
Encoding the Calculus of Constructions in a Higher-Order Logic�Amy FeltyAT&T Bell Laboratories600 Mountain Ave.Murray Hill, NJ 07974 USAAbstractWe present an encoding of the calculus of construc-tions (CC) in a higher-order intuitionistic logic (I)in a direct way, so that correct typing in CC corre-sponds to intuitionistic provability in a sequent calcu-lus for I. In addition, we demonstrate a direct corre-spondence between proofs in these two systems. Thelogic I is an extension of hereditary Harrop formu-las (hh) which serve as the logical foundation of thelogic programming language �Prolog. Like hh, I hasthe uniform proof property, which allows a completenon-deterministic search procedure to be described in astraightforward manner. Via the encoding, this searchprocedure provides a goal directed description of proofchecking and proof search in CC.1 IntroductionThe motivations for encoding the Calculus of Con-structions [4] in a higher-order logic are twofold. First,it is well-known that in CC, types can be viewed asformulas and terms as proofs in an intuitionistic logic(in a manner similar to that described in Howard [11]).We want to provide some insight into the correspon-dence between these two languages by providing a di-rect encoding of one into the other. Second, we areinterested in proof search in CC. The encoding pro-vides a high-level description of a search procedurebased on logic programming.Intuitively, the correspondence between CC typesand formulas in higher-order logic is fairly direct. Afunctional type P ! Q corresponds to an implica-tion in higher-order logic. Taking this idea further,introductions and eliminations of the type arrow intype derivations correspond directly to the introduc-tion and elimination rules for implication in higher-�InProceedings of the 8th Annual IEEE Symposium on Logicin Computer Science, June 1993. c1993 by the Institute ofElectrical and Electronics Engineers, Inc. All rights reserved.

order logic. More generally, a type in CC has thestructure (x :P )Q where P and Q are types and x isa variable of type P bound in this expression. (Thearrow form is an abbreviation for the case when thevariable x does not appear in Q.) This more generalform can be viewed as a formula where x is universallyquanti�ed in Q. However, the analogy that applied tointroduction and elimination of implication is not asdirect for universal quanti�cation. In the eliminationrule, for example, from the assumption 8xQ we canconclude that any instance [R=x]Q holds as long asR has the same type as x. In higher-order logic, thistype is a simple type. In the corresponding CC rule,the variable x and term R can have arbitrary CC type.Although CC types include the types of the simply-typed �-calculus, they also include much more. As aresult of this mismatch, although the main ideas arerather simple, carrying out the full formalizationof thecorrespondence between these two languages is moredi�cult than one might expect. The encoding pre-sented here is an extension of an encoding in Felty [8]of the Logical Framework (LF) in a slightly less ex-pressive logic than the one used here. Although LFtypes are more expressive than simple types, they areless expressive than CC types. Correctly handling thepolymorphism of CC requires a signi�cant extensionover the LF encoding.In our encoding, types will correspond to predicatesover terms. Informally, the CC type (x : P )Q repre-sents a functional type in the following sense: if f is afunction of this type, and R is a term of type P , thenfR (f applied to R) has the type Q where all occur-rences of x are replaced by R. Such term/type pairswill be mapped to universally quanti�ed implications,e:g:, f : ((x :P )Q) is mapped to 8x ([[x :P ]]� [[fx : Q]])(where the double brackets denote the encoding oper-ation). In CC, types can appear inside terms. If wepre�x the above formula with a �-abstraction over f ,we obtain a representation of a type which, as we willsee, can then occur inside encoded terms.The behavior of the search procedure suggested by1



the encoding is similar to the complete procedure forCC presented in Dowek [5]. One way in which our pro-cedure di�ers is that in order to implement an auto-mated version, Dowek's procedure would require uni-�cation on CC terms to solve constraints that ariseduring search. In our procedure, terms are encodedas simply-typed �-terms, and thus uni�cation on suchterms is all that is required.In addition to providing a search procedure, the en-coding presented here provides a framework in whichto study how theorem proving techniques designed forone system can be applied to proof search in the other.For example, some early work by Bledsoe [2] developstechniques for automatic discovery of substitutions forset variables, a class of higher-order variables. Study-ing these techniques via the encoding may provide in-sight into further automating search in CC and intoBledsoe's technique itself. In the other direction, ad-ditional insight into automating theorem proving inhigher-order logic might be gained by studying the be-havior of search procedures for CC such as Dowek's [5]via the encoding.In the next two sections we present the two lan-guages we are concerned with. In Section 2 we presentthe meta-logic I, and in Section 3 we present the Cal-culus of Constructions. Then in Section 4 we presentthe encoding of CC into I. We discuss its correctnessin Section 5. In Section 6 we describe an implemen-tation of a search procedure based on the encoding,and �nally in Section 7 we conclude and discuss fu-ture work.2 A Higher-Order Meta-LogicThe types and terms of I are essentially those ofthe simple theory of types [3]. We assume a �xed setof primitive types, which includes at least the sym-bol o, the type for propositions. Function types areconstructed using the binary in�x symbol !; if �and � are types, then so is � ! �. The type con-structor ! associates to the right. The order of aprimitive type is 0 while the order of a function type�1 ! � � � ! �n ! �0, where n � 0 and �0 is primitive,is one greater than the maximum order of �1; : : : ; �n.For each type � , we assume that there are denu-merably many constants and variables of that type.Simply typed �-terms are built in the usual way us-ing constants, variables, applications, and abstrac-tions. Equality between �-terms is taken to mean��-convertibility. We shall assume that the reader isfamiliar with the usual notions and properties of sub-stitution and �, �, and � conversion for the simply

