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In this paper, we will illustrate a strong correspondence between one language in the�rst category and a language in the second. In particular, we shall show how the LogicalFramework (LF), a typed �-calculus with dependent types, has essentially the sameexpressive power as hh!. We do so by showing how to translate LF typing judgmentsinto hh! formulas such that correct typing in LF corresponds to intuitionistic provabilityin hh! .Both Isabelle and �Prolog can turn speci�cations of logics into proof checkers andtheorem provers by making use of the uni�cation of simply typed �-terms and goal-directed, tactic-style search. Thus, besides answering the theoretical question about theprecise relationship between these two meta-languages, this translation also describeshow LF speci�cations of object logics can be implemented within such systems.The translation we present here extends a translation given in [9]. As in that paper,we consider a form of LF such that all terms in derivable assertions are in canonical form,a notion which corresponds to ��-long normal form in the simply typed �-calculus. In thetranslation given there, the form of proofs was also greatly limited. As we will illustrate,although we also restrict the form of terms here, we retain essentially the same power ofprovability as in LF as presented in [10]. As a result, theorem provers implemented fromthe hh! speci�cations obtained from this translation have a greater degree of exibility.In the next section, we provide some further motivation for establishing a formalrelation between these two meta-languages. Then, in Section 3 we present LF, and inSection 4 we present the meta-logic hh!. Section 5 presents a translation of LF into hh!and Section 6 contains a proof of its correctness. Section 7 provides examples of thistranslation using an LF speci�cation of natural deduction for �rst-order logic. Finally,Section 8 concludes.2 MotivationOur objectives in de�ning an encoding from LF into hh! are both theoretical and prac-tical. On the theoretical side, we hope that by providing an alternate presentation ofLF (via its encoding into a di�erent formalism), we can provide some insight into theinformation contained in dependent types. In addition, we wish to formally establishthe correspondence between two di�erent approaches to specifying general logics. Onthe practical side, as already mentioned, we wish to provide an approach to implement-ing proof checkers and theorem provers for logics speci�ed in these meta-languages. Weaddress both of these concerns below.2.1 Dependent Types as FormulasA dependent type in LF has the structure �x :A:B where A and B are types and x isa variable of type A bound in this expression. The type B may contain occurrences ofx. This structure represents a \functional type." If f is a function of this type, and Nis a term of type A, then fN (f applied to N) has the type B where all occurrences ofx are replaced by N , often written [N=x]B. Thus the argument type is A and the resulttype depends on the value input to the function. Another way to read such a type is asfollows: \for any element x, if x has type A then fx has type B." This reading suggests a2



logical interpretation of such a type: \for any" suggests universal quanti�cation while \ifthen" suggests implication. It is exactly this kind of \propositional content" of dependenttypes that will be made explicit by our encoding. When x does not occur in B, such adependent type corresponds to the simple functional type A! B. Note that the logicalreading remains the same in this simpler case. For the case when x occurs in B, we canthink of B as a predicate over x.In the LF encoding of natural deduction for �rst-order logic, for example, �rst-orderformulas are represented as LF terms of type form and a function true of type form !Type is de�ned which takes formulas into LF types. The constant true is used to encodethe provability judgment of �rst-order logic: the type (true A) represents the statement\formula A is provable," and LF terms of this type are identi�ed with natural deductionproofs for this formula. (This is an example of the LF \judgments as types" principle,similar to the \formulas as types" principle as in [14].) Via the encoding in hh! , we willview true as a predicate over �rst-order formulas. Proofs of the predicate (true A) in hh!can be identi�ed with natural deduction proofs of A. Our results establish a very closeconnection between hh! proofs of such predicates and LF proofs of their correspondingtyping judgments.2.2 Implementing Goal Directed Search in Dependent-Type CalculiIn general, the search for terms inhabiting types in LF corresponds to object-level theoremproving. For example, searching for a term of type (true C ^D) corresponds to searchingfor a natural deduction proof of the conjunction C ^ D. To �nd a term of this typewe may use, for example, the following item which encodes the ^-introduction rule fornatural deduction.^-I : �A : form:�B : form:(true A)! (true B)! (true A ^B)(We will say a type is \atomic" if it has no leading �. We call the rightmost atomic type,(true A ^B) in this case, the \target" type. The types form, (true A), and (true B) aresaid to be \argument" types.) This type can be read: for any formulas A and B, if Ais provable and B is provable, then the conjunction A ^ B is provable. Thus, if C andD indeed have type form, and there exist terms P and Q inhabiting types (true C) and(true D), then (^-I C D P Q) is a term of the desired type.Consider the following general goal directed approach to the search for an inhabitingterm of a given type. If the type is atomic, attempt to match it with the target type ofan existing axiom or hypothesis. If there is a match, attempt to �nd inhabitants of eachof the argument types. If the type is of the form �x :A:B, add x :A as a new hypothesis,and attempt to �nd an inhabitant of B. It is exactly this kind of approach to searchthat we obtain via the translation. More speci�cally, our encoding will map each LFaxiom such as the one above specifying the ^-introduction rule to an hh! formula. Withrespect to a logic programming interpreter implementing hh! that will be described inSection 4, search using such translated LF axioms will correspond exactly to the abovedescription of goal directed search in LF.We will see that a set of hh! formulas obtained by translating an LF representationof an object logic can serve directly as a proof checker for that logic. In other words, a3



given hh! formula will be provable with respect to the depth-�rst interpreter implement-ing hh! described in Section 4 if and only if the corresponding LF typing judgment isprovable in the LF type system. For theorem proving, or searching for a term inhabitinga type, more sophisticated control is necessary. In [7], it is shown that a theorem prov-ing environment with tactic style search can be implemented in �Prolog. The clausesobtained by the translation can serve as the basic operations to such a theorem prover.In fact, tactic theorem provers for many of the example LF speci�cations given in [1]have been implemented and tested in �Prolog. Within such a tactic environment, morecomplex search strategies can be written from the basic operations. For example, for atheorem prover obtained by translating an LF speci�cation of natural deduction, a simpletactic can be written that automates the application of introduction rules, performingall possible applications of such rules to a given input formula.The hh! speci�cation of natural deduction described in Section 7 obtained via trans-lation is in fact quite similar to the direct speci�cation given in [7]. Thus, the tactictheorem prover described in that paper is very similar in behavior to the one obtainedvia translation. One di�erence is that an alternate speci�cation of the elimination rulesis given in [7] such that goal-directed search in hh! corresponds to forward reasoningin natural deduction. Using this approach, it is possible to apply rules to existing hy-potheses in a forward direction, a capability which is quite useful for theorem proving innatural deduction style systems. (See also [6] for more on this kind of reasoning in natu-ral deduction and its correspondence to backward reasoning on the left in sequent styleinference systems.) It is in fact straightforward to de�ne an LF speci�cation of naturaldeduction in �rst-order logic whose translation has the property that rules can be appliedto hypotheses in a forward direction. Thus a goal directed strategy at the meta-level (LFor hh!) does not necessarily impose a goal directed strategy at the object-level.3 The Logical FrameworkThere are three levels of terms in the LF type theory: objects (often called just terms),types and families of types, and kinds. We assume two given denumerable sets of vari-ables, one for object-level variables and the other for type family-level variables. Thesyntax of LF is given by the following classes of objects.K := Type j �x :A:KA := x j �x :A:B j �x :A:B j AMM := x j �x :A:M jMN� := hi j �; x :K j �; x :A j �; A :K j �;M :AHere M and N range over expressions for objects, A and B over types and families oftypes, K over kinds, x over variables, and � over contexts. The empty context is denotedby hi. We will use P and Q to range over arbitrary objects, types, type families, or kinds.We write A! P for �x :A:P when x does not occur in type or kind P . We will say thata type or type family of the form xN1 : : :Nn where n � 0 and x is a type family-levelvariable is a at type. 4



