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Part I: The A\Prolog Language

e Types and Terms
e First-Order Horn Clauses

e Implication and Universal Quantification in Goals
(First-Order Harrop Formulas)

e \-terms and Quantification over Functions and Predicates
(Higher-Order Horn Clauses)

e \Prolog (Higher-Order Hereditary Harrop Formulas)
e The Module System
e The L) Sublanguage

Extensions to Prolog

e polymorphic typing
e Due to hohc:
o higher-order programming
o A-terms as data structures
e Due to fohh:
o modular programming

o abstract data types

o hypothetical reasoning

Sublanguages of \Prolog

fohh L, hohh

fohc hohc

fohc first-order Horn clauses

fohh first-order hereditary Harrop formulas
hohc higher-order Horn clauses

hohh higher-order hereditary Harrop formulas

Kinds and Kind Declarations

e Primitive Types

o System Types
kind o type. (for propositions)
kind int type.
kind real type.
kind string type.
o User-Defined Types, e.g.,
kind node type.

e Type Constructors

kind list type -> type.
kind pair type -> type -> type.




Types
e System types: o, int, real, string
e User-introduced primitive types: node

e Type variables (denoted by capital letters)
e Constructed types

list string, pair int (list string)
e Functional types (includes predicate types)

int -> real -> string

int -> int -> o

o -> int -> o

(int -> int) -> real

list A > (A -> B) -> 1list B -> o

Note: — associates to the right, e.g.,
71 — T3 — 73 denotes 71 — (12 — T3).

Clauses and Goals

type true
type B
type =, =2,

type pi, sigm

type append
append nil X K.
append (X :: L)

?7- append (1
L==1(1::2::

o.
o —-> o0 —-> o.

; o ->o0 —> o.

a (A -> 0) > o.

infixr
infixr
infixr
infixr
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list A -> list A -> list A -> o.

K (X :: M) :- append L K M.

:: nil) (2 :: nil) L.

nil).

Declarations and Terms

type HH A -> list A -> list A.
infixr :: 5.

type nil list A.

kind a,b,c type.

type f a->b > c.

type s a.

type t b.

Term Syntax
tz= ¢ | X | =\t | X\t | (¢ t)
Curried Notation is Used

((f s) t) or (f s t) instead of £(s,t).
(f s) also allowed.

First-Order Horn Clauses

e Atomic Formulas:

A of type o whose top-level symbol is not a logical constant.

e Goal Formulas:

G:Z:T|A|G1/\G2|G1VG2|E|T$G

e Definite Clauses:

D:=A|GDA|VY,zD




Explicit Quantification

(3z B; D By) =Vz (B D By)

type adj, path node -> node -> o.

path XY :- adj X Z, path Z Y.
path X Y :- sigma z\(adj X z, path z Y).
pi x\(pi y\(path x y :-

sigma z\(adj x z, path z y))).
?- path a X.

?7- sigma x\(path a x).

First-Order Restrictions

e Types in type declarations are of order 0 or 1 (no nesting of —
to the left). Also, o only occurs as a target type. Note that the
types of pi and sigma are exceptions.

Example:
int, int -> int, int -> o, int -> int -> int
But not:

(int -> int) -> int, o -> o

e Clausal order is either 0 or 1.
Example:

adj a b.
path X Y :- adj X Z, path Z Y.
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Type and Clausal Order

e Order of a type expression:

ord(t) = 0 (for atomic type or type variable T)
ord(T; = 1) = maz(ord(m) + 1, ord(7s))

e Clausal order:

ord(A) = 0 (if A is atomic or T)
ord(B; A By) = maz(ord(By),ord(Bs))
ord(B; V By) = maz(ord(By),ord(Bs))
ord(By D By) = maz(ord(B;) + 1,0rd(B;))

ord(Vz B) = ord(B)
ord(3z B) = ord(B)
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First-Order Hereditary Harrop Formulas

e Goal Formulas:
Gu=T|A|GiANGy|G1VGy|F,2G|DDG|Vx G
e Definite Clauses:
D:=A|GD>A|V.zD

e First-order restrictions hold.

12




Goal-Directed Search

Goal-directed search is formalized with respect to uniform proofs.
See [Miller et. al., APAL 91]. Nondeterministic search is complete
with respect to intuitionistic provability.

Let ¥ be a set of type declarations and let P be set of program
clauses. Six primitive operations describe goal-directed search.

AND To prove G A Go from (X, P), attempt to prove both G; and
Gy from (%, P).

OR. To prove G V Gy from (X, P), attempt to prove either Gy or
Gy from (X, P).

INSTANCE To prove 3.z G from (X, P), pick a term ¢ of type T
and attempt to prove [t/z]G from (%, P).
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BACKCHAIN To prove an atomic goal A from (X, P}, the current
program P must be considered.

e If there is a universal instance of a program clause which is
equal to A, then we have a proof.

o If there is a program clause with a universal instance of the
form G D A then attempt to prove G from (X, P).

o If neither case holds then there is no proof of A from (X, P).
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AUGMENT To prove D D G from (%, P), attempt to prove G
from (X, PU{D}). Note that D is removed after the interpreter
succeeds or fails to prove G. Thus, the program grows and
shrinks dynamically in a stack based manner.

GENERIC To prove Y.z G from (X, P), introduce a new constant
¢ of type 7 and attempt to prove [¢/z]G from (¥ U {c}, P).

14

Logic Variables and Unification

e In INSTANCE a logic variable is used instead of “guessing” a
term.

e In BACKCHALIN logic variables are used to obtain a universal
instance of the clause, and unification is used to match the goal
with the head of the clause.

e Note that the AUGMENT operation may result in program
clauses containing logic variables.

e Because the constant ¢ in GENERIC must be new, unification
must be modified so that it prevents the variables in the goal
and program from being instantiated with terms containing c.

16




Equality and Conversion Implication and Universal Quantification in

Goals
® a-conversion:
Az.s = Ay.sly/z] provided y does not occur free in s. kind bug, jar type.
. type j jar.
* ﬂ-COIlVGI‘SIOI’l: type sterile, heated jar -> o.
()\x_s)t = g[t/w] type dead, bug insect -> o.
type in insect —> jar -> o.

e 7)-conversion:

. . i :— pi => i => .
Az.(sz) = s provided x does not occur free in s. sterile J :- pi x\(bug x => in x J => dead x)

dead B :— heated j, in B j, bug B.
heated j.
AProlog implements A-conversion as its notion of equality. The fol- o
lowing terms are equivalent. ?- sterile j.
\(f x) y\(f y) (g\x\(g x) f) £ <E,P> ?- pi x\(bug x => in x j => dead x).

(XU{g},P) ?- bug g => in g j => dead g.

AProlog programs cannot determine the name of a bound variable. (xu{gh,PU{bug g, in g j}) 7- dead g.
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Substitution and Quantification Logic Variables in Programs

pX:-pi y\(q X Y) A type reverse list A -> list A -> o.
type rev list A -> list A -> list A -> o.
type rv list A -> list A -> o.

e Substitute (f a) for X. reverse L K :-
pi L\(rev nil L L) =>
P (f a) :- pi y\(q (f a) y). pi X\(pi L\(pi K\(pi M\(rev (X::L) KM :- rev L K (X::M)))))

=> rev L K nil.
o Substitute (f y) for X. ?- reverse (1::2::nil) K.
P (£ Y) T pi y\(q (£ Y) y)' reverse L K :-
rv nil K =>
e Variable capture must be avoided. pi X\(pi L\(pi K\(rv (X::L) K :- rv L (X::K))))

=> rv L nil.

p £y) :-piz\(q (f7y)2).
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Abstract Data Types

type empty stack -> o.
type enter, remove int -> stack -> stack -> o.

