Encoding Dependent Types in an Intuitionistic Logic *

Amy Felty
INRIA Rocquencourt

Domaine de Voluceau

78153 Le Chesnay Cedex, France

Abstract

Various languages have been proposed as specification languages for representing a wide
variety of logics. The development of typed A-calculi has been one approach toward this
goal. The logical framework (LF), a A-calculus with dependent types is one example
of such a language. A small subset of intuitionistic logic with quantification over the
simply typed A-calculus has also been proposed as a framework for specifying general
logics. The logic of hereditary Harrop formulas with quantification at all non-predicate
types, denoted here as hh*, is such a meta-logic. In this paper, we show how to translate
specifications in LF into hh“ specifications in a direct and natural way, so that correct
typing in LF corresponds to intuitionistic provability in Ah*. In addition, we demon-
strate a direct correspondence between proofs in these two systems. The logic of hh*
can be implemented using such logic programming techniques as providing operational
interpretations to the connectives and implementing unification on A-terms. As a result,
relating these two languages makes it possible to provide direct implementations of proof
checkers and theorem provers for logics specified in LF.

1 Introduction

The design of languages that can express a wide variety of logics has been the focus
of much recent work. Such languages attempt to provide a general theory of inference
systems that captures uniformities across different logics, so that they can be exploited
in implementing theorem provers and proof systems. One approach to the design of
such languages is the development of various typed A-calculi. Examples that have been
proposed include the AUTOMATH languages [4], type theories developed by Martin-L&f
[16], the Logical Framework (LF) [10], and the Calculus of Constructions [3]. A second
approach is the use of a simple intuitionistic logic as a meta-language for expressing a wide
variety of logics. The Isabelle theorem prover [20] and the AProlog logic programming
language [18] provide implementations of a common subset of intuitionistic logic, called
hh* here, that can be used for this purpose.

*This paper appears in Logical Frameworks, Gérard Huet and Gordon Plotkin, eds., Cambridge Uni-
versity Press, 1991.

In this paper, we will illustrate a strong correspondence between one language in the
first category and a language in the second. In particular, we shall show how the Logical
Framework (LF), a typed A-calculus with dependent types, has essentially the same
expressive power as hh*. We do so by showing how to translate LF typing judgments
into hh* formulas such that correct typing in LF corresponds to intuitionistic provability
in hh*.

Both Isabelle and AProlog can turn specifications of logics into proof checkers and
theorem provers by making use of the unification of simply typed A-terms and goal-
directed, tactic-style search. Thus, besides answering the theoretical question about the
precise relationship between these two meta-languages, this translation also describes
how LF specifications of object logics can be implemented within such systems.

The translation we present here extends a translation given in [9]. As in that paper,
we consider a form of LF such that all terms in derivable assertions are in canonical form,
a notion which corresponds to 85-long normal form in the simply typed A-calculus. In the
translation given there, the form of proofs was also greatly limited. As we will illustrate,
although we also restrict the form of terms here, we retain essentially the same power of
provability as in LF as presented in [10]. As a result, theorem provers implemented from
the hh* specifications obtained from this translation have a greater degree of flexibility.

In the next section, we provide some further motivation for establishing a formal
relation between these two meta-languages. Then, in Section 3 we present LF, and in
Section 4 we present the meta-logic hh“. Section 5 presents a translation of LF into hh®
and Section 6 contains a proof of its correctness. Section 7 provides examples of this
translation using an LF specification of natural deduction for first-order logic. Finally,
Section 8 concludes.

2 Motivation

Our objectives in defining an encoding from LF into hh* are both theoretical and prac-
tical. On the theoretical side, we hope that by providing an alternate presentation of
LF (via its encoding into a different formalism), we can provide some insight into the
information contained in dependent types. In addition, we wish to formally establish
the correspondence between two different approaches to specifying general logics. On
the practical side, as already mentioned, we wish to provide an approach to implement-
ing proof checkers and theorem provers for logics specified in these meta-languages. We
address both of these concerns below.

2.1 Dependent Types as Formulas

A dependent type in LF has the structure Ilz: A.B where A and B are types and z is
a variable of type A bound in this expression. The type B may contain occurrences of
z. This structure represents a “functional type.” If f is a function of this type, and N
is a term of type A, then fN (f applied to N) has the type B where all occurrences of
¢ are replaced by N, often written [N/z]B. Thus the argument type is A and the result
type depends on the value input to the function. Another way to read such a type is as
follows: “for any element z, if has type A then fz has type B.” This reading suggests a

logical interpretation of such a type: “for any” suggests universal quantification while “if
then” suggests implication. It is exactly this kind of “propositional content” of dependent
types that will be made explicit by our encoding. When & does not occur in B, such a
dependent type corresponds to the simple functional type A — B. Note that the logical
reading remains the same in this simpler case. For the case when z occurs in B, we can
think of B as a predicate over z.

In the LF encoding of natural deduction for first-order logic, for example, first-order
formulas are represented as LF terms of type form and a function true of type form —
Type is defined which takes formulas into LF types. The constant {rue is used to encode
the provability judgment of first-order logic: the type (true A) represents the statement
“formula A is provable,” and LF terms of this type are identified with natural deduction
proofs for this formula. (This is an example of the LF “judgments as types” principle,
similar to the “formulas as types” principle as in [14].) Via the encoding in hh*, we will
view true as a predicate over first-order formulas. Proofs of the predicate (true A) in hh*
can be identified with natural deduction proofs of A. Our results establish a very close
connection between hh* proofs of such predicates and LF proofs of their corresponding
typing judgments.

2.2 Implementing Goal Directed Search in Dependent-Type Calculi

In general, the search for terms inhabiting types in LF corresponds to object-level theorem
proving. For example, searching for a term of type (¢rue C A D) corresponds to searching
for a natural deduction proof of the conjunction C A D. To find a term of this type
we may use, for example, the following item which encodes the A-introduction rule for
natural deduction.

A-1:TTA: formIIB: form.(true A) — (true B) — (true A A B)

(We will say a type is “atomic” if it has no leading II. We call the rightmost atomic type,
(true A A B) in this case, the “target” type. The types form, (true A), and (true B) are
said to be “argument” types.) This type can be read: for any formulas A and B, if A
is provable and B is provable, then the conjunction A A B is provable. Thus, if C' and
D indeed have type form, and there exist terms P and @ inhabiting types (true C) and
(true D), then (A-I C D P Q) is a term of the desired type.

Consider the following general goal directed approach to the search for an inhabiting
term of a given type. If the type is atomic, attempt to match it with the target type of
an existing axiom or hypothesis. If there is a match, attempt to find inhabitants of each
of the argument types. If the type is of the form Ilz: A.B, add z: A as a new hypothesis,
and attempt to find an inhabitant of B. It is exactly this kind of approach to search
that we obtain via the translation. More specifically, our encoding will map each LF
axiom such as the one above specifying the A-introduction rule to an hh* formula. With
respect to a logic programming interpreter implementing hh* that will be described in
Section 4, search using such translated LF axioms will correspond exactly to the above
description of goal directed search in LF.

We will see that a set of hh* formulas obtained by translating an LF representation
of an object logic can serve directly as a proof checker for that logic. In other words, a

given hh® formula will be provable with respect to the depth-first interpreter implement-
ing hh* described in Section 4 if and only if the corresponding LF typing judgment is
provable in the LF type system. For theorem proving, or searching for a term inhabiting
a type, more sophisticated control is necessary. In [7], it is shown that a theorem prov-
ing environment with tactic style search can be implemented in AProlog. The clauses
obtained by the translation can serve as the basic operations to such a theorem prover.
In fact, tactic theorem provers for many of the example LF specifications given in [1]
have been implemented and tested in AProlog. Within such a tactic environment, more
complex search strategies can be written from the basic operations. For example, for a
theorem prover obtained by translating an LF specification of natural deduction, a simple
tactic can be written that automates the application of introduction rules, performing
all possible applications of such rules to a given input formula.

The hh® specification of natural deduction described in Section 7 obtained via trans-
lation is in fact quite similar to the direct specification given in [7]. Thus, the tactic
theorem prover described in that paper is very similar in behavior to the one obtained
via translation. One difference is that an alternate specification of the elimination rules
is given in [7] such that goal-directed search in hh“ corresponds to forward reasoning
in natural deduction. Using this approach, it is possible to apply rules to existing hy-
potheses in a forward direction, a capability which is quite useful for theorem proving in
natural deduction style systems. (See also [6] for more on this kind of reasoning in natu-
ral deduction and its correspondence to backward reasoning on the left in sequent style
inference systems.) It is in fact straightforward to define an LF specification of natural
deduction in first-order logic whose translation has the property that rules can be applied
to hypotheses in a forward direction. Thus a goal directed strategy at the meta-level (LF
or hh*) does not necessarily impose a goal directed strategy at the object-level.

3 The Logical Framework

There are three levels of terms in the LF type theory: objects (often called just terms),
types and families of types, and kinds. We assume two given denumerable sets of vari-
ables, one for object-level variables and the other for type family-level variables. The
syntax of LF is given by the following classes of objects.