Terms that di�er only in the names of variables bound by � or � are identi�ed. If xis an object-level variable and N is an object then [N=x] denotes the operation of substi-tutingN for all free occurrences of x, systematically changing bound variables in order toavoid variable capture. The expression [N1=x1; : : : ; Nn=xn] will denote the simultaneoussubstitution of the terms N1; : : : ; Nn for distinct variables x1; : : : ; xn, respectively.The notion of �-conversion at the level of objects, types, type families, and kindscan be de�ned in the obvious way using the usual rule for �-reduction at the level ofboth objects and type families: (�x :A:P )N !� [N=x]P where P is either an object ortype/type family. The relation of convertibility up to � is written as =�. All well-typedLF terms are strongly normalizing [10]. We write P� to denote the normal form of termP . Let Q be a type or kind whose normal form is �x1 :A1 : : :�xn :An:P where P is Type,a variable, or an application. We de�ne the order of Q to be 0 if n is 0, and 1 greaterthan the maximum order of A1; : : : ; An otherwise.We present a version of the LF proof system that constructs only terms in canonicalform. Several de�nitions from [11] are required to establish this notion. We de�ne thearity of a type or kind to be the number of �s in the pre�x of its normal form. The arityof a variable with respect to a context is the arity of its type in that context. The arityof a bound variable occurrence in a term is the arity of the type label attached to itsbinding occurrence. An occurrence of a variable x in a term is fully applied with respectto a context if it occurs in a subterm of the form xM1 : : :Mn, where n is the arity of x.A term P is canonical with respect to a context � if P is in �-normal form and everyvariable occurrence in P is fully applied with respect to �. A term P is pre-canonical ifits �-normal form is canonical. Flat types xN1 : : :Nn such that x is fully applied will becalled base types.The following four kinds of assertions are derivable in the LF type theory.` � context (� is valid context)� ` K kind (K is a kind in �)� ` A : K (A has kind K in �)� `M : A (M has type A in �)For the special form � ` A : Type of the third type of assertion, we also say A is a typein �. For the latter three assertions, we say that K, A, or M , respectively, is a well-typedterm in �. We write � ` � for an arbitrary assertion of one of these three forms, where� is called an LF judgment. In deriving an assertion of this form, we always assume thatwe start with a valid context �.We extend the notation for substitution and �-normalization to contexts and judg-ments. We write [N=x]� and [N=x]� to denote the substitution of N for x in all termsin context � and judgment �, respectively. Similarly, we write �� and �� to denote thecontext and judgment obtained by replacing every term in � and �, respectively, by theirnormal forms.The inference rules of LF are given in Figures 1 and 2. The set of variables on theleft of the colon in a context � is denoted as dom(�). In (FAM-INTRO), (OBJ-INTRO),(PI-KIND), (PI-FAM), (ABS-FAM), and (ABS-OBJ) in Figure 1, we assume that the variablex does not occur in �, and in (APP-FAM) and (APP-OBJ) in Figure 2, we assume that5



` hi context (EMPTY-CTX)` � context � ` K kind (FAM-INTRO)` �; x :K context` � context � ` A : Type (OBJ-INTRO)` �; x :A context` � context � ` A : K (FAM-LEMMA)` �; A :K context` � context � `M : A (OBJ-LEMMA)` �;M :A context� ` Type kind (TYPE-KIND)� ` A : Type �; x :A ` K kind (PI-KIND)� ` �x :A:K kind� ` A : Type �; x :A ` B : Type (PI-FAM)� ` �x :A:B : Type� ` A : Type �; x :A ` B : K (ABS-FAM)� ` �x :A:B : �x :A:K� ` A : Type �; x :A `M : B (ABS-OBJ)� ` �x :A:M : �x :A:BFigure 1: LF contexts and abstraction rulesthe variables x1; : : : ; xn do not occur free in N1; : : : ; Nn. Note that bound variables canalways be renamed to meet these restrictions. In addition, in (APP-OBJ) B must be abase type. Note that when B is a base type, so is ([N1=x1; : : : ; Nn=xn]B)�.Items introduced into contexts by (FAM-LEMMA) or (OBJ-LEMMA) will be called con-text lemmas. The main di�erences between this presentation and the usual presentationof the LF type system are the appearance of such lemmas in contexts and the form ofthe (APP-FAM) and (APP-OBJ) rules. Here, in any derivation, all terms that are used onthe left of an application must occur explicitly in the context.We say that a context � is canonical (pre-canonical) if for every item x :P in � wherex is a variable, P is canonical (pre-canonical), and for every context lemma P :Q in �,both P and Q are canonical (pre-canonical) with respect to �. We say that an assertionis canonical (pre-canonical) if the context is canonical (pre-canonical) and all terms in thejudgment on the left of the turnstile are canonical (pre-canonical). In this presentation,all derivable assertions are canonical. To see why, �rst note that no new �-redexes areintroduced in the conclusion of any rule. Second, consider the application rules. In the6



B : �x1 :A1 : : :�xn :An:Type 2 �� ` N1 : A1� ` N2 : ([N1=x1]A2)�...� ` Nn : ([N1=x1; : : : ; Nn�1=xn�1]An)� (APP-FAM)� ` (BN1 : : :Nn)� : TypeM : �x1 :A1 : : :�xn :An:B 2 �� ` N1 : A1� ` N2 : ([N1=x1]A2)�...� ` Nn : ([N1=x1; : : : ; Nn�1=xn�1]An)� (APP-OBJ)� ` (MN1 : : :Nn)� : ([N1=x1; : : : ; Nn=xn]B)�Figure 2: LF application rules(APP-OBJ) or (APP-FAM) rule, if the term on the left of the application is a variable x, thenit has arity n and is applied in the conclusion to n terms and thus this occurrence of x isfully applied. Hence, as long as N1; : : : ; Nn are canonical, so is xN1 : : :Nn. If the term onthe left of the application is a canonical term, then it has the form �x1 :A1 : : :�xn :An:P .The term in the conclusion has the form ((�x1 : A1 : : :�xn : An:P )N1 : : :Nn)� whichis equivalent to ([N1=x1; : : : ; Nn=xn]P )�. The fact that this latter term is canonicalfollows from the fact that for any object, type, type family, or kind Q and any objectN , if Q and N are canonical, then so is ([N=x]Q)�. For the same reason, the type([N1=x1; : : : ; Nn=xn]B)� in the (APP-OBJ) rule is canonical.In Appendix A, we show formally the correspondence between LF as presented in[10], which we call full LF, and LF as presented here, which we will call canonical LF.In full LF, terms in derivable judgments are not necessarily canonical or �-normal. Fora provable assertion � ` � in full LF, we say that �� ` �� is its normal form. InAppendix A, we demonstrate that any derivation of a pre-canonical assertion in full LFcan be mapped directly to a derivation in canonical LF of its normal form. Conversely,any derivation of � ` � in canonical LF has a corresponding derivation of a pre-canonicalassertion in full LF whose normal form is � ` �. It is important to emphasize that theseresults demonstrate not only a correspondence between what is provable in each system,but also a direct correspondence between derivations in each system. In other words,full LF restricted to pre-canonical terms is essentially the same system as canonical LFpresented here.It can now be seen how the goal directed strategy discussed in Section 2 can beapplied to construct a proof of an LF assertion in this system. For example to �nd anobject inhabiting an LF type, the (ABS-OBJ) rule is applied if the type has a leading �,and the (APP-OBJ) rule is attempted if the type is atomic. In this case, goal directedproof corresponds to searching for a term in the context whose target type matches withthe atomic type. 7