?- pi emp\(pi stk\(
empty emp =>
pi S\(pi X\(enter X S (stk X S))) =>
pi S\(pi X\(remove X (stk X S) S)) =>
sigma S1\(sigma S2\(sigma S3\(sigma S4\(sigma S5\
(empty S1, enter 1 S1 S2, enter 2 S2 S3,
remove A S3 S4, remove B S4 S5)))))).

A==2, B ==
?- pi emp\(pi stk\( ... =>

sigma U\ (empty U, enter 1 U V))).
no.

The term (stk 1 emp) is formed as an instance of V, but the goal
fails because emp cannot escape its scope.
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Examples of Higher-Order Programs

type mappred (A -> B -
type forevery (A -> o)
type forsome (A -> o)
type sublist (A -> o)

mappred P nil nil.
mappred P (X :: L) (Y ::

forevery P nil.
forevery P (X :: L) :- P

forsome P (X :: L) :- P X

sublist P (X::L) (X::K)
sublist P (X::L) K
sublist P nil nil.

> 0) -> list A -> list B -> o.
-> list A -> o.

-> list A -> o.

=> list A -> list A -> o.

K) :- P XY, mappred P L K.

X, forevery P L.

; forsome P L.

:- P X, sublist P L K.
:- sublist P L K.
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Higher-Order Horn Clauses

e Atomic Formulas:
A is a term of type o whose top-level symbol is not a logical
constant, and which does not contain any occurrences of D.

¢ Rigid Atomic Formulas:
A, is an atomic formula whose top-level symbol is also not a
variable.

e Goal Formulas:
Gu=T|A|GIANGy |G VG| T2 G
¢ Definite Clauses:
D:=A,|GDA, |V2D
e No restrictions on order of types. Restrictions on clausal or-

der still hold. Terms instantiating « also cannot contain any
occurrences of D.
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The mappred Program

type mappred (A -> B —>
mappred P nil nil.
mappred P (X :: L) (Y ::

type age person ->
age bob 23.
age sue 24.
age ned 23.

?- mappred age (ned::bob:
L == (23::23::24::nil).

?- mappred age L (23::23:
L == (ned::bob::sue::nil)
L == (bob::ned::sue::nil)

?- mappred (x\y\(age y x)
K == (bob::sue::nil);
K == (ned::sue::nil).

o) -> list A -> list B -> o.

K) :- P X Y, mappred P L K.

int -> o.

:sue::nil) L.

:24::nil).

) (23::24::nil) K.

24




The sublist Program

type sublist (A -> o) —> list A -> list A -> o.
sublist P (X::L) (X::K) :- P X, sublist P L K.
sublist P (X::L) K :- sublist P L K.

sublist P nil nil.

type male, female person -> o.
male bob.

female sue.

male ned.

?- sublist male (ned::bob::sue::nil) L.
L == (ned::bob::nil);

L == (ned::nil);

L == (bob::nil);

no
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The forevery Program

type forevery (A -> o) —> list A -> o.
forevery P nil.
forevery P (X :: L) :- P X, forevery P L.

age bob 23.
age sue 24.
age ned 23.

?- forevery (x\(sigma y\(age x y))) (ned::bob::sue::nil).
yes.

?- forevery (x\(age x A)) (ned::bob::sue::nil).
no.

?- forevery (x\(age x A)) (ned::bob::nil).
A == 23,
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The forsome Program

type forsome (A -> o) —> list A -> o.
forsome P (X :: L) :- P X ; forsome P L.

male bob.
female sue.
male ned.

?- forsome female (ned::bob::sue::nil) L.
yes.
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Computing with \-terms
type mapfun (A -> B) -> list A -> list B -> o.
type reducefun (A ->B ->B) -> 1list A -=> B -> B -> o.

mapfun F nil nil.
mapfun F (X :: L) ((F X) :: K) :- mapfun F L X.

reducefun F nil Z Z.
reducefun F (H::T) Z (F HR) :- reducefun F T Z R.

28




The mapfun Program

type mapfun (A -> B) -> list A -> list B -> o.
mapfun F nil nil.
mapfun F (X :: L) ((F X) :: K) :- mapfun F L K.

type g i->1i->1.
type a,b i.

?- mapfun (x\(g a x)) (a::b::nil) L.
L == ((g a a)::(g a b)::nil).
The interpreter forms the terms
((x\(g a x)) a) and ((x\(g a x)) b)
and reduces them.

?- mapfun F (a::b::nil) ((g a a)::(g a b)::nil).
F == x\(g a x);
no.
The interpreter tries the 4 unifiers for (F a) and (g a a)
in the following order.
x\(g x x) x\(g a x) x\(g x a) x\(g a a)
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The reducefun Program

type reducefun (A ->B ->B) -> 1list A -=> B -> B -> o.
reducefun F nil Z Z.
reducefun F (H::T) Z (F HR) :- reducefun F T Z R.

?- reducefun (x\y\(x + y))) (3::4::8::nil) 6 R, S is R.
R==3+ (4 + (8 + 6))
S == 21.

?- reducefun F (4::8::nil) 6 (1 + (4 + (1 + (8 + 6)))).
F==x\y\(1 + (4+ (1 + (8+86)));

F==x\y\(1 + (x+ (1+(8+6))));

F==x\y\(1 + (x + y));

no.

?- pi z\(reducefun F (4::8::nil) z (1 + (4 + (1 + (8 + 2)))).
F==x\y\(1 + (x +y));
no.
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Computing with Aterms is not Functional
Programming

An alternative definition of mapfun illustrating that it is weaker
than mappred.

type mapfun (A -> B) -> list A -> list B -> o.

mapfun F L K :- mappred (x\y\(y = F x)) L K.

Computing with Aterms involves unification and conversion, but not
function computation. The following goal is not provable.

?- mapfun F (a::b::nil) (c::d::nil).
no.

30

Higher-Order Hereditary Harrop Formulas

e Goal Formulas:
Gu=T|A|GiANGy|G1VGy|F,2G|DDG|Vz G
e Definite Clauses:
D:=A|GD>A|V.zD

e No restrictions on order of types or on clausal order. The restric-
tion that atomic terms and substitution terms cannot contain
occurrences of D still holds.

e New restriction: the head of any atomic formula that appears in
a D formula cannot be a variable that is essentially existentially
quantified.

32




Essentially Existential and Universal
Occurrences

e If a subformula occurs to the left of an even number of occur-
rences of D in a goal formula, then it is a positive subformula
occurrence. If it occurs to the left of an odd number of oc-
currences of D, it is a negative subformula occurrence. These
definitions are reversed for clauses.

e A bound variable occurrence is essentially universalif it is bound
by a positive occurrence of a universal quantifier, by a negative
occurrence of an existential quantifier, or by a A-abstraction.
Otherwise, it is essentially existential.

e In terms of the AProlog interpreter, variables that get instanti-
ated with logic variables are essentially existential, while vari-
ables that get instantiated with new constants are essentially
universal.
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More Implementations of reverse

type reverse list A -> list A -> o.

reverse L K :- pi rev\(
pi L\(rev nil L L) =>
pi X\(pi L\(pi K\(pi M\(rev (X::L) KM :- rev L K (X::M)))))
=> rev L K nil).

reverse L K :- pi rv\(
rv nil K =>
pi X\(pi L\(pi K\(zv (X::L) K :- rv L (X::K))))
=> rv L nil).
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Logical Foundation of \Prolog

e Based on Church’s Simple Theory of Types [Church 40, JSL)]

o The type o for formulas, and the quantifiers pi and sigma
adopted directly.

e Differences

o Different logical connectives are taken as primitive.
o Intuitionistic instead of classical logic is used.

o Type variables and constructors are allowed.