Type | Hz: A K
z|Mz:A.B|Az:A.B| AM

= z|Az:AM|MN

= (|Ne:K|T,z:A|T,A:K|T,M:A

- s X
li li

Here M and N range over expressions for objects, A and B over types and families of
types, K over kinds, over variables, and I" over contexts. The empty context is denoted
by (). We will use P and @ to range over arbitrary objects, types, type families, or kinds.
We write A — P for llz: A.P when z does not occur in type or kind P. We will say that
a type or type family of the form zN;...N, where n > 0 and z is a type family-level
variable is a flat type.

Terms that differ only in the names of variables bound by A or II are identified. If
is an object-level variable and N is an object then [N/z] denotes the operation of substi-
tuting N for all free occurrences of z, systematically changing bound variables in order to
avoid variable capture. The expression [Ny/z1, ..., N,/z,] will denote the simultaneous
substitution of the terms Ny, ..., N, for distinct variables zq, ..., z,, respectively.

The notion of B-conversion at the level of objects, types, type families, and kinds
can be defined in the obvious way using the usual rule for g-reduction at the level of
both objects and type families: (Az:A.P)N —g [N/z]P where P is either an object or
type/type family. The relation of convertibility up to 8 is written as =g. All well-typed
LT terms are strongly normalizing [10]. We write PP to denote the normal form of term
P.

Let @ be a type or kind whose normal form is Iz, : A, ...z, : A,.P where P is Type,
a variable, or an application. We define the order of () to be 0 if n is 0, and 1 greater
than the maximum order of Ay, ..., 4, otherwise.

We present a version of the LF proof system that constructs only terms in canonical
form. Several definitions from [11] are required to establish this notion. We define the
arity of a type or kind to be the number of IIs in the prefix of its normal form. The arity
of a variable with respect to a context is the arity of its type in that context. The arity
of a bound variable occurrence in a term is the arity of the type label attached to its
binding occurrence. An occurrence of a variable z in a term is fully applied with respect
to a context if it occurs in a subterm of the form zM; ... M, where n is the arity of .
A term P is canonical with respect to a context I' if P is in S-normal form and every
variable occurrence in P is fully applied with respect to I'. A term P is pre-canonical if
its B-normal form is canonical. Flat types Ny ... N, such that z is fully applied will be
called base types.

The following four kinds of assertions are derivable in the LF type theory.

FI' context (T is valid context)
'K kind (K isakindinT)
I'FA:K (Ahaskind K in T)
I'FM:A (M has type AinT)

For the special form I' - A : Type of the third type of assertion, we also say A is a type
in I'. For the latter three assertions, we say that K, A, or M, respectively, is a well-typed
term in I'. We write I' - o for an arbitrary assertion of one of these three forms, where
a is called an LF judgment. In deriving an assertion of this form, we always assume that
we start with a valid context T.

We extend the notation for substitution and B-normalization to contexts and judg-
ments. We write [N/z|I' and [N/z]o to denote the substitution of N for # in all terms
in context T' and judgment a, respectively. Similarly, we write I'* and of to denote the
context and judgment obtained by replacing every term in I' and «, respectively, by their
normal forms.

The inference rules of LF are given in Figures 1 and 2. The set of variables on the
left of the colon in a context I' is denoted as dom(I'). In (FAM-INTRO), (OBJ-INTRO),
(PI-KIND), (PI-FAM), (ABS-FAM), and (ABS-OBJ) in Figure 1, we assume that the variable
z does not occur in I', and in (APP-FAM) and (APP-OBJ) in Figure 2, we assume that

F () context (EMPTY-CTX)

F I context I' M K kind
FT,z:K context

F I context I'F A: Type
FT,z:A context

F I context '-A: K
FT,A:K context

F T context '-M:A
FT,M:A context

(FAM-INTRO)

(OBJ-INTRO)

(FAM-LEMMA)

(OBJ-LEMMA)

I' - Type kind (TYPE-KIND)

'+ A: Type I'z: A+ K kind

PI-KIND
I'Mz:A.K kind ()
I'F A: Type I'z:AF B : Type
PI-FAM
I'FIlz:A.B : Type ()
I'F A: Type I'z:A-B: K
ABS-FAM
F'FAz:AB:lle: A K ()
I'F A: Type I‘,m:AI—M:B(ABS_OBJ)

I'FAze:AM:1lz:A.B

Figure 1: LF contexts and abstraction rules

the variables 1, ..., z, do not occur free in Ny,..., N,. Note that bound variables can
always be renamed to meet these restrictions. In addition, in (APP-OBJ) B must be a
base type. Note that when B is a base type, so is ([Ny/z1, ..., No/z,]B)P.

Items introduced into contexts by (FAM-LEMMA) or (OBJ-LEMMA) will be called con-
text lemmas. The main differences between this presentation and the usual presentation
of the LF type system are the appearance of such lemmas in contexts and the form of
the (APP-FAM) and (APP-OBJ) rules. Here, in any derivation, all terms that are used on
the left of an application must occur explicitly in the context.

We say that a context I' is canonical (pre-canonical) if for every item z: P in I" where
z is a variable, P is canonical (pre-canonical), and for every context lemma P:Q in T,
both P and @ are canonical (pre-canonical) with respect to I'. We say that an assertion
is canonical (pre-canonical) if the context is canonical (pre-canonical) and all terms in the
judgment on the left of the turnstile are canonical (pre-canonical). In this presentation,
all derivable assertions are canonical. To see why, first note that no new S-redexes are
introduced in the conclusion of any rule. Second, consider the application rules. In the

B: Mz, :A,...llz,:A,. Type e T
It Nl . Al
It Ng . ([Nl/ml]Az)’B

F l_ Nn : ([Nl/ml, ey Nn_l/mn_l]An)ﬂ
T+ (BN;...N,)?: Type

(APP-FAM)

M:lz:A;.. NIz, :A,.BeT
r "Nl :Al
It Ng . ([Nl/ml]Az)’B

i:‘ l_ Nn : ([Nl/ml, ey Nn_l/mn_l]An)ﬂ
Tk (MN;...N,)P: ([Ni/z1,..., No/zs)B)?

(APP-OBJ)

Figure 2: LF application rules

(APP-OBJ) or (APP-FAM) rule, if the term on the left of the application is a variable #, then
it has arity n and is applied in the conclusion to n terms and thus this occurrence of z is
fully applied. Hence, as long as Ny, ..., N, are canonical, sois £ Ny ... N,. If the term on
the left of the application is a canonical term, then it has the form Az,:A; ... Az, : 4,.P.
The term in the conclusion has the form ((Az; : Ay ... z, : A,.P)N; .. .Nn)ﬂ which
is equivalent to ([Ny/zi,..., Nn/&,]P)?. The fact that this latter term is canonical
follows from the fact that for any object, type, type family, or kind @ and any object
N, if @ and N are canonical, then so is ([N/z]Q)P. For the same reason, the type
([N1/z1,..., No/2,)B)? in the (APP-OBJ) rule is canonical.

In Appendix A, we show formally the correspondence between LF as presented in
[10], which we call full LF, and LF as presented here, which we will call canonical LF.
In full LF, terms in derivable judgments are not necessarily canonical or S-normal. For
a provable assertion T' F o in full LF, we say that I'* F of is its normal form. In
Appendix A, we demonstrate that any derivation of a pre-canonical assertion in full LF
can be mapped directly to a derivation in canonical LF of its normal form. Conversely,
any derivation of I' - & in canonical LF has a corresponding derivation of a pre-canonical
assertion in full LF whose normal form is I' - «. It is important to emphasize that these
results demonstrate not only a correspondence between what is provable in each system,
but also a direct correspondence between derivations in each system. In other words,
full LF restricted to pre-canonical terms is essentially the same system as canonical LF
presented here.

It can now be seen how the goal directed strategy discussed in Section 2 can be
applied to construct a proof of an LF assertion in this system. For example to find an
object inhabiting an LF type, the (ABS-OBJ) rule is applied if the type has a leading II,
and the (APP-OBJ) rule is attempted if the type is atomic. In this case, goal directed
proof corresponds to searching for a term in the context whose target type matches with
the atomic type.

4 The Intuitionistic Logic hh*

The terms of the logic hh* are the simply typed A-terms. Let S be a fixed, finite set
of primitive types. We assume that the symbol o is always a member of 5. Following
Church [2], o is the type for propositions. The set of types is the smallest set of expressions
that contains the primitive types and is closed under the construction of function types,
denoted by the binary, infix symbol —. The Greek letter 7 is used as a syntactic variable
ranging over types. The type constructor — associates to the right. If 74 is a primitive
type then the type 71 — -+ — 7, — 7o has 71, ..., 7, as argument types and 79 as target
type. The order of a primitive type is 0 while the order or a non-primitive type is one
greater than the maximum order of its argument types.

For each type 7, we assume that there are denumerably many constants and variables
of that type. Constants and variables do not overlap and if two constants (variables) have
different types, they are different constants (variables). A signature is a finite set ¥ of
constants and variables whose types are such that their argument types do not contain
0. A constant with target type o is a predicate constant.