typed �-calculus. See Hindley and Seldin [10] for afuller discussion of these basic properties. If x is avariable and t is a term then [t=x] denotes the oper-ation of substituting t for all free occurrences of x,systematically changing bound variables in order toavoid variable capture.A constant or variable p of type �1 ! � � � ! �n ! ois called a predicate constant or variable. An atomicformula is a term of type o of the form pt1 : : : tn wherep is a predicate constant or variable. The predicate pis the head of this atomic formula. The logical con-nectives are de�ned by introducing suitable constantsas in Church [3]. The constants ^ (conjunction) and� (implication) are both of type o ! o ! o, and 8�(universal quanti�cation) is of type (� ! o) ! o, foreach type � . The expression 8� (�z t) is written simplyas 8�z t or 8z t when the type � can be inferred fromcontext.Intuitionistic provability for I can be given interms of sequent calculus proofs. A sequent is a pairP �! B, where P is a �nite (possibly empty) setof formulas and B is a formula. The set P is thissequent's antecedent and B is its succedent. The ex-pression B;P denotes the set P [ fBg. This notationis used even if B 2 P. The inference rules for sequentsare presented in Figure 1. The following provisos arealso attached to the two inference rules for quanti�erintroduction: in 8-R c is a constant of type � thatdoes not occur free in the lower sequent, and in 8-L tis a term of type � .A proof of the sequent P �! B is a �nite tree con-structed using these inference rules such that the rootis labeled with P �! B and the leaves are labeledwith initial sequents, that is, sequents P0 �! B0such that B0 2 P0. The non-terminals in such a treeare instances of the inference �gures in Figure 1. Sincewe do not have an inference �gure for ��-conversion,we shall assume that in building a proof, two formu-las are equal if they are ��-convertible. In a sequentP �! B, we say that the formulas in P are assump-tions and B is a goal. If this sequent has a proof, wewrite P `I B and say that goal B is provable fromassumptions P.De�nition 1 Let P be a �nite set of I formulas. Theexpression jPj denotes the smallest set of pairs hG; Diof �nite sets of formulas G and formula D, such that� If D 2 P then h;; Di 2 jPj.� If hG; D1 ^ D2i 2 jPj then hG; D1i 2 jPj andhG; D2i 2 jPj.� If hG; 8�xDi 2 jPj then hG; [t=x]Di 2 jPj for allterms t of type � .



B;C;P �! A ^-LB ^ C;P �! A P �! B C;P �! A �-LB � C;P �! A [t=x]B;P �! A 8-L8�x B;P �! AP �! B P �! C ^-RP �! B ^ C B;P �! C �-RP �! B � C P �! [c=x]B 8-RP �! 8�x BFigure 1: Left and Right Introduction Rules for I� If hG; G � Di 2 jPj then hG [ fGg; Di 2 jPj.This inference system has the uniform proof prop-erty as de�ned in Miller et al. [12] and described bythe following theorem.Theorem 2 Let P be a �nite set of formulas and letB be a formula. The sequent P �! B has a proofif and only if it has a proof in which every sequentcontaining a non-atomic formula as its succedent isthe conclusion of a right introduction rule.Proof: The proof is by induction on the height of anarbitrary proof. The cases for the left rules use the fol-lowing three lemmas proved by induction on the struc-ture of the formula in the succedent. (1) If there is auniform proof of B;C;P �! A, then there is a uni-form proof of B ^ C;P �! A. (2) If there are uni-form proofs of P �! B and C;P �! A, then thereis a uniform proof of B � C;P �! A. (3) If there isa uniform proof of [t=x]B;P �! A, then there is auniform proof of 8�x B;P �! A.Based on this property, we can describe the follow-ing high-level non-deterministic search procedure forproofs in this logic. This procedure is described bythe following operations. Here G is a goal which weare trying to prove from the set of assumptions P.AND: If G is G1^G2 then try to show that both G1and G2 follow from P.AUGMENT: If G is D � G0 then try to show thatG0 follows from P [ fDg.GENERIC: If G is 8�x G0 then pick a new constantc of type � and try to show [c=x]G0.BACKCHAIN: If G is atomic and there is a pairhG; Gi 2 jPj, then attempt to prove each of theformulas in G from P. If G is empty, then we aredone.We say that a subformula occurs positively (nega-tively) in a formula if it occurs on the left of an even

(odd) number of implications. In the logic of hh [12],which serves as the logical foundation of the logic pro-gramming language �Prolog, all atomic formulas oc-curring positively in assumptions or negatively in goalscannot have a variable at the head. The further re-striction that atomic formulas are not allowed to con-tain occurrences of � is imposed. Allowing variablesat the head as well as occurrences of � in atomic for-mulas as we do provides a signi�cant extension to thelogic. However, in hh, goal formulas can also be of theform G1 _G2 and 9�x G. The properties stated heredo not extend if we permit these connectives in goalformulas.In Miller et al. [12], it was shown that uni�cationcan be used to implement the BACKCHAIN operationfor hh and is su�cient for determining substitutions.However, because we allow variables at the head ofarbitrary atomic subformulas in I, uni�cation is nolonger enough. Consider the following subset of jPjobtained by modifying the third clause of De�nition 1.De�nition 3 Let P be a �nite set of closed I formu-las. Here, we assume the variables bound by universalquanti�ers in each formula are distinct. The expres-sion jPj0 denotes the smallest set of pairs hG; Di of�nite sets of formulas G and formula D, such that� If D 2 P then h;; Di 2 jPj0.� If hG; D1 ^ D2i 2 jPj0 then hG; D1i 2 jPj0 andhG; D2i 2 jPj0.� If hG; 8�xDi 2 jPj0 then hG; Di 2 jPj0.� If hG; G � Di 2 jPj0 then hG [ fGg; Di 2 jPj0.Informally, an implementation of BACKCHAIN for hhcan be described as follows. Choose a pair hG; Ai injPj0 such that A is atomic. Replace all free variableswith logic variables in A and attempt to unify A withthe current atomic goal G. If uni�cation succeeds,apply the resulting substitution to the formulas in Gand attempt to prove each of them. Since A in thechosen pair is atomic, it will have the form pt1 : : : tn.