34

Discharging a Constant from a Term

(3,P) 7- pi y\(append (1::2::nil) y X).
(¥ U{k},P) 7~ append (1::2::nil) k X.

The term (1::2::k) is formed as an instance of X, but as seen
before, the goal fails because k cannot escape its scope.

(3,P) - pi y\(append (1::2::nil) y (H y)).
(XU{k},P) ?- append (1::2::nil) k (H k).

The terms (H k) and (1::2::k) are unified. Of the two unifiers,
w\(1::2::k) and w\(1::2::w), only the second is possible. It is
the result of discharging k from the term (1::2::k).
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AProlog’s Module System

1. One-line header

module moduleName.

2. Preamble (4 directives)

accumulate, import, local, localkind

3. Declarations (which form the signature) and clauses

37

Example Modules using accumulate

module modil.

kind item type.
type P,q item -> o.
pX:-qX.

module mod2.
accumulate modl.

type a item.

q a.

module mod3.

kind item type.
type P,q item -> o.
type a item.

pX :-qX.

q a.

Modules mod2 and mod3 have the same signature and program.

39

The accumulate directive

e Used to incorporate other modules as if they were typed at the
beginning of the current module.

e The signature of the module and of all of the modules named by
the accumulate directive must be successfully pairwise merged.

e Two signatures can be merged when:

o If a token has a kind declaration in both signatures, the dec-
larations must be identical.

o If a token has a type declaration in both signatures, the types
must be the same up to renaming of type variables.

o If a token has a type declaration in both signatures, if it also
has an infix declaration in one signature, it must have the
same infix declaration in the other.
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Declaring local scope to constants

e Universal quantification in goals, e.g., Vz(D D G), can be used
to introduce a new scoped constant. Note that this formula is
equivalent to (3z D) D G.

e Modules as existentially quantified program clauses provides lo-
cal scoping:
E:=D |3,z E|E NE,

e No need to change the interpreter. A goal of the form £ O G can
be expanded to one that doesn’t contain existential quantifiers
in clauses by using the equivalence (3z D) D G =Vz(D D G).

40




Example Module using local

module stack.

kind stack type -> type.
type empty stack A -> o.
type enter, remove A -> stack A -> stack A -> o.

local emp stack A.
local stk A -> stack A -> stack A.
empty emp.

enter X S (stk X S).
remove X (stk X S) S.

41

Example Module using import

module int_stack.
import stack.

type stack_test int -> int -> o.

stack_test A B :-
sigma S1\(sigma S2\(sigma S3\(sigma S4\(sigma S5\
(empty S1, enter 1 S1 S2, enter 2 S2 S3,
remove A S3 S4, remove B S4 S5))))).

?- stack_test A B.
A==2,B==1.

43

The import directive

module mod1l.
import mod2 mod3.

e The clauses in mod2 and mod3 are available during the search
for proofs of the body of clauses in mod1. Logically...

e Suppose Fy and Fj3 are the formulas associated with mod2 and
mod3 and G D A is a clause in mod1.

e Then the clause used by the interpreter is really the one that is
equivalent to
((EanE3) DG)D A

after existential quantifiers in Fy and Fj3 are changed to univer-
sal quantifiers over G.

42

The L), Sublanguage

e Restricts AProlog by placing the following restriction on vari-
ables:

For every subterm in formula B of the form zy; ...y,
(n > 0) where z is essentially existentially quantified in
B, the variables 1, ..., v, must be distinct variables that
are essentially universally quantified within the scope of
the binding for x.

e Simplifies (-conversion: all G-redexes have the form ty; ...y,
where we can assume that ¢ has the form \y;...\y,.t'. By (-
reduction (Ay; ... Ay,.t)y ...y, simply reduces to t'.

e Simplifies unification: it is decidable and most general unifiers
exist; it can be implemented with a simple extension to first-
order unification.
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L, Unification Examples

e An example in L,
N\y\(g Wzx2z) (Ly)) = v\w\E w)
U==x\y\(WWy) X==uw\(g W w (Vw)
o An example that is not in Ly
(Fa)=(gaa)

F == x\(g x x) F == x\(g a x)
F == x\(g x a) F == x\(g a a)

45

Interpreters for \Prolog
We distinguish between two kinds of interpreters for AProlog.

e Specifications are with respect to a non-deterministic interpreter
(which is complete with respect to intuitionistic provability).

e The deterministic interpreter which provides an ordering on
clause and goal selection and uses a depth-first search discipline
with backtracking as in Prolog is used for actual implementa-
tions.

Part II: Specifying Logics and Inference Systems

e Specifying Syntax
e A Program for Computing Negation Normal Forms
e Example Specifications

o Natural Deduction

o A Sequent System

o A Modal Logic Specification

o Bn-Convertibility for the Untyped A-Calculus

o Evaluation for a Functional Language

e Correctness of Specifications

Why Theorem Proving as an Application?

e Specification

o The declarative nature of programs allows natural specifica-
tions of a variety of logics as well as of the tasks involved in
theorem proving.

o A-terms are useful for expressing the higher-order abstract
syntaz of object logics.

o Universal quantification and implication in goal formulas are
useful for specifying various inference systems naturally and
directly.

e Implementation

o Search is fundamental to theorem proving.

o Unification can be used to solve certain equations between
objects (e.g., formulas, proofs).

o A-conversion can be used to implement substitution directly.




kind
kind

type
type
type
type
type

type
type
type
type

A First-Order Object Logic

form type.

i type.

and, or, imp form -> form -> form.

neg form -> form.

forall (i -> form) —> form.

exists (i -> form) —> form.

false form.

c 1i. infixl or 4.
f i->1i->1i. infixl and 5.
q form. infixr imp 6.

p i -> form.

Va3y (p(z) D p(y))
(forall x\(exists y\((p x) imp (p y))))

4

kind

nnf
nnf
nnf
nnf
nnf

Negation Normal Form Clauses 1

nnf form -> form -> o.

(A and B) (C and D) :- nnf A C, nnf B D.

(A or B) (Cor D) :- nnf A C, nnf B D.

(A imp B) (C or D) :- nnf (neg A) C, nnf B D.
(forall A) (forall B) :- pi x\(anf (4 x) (B x)).
(exists A) (exists B) :- pi x\(anf (4 x) (B x)).

Negation Normal Form

-—A = A
—|(A/\B) = -AV-B
-(AVB) = -AA-B
-(ADB) = AAN-B

-(VzA) = Jz(-A)
-(3zA) = Vz(-A)

nnf
nnf

nnf

nnf

nnf

nnf

Negation Normal Form Clauses 11

(neg (neg A)) B :- nnf A B.
(neg (A and B)) (C or D) :-
nnf (neg A) C, nnf (neg B) D.
(neg (A or B)) (C and D) :-
nnf (neg A) C, nnf (neg B) D.
(neg (A imp B)) (C and D) :-
nnf A C, nnf (neg B) D.
(neg (forall A)) (exists B) :-
pi x\(anf (neg (A x)) (B x)).
(neg (exists A)) (forall B)
pi x\(nnf (neg (A x)) (B x)).