Simply typed A-terms are built in the usual way. An abstraction is written as Az ¢,
or Az : 7.t when we wish to be explicit about the type of the bound variable z. The
logical constants are given the following types: A (conjunction) and D (implication) are
both of type 0 —+ 0 — o; T (true) is of type o; and V., (universal quantification) is of
type (7 — 0) — o, for all types 7 not containing o. A formula is a term of type o. The
logical constants A and D are written in the familiar infix form. The expression V., (Az)
is written V., & t or simply as Vz ¢t when types can be inferred from context.

If ¢ and ¢ are terms of the same type then [t/z] denotes the operation of substitut-
ing t for all free occurrences of #, systematically changing bound variables in order to
avoid variable capture. The expression [t1/21,...,t,/z,] will denote the simultaneous
substitution of the terms ¢y, ...,t, for distinct variables 1, ..., z,, respectively.

We shall assume that the reader is familiar with the usual notions and properties of
o, B, and 7 conversion for the simply typed A-calculus. The relation of convertibility up
to o and B is written as =g (as it is for LF), and if 7 is added, is written as =g,. A
A-term is in @-normal form if it contains no beta redexes, that is, subformulas of the form
(Az t)s. We say that an occurrence of a variable or constant A in a simply typed A-term
is fully applied if it occurs in a subterm of the form ht; .. .t, having primitive type. The
term h is called the head of this subterm. A A-term is in #7n-long form if it is in S-normal
form and every variable and constant occurrence is fully applied. All A-terms 8n-convert
to a term in Bn-long form, unique up to a-conversion. See [13] for a fuller discussion of
these basic properties of the simply typed A-calculus.

Let ¥ be a signature. A term is a X-term if all of its free variables and nonlogical
constants are members of 2. Similarly, a formula is a 3-formaula if all of its free variables
and nonlogical constants are members of 3. A formula is either atomic or non-atomic.
An atomic ¥-formula is of the form (Pt; .. .t,), where n > 0, P is given type 71 — -+ —
T, — 0 by X, and {4, ...,t, are terms of the types 71, ..., T,, respectively. The predicate
constant P is the head of this atomic formula. Non-atomic formulas are of the form T,
By A By, By D By, or V,.z B, where B, By, and B, are formulas.

The logic we have just presented is very closely related to two logic programming

¥, B,C,P — C L ;P — B ;P — C R
S, BAC,P — C'V ;P — BAC &
;P — B ¥, C,P — A L ¥; B)P — C R
>:BoC,P — 4 = ;P — BoC
Y, [t/z]B,P — CVL YU{c}; P — [c/m]BVR
¥;V,z2B,P — C " ;P — VzB)

Figure 3: Left and right introduction rules for hh®

extensions that have been studied elsewhere [17]. First-order hereditary Harrop formu-
las (fohh) have been studied as an extension to first-order Horn clauses as a basis for
logic programming. Similarly higher-order hereditary Harrop formulas (hohh) are a gen-
eralization of fohh that permits some forms of predicate quantification. Because our
meta-language is neither higher-order, since it lacks predicate quantification, nor first-
order, since it contains quantification at all function types, we shall simply call it hh*.
The set of hh* formulas in which quantification only up to order n is used will be labeled
as hh™.

Provability for hh“ can be given in terms of sequent calculus proofs. A sequent is a
triple ¥ ; P — B, where ¥ is a signature, B is a X-formula, and P is a finite (possibly
empty) sets of X-formulas. The set P is this sequent’s antecedent and B is its succedent.
Later, when discussing an interpreter for this language, we also say that P is a program,
that each formula in P is a clause, and that B is a goal formula. The expression B, P
denotes the set P U {B}; this notation is used even if B € P. The inference rules for
sequents are presented in Figure 3. The following provisos are also attached to the two
inference rules for quantifier introduction: in V-R c¢ is a constant of type 7 not in 3, and
in V-L t is a Y-term of type T.

A proof of the sequent ¥ ; P — B is a finite tree constructed using these inference
rules such that the root is labeled with ¥ ; P — B and the leaves are labeled with
initial sequents, that is, sequents ¥’ ; P’ — B’ such that either B’ is T or B’ € P’
The non-terminals in such a tree are instances of the inference figures in Figure 3. Since
we do not have an inference figure for gn-conversion, we shall assume that in building
a proof, two formulas are equal if they are #7n-convertible. If the sequent ¥ ; P — B
has a sequent proof then we write ;P -1 B and say that B is provable from ¥ and P.
The following two theorems establish the main proof theoretic results of hh* we shall
need. These theorems are direct consequences of the proof theory of a more expressive
logic studied in [17].

Theorem 1 Let ¥ be a signature, let P be a finite set of X-formulas, and let B be a
Y -formula. The sequent 3 ; P — B has a proof if and only if it has a proof in which

every sequent containing a non-atomic formula as its succedent is the conclusion of a
right introduction rule.

To state our second theorem, we need the following definition.

Definition 2 Let X be a signature and let P be a finite set of X-formulas. The expression
|P|x denotes the smallest set of pairs (G, D) of finite set of ¥-formulas G and X-formula
D, such that

e If D € P then (0, D) € |P|s.

e If (G, D1 A Dy) € |P|x then (G, Dy) € |P|s and (G, Dy) € |P|s.

o If (G,V,zD) € |P|x then (G, [t/z]D) € |P|s for all X-terms ¢ of type .
e If (G,G D D) € |P|s then (G U{G}, D) € |P|s.

Theorem 3 Let Y be a signature, let P be a finite set of Y¥-formulas, and let A be
an atomic X-formula. Then A is provable from X and P if and only if there is a pair

(G, A) € |P|x so that for each G € G, G is provable from ¥ and P.

Given these two theorems, it is clear how a non-deterministic search procedure for
hh® can be organized using the following four search primitives.

AND: B; A By is provable from X and P if and only if both B; and B, are provable
from X and P.

GENERIC: V.zB is provable from ¥ and P if and only if [¢/z]B is provable from
¥ U {c} and P for any constant ¢ of type 7 not in X.

AUGMENT: B; D B, is provable from ¥ and P if and only if By is provable from X
and P U {B}.

BACKCHAIN: The atomic formula A is provable from ¥ and P if and only if there
is a pair (G, A) € |P|x so that for every G € G, G is provable from ¥ and P.

To implement an interpreter which implements these search operations, choices must
be made which are left unspecified in the high-level description above. Here, we assume
choices as in the AProlog language. For example, logic variables are employed in the
BACKCHAIN operation to create universal instances of definite clauses. As a result, unifi-
cation on A-terms is necessary since logic variables of arbitrary functional type can occur
inside A-terms. Also the equality of terms is not a simple syntactic check but a more
complex check of Bn-conversion. Unification on A-terms is not in general decidable. In
AProlog, this issue is addressed by implementing a depth-first version of the unification
search procedure described in [15]. (See [19, 17].) In this paper, the unification problems
that result from programs we present are all decidable and rather simple.

10

In the AUGMENT search operation, clauses get added to the program dynamically.
Note that as a result, clauses may in fact contain logic variables. The GENERIC operation
must be implemented so that the new constant ¢ introduced for , must not appear in
the terms eventually instantiated for logic variables free in the goal or in the program
when c is introduced.

A deterministic interpreter must also specify the order in which conjuncts are at-
tempted and definite clauses are backchained over. One possibility is to attempt con-
juncts and backchain on definite clauses in the order in which they appear in the goal or
in P, respectively, using a depth-first search paradigm to handle failures as in Prolog.

5 Translating LF Assertions to hh” Formulas

In this section we present the translation of LF assertions to formulas in Ah*. This
translation will require an encoding of LF terms as simply typed A-terms. We begin by
presenting this encoding. We then present the translation, which has three parts. The
first translates context items to a set of hh* formulas to be used as assumptions, while
the second translates LF judgments to a formula to be proven with respect to such a set
of assumptions. The third translation is defined using the previous two, and translates
an LF assertion I' - a to a single formula whose proof verifies that I' is a valid context
before proving that o holds within the context I'.

In this section, since we encode LF in hh“, we consider hh* as the meta-language
and LF as the object-language. Since both languages have types and terms, to avoid
confusion we will refer to types and terms of hh* as meta-types and meta-terms. In order
to define an encoding of LF terms as simply typed A-terms, we change slightly the notion
of LF syntax. We will associate to each object and type variable, a tag which indicates
the “syntactic structure” of types and kinds, respectively, which can be associated with
it in forming a binder or a context item. These tags will be “simple types” built up
from two primitive types ob and ty and the arrow constructor —, with the additional
restriction that ty can only appear as a target type. We assume that there is an infinite
number of object-level and type-level variables associated with every simple type whose
target type is ob and ty, respectively.

Let # be an object or type variable and , — --- — 7,, — 79 be the tag associated
with z, where n > 0 and 7¢ is ob or ty. We say that variable z admits type or kind
ey : Ay ...z A, P if the following hold: if 7 is ty then P is Type; if 79 is ob, then
P is a flat type; for i = 1,...,n, the tag associated with z; is 7; and #; admits type A;.
We add a restriction when forming the A or II binder z : A, or the context item z: A
or ¢ : K, that z admits type A or kind K. Note that this restriction requires that the
“simple type” in a variable tag has exactly the same order as the LF type or kind used
in forming the binder.