In hh, p must be a constant and thus any substitu-tion of variables will result in an atomic formula. InI, however, if p is a variable, and A does not unifywith the goal, we still have to consider substitutionsthat transform A into a non-atomic formula G, andthen consider the set jfGgj0. For example, considera substitution for p that transforms A to an implica-tion B � A0 where A0 is atomic. We must now con-sider pairs in jfB � A0gj0 where the second elementis atomic, in this case just hfBg; A0i, and try to unifyA with A0. If successful B becomes an additional sub-goal that must be proven along with the formulas in G.Otherwise, we have to continue repeating the proce-dure. Thus, in I, we have additional non-determinismcaused by having to \guess" at least the part of thesubstitution that determines the logical structure ofthe formula we are backchaining on before uni�cationcan be used. In Section 6, we discuss a modi�cationwhich eliminates this non-determinism, and results inan incomplete but still powerful search procedure. Wediscuss how this incompleteness a�ects the complete-ness of proof search for encoded CC.3 The Calculus of ConstructionsThe syntax of terms of the Calculus of Construc-tions (CC) is given by the following grammar.Type j Prop j x j PQ j [x :P ]Q j (x :P )QHere x is a syntactic variable ranging over variables,and P and Q are syntactic variables ranging overterms. We assume a denumerable set of CC variables.The variable x is bound in the expressions [x :P ]Q and(x :P )Q. The former binding operator corresponds tothe usual notion of �-abstraction, while the latter cor-responds to abstraction in dependent types. We writeP ! Q for (x :P )Q when x does not occur in Q.Terms that di�er only in the names of bound vari-ables are identi�ed. If x is an object-level variableand N is an object then [N=x] denotes the operationof substituting N for all free occurrences of x, system-atically changing bound variables in order to avoidvariable capture.The following four kinds of assertions are derivablein the CC type theory.` � context (� is valid context)� ` K : Type (K is a type in �)� ` A : K (A has type K in �)� ` M : A (M has proposition A in �)

For the latter three assertions, we say that K, A, orM , respectively, is a well-typed term in �. These as-sertions separate terms into three levels. Here K andL range over terms at the �rst level called types, whichappear in expressions on the left in the second kind ofjudgment. A and B range over second-level expres-sions called families, which appear on the left in thethird kind of assertion. Finally, M and N range overthird-level expressions called objects, which appear onthe left in the fourth kind of assertion. The constantType forms a 0-level class with a single element. Wesay that Type is a kind. Only a subclass of familiescan appear on the right in derivable assertions of thefourth kind. We call terms in this subclass proposi-tions. Propositions also correspond to the subclass offamilies that occur on the left in derivable assertions ofthe third kind in the special case when K is Prop. Inaddition, � ranges over contexts. The empty contextis denoted by hi. We will use P , Q, and R to rangeover arbitrary objects, families, and types. Althoughthe inference rules will not be presented in a way thatdistinguishes the three levels of terms, we make themexplicit here so that we may later discuss their cor-responding notions in the encoding into I. We write� ` � for an arbitrary assertion of one of the laterthree forms above, where � is called a CC judgment.In deriving an assertion of this form, we always assumethat we start with a valid context �.CC has the property that all well-typed terms arestrongly normalizing. The notion of ��-conversion isde�ned by the rules in Figure 2. The (�) rule hasthe proviso that the variable x cannot appear free inP . We write P =� Q if P =�� Q has a derivationthat doesn't use the (�) rule. We say that a term isprimitive if it is Type, Prop or a proposition that is��-convertible to a term of the form xP1 : : :Pn wheren � 0 and x is a variable. All well-typed terms haveunique �-normal and ��-normal forms. In addition,they have unique ��-long forms [5]. In particular, the��-long form of a term is the �-long form of its ��-normal form. A term in ��-long form has the form[x1 : P1] � � � [xn : Pn](y1 : Q1) � � � (ym : Qm)(zR1 : : :Rp)where n;m; p � 0, z is a variable, Prop, or Type,(zR1 : : :Rp) has primitive proposition, type, or kind,and P1; : : : ; Pn; Q1; : : : ; Qm; R1; : : : ; Rp are in ��-longform. We write �(P ) and ��l(P ) to denote the �-normal and ��-long forms, respectively, of an arbi-trary term P .We present a version of the typing rules of CC suchthat the terms in any derivable assertion are in �-normal form. These rules are given in Figure 3. Inthese rules, s, s1, and s2, are either Type or Prop.



([x : R]P )Q =�� [Q=x]P (�)[x : R]Px =�� P (�)P1 =�� P2 Q1 =�� Q2 (�-ABS)[x : P1]Q1 =�� [x : P2]Q2P1 =�� P2 Q1 =�� Q2 (�-PROD)(x : P1)Q1 =�� (x : P2)Q2P1 =�� P2 Q1 =�� Q2 (CONG)P1Q1 =�� P2Q2P =�� P (REFL)P =�� Q (SYM)Q =�� PP =�� R R =�� Q (TRANS)P =�� QFigure 2: ��-Convertibility in CCIn (INTRO), (PROD), and (ABS), we assume that thevariable x does not already occur as the left hand sideof a context item in �. Items introduced into con-texts by (LEMMA) will be called context lemmas. Aderivation in CC of the assertion � ` � is a �nitetree constructed using these inference rules with root� ` �. It can be shown that for a given derivation ofan arbitrary assertion � ` P : Q using the usual pre-sentation of CC, e:g:, Coquand and Huet [4], there isa corresponding derivation of �(�) ` �(P ) : �(Q) andalso of ��l(�) ` ��l(P ) : ��l(Q) with the same basicstructure using the rules in Figure 3. Here, �(�) rep-resents the context with every right hand side of a pairintroduced by (INTRO) replaced by its �-normal form,and both the left and right of every context lemmareplaced by their �-normal forms. ��l(�) is de�nedsimilarly for ��-long forms.A canonical derivation in CC is a derivation suchthat (1) every occurrence of (INIT) is followed by aseries of applications of (APP) such that the term onthe right in the conclusion of the last one is a prim-itive proposition or type, and (2) every left premiseof (APP) is either the conclusion of (INIT) or (APP).It can be shown that any derivable assertion has a