4 The Intuitionistic Logic hh!The terms of the logic hh! are the simply typed �-terms. Let S be a �xed, �nite setof primitive types. We assume that the symbol o is always a member of S. FollowingChurch [2], o is the type for propositions. The set of types is the smallest set of expressionsthat contains the primitive types and is closed under the construction of function types,denoted by the binary, in�x symbol!. The Greek letter � is used as a syntactic variableranging over types. The type constructor ! associates to the right. If �0 is a primitivetype then the type �1 ! � � � ! �n ! �0 has �1; : : : ; �n as argument types and �0 as targettype. The order of a primitive type is 0 while the order or a non-primitive type is onegreater than the maximum order of its argument types.For each type � , we assume that there are denumerably many constants and variablesof that type. Constants and variables do not overlap and if two constants (variables) havedi�erent types, they are di�erent constants (variables). A signature is a �nite set � ofconstants and variables whose types are such that their argument types do not containo. A constant with target type o is a predicate constant.Simply typed �-terms are built in the usual way. An abstraction is written as �x t,or �x : �:t when we wish to be explicit about the type of the bound variable x. Thelogical constants are given the following types: ^ (conjunction) and � (implication) areboth of type o ! o ! o; > (true) is of type o; and 8� (universal quanti�cation) is oftype (� ! o) ! o, for all types � not containing o. A formula is a term of type o. Thelogical constants ^ and � are written in the familiar in�x form. The expression 8� (�x t)is written 8�x t or simply as 8x t when types can be inferred from context.If x and t are terms of the same type then [t=x] denotes the operation of substitut-ing t for all free occurrences of x, systematically changing bound variables in order toavoid variable capture. The expression [t1=x1; : : : ; tn=xn] will denote the simultaneoussubstitution of the terms t1; : : : ; tn for distinct variables x1; : : : ; xn, respectively.We shall assume that the reader is familiar with the usual notions and properties of�, �, and � conversion for the simply typed �-calculus. The relation of convertibility upto � and � is written as =� (as it is for LF), and if � is added, is written as =��. A�-term is in �-normal form if it contains no beta redexes, that is, subformulas of the form(�x t)s. We say that an occurrence of a variable or constant h in a simply typed �-termis fully applied if it occurs in a subterm of the form ht1 : : : tn having primitive type. Theterm h is called the head of this subterm. A �-term is in ��-long form if it is in �-normalform and every variable and constant occurrence is fully applied. All �-terms ��-convertto a term in ��-long form, unique up to �-conversion. See [13] for a fuller discussion ofthese basic properties of the simply typed �-calculus.Let � be a signature. A term is a �-term if all of its free variables and nonlogicalconstants are members of �. Similarly, a formula is a �-formula if all of its free variablesand nonlogical constants are members of �. A formula is either atomic or non-atomic.An atomic �-formula is of the form (Pt1 : : : tn), where n � 0, P is given type �1 ! � � � !�n ! o by �, and t1; : : : ; tn are terms of the types �1; : : : ; �n, respectively. The predicateconstant P is the head of this atomic formula. Non-atomic formulas are of the form >,B1 ^ B2, B1 � B2, or 8�x B, where B;B1, and B2 are formulas.The logic we have just presented is very closely related to two logic programming8



� ; B;C;P �! C ^-L� ; B ^ C;P �! C � ; P �! B � ; P �! C ^-R� ; P �! B ^ C� ; P �! B � ; C;P �! A �-L� ; B � C;P �! A � ; B;P �! C �-R� ; P �! B � C� ; [t=x]B;P �! C 8-L� ; 8�x B;P �! C � [ fcg ; P �! [c=x]B 8-R� ; P �! 8�x BFigure 3: Left and right introduction rules for hh!extensions that have been studied elsewhere [17]. First-order hereditary Harrop formu-las (fohh) have been studied as an extension to �rst-order Horn clauses as a basis forlogic programming. Similarly higher-order hereditary Harrop formulas (hohh) are a gen-eralization of fohh that permits some forms of predicate quanti�cation. Because ourmeta-language is neither higher-order, since it lacks predicate quanti�cation, nor �rst-order, since it contains quanti�cation at all function types, we shall simply call it hh! .The set of hh! formulas in which quanti�cation only up to order n is used will be labeledas hhn.Provability for hh! can be given in terms of sequent calculus proofs. A sequent is atriple � ; P �! B, where � is a signature, B is a �-formula, and P is a �nite (possiblyempty) sets of �-formulas. The set P is this sequent's antecedent and B is its succedent.Later, when discussing an interpreter for this language, we also say that P is a program,that each formula in P is a clause, and that B is a goal formula. The expression B;Pdenotes the set P [ fBg; this notation is used even if B 2 P . The inference rules forsequents are presented in Figure 3. The following provisos are also attached to the twoinference rules for quanti�er introduction: in 8-R c is a constant of type � not in �, andin 8-L t is a �-term of type � .A proof of the sequent � ; P �! B is a �nite tree constructed using these inferencerules such that the root is labeled with � ; P �! B and the leaves are labeled withinitial sequents, that is, sequents �0 ; P 0 �! B0 such that either B0 is > or B0 2 P 0.The non-terminals in such a tree are instances of the inference �gures in Figure 3. Sincewe do not have an inference �gure for ��-conversion, we shall assume that in buildinga proof, two formulas are equal if they are ��-convertible. If the sequent � ; P �! Bhas a sequent proof then we write �;P `I B and say that B is provable from � and P .The following two theorems establish the main proof theoretic results of hh! we shallneed. These theorems are direct consequences of the proof theory of a more expressivelogic studied in [17].Theorem 1 Let � be a signature, let P be a �nite set of �-formulas, and let B be a�-formula. The sequent � ; P �! B has a proof if and only if it has a proof in which9



every sequent containing a non-atomic formula as its succedent is the conclusion of aright introduction rule.To state our second theorem, we need the following de�nition.De�nition 2 Let � be a signature and let P be a �nite set of �-formulas. The expressionjPj� denotes the smallest set of pairs hG; Di of �nite set of �-formulas G and �-formulaD, such that� If D 2 P then h;; Di 2 jPj�.� If hG; D1 ^D2i 2 jPj� then hG; D1i 2 jPj� and hG; D2i 2 jPj�.� If hG; 8�xDi 2 jPj� then hG; [t=x]Di 2 jPj� for all �-terms t of type � .� If hG; G � Di 2 jPj� then hG [ fGg; Di 2 jPj�.Theorem 3 Let � be a signature, let P be a �nite set of �-formulas, and let A bean atomic �-formula. Then A is provable from � and P if and only if there is a pairhG; Ai 2 jPj� so that for each G 2 G, G is provable from � and P .Given these two theorems, it is clear how a non-deterministic search procedure forhh! can be organized using the following four search primitives.AND: B1 ^ B2 is provable from � and P if and only if both B1 and B2 are provablefrom � and P .GENERIC: 8�xB is provable from � and P if and only if [c=x]B is provable from� [ fcg and P for any constant c of type � not in �.AUGMENT: B1 � B2 is provable from � and P if and only if B2 is provable from �and P [ fB1g.BACKCHAIN: The atomic formula A is provable from � and P if and only if thereis a pair hG; Ai 2 jPj� so that for every G 2 G, G is provable from � and P .To implement an interpreter which implements these search operations, choices mustbe made which are left unspeci�ed in the high-level description above. Here, we assumechoices as in the �Prolog language. For example, logic variables are employed in theBACKCHAIN operation to create universal instances of de�nite clauses. As a result, uni�-cation on �-terms is necessary since logic variables of arbitrary functional type can occurinside �-terms. Also the equality of terms is not a simple syntactic check but a morecomplex check of ��-conversion. Uni�cation on �-terms is not in general decidable. In�Prolog, this issue is addressed by implementing a depth-�rst version of the uni�cationsearch procedure described in [15]. (See [19, 17].) In this paper, the uni�cation problemsthat result from programs we present are all decidable and rather simple.10



In the AUGMENT search operation, clauses get added to the program dynamically.Note that as a result, clauses may in fact contain logic variables. The GENERIC operationmust be implemented so that the new constant c introduced for x, must not appear inthe terms eventually instantiated for logic variables free in the goal or in the programwhen c is introduced.A deterministic interpreter must also specify the order in which conjuncts are at-tempted and de�nite clauses are backchained over. One possibility is to attempt con-juncts and backchain on de�nite clauses in the order in which they appear in the goal orin P , respectively, using a depth-�rst search paradigm to handle failures as in Prolog.5 Translating LF Assertions to hh! FormulasIn this section we present the translation of LF assertions to formulas in hh!. Thistranslation will require an encoding of LF terms as simply typed �-terms. We begin bypresenting this encoding. We then present the translation, which has three parts. The�rst translates context items to a set of hh! formulas to be used as assumptions, whilethe second translates LF judgments to a formula to be proven with respect to such a setof assumptions. The third translation is de�ned using the previous two, and translatesan LF assertion � ` � to a single formula whose proof veri�es that � is a valid contextbefore proving that � holds within the context �.In this section, since we encode LF in hh! , we consider hh! as the meta-languageand LF as the object-language. Since both languages have types and terms, to avoidconfusion we will refer to types and terms of hh! as meta-types and meta-terms. In orderto de�ne an encoding of LF terms as simply typed �-terms, we change slightly the notionof LF syntax. We will associate to each object and type variable, a tag which indicatesthe \syntactic structure" of types and kinds, respectively, which can be associated withit in forming a binder or a context item. These tags will be \simple types" built upfrom two primitive types ob and ty and the arrow constructor !, with the additionalrestriction that ty can only appear as a target type. We assume that there is an in�nitenumber of object-level and type-level variables associated with every simple type whosetarget type is ob and ty, respectively.Let x be an object or type variable and �1 ! � � � ! �n ! �0 be the tag associatedwith x, where n � 0 and �0 is ob or ty. We say that variable x admits type or kind�x1 :A1 : : : xn :An:P if the following hold: if �0 is ty then P is Type; if �0 is ob, thenP is a at type; for i = 1; : : : ; n, the tag associated with xi is �i and xi admits type Ai.We add a restriction when forming the � or � binder x :A, or the context item x :Aor x :K, that x admits type A or kind K. Note that this restriction requires that the\simple type" in a variable tag has exactly the same order as the LF type or kind usedin forming the binder.We only de�ne the encoding of LF terms as simply typed �-terms for LF objects andat types since this is all that is required by the translation. We introduce two primitivetypes at the meta-level, ob and ty, for these two classes of LF terms. The types ob and tyin variable tags correspond to these meta-types in the obvious way. When we wish to beexplicit, we write T (x) to denote the meta-type associated with the tag on LF variable xobtained by replacing each occurrence of ob by ob and ty by ty. We will assume a �xed11