Natural Deduction I

A B A B (4)
AnB M AvB"! AvB"! B __|
AS>B™
(A) t/z]A _ [v/=]A
L dzA Vz A
AT

Proviso on V-I: y cannot appear free in Yz A, or in any assumption
on which the deduction of [y/z]A depends.

A Natural Deduction Proof
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Natural Deduction I1

AANB AANB A ADB __ Ved
A M B B 7 [t/z]A "
(4) (B) A A (ly/=]A)
AVB C C _ I JzA  B__
c B ]

L (—A)

a0

4 Lo

Proviso on 3-E rule: y cannot appear free in 9z A, in B, or in any
assumption on which the deduction of the upper occurrence of B
depends.

type
type

Specifying Natural Deduction Rules

A B

1
Arg "

V-1

AV B AV B

proof
and_i

nprf -> form -> o.
nprf -> nprf -> nprf.

proof (and_i P1 P2) (A and B) :-
proof P1 A, proof P2 B.

proof (or_i P) (A or B) :-
proof P A; proof P B.

11




Specifying Existential Introduction

[t/z]A

31

type exists_i nprf -> nprf.

proof (exists_i P) (exists A) :- proof P (A T).

type exists_i i -> nprf -> nprf.

proof (exists_i T P) (exists A) :- proof P (A T).

12

Specifying the Discharge of Assumptions

proof (imp_i P) (A imp B) :-
pi pA\((proof pA A) => (proof (P pA) B)).

type imp_i (nprf -> nprf) -> nprf.

14

Specifying Universal Introduction

[y/z]A
Vz A

V-1

Proviso on V-I: y cannot appear free in Vz A, or in any assumption

on which the deduction of [y/z]A depends.

proof (forall_i P) (forall A) :-
pi y\(proof (P y) (A y)).

type forall i (i -> nprf) -> nprf.

13

Example Execution

L

924

proof (imp_i P) (A imp B) :-
pi pA\((proof pA A) => (proof (P pA) B)).

(X, P) 7- proof R (q imp q).

(3,P) 7- pi pA\((proof pA q) => (proof (R1 pA) q)).
(XU {pa},P) ?- (proof pa q) => (proof (R1 pa) q)).
(S U {pa},P U {proof pa q} ?- proof (Rl pa) q.

Unification Problem: R = (imp_i R1), (R1 pa) =pa
Solution: R1:=zx\x, R:= (imp_i x\x)
Not a Solution: R1 := x\pa

15




Elimination Rules

ANB ANB A ADB Vz A
A A-E B A-E B D-E W V-E
() () A A (/214
AV B C C‘V - 1 ) JzA 133 -
C ) B )

proof (and_e P) A :- proof P (A and B); proof P (B and A).

proof (forall_e P) (A T) :- proof P (forall A).
proof (exists_e P1 P2) B :- proof P1 (exists A),
pi y\(pi p\ ((proof p (4 y)) => (proof (P2 Y p) B))).
proof (or_e P P1 P2) C :- proof P (A or B),
pi pA\((proof pA A) => (proof (P1 pA) C)),
pi pB\((proof pB B) => (proof (P2 pB) C)).
proof (imp_e P1 P2) B :- proof P1 A, proof P2 (A imp B).

proof (neg_e P1 P2) false :- proof P1 A, proof P2 (neg A).

16

Sequent Calculus I

r — A I' —B I — A I' — B

AT — B R AT — 1 R
—A>B™” G
I — [y/z]AV_R I — [t/x]Aa_R

I' —VzA I — dzA

Proviso on V-R: y cannot appear free in the lower sequent.

r—AvB'™® T—4avB"™"

18

Remaining Rules

(4) )
1 A T 1
A A Lo

proof (neg_i P) (neg A) :-
pi pA\((proof pA A) => (proof (P pA) false)).
proof (false_i P) A :- proof P false.
proof (false_c P) A :-
pi p\((proof p (neg A)) => (proof (P p) false)).

17

Sequent Calculus II

A B I' —C . ATl —C B,I' — C
ANB,T —C™ AVB,T —C v
r—A B,I' — C . r—A4 N
A>DBT —C o —AT —1
t/z]A,T — C ly/z]A,T —C_
VzA,T — C AT —C
E‘—)ii LR AT — A (initial)

Proviso on 3-L: y cannot appear free in the lower sequent.

L

19




Specifying Sequent Systems

I' - A I' - B R
I' - AAB _
type --> (list form) -> form -> seq.
infix --> 4.

type proof sprf -> seq -> o.
type and_r sprf -> sprf -> sprf.

proof (and_r P1 P2) (Gamma --> (A and B)) :-
proof P1 (Gamma --> A), proof P2 (Gamma --> B).

20

Initial Sequents

Al — A

proof (initial A) (Gamma --> A) :- memb A Gamma.

22

Antecedent Rules

' —4 B, I' —C

5y
A>BTL >C -

type memb A -> l1list A > o.

memb X (X :: L).
memb X (Y :: L) :- memb X L.

type imp_1  sprf -> sprf -> sprf.

proof (imp_1 P1 P2) (Gamma --> C) :-
memb (A imp B) Gamma,
proof P1 (Gamma --> A),
proof P2 ((B::Gamma) --> C).

21

Classical Logic

I' — 4 A I' - BA ok
I' - AAB,A ]
type -—> (1ist form) -> (list form) -> seq.

proof (and_r P1 P2) (Gamma --> Delta) :-
memb (A and B) Delta,
proof P1 (Gamma --> (A::Delta)),
proof P2 (Gamma --> (B::Delta)).

23




Modal Sequents

R;I' — Ay, A R;I' — By, A

BT — (AAB)w, A MR

kind mform  type.
kind world  type.
kind wpair  type.

type m form -> world -> mform.
type r world -> world -> wpair.
type mseq (1ist wpair) ->
(1ist form) -> (list form) -> seq.

proof (and_r P1 P2) (mseq R Gamma Delta) :-
memb (m (A and B) W) Delta,
proof P1 (mseq R Gamma ((m A W)::Delta)),
proof P2 (mseq R Gamma ((m B W)::Delta)).

24

Specifying the Modal Introduction Rule

R,r(w,a:);r — A, Ay

BT A, (0d)y "

type box form -> form.

proof (box_r P) (mseq R Gamma Delta) :-
memb (mform (box A) W) Delta,
pi x\(proof (P x)
(mseq ((r W x)::R) Gamma ((mform A x)::Delta))).

26

The Modal Rules

Ry Az, ' — A
R; (0A)y,I' — A

R,r(w,w);r — A Az OR
BRI — A, (DOA)y _

Proviso on O-R: world z doesn’t occur in the lower sequent.

[r(w,v),r(v, ) H (w )] r(ugv),r(v,u);pu-——épu

r(w,v),r(v,u); (Bap)w — Pu

r(w, ) (Dap)w ——>(Dap)v
(Oap)w — (OgDap)w
(Dap:)DaDapﬁu

O-R
O-R
O-R

O-L

25

Specifying the Modal Elimination Rule

[RFr(w,z)] R; Az, I' — A

R;(0A)w, T — A o

type related (1ist wpair) -> wpair -> o.

related R (r W X) :- memb (r W X) R.
related R (r W W).
related R (r W X) :- related R (r W Z), related R (r Z X).

proof (box_1 P) (mseq R Gamma Delta) :-
memb (mform (box A) W) Gamma,
proof P (mseq R (mform A X) Gamma Delta),
related R (r W X).