` hi context (EMPTY-CTX)` � context � ` P : s (INTRO)` �; x :P context` � context � ` P : Q (LEMMA)` �; P :Q context� ` Prop : Type (PROP-TYPE)P :Q 2 � (INIT)� ` P : Q� ` P : s1 �; x :P ` Q : s2 (PROD)� ` (x :P )Q : s2� ` R : s1 �; x :R ` Q : s2 �; x :R ` P : Q (ABS)� ` [x :R]P : (x :R)Q� ` P1 : (x :Q1)Q2 � ` P2 : Q1 (APP)� ` �(P1P2) : �([P2=x]Q2)Figure 3: CC Typing Rulescanonical derivation. In addition, all terms in judg-ments in such derivations are not only in �-normalform, but also in ��-long form. However, given anarbitrary derivable assertion, there is not necessarilya canonical assertion with the same basic structure.1Because of the restricted form of canonical derivations,we \lose" some proofs. We can, in a sense, gain themback using a technique similar to that used for LFin Felty [8]. Given an arbitrary derivation of � ` �,we can de�ne a function which \reads o�" a seriesof context lemmas �. It is then possible to obtaina canonical derivation of the same basic structure of�;� ` �.In this paper, we will only consider canonicalderivations. By restricting CC in this way, we ob-tain an inference system whose proofs correspond di-rectly to those we can build using our search proce-dure. Each uniform proof in I built from encodedassumptions has a corresponding canonical derivationin CC of similar structure, and vice versa.1We do not give a precise de�nition of \same basic structure"here, though it is possible to do so. An example of a prooftransformation that does not preserve \same basic structure" iscut-elimination.



4 Encoding the Calculus of Construc-tionsGiven an assertion � ` �, the encoding we presenthere will map � to a set of assumptions and map � to agoal to be proven from these assumptions. Such an en-coding operates on judgment pairs. We will also needto de�ne a translation of CC terms to simply-typed�-terms. These two encodings are de�ned mutuallyrecursively since encoding a proposition or type of theform (x :P )Q will require introducing a new variable,say f , encoding the judgment f : ((x :P )Q), and ab-stracting over f . The resulting formula is a statementdescribing properties of an arbitrary term of this type.Here, we assume the variables of CC are dividedinto six denumerable sets, two for each of the threelevels of terms: objects, families, and types. For ob-jects, these sets will be denoted V1o and V2o . We assumeall free object variables in the assertion to be encodedare in V1o . The translation will choose variables fromV2o when it needs \new" object variables. Similarly,we have sets V1f , V2f , V1t , and V2t .In this section, since we encode CC in I, we con-sider I as the metalanguage. We introduce meta-leveltype ob which will be the type of encoded CC objects.We assume a �xed bijective mapping �o from variablesof V1o and V2o to meta-variables of type ob. We willalso assume a �xed bijective mapping �f from vari-ables of V1f and V2f to meta-variables of type ob ! o.CC families will be mapped to predicates over objects.Finally, we assume a mapping �t from type variablesto meta-variables of type (ob ! o) ! o. CC typeswill correspond to \predicates over predicates over"objects. The union of these three mappings will bedenoted �. For readability in our presentation, thesemappings will often be implicit. A variable x willrepresent both a CC variable and its correspondingmeta-variable given by �. It will always be clear fromcontext which is meant.There are four kinds of applications in CC, an ob-ject applied to an object, an object to a family, afamily to an object, and a family to a family. Sim-ilarly there are four kinds of abstraction, where theabstracted variable is either an object or family andthe resulting term is either an object or family. Toencode such terms, we introduce a constant for eachkind of application and abstraction. We also intro-duce constants for the CC constants Prop and Type.These constants and their types are given in Figure 4.Note that the types of the constants in the �gure areall of order three or less. The order of the types herecorresponds directly to the number of levels of terms,

in this case three with a level 0 containing only theconstant Type. It should be possible to extend theencoding presented here to generalized type systems(GTS) as in Barendregt [1]. Such systems may haveany number of levels. The number of levels corre-sponds directly to the maximum order of the types ofthe constants introduced to encode terms.We are now ready to de�ne the encoding of CCterms. We denote the encoding of term P as hhP ii.We denote the encoding of judgment P :Q as [[P :Q]].The encoding on terms is de�ned in Figure 5. We usesyntactic variables to denote the class to which eachCC term belongs. Here, f is an object variable fromV2o and g is a family variable from V2f . We assume thatthe variables chosen during the translation of a singleterm are all distinct. It is easy to see that objects aremapped to terms of type ob, families to terms of typeob ! o, and types to terms of type (ob ! o) ! o.This encoding also has the following property.Lemma 4 Given CC terms P and Q, and variable x,[hhQii=x]hhP ii = hh[Q=x]P ii:The translations of CC context items and judg-ments to I formulas is de�ned in Figure 6. It is apartial function since it is de�ned by cases and unde-�ned when no case applies. It will in fact always be de-�ned on valid context items and judgments. Note thedirect mapping of ()-abstraction in CC to instances ofuniversal quanti�cation and implication in I formu-las, as discussed earlier. In the �rst two clauses of thede�nition, the bound variable is mapped to a variableat the meta-level bound by universal quanti�cation.In the third conjunct, the left hand side of the impli-cation asserts the fact that the bound variable has acertain proposition or type, while the right hand sidecontains the translation of the body of the propositionor type which may contain occurrences of this boundvariable. The base case occurs when there is no lead-ing ()-abstraction on the left, resulting in an atomicformula. The following property follows from the def-initions of the encodings on terms and judgments.Lemma 5 Let P and Q be CC terms such that [[P :Q]] is well-de�ned and doesn't use the �rst clause ofthe de�nition in Figure 6. Then [[P : Q]] = (hhQii hhP ii).The convertibility relation for encoded CC termscan be expressed as a set of I formulas. We intro-duce the following three binary predicates which willbe used to express convertibility at the levels of ob-