We only define the encoding of LF terms as simply typed A-terms for LF objects and
flat types since this is all that is required by the translation. We introduce two primitive
types at the meta-level, ob and ty, for these two classes of LF terms. The types ob and ty
in variable tags correspond to these meta-types in the obvious way. When we wish to be
explicit, we write 7 (z) to denote the meta-type associated with the tag on LF variable
obtained by replacing each occurrence of ob by ob and ty by ty. We will assume a fixed

11

mapping p which associates each LF variable ¢ to a meta-variable of type 7 (z). For
readability in our presentation, this mapping will be implicit. A variable z will represent
both an LF variable and its corresponding meta-variable. It will always be clear from
context which is meant.

We denote the encoding of term or type P as {P)). The full encoding is defined in
Figure 4. Note that the encoding maps abstraction in LF objects directly to abstraction

(@) = =
Az AMY)

==X

2
X X
1l
R
S
~ 3
=%
=
RN
3

Figure 4: Encoding of LF Terms

at the meta-level, and that both application of objects to objects and application of type
families to objects are mapped directly to application at the meta-level. The difference
at the meta-level is that the former application will be a meta-term with target type ob
while the latter application will be a meta-term with target type ty.

We can easily define a function ® which maps an LF type or kind to the simple type
corresponding to the tag on a variable that admits this type or kind: ®(Ilz: A.P) is
®(A) — ®(P), ®(Type) is ty, and ®(xNy...N,) is ob. It is easy to see that for object
or type family P having, respectively, type or kind @, {P}) is a meta-term of meta-type
Q).

Two predicates will appear in the atomic hh* formulas resulting from the translation:
hastype of type ob — ty — o and istype of type ty — o. We will name the signature
containing these two predicates 7. We denote the translation of the context item P:Q)
as [P:Q]". This translation is defined in Figure 5 (a). It is a partial function since it
is defined by cases and undefined when no case applies. It will in fact always be defined
on valid context items. When applied to a valid context item, P in the first two clauses
in Figure 5 (a) will always be either an object or type family, and @ a type or kind,
respectively. As was noted earlier, valid contexts are always in canonical form. Note that
in a canonical context item z: P, the variable z is not necessarily canonical since it may
not be fully applied. Such judgments with non-canonical terms on the left are handled
by the second clause of the definition. Note the direct mapping of II-abstraction in LF
types and kinds to instances of universal quantification and implication in Ah* formulas,
as discussed earlier. In the first two clauses of the definition, the variable bound by II is
mapped to a variable at the meta-level bound by universal quantification. Then, in the
resulting implication, the left hand side asserts the fact that the bound variable has a
certain type, while the right hand side contains the translation of the body of the type or
kind which may contain occurrences of this bound variable. The base cases occur when
there is no leading II in the type or kind, resulting in atomic formulas for the hastype
and istype predicates.

To illustrate this translation, we consider an example from an LF context specifying
natural deduction for first-order logic. The following context item introduces the con-
stant for universal quantification and gives it a type: V* : (i — form) — form. (We
write V* for universal quantification at the object-level to distinguish it from universal

12

[Mz:A.P:Mz:AQ]"T = Ve ([[m:A]]+ D[P Q]]+)

[P : Hm:A.Q]]+ = Ve ([[m:A]]+ D [Pz :Q]]+)
where P is not an abstraction.
[M: A]" := hastype (M) (A)

where A is a flat type.
[A: Type]™ := istype (A) where A is a flat type.

(a) Translation of context items

De:AP:Me:AQ]™ = [A:Type] AV ([e:A]" 5 [P:Q]")
[M:A]" = hastype (M) (A)
where A is a flat type.
[A:Type]~ := istype (A) where A is a flat type.
[Me:A.B:Type]~ = [A:Type]” AVe ([z:A]" > [B: Type]")
[Type kind]~ = T
[Me: AK kind]~ = [A: Type]” AVz ([z:A]" > [K kind]")

(b) Translation of LF judgments

Figure 5: Translating LF contexts and judgments to hh* formulas

quantification in hh“.) To make all bound variables explicit, we expand the above type
to its unabbreviated form: IIA: (Ily : ¢.form).form. Note that the tag associated to V*
must be (ob — ob) — ob. Both the LF type and the corresponding meta-type have order
2. The translation of this context item is as follows.

[v* : TA:(Ily:i.form).form]" =
VA (Vy ([[y 4]t O [Ay form]]+) D [V*A :form]]+) =
VA (Vy((hastype y ©) D (hastype (Ay) form)) D (hastype (V*A) form))

This formula provides the following description of the information contained in the above
dependent type: for any A, if for arbitrary y of type ¢, Ay is a formula, then ¥*4 is a
formula.

Figure 5 (b) contains the definition of the translation for LF judgments. The trans-
lation of judgment o is denoted [a] . Several clauses of this definition are similar to the
clauses of the previous one. For example, judgments containing a A and Il-abstraction
pair again translate to a universally quantified implication (using the first clause of the

13

[2:4,T;a] = [A:Type]” AVa ([z:4]" > [T;a)

[¢:K,T;o] = [K kind]~ AVz ([2:K]" > [T;a])

[P:Q.T;0] = [P:Q] A ([P:Q]" > [T;a])
[(iel = [o]”

Figure 6: Translating LF assertions to hh” formulas

definition). In this case, an additional conjunct is also required to verify that the type
in the abstraction is valid. Note that in the left-hand side of the implication, the binder
z: A is translated as a context item (using |]:|]+), and represents an additional assump-
tion available when proving that P has type or kind . Since the term on the left of a
colon in a canonical assertion is always canonical, we do not need a clause corresponding
to the second clause of [[*. Note that the base cases resulting in atomic formulas for
hastype and istype are identical to those for translating context items. Finally, the last
three clauses handle the remaining possible LF judgments. Again II-abstraction maps to
universal quantification and implication, with an additional conjunct to verify that the
type in the binder is valid. The judgment Type kind simply maps to T.

Figure 6 contains the general translation for LF assertions. Given assertion I' - o,
the pair (I'; &) is mapped to a single formula containing subformulas whose proofs will
insure that each context item is valid and that the judgment holds in this context. The
translation of such a pair is denoted [I'; af]. The first two clauses of this translation
map each context item to a conjunctive formula where the first conjunct verifies that the
type or kind is valid (using the translation on LF judgments), and the second conjunct
is a universally quantified implication where the left hand side asserts the fact that the
context item has the corresponding type (using the translation on contexts), and the
right side contains the translation of the pair consisting of the remaining context items
and judgment. The third clause handles context lemmas. Again there are two conjuncts.
The first translates the lemma as a judgment to verify that it holds, while the second
translates it as a context item which will be available as an assumption in proving that
the rest of the context is valid and that the judgment holds within the entire context.
The last clause in the translation is for the base case. When the context is empty, the
judgment is simply translated using [~ . In the next section, we will show formally that
for LF assertion I' - «, I is a valid context and I' - « is provable in LF if and only if
[T';] is a provable hh* formula.

6 Correctness of Translation

The following two properties hold for the encoding {}) on terms. They will be important
for establishing the correctness of the translation.

Lemma 4 Let P be an LF object or base type, and N an LF object. Then [{N))/z]{P) =
([N/z]P).

14

Lemma 5 Let P and @ be two LF objects or base types. If P =g Q, then {P})) =g (Q@).

Lemma 4 is proved by induction on the structure of LF terms, while Lemma 5 is proved
by induction on a sequence of #-reductions to convert P to Q).

In proving the correctness of the translation, we consider a slightly modified LF. Our
modified system replaces the (ABS-FAM) and (ABS-OBJ) rules with the following two rules.

I'z:A-B: K z:A-M:B
I'FXe:A.B:Mlz:A.K I'FAze:AM:1lz:A.B

(ABS-FAM') (ABS-OBJ')

These rules are the same as presented earlier except that the left premise is omitted. We
call this system LF’. Proving an assertion of the foorm I' F Az : A.P : Ilz : A.Q in valid
context I' in the unmodified version of LF is equivalent to proving I'yz: A F P : Q in
valid context I',z : A. In Appendix B, we show that for valid context I' and judgment
a, the assertion I' I « is provable in LF if and only if it is provable in LF’ and all types
bound by outermost abstractions in the term on the left in o are valid.

In proving correctness of the translation, we prove a stronger statement from which
correctness will follow directly. This stronger statement will talk about the provability
of an arbitrary LF’ assertion I' F a even in the case when I' and the types bound by
outermost abstractions in o are not valid. We make the following modifications to the
definition of [[]~ for translating such judgments: we replace the first clause of Figure 5
(b) with the first clause below, and add the second as a new clause.

[Az:A.P:Mz:A.Q]~ := V= ([[m:A]]+ D[P: Q]]_)
[P:Tz:A.Q]" := V=z ([[m:A]]+ D [Pz : Q]]_)

where P is not an abstraction.