mapping � which associates each LF variable x to a meta-variable of type T (x). Forreadability in our presentation, this mapping will be implicit. A variable x will representboth an LF variable and its corresponding meta-variable. It will always be clear fromcontext which is meant.We denote the encoding of term or type P as hhP ii. The full encoding is de�ned inFigure 4. Note that the encoding maps abstraction in LF objects directly to abstractionhhxii := xhh�x :A:Mii := �x :T (x):hhMiihhMNii := hhMii hhNiihhAMii := hhAii hhMiiFigure 4: Encoding of LF Termsat the meta-level, and that both application of objects to objects and application of typefamilies to objects are mapped directly to application at the meta-level. The di�erenceat the meta-level is that the former application will be a meta-term with target type obwhile the latter application will be a meta-term with target type ty.We can easily de�ne a function � which maps an LF type or kind to the simple typecorresponding to the tag on a variable that admits this type or kind: �(�x : A:P ) is�(A) ! �(P ), �(Type) is ty, and �(xN1 : : :Nn) is ob. It is easy to see that for objector type family P having, respectively, type or kind Q, hhP ii is a meta-term of meta-type�(Q).Two predicates will appear in the atomic hh! formulas resulting from the translation:hastype of type ob ! ty ! o and istype of type ty ! o. We will name the signaturecontaining these two predicates �LF . We denote the translation of the context item P :Qas [[P :Q]]+. This translation is de�ned in Figure 5 (a). It is a partial function since itis de�ned by cases and unde�ned when no case applies. It will in fact always be de�nedon valid context items. When applied to a valid context item, P in the �rst two clausesin Figure 5 (a) will always be either an object or type family, and Q a type or kind,respectively. As was noted earlier, valid contexts are always in canonical form. Note thatin a canonical context item x :P , the variable x is not necessarily canonical since it maynot be fully applied. Such judgments with non-canonical terms on the left are handledby the second clause of the de�nition. Note the direct mapping of �-abstraction in LFtypes and kinds to instances of universal quanti�cation and implication in hh! formulas,as discussed earlier. In the �rst two clauses of the de�nition, the variable bound by � ismapped to a variable at the meta-level bound by universal quanti�cation. Then, in theresulting implication, the left hand side asserts the fact that the bound variable has acertain type, while the right hand side contains the translation of the body of the type orkind which may contain occurrences of this bound variable. The base cases occur whenthere is no leading � in the type or kind, resulting in atomic formulas for the hastypeand istype predicates.To illustrate this translation, we consider an example from an LF context specifyingnatural deduction for �rst-order logic. The following context item introduces the con-stant for universal quanti�cation and gives it a type: 8� : (i ! form) ! form. (Wewrite 8� for universal quanti�cation at the object-level to distinguish it from universal12



[[�x :A:P : �x :A:Q]]+ := 8x �[[x :A]]+ � [[P : Q]]+�[[P : �x :A:Q]]+ := 8x �[[x :A]]+ � [[Px : Q]]+�where P is not an abstraction.[[M : A]]+ := hastype hhMii hhAiiwhere A is a at type.[[A : Type]]+ := istype hhAii where A is a at type.(a) Translation of context items[[�x :A:P : �x :A:Q]]� := [[A : Type]]� ^ 8x �[[x :A]]+ � [[P : Q]]��[[M : A]]� := hastype hhMii hhAiiwhere A is a at type.[[A : Type]]� := istype hhAii where A is a at type.[[�x :A:B : Type]]� := [[A : Type]]� ^ 8x �[[x :A]]+ � [[B : Type]]��[[Type kind]]� := >[[�x :A:K kind]]� := [[A : Type]]� ^ 8x �[[x :A]]+ � [[K kind]]��(b) Translation of LF judgmentsFigure 5: Translating LF contexts and judgments to hh! formulasquanti�cation in hh! .) To make all bound variables explicit, we expand the above typeto its unabbreviated form: �A : (�y : i:form):form. Note that the tag associated to 8�must be (ob ! ob)! ob. Both the LF type and the corresponding meta-type have order2. The translation of this context item is as follows.[[8� : �A : (�y : i:form):form]]+ �8A �8y �[[y : i]]+ � [[Ay : form]]+� � [[8�A : form]]+� �8A (8y((hastype y i) � (hastype (Ay) form)) � (hastype (8�A) form))This formula provides the following description of the information contained in the abovedependent type: for any A, if for arbitrary y of type i, Ay is a formula, then 8�A is aformula.Figure 5 (b) contains the de�nition of the translation for LF judgments. The trans-lation of judgment � is denoted [[�]]�. Several clauses of this de�nition are similar to theclauses of the previous one. For example, judgments containing a � and �-abstractionpair again translate to a universally quanti�ed implication (using the �rst clause of the13



[[x :A;�;�]] := [[A : Type]]� ^ 8x �[[x :A]]+ � [[�;�]]�[[x :K;�;�]] := [[K kind]]� ^ 8x �[[x :K]]+ � [[�;�]]�[[P :Q;�;�]] := [[P : Q]]� ^ �[[P :Q]]+ � [[�;�]]�[[hi;�]] := [[�]]�Figure 6: Translating LF assertions to hh! formulasde�nition). In this case, an additional conjunct is also required to verify that the typein the abstraction is valid. Note that in the left-hand side of the implication, the binderx :A is translated as a context item (using [[]]+), and represents an additional assump-tion available when proving that P has type or kind Q. Since the term on the left of acolon in a canonical assertion is always canonical, we do not need a clause correspondingto the second clause of [[]]+. Note that the base cases resulting in atomic formulas forhastype and istype are identical to those for translating context items. Finally, the lastthree clauses handle the remaining possible LF judgments. Again �-abstraction maps touniversal quanti�cation and implication, with an additional conjunct to verify that thetype in the binder is valid. The judgment Type kind simply maps to >.Figure 6 contains the general translation for LF assertions. Given assertion � ` �,the pair (�;�) is mapped to a single formula containing subformulas whose proofs willinsure that each context item is valid and that the judgment holds in this context. Thetranslation of such a pair is denoted [[�;�]]. The �rst two clauses of this translationmap each context item to a conjunctive formula where the �rst conjunct veri�es that thetype or kind is valid (using the translation on LF judgments), and the second conjunctis a universally quanti�ed implication where the left hand side asserts the fact that thecontext item has the corresponding type (using the translation on contexts), and theright side contains the translation of the pair consisting of the remaining context itemsand judgment. The third clause handles context lemmas. Again there are two conjuncts.The �rst translates the lemma as a judgment to verify that it holds, while the secondtranslates it as a context item which will be available as an assumption in proving thatthe rest of the context is valid and that the judgment holds within the entire context.The last clause in the translation is for the base case. When the context is empty, thejudgment is simply translated using [[]]�. In the next section, we will show formally thatfor LF assertion � ` �, � is a valid context and � ` � is provable in LF if and only if[[�;�]] is a provable hh! formula.6 Correctness of TranslationThe following two properties hold for the encoding hhii on terms. They will be importantfor establishing the correctness of the translation.Lemma 4 Let P be an LF object or base type, andN an LF object. Then [hhNii=x]hhP ii =hh[N=x]P ii: 14