prop : (ob! o) ! o typ : ((ob! o) ! o) ! oapoo : ob! ob! ob absoo : (ob! ob) ! (ob! o)! obapof : ob! (ob! o) ! ob absfo : ((ob! o) ! ob) ! ((ob! o)! o) ! obapfo : (ob! o) ! ob! ob! o absof : (ob! (ob! o)) ! (ob! o) ! ob! oap� : (ob! o) ! (ob! o) ! ob! o abs� : ((ob! o) ! (ob! o)) ! ((ob! o)! o) ! ob! oFigure 4: Constants for Encoding CC Termshh[x :A]M ii := (absoo �x:hhM ii hhAii)hhxii := �(x) hh[x :K]M ii := (absfo �x:hhM ii hhKii)hhTypeii := typ hh[x :A]Bii := (absof �x:hhBii hhAii)hhPropii := prop hh[x :K]Bii := (abs� �x:hhBii hhKii)hhMN ii := (apoo hhM ii hhN ii) hh(x :A)Bii := �f:[[f : (x :A)B]]hhMBii := (apof hhM ii hhBii) hh(x :K)Bii := �f:[[f : (x :K)B]]hhAN ii := (apfo hhAii hhN ii) hh(x :A)Lii := �g:[[g : (x :A)L]]hhABii := (ap� hhAii hhBii) hh(x :K)Lii := �g:[[g : (x :K)L]]Figure 5: Encoding CC Termsjects, families, and types.convo : ob! ob! oconvf : (ob! o) ! (ob! o) ! oconvt : ((ob! o) ! o) ! ((ob! o)! o) ! oThe I formulas expressing convertibility for familiesare given in Figure 7. In this �gure and the next, weleave of outermost quanti�ers and assume universalquanti�cation over all free variables written as cap-ital letters (possibly with subscripts). The �rst twoformulas encode the (�) rule. Since we only considercanonical derivations, the encoded terms will alwaysbe in �-long form, and so we do not include formulasfor the (�) rule. We next have two formulas encod-ing (CONG), two formulas encoding (�-ABS), and twoformulas encoding (�-PROD). The last three formulasencode reexivity, symmetry, and transitivity. Con-vertibility for objects is similar except that there areno formulas corresponding to the two for (�-PROD),while convertibility for types includes only two suchformulas together with formulas expressing reexivity,symmetry, and transitivity. The following theorem ex-presses the correctness for this speci�cation.Lemma 6 Let A and B be families, and P be the setof formulas encoding convertibility for families givenin Figure 7 together with those for convertibility forobjects and types. Then A =� B if and only ifP �! (convf hhAii hhBii) has a sequent proof.Proof: This lemma is proved by induction on aderivation of A =� B and Lemma 5. The induction

is simultaneous with similar statements for the othertwo convertibility relations. The proofs are an exten-sion of those given in Felty [7] for a speci�cation ofconvertibility for LF.A few remaining assumptions in I are necessary inorder to have a direct correspondence between deriv-ability in CC and provability in I. We include theformulas in Figure 8. The �rst formula expresses the(PROP-TYPE) rule. The next four formulas expressthe (PROD) rule at the level of propositions and types.The remaining four rules provide �-conversion for en-coded CC terms appearing in both goals and assump-tions. While an I proof may contain nodes with termsrepresenting CC terms that are not necessarily in ��-long form, the corresponding node in the canonicalCC derivation will contain the corresponding ��-longform. There are no explicit formulas for the (INIT),(ABS), and (APP) rules. These rules are what we areencoding directly by translating context items. As aresult of this translation, the (ABS) rule, for example,corresponds directly to applications of the ^-R, 8-R,and �-R inference rules for I.5 CC Derivations as I ProofsIn this section, we state the theorems and sketchthe proofs showing that for any canonical derivationin CC, there is a corresponding proof in I. We thendiscuss the correspondence in the reverse direction.We say that � is a pre-context if for every pair P :Q



[[[x :R]P : (x :R)Q]] := [[R : s1]]^ 8x �[[x :R]]� [[Q : s2]]� ^ 8x �[[x :R]]� [[P : Q]]�[[P : (x :R)Q]] := [[R : s1]]^ 8x �[[x :R]]� [[Q : s2]]� ^ 8x �[[x :R]]� [[Px : Q]]�where P has no leading []-abstraction.[[P : Q]] := hhQii hhP ii where Q has no leading ()-abstraction.Figure 6: Translating CC Context Items and Judgments(convf (ap� (abs� B K) A) (B A))(convf (apfo (absof B A) M ) (B M ))(convf A1 A2) ^ (convf B1 B2) � (convf (ap� A1 B1) (ap� A2 B2))(convf A1 A2) ^ (convo N1 N2) � (convf (apfo A1 N1) (apfo A2 N2))8x(convf B1x B2x) ^ (convf A1 A2) � (convf (absof B1 A1) (absof B2 A2))8x(convf B1x B2x) ^ (convt K1 K2) � (convf (abs� B1 K1) (abs� B2 K2))(convf A1 A2) ^ (convf B1 B2) � (convf �f:((prop A1) ^ 8x(A1x � (prop B1)) ^ 8x(A1x � (B1 (apoo f x))))�f:((prop A2) ^ 8x(A2x � (prop B2)) ^ 8x(A2x � (B2 (apoo f x)))))(convf A1 A2) ^ (convt K1 K2) � (convf �f:((typ K1) ^ 8x(K1x � (prop A1)) ^ 8x(K1x � (A1 (apof f x))))�f:((typ K2) ^ 8x(K2x � (prop A2)) ^ 8x(K2x � (A2 (apof f x)))))(convf P P )(convf Q P ) � (convf P Q)(convf P R) ^ (convf R Q) � (convf P Q)Figure 7: Convertibility for Propositions(typ prop)(prop A) ^ 8x(Ax � (prop B) � (prop �f:((prop A) ^ 8x(Ax � (prop B)) ^ 8x(Ax � (B (apoo f x))))))(typ K) ^ 8x(Kx � (prop B) � (prop �f:((typ K) ^ 8x(Kx � (prop B)) ^ 8x(Kx � (B (apof f x))))))(prop A) ^ 8x(Ax � (typ L) � (typ �g:((prop A) ^ 8x(Ax � (typ L)) ^ 8x(Ax � (L (apfo g x))))))(typ K) ^ 8x(Kx � (typ L) � (typ �g:((typ K) ^ 8x(Kx � (typ L)) ^ 8x(Kx � (L (ap� g x))))))(convt K L) ^ (convf A B) ^ LB � KA(convf A B) ^ (convo M N ) ^BN � AM(convt K L) ^ (convf A B) ^ LB ^ (KA � G) � G(convf A B) ^ (convo M N ) ^BN ^ (AM � G) � GFigure 8: Formulas Expressing Some CC Typing and Conversion Rules