In the first clause, the removal of the left conjunct in these formulas corresponds to the
removal of the left premise in the (ABS) rules. The second clause will be needed for
proving our general form of the correctness theorem. Note that with these two clauses,
the positive and negative translation are identical on judgments for which they are both
defined.

One further lemma about LF’ is needed to prove the correctness of the (modified)
translation. Lemma 4 shows that substitution commutes with the encoding operation.
The lemma below extends this result to the translation operation on judgments which
translate to provable hh* formulas. Given a context I', we write p(I') to denote the set
of meta-variables obtained by mapping, for each signature item z : P in I', the variable
z to the corresponding meta-variable of type T (z). We write [I]" to denote the set of
formulas obtained by translating separately each item in I' using [J*.

Lemma 6 Let I',z; @ Ay,...,2, : An,z : A (n > 0) be a canonical context. Let
Ni, ..., Nyn, N be canonical objects with respect to I'. Let X be the signature X7 Up(T).
Then X; [T]" b7 [N : ([N1/21,. .., No/za]A)P]™ iff

S I007 Fr (N2 /21, -, (Nn) /2, (N) /2] - AT

15

Proof: The forward and backward direction is proved by simultaneous induction on the
structure of A with the following statement. Let C be any ¥ U {z}-formula. Then

YU{z}; [T]", [: ((N1/21, ..., No/enJA)P]T 1 C iff

S UL} [T, (N1 /21, -, (Nn) /zn]llz - AT 11 C.
|

Theorem 7 (Correctness of Translation I) Let I' be a valid context and o a canonical
judgment such that all types bound by outermost abstractions in the term on the left in
« are valid. Let X be Xr U p(I'). Then T F « is provable in LF' iff %; [I]" ;1 [o]
holds.

Proof: We prove a modified form of the above statement from which the theorem will
follow directly. We relax the requirement that I' is valid and that the types bound by
outermost abstractions in o are valid. Instead, we simply require that [I']" and [o]~
are well-defined.

The proof of this theorem is constructive, i.e., it provides a method for constructing
an hh® proof from an LF proof, and vice versa. We begin with the forward direction
which is proved by induction on the height of an LF’ proof of the assertion I' - a. For
the one node proof I' F Type kind, clearly [Type kind]™ = T is provable from ¥ and
[T]*. For the case when the last rule is (PI.FAM), we build the following sequent proof
fragment, where the root is the translation of the conclusion of the (PI-FAM) rule, and the
leaves are the translations of the premises which we know to be provable by the induction
hypothesis.

suU{z}; [T, m:A]]+ — [B: Type]]”

U {z}; [[I‘]]+ — [[m:A]]+ D [[B: Type]]” if:
3 [[I‘]]+ — [A:Type]” T; [[I‘]]+ — Ve ([[m:A]]+ D [B: Type]) AR

¥ [[I‘]]+ — [A:Type]” AVz ([[m:A]]+ D [B: Type])

The case when the last rule is (PI-KIND) is similar. The cases for (ABS-OBJ') and
(ABS-FAM') are also similar, except that the translations do not have the left conjunct
and the corresponding LF’ proofs have only one premise. Next, consider the case when
the last rule is (APP-OBJ) with context lemma M : Ilz; : 4, ...Ilz, : A,.B € T and
objects Ny, ..., N,, appearing on the right of the colon in the n premises. We must show
that the formula below (the translation of the conclusion) is provable from X and [T']".

(hastype ((MN;...Np)?) (([N1i/1,..., No/z,)B)PY) (1)

(Note that we can assume that z1, ..., z, do not appear free in M, otherwise we rename
them in the above type.) By the induction hypothesis for the n premises and Lemma 6,
the following are provable from ¥ and [T']".

[(N) /2]l Aa]ls - [(NL) /205 - (NR) /2] (20 An]™ (2)

M has the form Az;: A;... Az, : A,.M'. Since M :lz;:A;...lz,:A,.B is in I' the
formula below (the translation of this context item using [J*) is in [I']".

Ve, ([e1: A]1 O .. Ve, ([en: An]T D (hastype (M') (B)))...)

16

By Definition 2 applied to this formula with instances {N1), ..., {Nn) for the variables

T1,...,%n, we know that the following pair is in ‘[[I‘]]"' ‘2.

(N fealen: Y, [N s (Na /2] [2a: Aa] TS,
(hastype [(N1) /@1, .., (No) /2nl(M") [(N1) /21, .., (No) /2a](BY))

Hence, by Theorem 3, the fact that the formulas (2) are provable from X and [I']*, and
the fact that the positive and negative translation are identical on these judgments, we
can conclude that the formula on the right of this pair is provable from 3 and [[I‘]]+. By
Lemmas 4 and 5, the following hold.

[(N1) /21, (Nn) /2l (M) =p ((MN1...No)P)
[((N1) /21, -, (Nn)/2al(B) =p {([N1/21, - ., Nn/2a] B)P)

Thus the formula on the right of the above pair is equivalent to (1) and we have our
result. The case when M is a variable, and the case when the last rule in the proof of
the LF' assertion is (APP-FAM) are similar to this case.

The proof of the backward direction is by induction on the structure of the term on
the left in o, and is similar to the proof of the forward direction. The proof of the case
when the term on the left is an abstraction or II relies on the fact that there is a sequent
proof of the corresponding hh* formula of the form described by Theorem 1. The proof
of the case when the term on the left is an application uses Theorem 3. [|

The correctness of the translation []] is stated as the following corollary of this theo-
rem. We state it with respect to the unmodified canonical LF.

Corollary 8 (Correctness of Translation II)
Let I' be a canonical context and o a canonical judgment. Then I is a valid context
and T' I a is provable in LF iff Xpp; 0ty [T'; o] holds.

7 Encoding a Specification of First-Order Logic

In this section, we consider some further examples from an LF specification of natural
deduction in first-order logic. We begin by illustrating the translation of context items
specifying some of the inference rules. We then consider some example LF judgments
provable from this context, and discuss both proof checking and theorem proving of the
corresponding goals in hh“.

Note that in general, formulas obtained by translating context items have the form
on the left below, but can be rewritten to have the form on the right:

VX, (Glj...VXn (GHDD)) VX;...VX, (Gl/\"'/\GnDD)

where n > 0, X4, ..., X, are variables, and G4y, ...,Gy, D are hh* formulas. (Here we
assume that fori=1,...,n, X;11,..., X, do not appear free in G;). For readability, we

17

will write hh® formulas in the examples in this section simply as Gy A---A Gy, D D (or
just D when n = 0), and assume implicit universal quantification over all free variables
written as capital letters.

The fragment of an LF specification for first-order logic that we are concerned with
is the following.

i : Type
form : Type
true : form — Type
Nt form — form — form
O* : form — form — form
V* : (¢ = form) — form
A-1 : ITA: form I1B: form.(true A) — (true B) — (true A A*B)
N-Eq : ITA: form IIB: form.(true A AN*B) — (true A)
N-Ey : ITA: form .11 B: form.(true A A*B) — (true B)
V*-E : IIA:i — form.Ilt:i.(true V*A) — (true At)
V*-I : [TA:i — form.(Ily:i.(true Ay)) — (true V*A)
D*1 : TA: form.IIB: form.((true A) — (true B)) — (true A D*B)
D*-E : IIA: form.I1B: form.(true A D*B) — (true A) — (true B)

For readability, we do not always present context items in canonical form. The cor-
responding canonical term can always be easily deduced. For example, to apply the
translation to the inference rules for universal quantification, the term (V*A) must be
replaced by (V*Az:iAz).

First, consider the V*-elimination rule specified by ¥*-E and its type. Its translation
(using [[J*) is the following formula.

Vy((hastype y i) D (hastype Ay form)) A (hastype t i) A
(hastype P (true V*A)) D (hastype (V*-E A t P) (true At))

This formula reads: if for arbitrary y of type ¢, Ay is a formula, and if ¢ is a term of
type 7 and P is a proof of V* 4, then the term (V*-E A t P) is a proof of the formula At.
Note that, as in the translation of the ¥* connective given in Section 5, A is a function
at the meta-level having syntactic type ob — o0b. It maps first-order terms to formulas
just as it does at the object-level. We next consider the translation of the V*-I rule as
the following formula.

Vy((hastype y i) D (hastype Ay form)) A
Vy((hastype y i) D (hastype Py (true Ay))) D
(hastype (V*-1 A P) (true V*A))

This clause provides the following description of the information contained in the de-
pendent type: if for arbitrary y of type ¢, Ay is a formula and Py is a proof of Ay,
then the term (V*-I A P) is a proof of V*A. Here, both A and P are functions at the
meta-level having syntactic type ob — 0b. Again, A maps first-order terms to formulas,
while P maps first-order terms to proofs. As a final inference rule example, consider the

18

declaration for D*-1, which translates to the following formula.

(hastype A form) A (hastype B form) A
Vq((hastype q (true A)) D (hastype Pq (true B))) D
(hastype (O*-1 A B P) (true A D*B))

This formula reads: if A and B are formulas and P is a function which maps an arbitrary
proof g of A to the proof Pq of B, then the term (D*-I1 A B P) is a proof of A D*B.
Note that P in this formula is a function which maps proofs to proofs.

