is part of the TCB. It should be possible to apply
this kind of compression to the proofs generated in our setting.

Another goal is to leverage work on certificate transla-
tion [11]. In our setting, this would allow the difficult parts
of the proof to be done interactively using the higher-level
source program instead of the lower level machine program.
Certificate translation is used to translate complete proofs at
the higher level to complete proofs at the lower level. In doing
so, we may also be able to leverage the automation capabilities
of the JACK tool [12], which provides proof automation
for properties of Java programs, and translates them to the
bytecode level. JACK extends earlier work on the successful
automation in the LOOP [13] and ESC/Java2 [14] tools, with
the goal of obtaining a tool that fits into a general PCC system
usable by application developers.

Working in another direction, we can also exploit the
power of Coq to prove more complex properties of programs.
We do so by simply expressing the desired property as a
postcondition. If the property is difficult to prove, the user
will have to complete more of the proof interactively, but will
have access to Coq’s full power to do so. Here again, certificate
translation may help, since it would allow the user to complete
the proof at the level of the source program.
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M. Pavlova, and A. Requet, “JACK—a tool for validation of security
and behavior of java applications,” in Sixth International Symposium
on Formal Methods for Components and Objects, ser. Lecture Notes in
Computer Science, vol. 4709. Springer, 2007, pp. 152–174.

[13] J. van den Berg and B. Jacobs, “JACK—a tool for validation of security
and behavior of java applications,” in Seventh International Conference
on Tools and Algorithms form the Construction and Analysis of Systems,
ser. Lecture Notes in Computer Science, vol. 2031. Springer, 2001, pp.
299–312.

[14] J. van den Berg and B. Jacobs, “ESC/Java2: Uniting ESC/Java and JML,”
in Proceedings of the 2004 International Workshop on Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices, ser. Lecture
Notes in Computer Science, vol. 3362. Springer, 2005, pp. 108–128.