in �, [[P : Q]] is well-de�ned. We write [[�]] to denotethe set containing [[P : Q]] for every P :Q in �.In this section, we write PCC to denote the set ofassumptions containing the formulas in Figures 7 and8 as well as the convertibility formulas for objects andtypes discussed but not shown.Lemma 7 Let P , Q, P 0, Q0, and R be CC termssuch that P =�� P 0 and Q =�� Q0, and [[P : Q]] iswell-de�ned. Let x be a variable and � a pre-context.1. PCC ; [[�]] `I [[P : Q]] i� PCC ; [[�]] `I (hhQii hhP 0ii):2. If PCC ; [[�]] `I [[([R=x]P ) : ([R=x]Q)]], thenPCC ; [[�]] `I [hhRii=x][[P : Q]].3. PCC ; [[�]]; [[x : Q]] `I A i� PCC ; [[�]]; [[x : Q0]] `I A,for any I formula A.4. PCC ; [[�]] `I [[P : Q]] i� PCC ; [[�]] `I [[P : Q0]]:Proof: (1) and (2) are proved by induction on thestructure of Q. (3) follows directly from the fact thatthe last two formulas in Figure 8 are in PCC . (4) isproved by induction on a derivation of Q =�� Q0.Theorem 8 Let � be a valid context and let P andQ be CC terms. If � ` P : Q has a canonical deriva-tion in CC, then PCC; [[�]] �! [[P : Q]] has a sequentproof in I.Proof: The theorem follows from Lemmas 4, 5, 6,and 7, and induction on the height of a canonical CCderivation. It illustrates directly how to construct anI proof from a CC derivation.The correspondence in the reverse direction is notas direct. In fact, there are actually \too many" Iproofs, not all of which correspond directly to CCderivations. The extra proofs result from the last fourformulas of Figure 8 which allow too much freedom inthe conversion of terms. If we restrict the way thesesubformulas are used so that CC terms are always re-duced to normal form, we obtain a direct correspon-dence in this direction also. More speci�cally, considerthe backwards construction of a sequent proof of anencoded assertion. For all rules except the 8-L rule,whenever all encoded CC terms appearing in formu-las in the conclusion are in normal form, those in thepremises are also in normal form. We can enforce anormal-form invariant by requiring that all terms inthe premise of an application of 8-L get immediatelynormalized. We must also augment the speci�cationof conversion with formulas de�ning when a term is innormal form.

One way to formalize this correspondence is tomodify the de�nition of the encoding so that sub-goals for normalization are placed everywhere they areneeded in the assumptions and the goal. To do so re-quires dividing the encoding of judgments into twomutually recursive functions, one for encoding goalsand the other for encoding assumptions. In particu-lar, normalization formulas must always occur posi-tively in goals and negatively in assumptions so thatthey always appear as goals and never as assumptions.However, having two functions complicates the encod-ing of CC terms since whenever families occur insideterms, there must be both a positive and a negativeversion. Although this complicates the encoding tech-nically, it adds no new di�culty to the proofs of thecorrespondence between I proofs and CC derivations.In fact, this correspondence can be proven by extend-ing the proof in Felty [7], where both positive andnegative encodings are used to encode the LF typetheory. The speci�cation for terms in normal form forLF given there can also be extended directly to CC.6 Implementing a Search ProcedureWe consider two examples taken from Dowek [5].First, we start with the following context.T :PropR :T ! T ! Propeq :T ! T ! Propantisym : (x :T )(y :T )(R x y) ! (R y x)! (eq x y)a :Tb :Tu : (R a b)v : (R b a)Using the inference rules of Figure 3, we can prove thatthe object (antisym a b u v) has proposition (eq a b).The encoded version of this type judgment is:(apfo (apfo eq a) b(apoo (apoo (apoo (apoo antisym a) b) u) v))which has a simple proof from the encoded contextshown below.(prop T )8x((T x) � 8y((T y) � (prop (apfo (apfo R x) y))))8x((T x) � 8y((T y) � (prop (apfo (apfo eq x) y))))8x((T x) � 8y((T y) � 8w((apfo (apfo R x) y w) �8z((apfo (apfo R y) x z) �(apfo (apfo eq x) y(apoo (apoo (apoo (apooantisym x) y) w) z))))))