We consider an example from [21] which is provable in the LF specification for natural
deduction. The following LF type represents the fact that in first-order logic, a universal
quantifier can be pulled outside a conjunction.

IMA:¢ — form.IIB:i — form.
(true (V*A A* V*B)) — (true V*(Az:i(Az A*Bz)))

Let the term 7" be the following LF term of this type, which represents a natural deduction
proof of this fact.

AA:i — formAB:i — form.Ap:(true (V*A A* V*B)).
(V*-I Az:i.(Az AN*Bz) Az:i.(N-1 Az Bz
(V*-E A z (N-Eq1 V*A V*B p)) (V*-E B ¢ (N-E; V*A V*B p))))

Let T' be the following simply typed A-term of type (ob — 0b) — (0b — 0b) — ob — ob.

AA:0b — ob.AB:0b— 0b.Ap:ob.
(V*-I Az:0b.(Az AN*Bz) Az:o0b.(N-1 Az Bz
(V*-E A z (N-Eq1 V*A V*B p)) (V*-E B ¢ (N-E; V*A V*B p))))

The encoding of the above judgment using [~ is an hh“ formula equivalent to the
conjunction of the three formulas below, which are provable from the set of formulas
encoding the entire LF context specifying natural deduction in first-order logic.

(istype i) A Vy((hastype y i) D (istype form))

Vy((hastype y i) D (hastype Ay form)) A
Vy((hastype y i) D (hastype By form)) D (istype (true (V*A A* V*B)))

Vy((hastype y i) D (hastype Ay form)) A
Vy((hastype y i) D (hastype By form)) A
(hastype p (true (V*A A*V*B))) D
(hastype (T'ABp) (true V*(Az:0b.(Az A*Bgz))))

Once a fact is proved it can be considered a part of the context and used to prove new
judgments. In this case, the translation of the above judgment as a context item is the
latter of the three formulas above. Thus this formula can be added as an assumption
and used in proving new hh* goals. For example, consider the LF type below.

true((V'r A* V*s) D*(ra A*sa))

19

(We assume that a is a constant and r, s are unary predicates in our first-order logic.
Thus the context contains a : ,7 : ¢ — form,s : i — form, and the set of hh* formulas
contains their corresponding translations.) The following two LF terms represent proofs
of this fact. The first uses the above LF judgment as a lemma.

(O*-I (V*r A*V*s) (raA*sa) Ap:(true (Y*r A* V*s)).
(V*-E Az:i.(rz A*sz) a (Trsp)P)

(O*-I (V*r A*V*s) (raA*sa) Ap:(true (V*r A* V*s)).(N-I ra sa
(V*-E r a (X-E1 YV*r V*s p)) (V*-E s a (X-E; V*r V*s p))))

These judgments translate to the following two provable Ah* formulas.

(hastype (D*-1 (V*r A* V*s) (ra A*sa)
Ap:0b.(V*-E Az:ob.(rz A*sz) a (T'rsp))
(true (V*r A* V*s) D*(ra A*sa))

(hastype (O*-1 (V*r A* V*s) (raA*sa) Ap:ob.(N-I ra sa
(V*-E r a (X-E; YV*r V*s p))
(V*-E s a (K-Ep YV*r V*s p))))
(true (V*r A* V*s) D*(ra A*sa))

With respect to the interpreter described in Section 4, we will say that an hh“ formula
with no logic variables is closed. The formulas we obtain by applying the translation, for
example, are all closed. Proving one of the above two formulas, for instance, corresponds
to verifying that the closed term represents a natural deduction proof of the first-order
formula in the closed type, i.e., proving closed formulas corresponds to object-level proof
checking. The deterministic interpreter described in Section 4 is in fact sufficient to prove
such goals. Each BACKCHAIN step will produce new closed subgoals. Consider the first
of the two formulas above. In proving this formula, we obtain a subgoal of the form:

(hastype (T'rsp) (true (YAz:ob.(re A*sz)))).

The term at the head of (the normal form of) (T'rsp) is V*-I. At this point in the
proof there will be two possible definite clauses that can be used in backchaining: the
translation of the V*-I context item, and the translation of the lemma 7', and either will
lead to proof of the subgoal. In fact, for proof checking, we can restrict the set of definite
clauses used to those obtained by translating context items that introduce new variables,
discarding those that translate context lemmas, and still retain a complete program with
respect to a deterministic control. In this restricted setting, at each step depending on
the constant at the head of the term, there will be exactly one clause that can be used
in backchaining.

To use such a set of hh* formulas for object-level theorem proving, we simply use a
logic variable in the first argument to the hastype predicate. For example, to prove the
first-order formula (V*r A* V*s) D*(ra A*sa), we begin with the goal:

(hastype M (true (V*'r A* Y*s) D*(ra A*sa)))

20

where M is a logic variable to be instantiated with a term of the given type. A closed
instance of M can easily be mapped back to an LF term having the given type. As
discussed in Section 2, depth-first search is not sufficient for such a theorem proving goal
since there may often be many definite clauses to choose from to use in backchaining.
For example, for a subgoal of the form:

(hastype M’ (true (VAz:o0b.(rz N*sz))))

among the options available are backchaining on the clause for the lemma T or backchain-
ing directly on the clause for V*-I. As discussed earlier, the tactic environment of [7]
provides an environment in which such choices can be made.

8 Conclusion

We have not yet considered the possibility of translating hh* formulas into LF. This
translation is particularly simple. Let X be a signature for hh“ and let P be a set of
Y -formulas. For each primitive type 7 other than o in S, the corresponding LF judgment
is 7 : Type. For each non-predicate constant ¢ of type 7 in 3, the corresponding LF
judgment is ¢ : 7. For each predicate constant p of type 4 — -+ = 7, — 0 € X, the
corresponding LF judgment is p : 71 — --- — 7, — Type. Finally, let D € P and let &
be a new constant not used in the translation to this point. Then the corresponding LF
judgment is k : D' where D' is essentially D with B; O B, written as Ilz : B;.Bs and
V,z B written as Ilz:7.B.

Notice that the translation presented in this paper works via recursion over the struc-
ture of types. Thus, A-calculi that contain quantification over types such as the poly-
morphic A-calculus or the Calculus of Constructions cannot be directly translated in
this manner. For example, we cannot define the same notion of base type. Translating
A : Type when A is a base type, for instance, results in an atomic formula for the istype
predicate. In systems with quantification over types, whether or not A is a base type
may depend on its instances, and cannot be determined at the time of translation.

The translation we have described provides a method of directly translating an LF
specification, so that there is one hh¥ formula corresponding to each LF context item.
Since each context item represents a concept of the logic being specified, in the resulting
proof checkers and theorem provers, each (BACKCHAIN) step is on a clause for a particular
constant representing an object-level notion. Another approach to implementing LF
specifications is to implement the inference rules of LF directly as hh* formulas, coding
the provability relation directly into the meta-language. An LF context specifying a
particular logic would serve as a parameter to such a specification. Such an approach
adds one level of indirection in implementing object logics since now each (BACKCHAIN)
step corresponds to the application of an LF rule. This approach to implementing typed
A-calculi is taken in [8], where it is also shown that it can be applied to systems with
quantification over types.

Such an approach requires an encoding of terms at all levels of the calculus being
specified. In LF, for instance, meta-level constants for the various notions of application
and abstraction must be introduced. For example, at the level of types a constant of
type ty — ob — ty can be introduced to represent application, while constants of type

21

(ob — ty) — ty can be introduced for II and A-abstraction. A coding of the convertibility
relation on terms is also required in this setting. Note that the above simple types have
order 1 and 2 respectively. In fact hh? is all that is required to encode provability of
typed A-calculi in this manner. In [5], using such an encoding on terms, it was shown that
a direct encoding of LF specifications using the approach in this paper can be defined in
just hh2. The proofs of the correctness of that encoding are similar to those presented
here.

In [12], a similar approach based on recursion over types is adopted to implement
a subset of the Calculus of Constructions. In the meta-language used there, terms are
the terms of the Calculus of Constructions, and a simple language of clauses over these
terms is defined. During goal-directed proof, when a new assumption is introduced, the
clause corresponding to this assumption is added dynamically and is then available for
backchaining. In this way, certain forms of quantification over types can be handled. Such
an approach can be implemented in AProlog by implementing the translation as a AProlog
program and performing the translation dynamically as types become instantiated to
obtain new assumptions which can be used in subsequent proof checking and theorem
proving subgoals.