Lemma 5 Let P and Q be two LF objects or base types. If P =� Q, then hhP ii =� hhQii.Lemma 4 is proved by induction on the structure of LF terms, while Lemma 5 is provedby induction on a sequence of �-reductions to convert P to Q.In proving the correctness of the translation, we consider a slightly modi�ed LF. Ourmodi�ed system replaces the (ABS-FAM) and (ABS-OBJ) rules with the following two rules.�; x :A ` B : K (ABS-FAM0)� ` �x :A:B : �x :A:K �; x :A `M : B (ABS-OBJ0)� ` �x :A:M : �x :A:BThese rules are the same as presented earlier except that the left premise is omitted. Wecall this system LF0. Proving an assertion of the form � ` �x :A:P : �x :A:Q in validcontext � in the unmodi�ed version of LF is equivalent to proving �; x :A ` P : Q invalid context �; x :A. In Appendix B, we show that for valid context � and judgment�, the assertion � ` � is provable in LF if and only if it is provable in LF0 and all typesbound by outermost abstractions in the term on the left in � are valid.In proving correctness of the translation, we prove a stronger statement from whichcorrectness will follow directly. This stronger statement will talk about the provabilityof an arbitrary LF0 assertion � ` � even in the case when � and the types bound byoutermost abstractions in � are not valid. We make the following modi�cations to thede�nition of [[]]� for translating such judgments: we replace the �rst clause of Figure 5(b) with the �rst clause below, and add the second as a new clause.[[�x :A:P : �x :A:Q]]� := 8x �[[x :A]]+ � [[P : Q]]��[[P : �x :A:Q]]� := 8x �[[x :A]]+ � [[Px : Q]]��where P is not an abstraction.In the �rst clause, the removal of the left conjunct in these formulas corresponds to theremoval of the left premise in the (ABS) rules. The second clause will be needed forproving our general form of the correctness theorem. Note that with these two clauses,the positive and negative translation are identical on judgments for which they are bothde�ned.One further lemma about LF0 is needed to prove the correctness of the (modi�ed)translation. Lemma 4 shows that substitution commutes with the encoding operation.The lemma below extends this result to the translation operation on judgments whichtranslate to provable hh! formulas. Given a context �, we write �(�) to denote the setof meta-variables obtained by mapping, for each signature item x :P in �, the variablex to the corresponding meta-variable of type T (x). We write [[�]]+ to denote the set offormulas obtained by translating separately each item in � using [[]]+.Lemma 6 Let �; x1 : A1; : : : ; xn : An; x : A (n � 0) be a canonical context. LetN1; : : : ; Nn; N be canonical objects with respect to �. Let � be the signature �LF [�(�).Then �; [[�]]+ `I [[N : ([N1=x1; : : : ; Nn=xn]A)�]]� i��; [[�]]+ `I [hhN1ii=x1; : : : ; hhNnii=xn; hhNii=x][[x : A]]�:15



Proof : The forward and backward direction is proved by simultaneous induction on thestructure of A with the following statement. Let C be any � [ fxg-formula. Then� [ fxg; [[�]]+; [[x : ([N1=x1; : : : ; Nn=xn]A)�]]+ `I C i�� [ fxg; [[�]]+; [hhN1ii=x1; : : : ; hhNnii=xn][[x : A]]+ `I C:Theorem 7 (Correctness of Translation I) Let � be a valid context and � a canonicaljudgment such that all types bound by outermost abstractions in the term on the left in� are valid. Let � be �LF [ �(�). Then � ` � is provable in LF0 i� �; [[�]]+ `I [[�]]�holds.Proof : We prove a modi�ed form of the above statement from which the theorem willfollow directly. We relax the requirement that � is valid and that the types bound byoutermost abstractions in � are valid. Instead, we simply require that [[�]]+ and [[�]]�are well-de�ned.The proof of this theorem is constructive, i:e:, it provides a method for constructingan hh! proof from an LF proof, and vice versa. We begin with the forward directionwhich is proved by induction on the height of an LF0 proof of the assertion � ` �. Forthe one node proof � ` Type kind, clearly [[Type kind]]� � > is provable from � and[[�]]+. For the case when the last rule is (PI-FAM), we build the following sequent prooffragment, where the root is the translation of the conclusion of the (PI-FAM) rule, and theleaves are the translations of the premises which we know to be provable by the inductionhypothesis.� ; [[�]]+ �! [[A : Type]]� � [ fxg ; [[�; x :A]]+ �! [[B : Type]]� �-R� [ fxg ; [[�]]+ �! [[x :A]]+ � [[B : Type]]� 8-R� ; [[�]]+ �! 8x ([[x :A]]+ � [[B : Type]]�) ^-R� ; [[�]]+ �! [[A : Type]]� ^ 8x ([[x :A]]+ � [[B : Type]]�)The case when the last rule is (PI-KIND) is similar. The cases for (ABS-OBJ0) and(ABS-FAM0) are also similar, except that the translations do not have the left conjunctand the corresponding LF0 proofs have only one premise. Next, consider the case whenthe last rule is (APP-OBJ) with context lemma M : �x1 : A1 : : :�xn : An:B 2 � andobjects N1; : : : ; Nn appearing on the right of the colon in the n premises. We must showthat the formula below (the translation of the conclusion) is provable from � and [[�]]+.(hastype hh(MN1 : : :Nn)�ii hh([N1=x1; : : : ; Nn=xn]B)�ii) (1)(Note that we can assume that x1; : : : ; xn do not appear free in M , otherwise we renamethem in the above type.) By the induction hypothesis for the n premises and Lemma 6,the following are provable from � and [[�]]+.[hhN1ii=x1][[x1 :A1]]�; : : : ; [hhN1ii=x1; : : : ; hhNnii=xn][[xn :An]]� (2)M has the form �x1 : A1 : : : �xn : An:M 0. Since M : �x1 :A1 : : :�xn :An:B is in � theformula below (the translation of this context item using [[]]+) is in [[�]]+.8x1 ([[x1 :A1]]+ � : : :8xn ([[xn :An]]+ � (hastype hhM 0ii hhBii)) : : :)16



By De�nition 2 applied to this formula with instances hhN1ii; : : : ; hhNnii for the variablesx1; : : : ; xn, we know that the following pair is in ���[[�]]+����.Df[hhN1ii=x1][[x1 :A1]]+; : : : ; [hhN1ii=x1; : : : ; hhNnii=xn][[xn :An]]+g;(hastype [hhN1ii=x1; : : : ; hhNnii=xn]hhM 0ii [hhN1ii=x1; : : : ; hhNnii=xn]hhBii)EHence, by Theorem 3, the fact that the formulas (2) are provable from � and [[�]]+, andthe fact that the positive and negative translation are identical on these judgments, wecan conclude that the formula on the right of this pair is provable from � and [[�]]+. ByLemmas 4 and 5, the following hold.[hhN1ii=x1; : : : ; hhNnii=xn]hhM 0ii =� hh(MN1 : : :Nn)�ii[hhN1ii=x1; : : : ; hhNnii=xn]hhBii =� hh([N1=x1; : : : ; Nn=xn]B)�iiThus the formula on the right of the above pair is equivalent to (1) and we have ourresult. The case when M is a variable, and the case when the last rule in the proof ofthe LF0 assertion is (APP-FAM) are similar to this case.The proof of the backward direction is by induction on the structure of the term onthe left in �, and is similar to the proof of the forward direction. The proof of the casewhen the term on the left is an abstraction or � relies on the fact that there is a sequentproof of the corresponding hh! formula of the form described by Theorem 1. The proofof the case when the term on the left is an application uses Theorem 3.The correctness of the translation [[]] is stated as the following corollary of this theo-rem. We state it with respect to the unmodi�ed canonical LF.Corollary 8 (Correctness of Translation II)Let � be a canonical context and � a canonical judgment. Then � is a valid contextand � ` � is provable in LF i� �LF ; ; `I [[�;�]] holds.7 Encoding a Speci�cation of First-Order LogicIn this section, we consider some further examples from an LF speci�cation of naturaldeduction in �rst-order logic. We begin by illustrating the translation of context itemsspecifying some of the inference rules. We then consider some example LF judgmentsprovable from this context, and discuss both proof checking and theorem proving of thecorresponding goals in hh! .Note that in general, formulas obtained by translating context items have the formon the left below, but can be rewritten to have the form on the right:8X1 (G1 � : : :8Xn (Gn � D) : : :) 8X1 : : :8Xn (G1 ^ � � � ^Gn � D)where n � 0, X1; : : : ; Xn are variables, and G1; : : : ; Gn; D are hh! formulas. (Here weassume that for i = 1; : : : ; n, Xi+1; : : : ; Xn do not appear free in Gi). For readability, we17