27




pn-Convertibility for the Untyped A-Calculus

One-Step Reducibility

kind tm type.
type app tm -> tm -> tm. M—=P NP M- N
-> -> o.
AfAnuf(fn) g type redl tm tm o
redl M N :- redex M N.
redl (app M N) (app P N) :- redi M P.
(abs £\ (abs n\(app £ (app £ n)))) redl (app M N) (app M P) :- redl N P.
(abs x\(app x X)) redl (abs M) (abs N) :- pi x\(redl (M x) (N x)).
28 30
Bn-Redexes pn-Convertibility and Normalization
e B3-conversion: (A\z.s)t = s[t/z] conv M N :- redl M N.
e 7-conversion: A\z.(sx) = s provided = does not occur free in s. conv M M.
conv M N :- conv N M.
conv M N :- conv M P, conv P N.
type redex tm -> tm -> o.
redex (app (abs S) T) (S T).
redex (abs x\(app S x)) S. norm M N :- redl M P, !, norm P N.
norm M M.

29

31




Correctness of Representation of \-terms

e An Encoding of Untyped Terms to Meta-Terms

o Given ®: a mapping from the constants of the object lan-
guage to a fixed set of constants of the meta-language of
type tm.

o Given p: a mapping from the variables of the object language
to the meta-variables of type tm.

o Example:

(Mfanf( fn)>>g’ =
(abs f\(abs n\(app f (app f n))))

Theorem (Correctness of Encoding of Untyped Terms)

The encoding (( >>§ is a bijection from the a-equivalence classes of
untyped terms to the Bn-equivalence classes of meta-terms of type
tm.

32

app

abs :

0
s

true :
false :
if :

app (abs M) N - MN
if true M N — M
if false M N — N

hd (cons M N) - M

Evaluation for a Functional Language

ttm —tm — tm nil : tm

(tm — tm) — tm cons : tm — tm — tm
1 tm hd : tm — tm
ttm — tm tl:tm —tm

tm empty : tm — tm

tm fiz : (tm — tm) — tm

tm — tm — tm — tm let : (tm — tm) = tm — tm

empty nil — true
empty (cons M N) — false
let M N - MN

tl (cons M N) -+ N

34

Correctness of gn-Convertibility Specification

Theorem Let M and N be untyped terms. Then M =g, N if and
only if

® ®

(conv (M), (N),)

p
is provable.

33

type

eval
eval
eval
eval
eval
eval
eval
eval
eval

A Specification of Evaluation

eval tm -> tm -> o.

(abs M N) P :- eval N N’, eval (M N’) P.
(if CM N) M’ :- eval C tru, eval M M’.
(if CM N) N’ :- eval C fals, eval N N’.
(hd L) M’ :- eval L (cons M N), eval M M’.
(t1 L) N° :- eval L (cons M N), eval N N’.
(empty L) tru :- eval L nill.

(empty L) fals :- eval L (cons M N).

(fix M) N :- eval (M (fix M)) N.

(let M N) P :- eval N N’, eval (M N’) P.

35




Some Related Languages

e The Logical Framework (LF) [Harper, Honsell, & Plotkin, JACM
93] is a type theory developed to capture the generalities across
a wide variety of object logics. A specification of a logic in LF
can be “compiled” rather directly into a set of AProlog clauses.

e The Forum logic programming language [Miller, TCS 96] imple-
ments an extension of higher-order hereditary Harrop formulas
(hohh) to linear logic.

e Isabelle [Paulson 94] is a “generic” tactic theorem prover imple-
mented in ML. It contains a specification language which is a
subset of hohh. The two are very close in specification strength.

36

Reversibility of Rules

A,B,F—>AAL ' —4A I' - B,A
AANB, T — A" I' - AABA

A-R

A-L: There is a proof of one of the formulas in A from A A B and
I if and only if there is a proof of one of the formulas in A from A
and B and I'.

A-R: There is a proof of A A B or of one of the formulas in A from
I if and only if there is a proof of A or one of the formulas in A
from T" and there is a proof of B or one of the formulas in A from
Ir.

Part III: Implementing Automatic Theorem
Provers

An Automatic Prover for First-Order Classical Logic

o A strategy for finding sequent proofs

e An implementation using three subprocedures

Non-Reversibility of Rules

The only two rules in the classical sequent calculus presented that
are not reversible are:

[t/2]A,T — A T — [t/2]4,A
V-L 3R
veA,I' — A I' —3z4, A

For example, there may be a proof of one of the formulas in A from
VzA and I, but no term ¢ such that there is a proof of one of the
formulas in A from [¢t/z]A and T'. It may be the case that Vz A must
be instantiated with more than one term.




A Specification that Removes Formulas

A, BT — A -
AANB, T — A"

type memb_and_rest A -> (list A) -> (list A) -> o.

memb_and_rest A (A::L) L.
memb_and_rest A (B::L) (B::K) :- memb_and rest A L K.

proofl (and_1l P) (Gamma --> Delta) :-
memb_and_rest (A and B) Gamma Gammal,
proofl P ((A::B::Gammal) --> Delta).

Step 2 of 3: the proof2 procedure

2. Apply all rules including versions of the rules for V-L and 3-R
that remove the quantified formula after applying the rule, and try
to complete the proof. Stop if a proof is successfully completed.

proof2 (forall_ 1 P) (Gamma --> Delta) :-
memb_and_rest (forall A) Gamma Gammal,
proof2 P (((A T)::Gammal) --> Delta).

proof2 (exists_r P) (Gamma --> Delta) :-
memb_and_rest (exists A) Delta Deltal,
proof2 P (Gammal --> ((A T)::Deltal)).

(plus duplicates of each of the proof1 clauses)

Step 1 of 3: the proofl procedure

1. Apply all rules except V-L and 3-R until nothing more can be
done. The result is a set of sequents with atomic and universally
quantified formulas on the left, and atomic and existentially quan-
tified formulas on the right.

proofl (initial A) (Gamma --> Delta) :-
memb A Gamma, memb A Delta.

proofl (and_r P1 P2) (Gamma --> Delta) :-
memb_and_rest (A and B) Delta Deltal,
proofl P1 (Gamma --> (A::Deltal)),
proofl P2 (Gamma --> (B::Deltal)).

proofl (imp_1 P1 P2) (Gamma --> Delta) :-
memb_and_rest (A imp B) Gamma Gammal,
proofl P1 (Gammal --> (A::Delta)),
proofl P2 ((B::Gammal) --> Delta).

Step 3 of 3: the nprove procedure

3. Add an additional copy of each quantified formula to the sequents
obtained from step 1, and repeat steps 2 and 3.

nprove N P Seq :- amplify N Seq ASeq, proof2 P ASeq.
nprove N P Seq :- M is (N + 1), nprove M P Seq.

amplify 1 Seq Seq.

amplify N (Gammal --> Deltal) (Gamma2 --> Delta2) :-
N>1,
amplify_forall N Gammal Gamma2,
amplify_exists N Deltal Delta2.




add_copies 1 A L (A::L).

add_copies N A L (A::K) :-
N>1, Mis (N - 1),
add_copies M A L K.

amplify_forall N nil nil.

amplify_forall N ((forall A)::Gamma) Gamma2 :-
amplify_forall N Gamma Gammal,
add_copies N (forall A) Gammal Gamma2.

amplify_forall N (A::Gamma) (A::Gammal) :-
amplify_forall N Gamma Gammal.

amplify_exists N nil nil.

amplify_exists N ((exists A)::Delta) Delta2 :-
amplify_exists N Delta Deltal,
add_copies N (exists A) Deltal Delta2.

amplify_exists N (A::Delta) (A::Deltal) :-
amplify_exists N Delta Deltal.