In the EIf programming language [21], a logic programming language is described
that gives operational interpretations directly to LF types similar to the way in which
the interpreter described in Section 4 gives operational interpretations to the connectives
of hh¥. Logic variables are also used in this implementation, and the more complex
operation of unification on LF terms is required. The LF specification for first-order
logic discussed in Section 7, for example, can serve directly as a program in this language.
The operational behavior, of such a program, although similar to the execution of an hh*
specification, has several differences. For instance, certain operations which are handled
directly at the meta-level by unification on types in an Elf implementation are expressed
explicitly as type-checking subgoals in the hh* formulas, and thus handled by logic
programming search. For example, consider a goal of the form (true A D*B) in the
first-order logic specification. In Elf, before backchaining on the context item specifying
the D *-introduction rule, the interpreter verifies that A D*B has type form. In the
corresponding hh® program, the term A D*B in the head of the clause translating the
D*-I context item will unify with any term of type ob. It is the subgoals (hastype A form)
and (hastype B form) which will succeed or fail depending on whether A and B represent
first-order formulas. In addition, when such programs are used as theorem provers, LF
proofs are built at the meta-level by Elf, whereas they are explicit arguments to the
hastype predicate in hh* specifications and are built by unification on simply typed A-
terms.

Acknowledgements

The author would like to thank Dale Miller, Frank Pfenning, and Randy Pollack for
helpful comments and discussions related to the subject of this paper.

22

References

[1]

[10]

[11]

[12]

[13]

Arnon Avron, Furio A. Honsell, and Ian A. Mason. Using typed lambda calculus
to implement formal systems on a machine. Technical Report ECS-LFCS-87-31,
Laboratory for the Foundations of Computer Science, University of Edinburgh, June
1987.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

Thierry Coquand and Gérard Huet. The calculus of constructions. Information and
Computation, 76(2/3):95-120, February/March 1988.

N.G. deBruijn. A survey of the project AUTOMATH. In To H. B. Curry: FEssays
in Combinatory Logic, Lambda Calculus, and Formalism, pages b89-606. Academic
Press, New York, 1980.

Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic
Programming Language. PhD thesis, University of Pennsylvania, August 1989.

Amy Felty. A logic program for transforming sequent proofs to natural deduction
proofs. In Peter Schroeder-Heister, editor, Proceedings of the 1989 International
Workshop on Extensions of Logic Programming, Tiibingen, West Germany. Springer-
Verlag LNAI series, 1991.

Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic
programming language. In Ninth International Conference on Automated Deduction,
Argonne, IL, May 1988.

Amy Felty and Dale Miller. A meta language for type checking and inference: An
extended abstract. Presented at the 1989 Workshop on Programming Logic, Balstad,
Sweden, 1989.

Amy Felty and Dale Miller. Encoding a dependent-type A-calculus in a logic pro-
gramming language. In Tenth International Conference on Automated Deduction,
Kaiserslautern, Germany, July 1990.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
In Second Annual Symposium on Logic in Computer Science, Ithaca, NY, June 1987.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Technical Report CMU-CS-89-173. To appear, 1989.

Leen Helmink. Resolution and type theory. In Proceedings of the European Sympo-
stum on Programming, Copenhagen, 1990.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic and
Lambda Calculus. Cambridge University Press, 1986.

23

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

William A. Howard. The formulae-as-type notion of construction, 1969. In To H. B.
Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism. Academic
Press, 1980.

Gérard Huet. A unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

Per Martin-Lof. Intuitionistic Type Theory. Studies in Proof Theory Lecture Notes.
BIBLIOPOLIS, Napoli, 1984.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs
as a foundation for logic programming. To appear in the Annals of Pure and Applied
Logzc.

Gopalan Nadathur and Dale Miller. An overview of AProlog. In K. Bowen and
R. Kowalski, editors, Fifth International Conference and Symposium on Logic Pro-
gramming. MIT Press, 1988.

Gopalan Nadathur and Dale Miller. Higher-order horn clauses. Journal of the ACM,
37(4):777 — 814, October 1990.

Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5(3):363-397, September 1989.

Frank Pfenning. Elf: A language for logic definition and verified metaprogramming.

In Fourth Annual Symposium on Logic in Computer Science, Monterey, CA, June
1989.

24

A Full and Canonical LF

In this section, we show the correspondence between canonical LF as presented in Sec-
tion 3, and full LF as presented in [10]. The rules of full LF are the rules of Figure 1 in
Section 3 except for (FAM-LEMMA) and (OBJ-LEMMA) plus the application and conversion
rules given in Figure 7 which replace the application rules in Figure 2. The following two

z:KeT z:AeTl

e (VAR-KIND) " (VAR-FAM)
I'A:Mlz:B.K I'-M:B
APP_.FAM
TF AM : [M/2]K ()
I'M:llxe:A.B 'EN:A
APP-OBJ
TF MN : [N/z]B ()
I'FA: K '+ K’ kind K:ﬂK'
THFA:K' (8-KIND)
'-M:A '+ A’ kind A:ﬂA’
(B-FAM)

TFM:A

Figure 7: Full LF application and conversion rules

properties of full LF are shown to hold in [10], and will be used in proving the results
below.

Lemma 9 (Subderivation)
1. f ' - A: K holds then I' = K kind also holds.
2. If ' M : A holds then I' - A : Type also holds.

Lemma 10 (Subject Reduction)

1. If T' - K kind holds and K B-reduces to K’, then I' = K’ kind also holds.
2. fT'+ A: K holds and A B-reduces to A/, then I' = A’ : K also holds.
3. f '+ M : A holds and M B-treduces to M', then I' - M’ : A also holds.

We establish some further properties about canonical and full LF that will be needed
to show the correspondence between these two systems.

Definition 11 Let I' be a valid context (in canonical or full LF), and z: P an item in
I'. We define the function C which maps variable # and context I' to a canonical term.
P has the form Ilz;: A, ...lz,: A,,.QQ where n > 0 and @ is Type or a base type. For
i=1,...,n,let I'; be the context I', z1: A1, ..., 2z;: A;. We define C(z,I') to be the term:

Az Ay Azn i An2(C(21,T1)) ... (C(2n, Th)).

25

(We will abbreviate C(z,T') as C(z) in the remainder of this section, since I' can always
be determined from context.)

The following lemma holds for both canonical and full LF.

Lemma 12 Let I' be a valid context containing : P where P is canonical. Then

I' - C() : P is provable.

Proof: The proof is by induction on the structure of P and relies on the fact that for
any variable z and well-typed canonical term Q, ([C(2)/2]Q)° = Q. []

Using this lemma, the following result about canonical LF can be proven.

Lemma 13 If I';,z : A, P : Q,I'y is a valid context with P :) a context lemma, and
I'y,z:A,P:Q, 'y F a is provable in canonical LF, then 'y, Ae: A.P: llz:A.Q,z: A, 5 is
a valid context and the assertion I'y, Az: A.P : llz: A.Q,z:A,I's - «a is provable.

Proof: We let IV and T'” be the contexts I'y,z: A,P:Q,Ts and T';, Az : A.P : Iz :
A.Q,z: A, Ty, respectively. We first prove the lemma with the added assumption that
I'” is a valid context by induction on the height of a derivation of I'' . The only non-
trivial case occurs when the context item from I'' used in an application of (APP-OBJ) or
(APP-FAM) is P:(Q. To show I'” I o, we use the corresponding item Az: A.P : Ilz: A.Q
from I'”| with the additional hypothesis I'' - C(z) : A, which we know to be provable by
Lemma 12. Using this result, the proof that T'” is valid is by a straightforward induction
on the length of I'y. [|

Definition 14 A canonical derivation in full LF is a derivation such that the following

hold.

1. The assertion at the root is pre-canonical (i.e., its normal form is canonical).

2. All assertions in the derivation except for those that occur as the conclusion of
(VAR-KIND) or (VAR-OBJ), or as the conclusion and left premise of (APP-FAM) or
(APP-OBJ) are pre-canonical.

3. In all assertions that occur as the conclusion, but not a left premise of (APP-FAM)
or (APP-OBJ), the term on the right of the judgment is Type or a base type.

We will only consider canonical derivations in full LF when demonstrating the rel-
ative soundness and completeness of canonical LF. By imposing this restriction we are
eliminating exactly those derivations such that a term used on the left of an application
is not applied to the maximum number of arguments. A derivation that does not meet
this requirement can, in fact, be mapped in a straightforward manner to one that does
by introducing context items of the appropriate types and discharging them with an
(ABS) rule. For example, a derivation of I' - P : Ilz: A.QQ where P is not an abstraction
can be mapped to a derivation of I'yz : A - P : Ilz : A.QQ to which we can apply the

26

corresponding (APP) rule to obtain I'yz: A - P(C(z)) : Q, followed by an (ABS) rule to
obtain I' F Az: A.P(C(z)) : [Iz: A.Q.

We now define by induction an operation £ which maps a derivation in full LF to a
sequence of typing judgments. As we will see, the sequence of judgments associated to
a canonical derivation is exactly the set of lemmas that will be added to the context to
obtain the corresponding derivation in canonical LF.