will write hh! formulas in the examples in this section simply as G1 ^ � � � ^ Gn � D (orjust D when n = 0), and assume implicit universal quanti�cation over all free variableswritten as capital letters.The fragment of an LF speci�cation for �rst-order logic that we are concerned withis the following.i : Typeform : Typetrue : form ! Type�̂ : form ! form! form�� : form ! form! form8� : (i! form)! form�̂-I : �A : form:�B : form:(true A)! (true B) ! (true A ^�B)�̂-E1 : �A : form:�B : form:(true A ^�B)! (true A)�̂-E2 : �A : form:�B : form:(true A ^�B)! (true B)8�-E : �A : i! form:�t : i:(true 8�A)! (true At)8�-I : �A : i! form:(�y : i:(true Ay))! (true 8�A)��-I : �A : form:�B : form:((true A)! (true B))! (true A ��B)��-E : �A : form:�B : form:(true A ��B)! (true A)! (true B)For readability, we do not always present context items in canonical form. The cor-responding canonical term can always be easily deduced. For example, to apply thetranslation to the inference rules for universal quanti�cation, the term (8�A) must bereplaced by (8��x : iAx).First, consider the 8�-elimination rule speci�ed by 8�-E and its type. Its translation(using [[]]+) is the following formula.8y((hastype y i) � (hastype Ay form)) ^ (hastype t i) ^(hastype P (true 8�A)) � (hastype (8�-E A t P ) (true At))This formula reads: if for arbitrary y of type i, Ay is a formula, and if t is a term oftype i and P is a proof of 8�A, then the term (8�-E A t P ) is a proof of the formula At.Note that, as in the translation of the 8� connective given in Section 5, A is a functionat the meta-level having syntactic type ob ! ob. It maps �rst-order terms to formulasjust as it does at the object-level. We next consider the translation of the 8�-I rule asthe following formula.8y((hastype y i) � (hastype Ay form))^8y((hastype y i) � (hastype Py (true Ay))) �(hastype (8�-I A P ) (true 8�A))This clause provides the following description of the information contained in the de-pendent type: if for arbitrary y of type i, Ay is a formula and Py is a proof of Ay,then the term (8�-I A P ) is a proof of 8�A. Here, both A and P are functions at themeta-level having syntactic type ob ! ob. Again, A maps �rst-order terms to formulas,while P maps �rst-order terms to proofs. As a �nal inference rule example, consider the18



declaration for ��-I, which translates to the following formula.(hastype A form) ^ (hastype B form) ^8q((hastype q (true A)) � (hastype Pq (true B))) �(hastype (��-I A B P ) (true A ��B))This formula reads: if A and B are formulas and P is a function which maps an arbitraryproof q of A to the proof Pq of B, then the term (��-I A B P ) is a proof of A ��B.Note that P in this formula is a function which maps proofs to proofs.We consider an example from [21] which is provable in the LF speci�cation for naturaldeduction. The following LF type represents the fact that in �rst-order logic, a universalquanti�er can be pulled outside a conjunction.�A : i! form:�B : i! form:(true (8�A ^� 8�B))! (true 8�(�x : i(Ax^�Bx)))Let the term T be the following LF term of this type, which represents a natural deductionproof of this fact.�A : i! form:�B : i! form:�p : (true (8�A ^� 8�B)):(8�-I �x : i:(Ax ^�Bx) �x : i:( �̂-I Ax Bx(8�-E A x ( �̂-E1 8�A 8�B p)) (8�-E B x ( �̂-E2 8�A 8�B p))))Let T 0 be the following simply typed �-term of type (ob! ob)! (ob! ob)! ob! ob.�A :ob! ob:�B :ob! ob:�p :ob:(8�-I �x :ob:(Ax^�Bx) �x :ob:( �̂-I Ax Bx(8�-E A x ( �̂-E1 8�A 8�B p)) (8�-E B x ( �̂-E2 8�A 8�B p))))The encoding of the above judgment using [[]]� is an hh! formula equivalent to theconjunction of the three formulas below, which are provable from the set of formulasencoding the entire LF context specifying natural deduction in �rst-order logic.(istype i) ^ 8y((hastype y i) � (istype form))8y((hastype y i) � (hastype Ay form)) ^8y((hastype y i) � (hastype By form)) � (istype (true (8�A ^� 8�B)))8y((hastype y i) � (hastype Ay form)) ^8y((hastype y i) � (hastype By form)) ^(hastype p (true (8�A ^� 8�B))) �(hastype (T 0ABp) (true 8�(�x :ob:(Ax^�Bx))))Once a fact is proved it can be considered a part of the context and used to prove newjudgments. In this case, the translation of the above judgment as a context item is thelatter of the three formulas above. Thus this formula can be added as an assumptionand used in proving new hh! goals. For example, consider the LF type below.true((8�r ^� 8�s) ��(ra ^�sa))19



(We assume that a is a constant and r; s are unary predicates in our �rst-order logic.Thus the context contains a : i; r : i ! form; s : i ! form, and the set of hh! formulascontains their corresponding translations.) The following two LF terms represent proofsof this fact. The �rst uses the above LF judgment as a lemma.(��-I (8�r ^� 8�s) (ra^�sa) �p : (true (8�r ^� 8�s)):(8�-E �x : i:(rx^�sx) a (Trsp)�)(��-I (8�r ^� 8�s) (ra^�sa) �p : (true (8�r ^� 8�s)):( �̂-I ra sa(8�-E r a ( �̂-E1 8�r 8�s p)) (8�-E s a ( �̂-E2 8�r 8�s p))))These judgments translate to the following two provable hh! formulas.(hastype (��-I (8�r ^� 8�s) (ra^�sa)�p :ob:(8�-E �x :ob:(rx^�sx) a (T 0rsp))(true (8�r ^� 8�s) ��(ra ^�sa))(hastype (��-I (8�r ^� 8�s) (ra^�sa) �p :ob:( �̂-I ra sa(8�-E r a ( �̂-E1 8�r 8�s p))(8�-E s a ( �̂-E2 8�r 8�s p))))(true (8�r ^� 8�s) ��(ra ^�sa))With respect to the interpreter described in Section 4, we will say that an hh! formulawith no logic variables is closed. The formulas we obtain by applying the translation, forexample, are all closed. Proving one of the above two formulas, for instance, correspondsto verifying that the closed term represents a natural deduction proof of the �rst-orderformula in the closed type, i:e:, proving closed formulas corresponds to object-level proofchecking. The deterministic interpreter described in Section 4 is in fact su�cient to provesuch goals. Each BACKCHAIN step will produce new closed subgoals. Consider the �rstof the two formulas above. In proving this formula, we obtain a subgoal of the form:(hastype (T 0rsp) (true (8�x :ob:(rx^�sx)))):The term at the head of (the normal form of) (T 0rsp) is 8�-I. At this point in theproof there will be two possible de�nite clauses that can be used in backchaining: thetranslation of the 8�-I context item, and the translation of the lemma T , and either willlead to proof of the subgoal. In fact, for proof checking, we can restrict the set of de�niteclauses used to those obtained by translating context items that introduce new variables,discarding those that translate context lemmas, and still retain a complete program withrespect to a deterministic control. In this restricted setting, at each step depending onthe constant at the head of the term, there will be exactly one clause that can be usedin backchaining.To use such a set of hh! formulas for object-level theorem proving, we simply use alogic variable in the �rst argument to the hastype predicate. For example, to prove the�rst-order formula (8�r ^� 8�s) ��(ra ^�sa), we begin with the goal:(hastype M (true (8�r ^� 8�s) ��(ra^�sa)))20