(T a)(T b)(apfo (apfo R a) b u)(apfo (apfo R b) a v)For illustration purposes in this and the next exam-ple, when using the second clause of the de�nition ofthe encoding in Figure 6, we leave o� the �rst twoconjuncts, i:e:, we used only 8x ([[x :R]] � [[Px : Q]]).(The additional conjuncts provide assumptions thatare not needed in these examples.)As a slightly more complex example, consider thefollowing context.A :PropB :PropI :Prop! Propu : (P :Prop)((I P )! P )v : (I (A! B))w :AIn CC, we can show that the object (u (A! B) v w)has proposition B. To do so, the proposition P inthe fourth context item must be instantiated with thefunctional term (A! B). By the encoding on terms,hhA! Bii is:�f:((prop A) ^8x(Ax � (prop B)) ^ 8x(Ax � (B (apoo f x)))):We write Q below to abbreviate this term. Thus, inI, we must prove (B (apoo (apoo (apof u Q) v) w))from the following assumptions.(prop A)(prop B)8P ((prop P ) � (prop (ap� I P )))8P ((prop P ) �8z((ap� I P z) � (P (apoo (apof u P ) z))))(ap� I Q v)(A w)We can begin the corresponding sequent proof in I byapplying 8-L to the fourth assumption and instantiat-ing P with Q. The rest of the proof follows easily.Using the search procedure for I described in Sec-tion 2, we can implement a search procedure for CCencoded judgments. We can use such a procedure forboth type checking and proof search in CC. For typechecking, both terms in a judgment are given and thesearch is straightforward. The head of the CC termto be type checked completely determines which as-sumption to use in backchaining. In the �rst example,the head of the object in the original goal is antisym,and so the formula for antisym (the fourth formulain the encoded context above) is the one that must

be used by the BACKCHAIN operation. In the I for-mulas in the above examples, we call the rightmostatomic formula the head subformula. In an interpreterthat uses logic variables to determine substitutions,the variables x; y; z; w in the head subformula of theantisym assumption can be replaced by logic variablesM1;M2;M3;M4 which get instantiated to a; b; u; v, re-spectively, upon uni�cation with the goal. The result-ing subgoals are (T a), (T b), (apfo (apfo R a) b u), and(apfo (apfo R b) a v), which follow immediately. Typechecking the second example is not as simple. Thehead u of the CC term in the goal determines which as-sumption to use as before, but we cannot simply unifythe head subformula (P (apoo (apof u P ) z)))) with thegoal (B (apoo (apoo (apof u Q) v) w)). In this case, weneed to instantiate P with Q to obtain a non-atomicsubformula. In general, for type checking encoded CCjudgments, the logical structure needed in an instan-tiation of a variable head is completely determinedby the CC term. Here, the fact that u in the goalis applied to one more argument than u in the headsubformula of the assumption indicates that we needone universal quanti�er over one implicationwhere theright subformula is atomic. In general, if the goal hasn extra arguments, the substitution must result in aformula of the form 8x1(G1 � � � � 8xn(Gn � A) � � �)where A is atomic. In addition, the n extra argu-ments in the goal determine what the structure of thesubgoals G1; : : : ; Gn should be.Proof search in CC corresponds to stating a propo-sition or type and searching for an object or familythat inhabits it. In this case, we start with a logicvariable to represent the object or family we want to�nd and �ll it in incrementally using uni�cation duringBACKCHAIN steps on assumptions. For example, wecould start with the goal (apfo (apfo eq a) b M ) withM a logic variable. Using BACKCHAIN on the antisymassumption with new logic variables M1;M2;M3;M4,the variable M gets partially instantiated to the term(apoo (apoo (apoo (apoo antisymM1) M2)M3) M4). Itis not until further BACKCHAIN steps that these vari-ables get instantiated to a; b; u; v, respectively, com-pleting the search.Although this example is simple, the second exam-ple and search in general is much more complicated.We list several problems and discuss ways of overcom-ing them.One problem, as discussed in Section 2, is that theBACKCHAIN operation needed for I is highly non-deterministic. Consider again the second exampleabove, this time starting with the goal (B M ) whereM is a logic variable. We need to introduce a substi-



tution for P that transforms the head subformula to anon-atomic formula, but we have no indication of whatthis substitution should be. However, we can modifythe interpreter so that it provides a procedure thatis incomplete, but behaves like the transitively com-plete search procedure for CC given in Dowek [5]. In-formally, a procedure is transitively complete if whentrying to prove a typing assertion � ` P : Q, it is pos-sible to prove a series of typing \lemmas" eventuallyleading to the desired result, i:e:, there are provableassertions � ` P1 : Q1�; P1 :Q1 ` P2 : Q2...�; P1 :Q1; : : : ; Pn :Qn ` P : Qwhere n � 0. The modi�cation to our procedurecan be described simply as follows: don't restrict theBACKCHAIN to work on atomic formulas, always at-tempt BACKCHAIN before any of the other search op-erations, and always use uni�cation to attempt tounify the current goal with the head subformula ofan assumption. In the second example above, onelemma must be proved before we can prove that(u (A ! B) v w) has proposition B, namely that(u (A ! B) v) has proposition A ! B. In terms ofsearch, this means that we must �nd a proof of A! Bbefore �nding a proof of B. Finding a proof of A! Bmeans solving the subgoal (prop A) ^ 8x((A x) �(prop B)) ^ 8x((A x) � (B (M 0x))) where M 0 is alogic variable. Instead of applying the AND, GENERICand AUGMENT operations, we directly unify the for-mula with (P (apoo (apof u P ) z)))). There is one so-lution and the remaining subgoals are solved trivially,instantiating M 0 to �x:(apoo (apoo (apof u Q) v) x).We then add the solved subgoal as an assumption:(prop A) ^ 8x((A x) � (prop B)) ^8x((A x) � (B (apoo (apoo (apof u Q) v) x))).The goal (B M ) is now easily solved by backchainingon the third conjunct of this assumption, obtaining(apoo (apoo (apof u Q) v) w) for logic variable M .In general, the proofs that cannot be discoveredwithout �rst proving a lemma are those that need touse a context item of the form Q : (x1 : P1) � � � (xn :Pn)(vS1 : : :Sq) where v is a variable, and the term tobe substituted for this variable is a proposition (orabstraction over a proposition) that is not primitive.Induction principles for example are expressed in thisform. As in Dowek [5], our procedure handles thecase when a goal directly represents the property tobe proved by induction, but not the case when a gen-eralization of the induction hypothesis is needed.