Examples

The first proof completes at amplification 1. The second needs
amplification 2.

Putting it all Together

The top-level predicate is proofl. Add one more clause for it at
the end.

proofl P Seq :- nmprove 1 P Seq.

nprove N P Seq :- amplify N Seq ASeq, proof2 P ASeq.
nprove N P Seq :- M is (N + 1), nprove M P Seq.

Completeness follows from the fact proved in [Andrews, JACM 81]
that duplication of outermost quantifiers is all that is necessary to
obtain a complete procedure, and the fact that step 2 will always
terminate.

Part IV: Implementing Interactive Tactic
Theorem Provers

e Inference Rules as Tactics

e A Goal Reduction Tactical

e Some Common Tacticals

e Tactics and Tacticals for Interaction

e An Example Execution




Tactic Theorem Provers Tactics with Assumption Lists

e In general, more flexibility in control of search is needed than and_i_tac (proof (and_i P1 P2) (A and B))
can be provided by depth-first search with backtracking. ((proof P1 A) =~ (proof P2 B)).
e Tactics and tacticals have proven to be a powerful mechanism
for implementing theorem provers. Example tactic provers (all kind judg type.
ML implementations) include: type proof nprf -> form -> judg.
o LCF [Gordon, Milner, & Wadsworth] type deduct (list judg) -> judg -> goal.
o HOL [Gordon] and_i_tac (deduct Gamma (proof (and_i P1 P2) (A and B)))
o Isabelle [Paulson] ((deduct Gamma (proof P1 A)) ~~
o Nuprl [Constable et. al.] (deduct Gamma (proof P2 B))).

o Coq [Huet et. al.]

e Tactics and tacticals can be implemented directly and naturally
in AProlog. They implement an interpreter for goal-directed
theorem proving in the logic programming setting.

Inference Rules As Tactics Goal Constructors
A B Al type tt goal.

ANB type - goal -> goal -> goal.
type vV goal -> goal -> goal.
type all (A -> goal) -> goal.

proof (and_i P1 P2) (A and B) :- type some (4 -> goal) —> goal.
proof P1 A, proof P2 B. type == °© ~> goal —> goal.
infixl ~° 3.

and_i_tac (proof (and_i P1 P2) (A and B))

((proof P1 A) ~~ (proof P2 B)). infixl vv 3.

infixr ==>> 3.
type and_i_tac goal -> goal -> o.

type proof nprf -> form -> goal.
type ~° goal -> goal -> goal.

infix °° 3.




A Goal Reduction Tactical

type maptac (goal -> goal -> o) -> goal -> goal -> o.

maptac Tac tt tt.

maptac Tac (InGoall “~ InGoal2) (OutGoall “~ QOutGoal2) :-
maptac Tac InGoall OutGoall,
maptac Tac InGoal2 OutGoal2.

maptac Tac (all InGoal) (all OutGoal) :-
pi x\(maptac Tac (InGoal x) (OutGoal x)).

maptac Tac (InGoall vv InGoal2) OutGoal :-

maptac Tac InGoall OutGoal; maptac Tac InGoal2 OutGoal.

maptac Tac (some InGoal) OutGoal :-
sigma T\(maptac Tac (InGoal T) OutGoal).
maptac Tac (D ==>> InGoal) (D ==>> QutGoal) :-
D => (maptac Tac InGoal QOutGoal).
maptac Tac InGoal OutGoal :- Tac InGoal QOutGoal.

Interactive Theorem Proving

type query (goal -> o) -> goal -> goal -> o.
type inter (goal -> o) -> goal -> goal -> o.
type with_tacs string -> (goal -> goal -> o)

-> goal -> goal —> o.

query PrintPred InGoal OutGoal :-
PrintPred InGoal,
print "Enter tactic:", readtac Tac,
(Tac = backup, !, fail; Tac InGoal OutGoal).

inter PrintPred InGoal QOutGoal :-
repeat (query PrintPred) InGoal OutGoal.

with_tacs M Tac InGoal OutGoal :-
M ==> (Tac InGoal OutGoal).

Tacticals

then Tacl Tac2 InGoal OutGoal :-
Tacl InGoal MidGoal,
maptac Tac2 MidGoal OutGoal.

orelse Tacl Tac2 InGoal OutGoal :-
Tacl InGoal OutGoal; Tac2 InGoal (OutGoal.

idtac Goal Goal.

repeat Tac InGoal OutGoal :-
orelse (then Tac (repeat Tac)) idtac InGoal OutGoal.

try Tac InGoal OutGoal :-
orelse Tac idtac InGoal OutGoal.

Interactive Tactics for Natural Deduction

e Allowing the User to Specify Substitution Terms

exists_i_tac (proof (exists_i P) (exists A))
(proof P (A T)).

exists_i_sub (proof (exists_i P) (exists A4))
(proof P (A T)) :-
print "Enter substitution term:", read T.

e Adding Lemmas

modus_ponens (proof P A)
((proof Q B) =~
((assump Q B) ==>> (proof P A))) :-
print "Enter lemma:", read B.

close_tac (proof P A) tt :- assump P A.




Natural Deduction Inference Rule Tactics

(4)
B
ADB

proof (imp_i P) (A imp B) :-

D-1

pi pA\((proof pA A) => (proof (P pA) B)).

imp_i_tac (proof (imp_i P) (A imp B))
(all pA\((assump pA A) ==>> (proof (P pA) B))).

imp_i_tac (deduct Gamma (proof (imp_i P) (A imp B)))
(all pA\(deduct ((proof pA A)::Gamma)
(proof (P pA) B)).

All introduction rules can be translated to tactics similarly.

10

Forward Proof Using Elimination Rules

and_e_tac N (deduct Gamma (proof PC C))
(deduct ((proof (and_el P) A)::
(proof (and_e2 P) B)::Gamma)
(proof PC C)) :-
nth_item N (proof P (A and B)) Gamma.

All elimination rules can be implemented as tactics similarly.

12

Elimination Rules as Tactics

ANB
A

N-E

proof (and_e P) A :-

ANB
B

N-E

proof P (A and B); proof P (B and A).

and_e_tac (deduct Gamma (proof P A))
((deduct Gamma (proof (and_el P) (A and B))) vv
(deduct Gamma (proof (and_el P) (B and A)))).

and_e_tac (deduct Gamma (proof P A))
((deduct Gamma (proof (and_el P) (A and B))) vv
(deduct Gamma (proof (and_el P) (B and A)))) :-
print "Enter second conjunct:", read B.

11

An Example Query

?- interactive
(proof P (((q a) or (q b)) imp (exists x\(q x))))
OutGoal.

Assumptions:

Conclusion:
(q a or q b) imp (exists x\(q x))
Enter tactic: 7- imp_i_tac.

Assumptions:
1 qaorgqghb

Conclusion:
exists x\(q x)
Enter tactic: 7- exists_i_tac.

13




Assumptions:
1qaorgqghb

Conclusion:
qT

Enter tactic:

Assumptions:
1qa
2qgaorgqghb

Conclusion:
qT

Enter tactic:

?- or_e_tac 1.