where M is a logic variable to be instantiated with a term of the given type. A closedinstance of M can easily be mapped back to an LF term having the given type. Asdiscussed in Section 2, depth-�rst search is not su�cient for such a theorem proving goalsince there may often be many de�nite clauses to choose from to use in backchaining.For example, for a subgoal of the form:(hastype M' (true (8�x :ob:(rx^�sx))))among the options available are backchaining on the clause for the lemmaT or backchain-ing directly on the clause for 8�-I. As discussed earlier, the tactic environment of [7]provides an environment in which such choices can be made.8 ConclusionWe have not yet considered the possibility of translating hh! formulas into LF. Thistranslation is particularly simple. Let � be a signature for hh! and let P be a set of�-formulas. For each primitive type � other than o in S, the corresponding LF judgmentis � : Type. For each non-predicate constant c of type � in �, the corresponding LFjudgment is c : � . For each predicate constant p of type �1 ! � � � ! �n ! o 2 �, thecorresponding LF judgment is p : �1 ! � � � ! �n ! Type. Finally, let D 2 P and let kbe a new constant not used in the translation to this point. Then the corresponding LFjudgment is k : D0 where D0 is essentially D with B1 � B2 written as �x :B1:B2 and8�x B written as �x :�:B.Notice that the translation presented in this paper works via recursion over the struc-ture of types. Thus, �-calculi that contain quanti�cation over types such as the poly-morphic �-calculus or the Calculus of Constructions cannot be directly translated inthis manner. For example, we cannot de�ne the same notion of base type. TranslatingA : Type when A is a base type, for instance, results in an atomic formula for the istypepredicate. In systems with quanti�cation over types, whether or not A is a base typemay depend on its instances, and cannot be determined at the time of translation.The translation we have described provides a method of directly translating an LFspeci�cation, so that there is one hh! formula corresponding to each LF context item.Since each context item represents a concept of the logic being speci�ed, in the resultingproof checkers and theorem provers, each (BACKCHAIN) step is on a clause for a particularconstant representing an object-level notion. Another approach to implementing LFspeci�cations is to implement the inference rules of LF directly as hh! formulas, codingthe provability relation directly into the meta-language. An LF context specifying aparticular logic would serve as a parameter to such a speci�cation. Such an approachadds one level of indirection in implementing object logics since now each (BACKCHAIN)step corresponds to the application of an LF rule. This approach to implementing typed�-calculi is taken in [8], where it is also shown that it can be applied to systems withquanti�cation over types.Such an approach requires an encoding of terms at all levels of the calculus beingspeci�ed. In LF, for instance, meta-level constants for the various notions of applicationand abstraction must be introduced. For example, at the level of types a constant oftype ty ! ob ! ty can be introduced to represent application, while constants of type21



(ob! ty)! ty can be introduced for � and �-abstraction. A coding of the convertibilityrelation on terms is also required in this setting. Note that the above simple types haveorder 1 and 2 respectively. In fact hh2 is all that is required to encode provability oftyped �-calculi in this manner. In [5], using such an encoding on terms, it was shown thata direct encoding of LF speci�cations using the approach in this paper can be de�ned injust hh2. The proofs of the correctness of that encoding are similar to those presentedhere.In [12], a similar approach based on recursion over types is adopted to implementa subset of the Calculus of Constructions. In the meta-language used there, terms arethe terms of the Calculus of Constructions, and a simple language of clauses over theseterms is de�ned. During goal-directed proof, when a new assumption is introduced, theclause corresponding to this assumption is added dynamically and is then available forbackchaining. In this way, certain forms of quanti�cation over types can be handled. Suchan approach can be implemented in �Prolog by implementing the translation as a �Prologprogram and performing the translation dynamically as types become instantiated toobtain new assumptions which can be used in subsequent proof checking and theoremproving subgoals.In the Elf programming language [21], a logic programming language is describedthat gives operational interpretations directly to LF types similar to the way in whichthe interpreter described in Section 4 gives operational interpretations to the connectivesof hh! . Logic variables are also used in this implementation, and the more complexoperation of uni�cation on LF terms is required. The LF speci�cation for �rst-orderlogic discussed in Section 7, for example, can serve directly as a program in this language.The operational behavior, of such a program, although similar to the execution of an hh!speci�cation, has several di�erences. For instance, certain operations which are handleddirectly at the meta-level by uni�cation on types in an Elf implementation are expressedexplicitly as type-checking subgoals in the hh! formulas, and thus handled by logicprogramming search. For example, consider a goal of the form (true A � �B) in the�rst-order logic speci�cation. In Elf, before backchaining on the context item specifyingthe � �-introduction rule, the interpreter veri�es that A � �B has type form. In thecorresponding hh! program, the term A ��B in the head of the clause translating the��-I context item will unify with any term of type ob. It is the subgoals (hastype A form)and (hastype B form) which will succeed or fail depending on whether A and B represent�rst-order formulas. In addition, when such programs are used as theorem provers, LFproofs are built at the meta-level by Elf, whereas they are explicit arguments to thehastype predicate in hh! speci�cations and are built by uni�cation on simply typed �-terms.AcknowledgementsThe author would like to thank Dale Miller, Frank Pfenning, and Randy Pollack forhelpful comments and discussions related to the subject of this paper.22
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A Full and Canonical LFIn this section, we show the correspondence between canonical LF as presented in Sec-tion 3, and full LF as presented in [10]. The rules of full LF are the rules of Figure 1 inSection 3 except for (FAM-LEMMA) and (OBJ-LEMMA) plus the application and conversionrules given in Figure 7 which replace the application rules in Figure 2. The following twox :K 2 � (VAR-KIND)� ` x : K x :A 2 � (VAR-FAM)� ` x : A� ` A : �x :B:K � `M : B (APP-FAM)� ` AM : [M=x]K� `M : �x :A:B � ` N : A (APP-OBJ)� `MN : [N=x]B� ` A : K � ` K 0 kind K =� K 0 (�-KIND)� ` A : K 0� `M : A � ` A0 kind A =� A0 (�-FAM)� `M : A0Figure 7: Full LF application and conversion rulesproperties of full LF are shown to hold in [10], and will be used in proving the resultsbelow.Lemma 9 (Subderivation)1. If � ` A : K holds then � ` K kind also holds.2. If � `M : A holds then � ` A : Type also holds.Lemma 10 (Subject Reduction)1. If � ` K kind holds and K �-reduces to K 0, then � ` K 0 kind also holds.2. If � ` A : K holds and A �-reduces to A0, then � ` A0 : K also holds.3. If � `M : A holds and M �-reduces to M 0, then � `M 0 : A also holds.We establish some further properties about canonical and full LF that will be neededto show the correspondence between these two systems.De�nition 11 Let � be a valid context (in canonical or full LF), and x :P an item in�. We de�ne the function C which maps variable x and context � to a canonical term.P has the form �x1 :A1 : : :�xn :An:Q where n � 0 and Q is Type or a base type. Fori = 1; : : : ; n, let �i be the context �; x1 :A1; : : : ; xi :Ai. We de�ne C(x;�) to be the term:�x1 :A1 : : : �xn :An:x(C(x1;�1)) : : :(C(xn;�n)):25



(We will abbreviate C(x;�) as C(x) in the remainder of this section, since � can alwaysbe determined from context.)The following lemma holds for both canonical and full LF.Lemma 12 Let � be a valid context containing x : P where P is canonical. Then� ` C(x) : P is provable.Proof : The proof is by induction on the structure of P and relies on the fact that forany variable z and well-typed canonical term Q, ([C(z)=z]Q)� = Q.Using this lemma, the following result about canonical LF can be proven.Lemma 13 If �1; x : A; P : Q;�2 is a valid context with P : Q a context lemma, and�1; x :A; P :Q;�2 ` � is provable in canonical LF, then �1; �x :A:P : �x :A:Q; x :A;�2 isa valid context and the assertion �1; �x :A:P : �x :A:Q; x :A;�2 ` � is provable.Proof : We let �0 and �00 be the contexts �1; x : A; P : Q;�2 and �1; �x : A:P : �x :A:Q; x :A;�2, respectively. We �rst prove the lemma with the added assumption that�00 is a valid context by induction on the height of a derivation of �0 ` �. The only non-trivial case occurs when the context item from �0 used in an application of (APP-OBJ) or(APP-FAM) is P :Q. To show �00 ` �, we use the corresponding item �x :A:P : �x :A:Qfrom �00, with the additional hypothesis �00 ` C(x) : A, which we know to be provable byLemma 12. Using this result, the proof that �00 is valid is by a straightforward inductionon the length of �2.De�nition 14 A canonical derivation in full LF is a derivation such that the followinghold.1. The assertion at the root is pre-canonical (i:e:, its normal form is canonical).2. All assertions in the derivation except for those that occur as the conclusion of(VAR-KIND) or (VAR-OBJ), or as the conclusion and left premise of (APP-FAM) or(APP-OBJ) are pre-canonical.3. In all assertions that occur as the conclusion, but not a left premise of (APP-FAM)or (APP-OBJ), the term on the right of the judgment is Type or a base type.We will only consider canonical derivations in full LF when demonstrating the rel-ative soundness and completeness of canonical LF. By imposing this restriction we areeliminating exactly those derivations such that a term used on the left of an applicationis not applied to the maximum number of arguments. A derivation that does not meetthis requirement can, in fact, be mapped in a straightforward manner to one that doesby introducing context items of the appropriate types and discharging them with an(ABS) rule. For example, a derivation of � ` P : �x :A:Q where P is not an abstractioncan be mapped to a derivation of �; x : A ` P : �x : A:Q to which we can apply the26