Definition 15 £ maps a derivation in full LF to a sequence of typing judgments A
defined by induction on the derivation as follows.

e If the last rule in the derivation is (TYPE-KIND), (VAR-KIND), (VAR-FAM), or
(EMPTY-CTX), then A is the empty sequence.

o If the last rule is a (PI) or (ABS) rule, then let A; be the sequence associated by L to
the derivation of the left premise I' - A : Type, and A, be the sequence associated
to the derivation of the right premise. Let A} be the sequence that replaces every

judgment P:Q in A, with Az:AP.P : Mz: AP.Q. Then A is Ay, A}

o If the last rule is an (APP) rule, then let A; be the sequence associated by L to
the derivation of the left premise I' - P :), and A, be the sequence associated to
the derivation of the right premise. If the left premise is pre-canonical, and is not
the conclusion of another (APP) rule or of a (VAR) rule, then A is A;, PP:QP, A,.
Otherwise, A is Aj, A,.

o If the last rule is a § rule, A is the sequence associated to the derivation of the
leftmost premise.

o If the last rule is (FAM-INTRO) or (OBJ-INTRO), then let A; and A, be the sequences

associated by L to the derivation of the left and right premises, respectively. Then
Ais Al, Ag.

It can be shown by a straightforward induction on a derivation of I' - o that for each
judgment P:() in the sequence associated to this assertion by £, I' - P : @) holds.

Let ,: Py,...,2y,: P, be a valid context in full LF. For ¢ = 1,...,n, we denote the
subcontext whose last element is z;: P; as I';. Given a derivation of + I',, context, for
i=1,...,n, let A; be the context associated to the subderivation of I';_; F P; kind or
;-1 - P; : Type. We say that the context Ay, zq : Plﬂ, iy Ap, 2, PP is the extended
normal context associated to this derivation.

Theorem 16 (Completeness of Canonical LF) Let T' be a context and a a judgment
such that - I' context and T' - o have canonical derivations in full LF. Let T be the
extended normal context associated to the derivation of - I' context, and let A be the
set of typing judgments associated to the derivation of I' - a by the function £. Then
I/, A is a valid context and I, A - o is provable in canonical LF.

Proof: We first prove the above statement under the additional hypotheses that I" is
a valid context in canonical LF. Using this result, it can be proved by a straightforward

27

induction on the length of T' that IV is valid. The proof is by induction on the height
of a canonical derivation in full LF of I' - «. For the case when the last rule is an
(APP) rule, we must consider the subproof that contains a series of n (APP) rules, where
n > 1 and the leftmost premise I' = P : @ is not the conclusion of an (APP) rule. We
consider the case when this premise is not the conclusion of a (VAR) rule. Thus P and @)
are pre-canonical. First, we show that IV, A is a valid context. Let Ay be the sequence
associatedto ' - P : Q by £, and for i = 1,...,n, let A; be the sequence associated with
the right premise in the ith (APP) rule application. Then A is Ag, PP:QP, Ay, ..., A,.
By the induction hypothesis applied to I' = P : @, the context I, Aq is valid and
I',Ag - P8 : QP holds. Hence IV, Ag, P?: QP is a valid context. Also, by the induction
hypothesis, for i = 1,...,n, I', A; is a valid context. Thus, we can conclude that I/, A
is valid. We now show I/, A I o® holds. By the induction hypothesis, for i = 1,...,n,
for each right premise I' I «; in the series of (APP) rules, IV, A; af holds. Clearly
I A+ af also holds. Using the context item P?:Q?, we can simply apply the canonical
LF rule (APP-FAM) or (APP-OBJ) to these n assertions to obtain that I, A o holds.
The case when I' - P :) is the conclusion of a (VAR) rule is similar.

For the case when the last rule is a (PI) or (ABS) rule, let A; be the sequence of
judgments associated to the left premise I' = A : Type by L. Let A, be the sequence
associated to the right premise I';z : A F a9, and A} be the sequence that contains
Az : AP.P : Iz : AP.Q for every P:Q in Ay. Then A is A;, A,. We first show that
IV, Ay, A} is a valid context. By the induction hypothesis for the left premise, I, A; is
a valid context, and I/, A; - AP : Type holds. Thus, I, A, z: AP, the extended normal
context associated to I',z : A is also valid. We now apply the induction hypothesis to
the right premise to obtain that IV, A;,z : A%, A, is a valid context. By Lemma 13,
IV, Ay, AL,z : AP is also a valid context. Since I, A is a subcontext of this context, it
is valid also. Next, we show that I'', A;, A, - o® holds. By the induction hypothesis
for the right premise and Lemma 13, TV, A;, A}, z: AP - ozg holds. Since IV, A; - AP :
Type holds, clearly also I'', A;, A, - AP : Type holds. Thus, by an application of the
corresponding canonical LF (PI) or (ABS) rule, IV, A;, A} - o® holds. The remaining
cases follow directly from the induction hypothesis and the definition of L. [|

Theorem 17 (Soundness of Canonical LF) Let I' - o be a provable assertion in canon-
ical LF. Let T’ be the subcontext of ' containing only variables associated with their
types or kinds. Then IV I « is provable in full LF.

Proof: We first prove the above statement under the additional hypotheses that I" is
a valid context in full LF and IV - P : Q for every item P:Q in I'. Using this result,
it can then be shown by induction on the length of I' that this hypothesis follows from
the fact that I' is valid in canonical LF. We proceed by induction on the height of a
canonical LF derivation of I' - a. For the (APP) rules, we replace a single application of
the rule by a series of n applications of the corresponding rule in full LF. (If n is 0, we
simply apply the corresponding (VAR) rule.) If the rule uses a context lemma, we replace
it with a full LF derivation of this lemma, which we know to be provable by assumption.
The conclusion of each (APP) rule application is a judgment of the form I' - P : [N/z]Q
where P and [N/z]Q are not necessarily in #-normal form. We must show that the

28

corresponding [-normal assertion is also provable. [N/z]@Q must be a type or kind by
Proposition 9. By Proposition 10, we obtain that ([N/z]Q)” is also a type or kind. Then,
by the corresponding G rule, T' - P : ([N/z]Q)? is provable. By Proposition 10, we know
that T' - PP : ([N/2]Q)P is also provable. The remaining cases follow directly from the
induction hypothesis. [|

29

B LF with Simplified Abstraction Rules

In this section we show that for LF assertions such that all types bound by outermost
abstraction in the term on the left in the judgment are valid, the canonical LF system pre-
sented in Section 3 is equivalent to LF’, the system obtained by replacing the (ABS-FAM)
and (ABS-OBJ) rules with the (ABS-FAM') and (ABS-OBJ') rules of Section 6, which drop
the left premise I' - A : Type. In such derivations, this premise is redundant.

To prove this result, we need the following transitivity lemma for LF’.

Lemma 18 (Transitivity) If T,z : A,IY - o and ' - N : A are provable, then
T, ([N/z]T")? ([N/z]a)? is provable.

Proof: The proof is by induction on the structure of proofs. A similar result is stated
for the more general presentation of LF in [10].]

The following lemma shows that the left premise is redundant in all derivations of
assertions such that the term on the left in the judgment is not an abstraction.

Lemma 19 Let I' be a valid context and I' - « a provable assertion in LF’ that has
a proof whose last rule is an application of (APP-FAM) or (APP-OBJ), and that has an
application of (ABS-OBJ') above the root such that there are no other applications of
(APP-FAM) or (APP-OBJ) below it. Let IV be the context, and #: A be the variable and its
type bound by A in the conclusion of this application of (ABS-OBJ'). Then I'V - A : Type
is provable.

Proof: Let Q : llz,:A;...1lle,: A,.P be the context item used in the rule application at
the root, and Ny, ..., N, the terms on the right of the colon in the remaining premises.
Since there is an (ABS-OBJ') application above the root, then for some ¢ such that 1 <
i < n, A; has the form Ilz: B.C, the corresponding premise of the (APP) rule has the
form
T+ N;: ([Ny/eq,...,Ni_1/zi_1]llz: B.C)P,

where N; has the form Az: ([Ny/=1,..., N;_1/%;_1]B)?.M, and the rule application at
the root of this premise is (ABS-OBJ'). We show that ([Ni/z1,.. .,Ni_l/mi_l]B)ﬂ is a
type. We know that Ilz;: A, ...Ilx,:A,.P is a type or kind, since I' is a valid context.
A proof of this fact contains a subproof of

Iei: Ay, ... ,25_1:4;_1 F11z: B.C : Type.

By Lemma 18, using the premises of the (APP) rule, we can conclude that the assertion
T ([N1/e1,...,N;_1/2;_1]llz: B.C)P : Type is provable. A proof of this fact contains
a proof of the desired result. By similar reasoning, all other : A bound by A in an
application of (ABS-OBJ') can be shown to be types with respect to the corresponding
context. []

Theorem 20 Let I' be a context that is valid in LF and LF’, and let o be a judgment.

30

1. If T' - a is provable in LF, then it is also provable in LF’.

2. If T' - « is provable in LF’ and all types bound by A in outermost abstractions in
the term on the left in « are valid in LF’, then I" - « is provable in LF.

Proof: (1) is proved by a straightforward induction on the height of an LF derivation of
I' - a. (2) is proved by induction on the structure of the term on the left in o. For the
case when the term is an application, the last rule in a derivation must be an (APP) rule.
Lemma 19 is required to show that all of the types bound by A in outermost abstractions
in the premises are valid in LF’, so that the induction hypothesis can be applied to these
assertions. All other cases follow directly from the induction hypothesis. [|

31