?- close_tac 1.

14

Assumptions:

1

gaorgqhb

Conclusion:
exists x\(q x)
Enter tactic: ?- then (or_e_tac 1)

P

(then exists_i_tac
(close_tac 1)).

= imp_i p\(or_e p pl\(exists_i a p1)
p2\(exists_i b p2))

OutGoal = all p\((all pi\tt) -~ (all p2\tt))

16

Assumptions:
1gb
2qgaorgqgqhb

Conclusion:
qa

Enter tactic:
Enter tactic:

Enter tactic:

?- backup.
?- backup.
?- backup.

15

Generic Theorem Proving

e Logics in the Isabelle theorem prover [Paulson 94] are specified
in a language which is a subset of hohh, while control, including
tactics and tacticals, is implemented in ML.

e Here, tactics and tacticals are specified in hohh. The AProlog
interpreter associates control primitives (search operations) to
the logical connectives of hohh.

e Much work has gone into making Isabelle efficient as well as
providing extensive environments for several particular object
logics. These environments include efficient specialized tactics
as well as large libraries of theorems.

e Such an effort has not been made for AProlog, but could be. Ex-
perience with Isabelle demonstrates the effectiveness of generic
theorem proving.

17




Part V: An Implementation of Higher-Order
Term Rewriting

e Higher-Order Rewrite Rules
e Some Example Rewrite Systems
e Expressing a Rewrite System as a Set of Tactics

o Tactics and Tacticals for Rewriting

Higher-Order Rewrite Rules

A rewrite rule is a pair [ — r such that [ and r are simply-typed
A-terms of the same primitive type, [ is a term in L), and all free
variables in r also occur in .

Example 1: Bn-conversion for A-terms

e [3-conversion: (Az.s)t = s[t/z]

e n-conversion: Az.(sx) = s provided = does not occur free in s.

type app tm -> tm -> tm.
type abs (tm -> tm) -> tm.
type redex tm -> tm -> o.

redex (app (abs 8) T) (8 T).
redex (abs x\(app S x)) S.

Higher-Order Rewriting

e Higher-order rewrite systems use A-terms as a meta-language
for expressing the equality relation for object languages that
include notions of bound variables [Nipkow LICS’91, Klop 80,
Aczel 78]

e Many operations on formulas and programs can be naturally
expressed as higher-order rewrite systems.

e Capabilities for rewriting can be added to tactic style theorem
provers, used to reason about the equality relation of a par-
ticular object logic, and combined with other theorem proving
techniques.

e Higher-order logic programming allows:

o a natural specification of higher-order rewrite systems

o powerful mechanisms for descending through terms and match-
ing terms with rewrite templates

Three Parts of a Rewriting Procedure

e Rewrite Rules

redex (app (abs S) T) (S T).
redex (abs x\(app S x)) S.

e Congruence and One-Step Rewriting

redl M N :- redex M N.

redl (app M N) (app P N) :- redl M P.

redl (app M N) (app M P) :- redl N P.

redl (abs M) (abs N) :- pi x\(redl1 (M x) (N x)).

e Multiple Step Reduction

reduce M N :- redl M P, reduce P N.
reduce M M.




Rewriting in a Tactic Theorem Prover Example 2: Evaluation as Rewriting

e The previous example implements the leftmost-outermost rewrite

stategy. Using a different order on the redl clauses can give app : tm — tm — tm nil - tm
other rewrite strategies such as bottom-up. abs : (tm — tm) — tm cons : tm — tm — tm
e In a tactic theorem prover, rewrite rules and congruence rules 0:tm hd : tm — tm
can be implemented as basic tactics. More complex tactics can s:tm —tm tl:tm — tm
be implemented for various strategies. true : tm empty : tm — tm
false : tm fiz : (tm — tm) — tm
if : tm — tm — tm — tm let : (tm — tm) — tm — tm
5 7
Rewrite and Congruence Rules as Tactics Congruence Tactics for Evaluation
type == A -> A -> goal. cong_const (prim (tru == tru)) tt.
infix == 7. cong_const (prim (fals == fals)) tt.
type prim goal -> goal. cong_const (prim (z == z)) tt.
type rew goal -> goal —> o. cong_const (prim (nill == nill)) tt.
type cong goal —> goal —> o. cong (prim ((s M) == (s N))) (prim (M == N)).
type cong_const goal -> goal -> o. cong (prim ((cons M N) == (cons P Q)))
. ((prim (M == P)) "~ (prim (N == Q))).
rev (prim ((app (abs 8) T) == (S T))) tt. cong (prim ((hd M) == (hd N))) (prim (M == N)).
rew (prim ((abs x\(app S x)) == S)) tt. cong (prim ((t1 M) == (t1 N))) (prim (M == N)).
cong (prim ((empty M) == (empty N))) (prim (M == N)).
cong (prim ((app M N) == (app P Q))) cong (prim ((if C M N) == (if D P Q)))
((prim (M == P)) ~~ (prim (N == Q))). ((prim (C == D)) ~~ (prim (M == P)) =~ (prim (N == Q))).
cong (Prim ((abs M) == (abs N))) cong (prim ((flx M) == (le N)))
(all x\((cong const (prim (x == x)) tt) ==>> (all x\((cong_const (prim (x == x)) tt) ==>> (prim ((M x) == (N x))))).
( riI;l (M x) == (N 2))))) cong (prim ((let M N) == (let P Q)))
P ) ((all x\((cong_const (prim (x == x)) tt) ==>>
cong_const (prim (f == f)) tt. (prim ((M x) == (P x))))) " (prim (N == Q))).
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Evaluation Rewrite Rules

app (abs M) N - MN empty nil — true

if true M N — M empty (cons M N) — false

if false M N — N fix M — M (fiz M)
hd (cons M N) - M let M N - MN

tl (cons M N) - N

Example 3: Negation Normal Forms

e Congruence Rules

cong (prim ((A and B) == (C and D)))
((prim (A == C)) "~ (prim (B == D))).
cong (prim ((forall A) == (forall B)))
(all x\((cong_const (prim (x == x)) tt) ==>>
(prim ((A x) == (B x))))).

e Rewrite Rules

rew (prim ((neg (A and B)) ==

((neg A) or (neg B)))) tt.
rew (prim ((neg (forall A)) ==

(exists x\(neg (A x))))) tt.

11

Tactics Implementing Evaluation Rewrites

rew (prim ((app (abs M) N) == (M N))) tt.
rew (prim ((abs X (app M X)) == M)) tt.

rew (prim ((hd (cons M N)) == M)) tt.

rew (prim ((tl (cons M N)) == N)) tt.

rew (prim ((empty nill) == tru)) tt.

rew (prim ((empty (cons M N)) == fals)) tt.
rew (prim ((if tru M N) == M)) tt.

rew (prim ((if fals M N) == N)) tt.

rew (prim ((fix M) == (M (fix M)))) tt.

rew (prim ((let M N) == (M N))) tt.