Even with the modi�ed procedure, extra control islikely to be needed to decide which assumptions touse in backchaining at each step. It will often be thecase that more than one can be applied. One way toprovide such control is to implement a tactic style in-teractive theorem prover which allows a user to guidesearch step by step as well as incorporate some heuris-tic search procedures. An example of such a systemfor CC is Coq [6]. A �Prolog implementation of tac-tic style search is presented in Felty [9]. Using thisimplementation, a tactic theorem prover for encodedCC can be directly implemented. In such a theoremprover, it is possible for a user to supply generalizedinduction hypotheses and other hints directly whenneeded. In addition, in a tactic theorem prover, it mayoften be possible to provide specialized procedures for�nding such hypotheses automatically.Finally, although the examples here didn't showit, when one of the last four formulas in Figure 8 isneeded, there is much non-determinism in choosingterms that are ��-equivalent. However, as discussedin the previous section, we actually want to work withterms in normal form. If the speci�cation of conver-sion in Figure 7 is replaced by a normalization proce-dure, this non-determinism will be eliminated.7 Conclusion and Future WorkWe have demonstrated the formal correspondencebetween two distinct languages by presenting an en-coding of one in the other. As mentioned, this en-coding provides a framework in which to study howtheorem proving techniques designed for one systemcan be applied to proof search in the other. Wehave discussed in some detail the search procedurefor the encoded language, CC, that is derived from asearch procedure for the meta-logic I. In addition, wementioned several other theorem proving techniquesworth further investigation such as those of Bledsoeand Dowek. Although developed exclusively for oneof the two languages, such techniques may be able toaid in providing automatic support for search in theother language. One technique of interest that hasnot yet been mentioned is uni�cation. Studying uni-�cation of CC terms as reected in the higher-orderlogic setting, for example, should provide additionalinsight into this complex but important operation.We have not considered the possibility of translat-ing I formulas into CC. We consider here the subset ofI without conjunction. (Any formula in I can in factbe mapped to an equivalent set of I formulas that do



not contain conjunction.) This translation is particu-larly simple, mainly because any simple type is also atype in CC. Let P be a set of assumptions and G agoal. We build a CC context � as follows. First, foreach constant c of type � appearing in the formulasin P and in G, add c : � 0 to � where � 0 is � with alloccurrences of o replaced by Prop. Second, for eachformula D 2 P, introduce a new constant k not usedin the translation to this point. Add to the end of� the CC pair k : D0 where D0 is essentially D withB � C written as (x :B)C, 8�x B written as (x :� )B,and all occurrences of o replaced by Prop. In G, makethe same replacements for implication, universal quan-ti�ers, and occurrences of o to obtain a CC term G0.Then, proving the sequent P �! G in I correspondsto �nding a term P such that � ` P : G0 has a typederivation in CC.As mentioned earlier, the encoding presented hereshould extend directly to generalized type systems sothat the number of levels of terms in a type system cor-responds directly to the maximum order of the typesof constants used to encode terms. In Felty [7], an en-coding is given for the LF type theory with an encod-ing on terms similar to the one presented here. Boththe number of levels in LF and the maximum orderof types of constants in the encoding is two. A moredirect encoding where constants for application andabstraction are not needed is presented in Felty [8].There, application and abstraction in LF are encodeddirectly as application and abstraction in the meta-language. Furthermore, each LF variable is mappedto a constant of the metalanguage such that the orderof the LF type and the corresponding simple type areexactly the same. Although the simple type may haveless information, it captures the basic structure of theLF type. Such types can be of arbitrary order. Wecannot, however, give such a direct encoding of CC inI in the same way. In particular, a variable f of poly-morphic type in CC cannot be mapped to a constantf of the simply-typed �-calculus. There is no simpletype that can capture the structure of a polymorphictype. However, such a direct encoding should be pos-sible in a higher-order logic that extends I so that theterms of the logic are the terms of the polymorphic�-calculus.References[1] Hank Barendregt. Introduction to generalizedtype systems. Journal of Functional Program-ming, 1(2):124{154, April 1991.

[2] W. W. Bledsoe. A maximal method for set vari-ables in automatic theorem proving. Machine In-telligence, 9:53{100, 1979.[3] Alonzo Church. A formulation of the simple the-ory of types. Journal of Symbolic Logic, 5:56{68,1940.[4] Thierry Coquand and G�erard Huet. The calculusof constructions. Information and Computation,76(2/3):95{120, February/March 1988.[5] Gilles Dowek. D�emonstration Automatiquedans le Calcul des Constructions. PhD thesis,L'Universit�e Paris VII, December 1991.[6] Gilles Dowek, Amy Felty, Hugo Herbelin, G�erardHuet, Christine Paulin-Mohring, and BenjaminWerner. The coq proof assistant user's guide.Technical Report 134, INRIA, December 1991.[7] Amy Felty. Specifying and Implementing Theo-rem Provers in a Higher-Order Logic Program-ming Language. PhD thesis, University of Penn-sylvania, Technical Report MS-CIS-89-53, Au-gust 1989.[8] Amy Felty. Encoding dependent types in an in-tuitionistic logic. In G�erard Huet and GordonPlotkin, editors, Logical Frameworks, pages 215{251. Cambridge University Press, 1991.[9] Amy Felty. Implementing tactics and tacticals ina higher-order logic programming language. Jour-nal of Automated Reasoning, To appear.[10] J. Roger Hindley and Jonathan P. Seldin. Intro-duction to Combinatory Logic and Lambda Cal-culus. Cambridge University Press, 1986.[11] William A. Howard. The formulae-as-type no-tion of construction, 1969. In To H. B. Curry:Essays in Combinatory Logic, Lambda Calculus,and Formalism, pages 479{490. Academic Press,1980.[12] Dale Miller, Gopalan Nadathur, Frank Pfenning,and Andre Scedrov. Uniform proofs as a founda-tion for logic programming. Annals of Pure andApplied Logic, 51:125{157, 1991.