10

A Modified maptac

type maptacC (goal -> goal -> o) -> goal -> goal -> o.

maptacC Tac tt tt.
maptacC Tac (InGoall ~~ InGoal2) OutGoal :-
Tac (InGoall ~~ InGoal2) QOutGoal.
maptacC Tac (all InGoal) (all OutGoal) :-
pi x\(maptacC Tac (InGoal x) (OutGoal x)).
maptacC Tac (InGoall vv InGoal2) OutGoal :-
maptacC Tac InGoall OutGoal;
maptacC Tac InGoal2 QOutGoal.
maptacC Tac (some InGoal) OutGoal :-
sigma T\(maptacC Tac (InGoal T) OutGoal).
maptacC Tac (D ==>> InGoal) (D ==>> OutGoal) :-
D => (maptacC Tac InGoal QOutGoal).
maptacC Tac (prim InGoal) OutGoal :-
Tac (prim InGoal) OutGoal.
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Modified Tacticals Using maptacC

thenC Tacl Tac2 InGoal OutGoal :-
Tacl InGoal MidGoal,
maptacC Tac2 MidGoal OutGoal.

repeatC Tac InGoal OutGoal :-
orelse (thenC Tac (repeatC Tac)) idtac InGoal OutGoal.
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Rewrite Tactics and Tacticals I1

right Tac (prim InG) OutG :- Tac (prim InG) OutG.
right Tac (G ~~ InG) (G ~" OutG) :-
maptacC (right Tac) InG OutG.

right_rew Tac InG OutG :-
thenC trans (right Tac) InG OutG.

first Tac (prim InG) OutG :- Tac (prim InG) OutG.
first Tac (InG °~ G) (OutG "~ G) :-

maptacC (first Tac) InG OutG, !.
first Tac (G °° InG) (G ~" OutG) :-

maptacC (first Tac) InG OutG, !.

15

Rewrite Tactics and Tacticals 1

refl (prim (M == N)) tt.
sym (prim (M == N)) (prim (N == M)).

trans (prim (M == N)) ((prim (M == P)) " (prim (P == N))).

left Tac (prim InG) OutG :- Tac (prim InG) OutG.
left Tac (InG ~" G) (OutG ~~ G) :-
maptacC (left Tac) InG OutG.

left_rew Tac InG OutG :-
thenC trans (left Tac) InG OutG.

14

Bottom-Up Rewriting

bu Cong Rew InG OutG :-
then (bu_sub Cong Rew)
(orelse (then (left_rew Rew) (bu Cong Rew))
refl) InG OutG.

bu_sub Cong Rew InG OutG :-
try (left_rew (then Cong (bu Cong Rew))) InG OutG.
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Leftmost-Outermost Rewriting

lo Cong Rew InG OutG :-
then (repeat (left_rew (lo_rew Cong Rew)))
refl InG OutG.

lo_rew Cong Rew InG OutG :-
orelse Rew (then (thenC Cong
(first (lo_rew Cong Rew)))
refl) InG OutG.
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Other Rewrite Strategies

e The bu and lo tactics implement common complete strategies
for terminating rewrite systems. They illustrate the use of tac-
tics and tacticals for implementing rewrite procedures.

e The real power of the tactic setting is that it provides a set of
high-level primitives with which to write specialized strategies.
Examples include:

o Call-by-value vs. call-by-name evaluation. Strong vs. weak
evaluation (reducing under a A-abstraction or not).
[Hannan, ELP’91]

o Type-driven rewriting using n-expansion. [Pfenning,91]

o Layered rewriting where the application of a subset of the
possible rewrite rules are applied, and rewriting is interleaved
with other reasoning.

o Tactics specialized to particular applications or domains.

19

An Example

Let APP be the following term representing the program for ap-
pending two lists in our functional language.

(fiz AF.(abs Ali.(abs Als.
(if (empty l1) lo (cons (hd 1) (app (app F (tl 1)) 12))))))

e The 1o strategy reduces
(app (app APP (cons 0 nil)) (cons (s 0) nil ))
to (cons 0 (cons (s 0) nil)).
The lo strategy corresponds to lazy evaluation of this language.

e The bu strategy loops, repeatedly applying the rewrite rule for
fix and expanding the definition of the function.

Part VI: Encoding the Logical Framework in
AProlog

e Syntax of the Logical Framework (LF)
[Harper, Honsell, & Plotkin, JACM 93]

e An Example LF Signature

e Translating LF Signatures to Logic Programming Specifications
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LF

/

fohh L, hohh

T T

fohc hohc

e LF allows function types of any order, but does not allow Type
(which is the LF equivalent of o) anywhere in types except as a
target type. There is no quantification over Type.

e Unlike L) which restricts the form of terms, LF extends them
to allow dependent types.

e Note that our example specifications don’t use predicate quan-
tification (though the implementation of tactics and tacticals
use it extensively). Our encoding “compiles” LF signatures into
the sublanguage of hohh without predicate quantification.

LF Contexts and Assertions

Syntax for Contexts (Signatures)

(
F:=)|Tz:K|T,z: A

LF Assertions

'+ K kind (K is a kind in T")
'A:K (Ahaskind K inT)
'M:A (M hastype AinT)

Valid Contexts

The empty context is valid and ',z : P is a valid context if I" is a
valid context and either I' - P kind or T' - P : Type.

LF Syntax

Syntax for LF Kinds, Types, Objects
K := Type|llz: A.K
A z|llz: AB|Az: AB|AM
M =z|X:AM|MN

e Dependent Types: Types can depend on terms. In particular,
in Ilz : A.B, the variable x can occur in the type B. A —+ B
denotes Ilz : A.B when z does not occur in B.

e Kinds can depend on terms also.

e Terms are similar to the A-terms of hohh except that in Az :
A.M, A can be a dependent type.

An LF Signature for Natural Deduction

A B W [y/2]4
ANB B

form : Type
1 : Type

A : form — form — form
V: (i — form) — form

true : form — Type
A-T1:TIA : formIIB : form.true(A) — true(B) — true(A A B)

D-1:TA : form.IIB : form.(true(A) — true(B)) — true(A D B)
V-1:TIA : ¢ — form.(Ilz : i.true(Az)) — true(VA)




Translating Kind and Type Declarations

e Introducing New Base Types

form : Type
1 : Type

kind form type.
kind 1 type.

e Introducing the Syntax of the Object Logic
A : form — form — form
type and form -> form -> form.
e Dependent Type Constants as Predicates
true : form — Type

type proof form -> o.

Inference Rules as Clauses 11
D-1:T1A : formIIB : form.(true(A) — true(B)) — true(A D B)

type dimp_i form -> form -> (nprf -> nprf) -> nprf.

proof (imp_i A B P) (A imp B) :-
pi pA\((proof pA A) => (proof (P pA) B)).

V-1:TIA : ¢ — form.(Ilz : i.true(Az)) — true(VA)

type forall_i (i -> form) -> (i -> nprf) -> nprf.

proof (forall i A P) (forall A) :-
pi y\(proof (P y) (A y)).

Inference Rules as Clauses 1
A-T1:TIA : formIIB : form.true(A) — true(B) — true(A A B)
proof (A and B) :- proof A, proof B.

An LF term inhabiting the type true(A A B) will be a proof of the
formula A A B. If we use the above signature item in constructing
such a term, this term will have the form:

(NTABPPR)

We can incorporate proof objects of this form into AProlog specifi-
cations.

type proof nprf -> form -> o.
type and_i form -> form -> nprf -> nprf -> o.

proof (and_i A B P1 P2) (A and B) :-
proof P1 A, proof P2 B.

Summary

e An LF signature item is translated to a type declaration and a
clause. The type declaration is a “flat” version of the LF type,
while the clause replaces dependent types with predicates.

e This correspondence is formalized in [Felty&Miller, CADE’90].

e The translation is fairly direct, so the two are very close in
specification strength.

e LF serves as a logical foundation for the logic programming
language Elf [Pfenning LICS’89).