corresponding (APP) rule to obtain �; x :A ` P (C(x)) : Q, followed by an (ABS) rule toobtain � ` �x :A:P (C(x)) : �x :A:Q.We now de�ne by induction an operation L which maps a derivation in full LF to asequence of typing judgments. As we will see, the sequence of judgments associated toa canonical derivation is exactly the set of lemmas that will be added to the context toobtain the corresponding derivation in canonical LF.De�nition 15 L maps a derivation in full LF to a sequence of typing judgments �de�ned by induction on the derivation as follows.� If the last rule in the derivation is (TYPE-KIND), (VAR-KIND), (VAR-FAM), or(EMPTY-CTX), then � is the empty sequence.� If the last rule is a (PI) or (ABS) rule, then let �1 be the sequence associated by L tothe derivation of the left premise � ` A : Type, and �2 be the sequence associatedto the derivation of the right premise. Let �02 be the sequence that replaces everyjudgment P :Q in �2 with �x :A�:P : �x :A� :Q. Then � is �1;�02.� If the last rule is an (APP) rule, then let �1 be the sequence associated by L tothe derivation of the left premise � ` P : Q, and �2 be the sequence associated tothe derivation of the right premise. If the left premise is pre-canonical, and is notthe conclusion of another (APP) rule or of a (VAR) rule, then � is �1; P � :Q� ;�2.Otherwise, � is �1;�2.� If the last rule is a � rule, � is the sequence associated to the derivation of theleftmost premise.� If the last rule is (FAM-INTRO) or (OBJ-INTRO), then let �1 and �2 be the sequencesassociated by L to the derivation of the left and right premises, respectively. Then� is �1;�2.It can be shown by a straightforward induction on a derivation of � ` � that for eachjudgment P :Q in the sequence associated to this assertion by L, � ` P : Q holds.Let x1 :P1; : : : ; xn :Pn be a valid context in full LF. For i = 1; : : : ; n, we denote thesubcontext whose last element is xi :Pi as �i. Given a derivation of ` �n context, fori = 1; : : : ; n, let �i be the context associated to the subderivation of �i�1 ` Pi kind or�i�1 ` Pi : Type. We say that the context �1; x1 : P�1 ; : : : ;�n; xn : P�n is the extendednormal context associated to this derivation.Theorem 16 (Completeness of Canonical LF) Let � be a context and � a judgmentsuch that ` � context and � ` � have canonical derivations in full LF. Let �0 be theextended normal context associated to the derivation of ` � context, and let � be theset of typing judgments associated to the derivation of � ` � by the function L. Then�0;� is a valid context and �0;� ` �� is provable in canonical LF.Proof : We �rst prove the above statement under the additional hypotheses that �0 isa valid context in canonical LF. Using this result, it can be proved by a straightforward27



induction on the length of � that �0 is valid. The proof is by induction on the heightof a canonical derivation in full LF of � ` �. For the case when the last rule is an(APP) rule, we must consider the subproof that contains a series of n (APP) rules, wheren � 1 and the leftmost premise � ` P : Q is not the conclusion of an (APP) rule. Weconsider the case when this premise is not the conclusion of a (VAR) rule. Thus P and Qare pre-canonical. First, we show that �0;� is a valid context. Let �0 be the sequenceassociated to � ` P : Q by L, and for i = 1; : : : ; n, let �i be the sequence associated withthe right premise in the ith (APP) rule application. Then � is �0; P� :Q�;�1; : : : ;�n.By the induction hypothesis applied to � ` P : Q, the context �0;�0 is valid and�0;�0 ` P� : Q� holds. Hence �0;�0; P� :Q� is a valid context. Also, by the inductionhypothesis, for i = 1; : : : ; n, �0;�i is a valid context. Thus, we can conclude that �0;�is valid. We now show �0;� ` �� holds. By the induction hypothesis, for i = 1; : : : ; n,for each right premise � ` �i in the series of (APP) rules, �0;�i ` ��i holds. Clearly�0;� ` ��i also holds. Using the context item P � :Q�, we can simply apply the canonicalLF rule (APP-FAM) or (APP-OBJ) to these n assertions to obtain that �0;� ` �� holds.The case when � ` P : Q is the conclusion of a (VAR) rule is similar.For the case when the last rule is a (PI) or (ABS) rule, let �1 be the sequence ofjudgments associated to the left premise � ` A : Type by L. Let �2 be the sequenceassociated to the right premise �; x : A ` �0, and �02 be the sequence that contains�x : A�:P : �x : A� :Q for every P : Q in �2. Then � is �1;�02. We �rst show that�0;�1;�02 is a valid context. By the induction hypothesis for the left premise, �0;�1 isa valid context, and �0;�1 ` A� : Type holds. Thus, �0;�1; x :A�, the extended normalcontext associated to �; x :A is also valid. We now apply the induction hypothesis tothe right premise to obtain that �0;�1; x : A� ;�2 is a valid context. By Lemma 13,�0;�1;�02; x :A� is also a valid context. Since �0;� is a subcontext of this context, itis valid also. Next, we show that �0;�1;�02 ` �� holds. By the induction hypothesisfor the right premise and Lemma 13, �0;�1;�02; x :A� ` ��0 holds. Since �0;�1 ` A� :Type holds, clearly also �0;�1;�02 ` A� : Type holds. Thus, by an application of thecorresponding canonical LF (PI) or (ABS) rule, �0;�1;�02 ` �� holds. The remainingcases follow directly from the induction hypothesis and the de�nition of L.Theorem 17 (Soundness of Canonical LF) Let � ` � be a provable assertion in canon-ical LF. Let �0 be the subcontext of � containing only variables associated with theirtypes or kinds. Then �0 ` � is provable in full LF.Proof : We �rst prove the above statement under the additional hypotheses that �0 isa valid context in full LF and �0 ` P : Q for every item P :Q in �. Using this result,it can then be shown by induction on the length of � that this hypothesis follows fromthe fact that � is valid in canonical LF. We proceed by induction on the height of acanonical LF derivation of � ` �. For the (APP) rules, we replace a single application ofthe rule by a series of n applications of the corresponding rule in full LF. (If n is 0, wesimply apply the corresponding (VAR) rule.) If the rule uses a context lemma, we replaceit with a full LF derivation of this lemma, which we know to be provable by assumption.The conclusion of each (APP) rule application is a judgment of the form � ` P : [N=x]Qwhere P and [N=x]Q are not necessarily in �-normal form. We must show that the28



corresponding �-normal assertion is also provable. [N=x]Q must be a type or kind byProposition 9. By Proposition 10, we obtain that ([N=x]Q)� is also a type or kind. Then,by the corresponding � rule, � ` P : ([N=x]Q)� is provable. By Proposition 10, we knowthat � ` P� : ([N=x]Q)� is also provable. The remaining cases follow directly from theinduction hypothesis.
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B LF with Simpli�ed Abstraction RulesIn this section we show that for LF assertions such that all types bound by outermostabstraction in the term on the left in the judgment are valid, the canonical LF system pre-sented in Section 3 is equivalent to LF0, the system obtained by replacing the (ABS-FAM)and (ABS-OBJ) rules with the (ABS-FAM0) and (ABS-OBJ0) rules of Section 6, which dropthe left premise � ` A : Type. In such derivations, this premise is redundant.To prove this result, we need the following transitivity lemma for LF0.Lemma 18 (Transitivity) If �; x : A;�0 ` � and � ` N : A are provable, then�; ([N=x]�0)� ` ([N=x]�)� is provable.Proof : The proof is by induction on the structure of proofs. A similar result is statedfor the more general presentation of LF in [10].The following lemma shows that the left premise is redundant in all derivations ofassertions such that the term on the left in the judgment is not an abstraction.Lemma 19 Let � be a valid context and � ` � a provable assertion in LF0 that hasa proof whose last rule is an application of (APP-FAM) or (APP-OBJ), and that has anapplication of (ABS-OBJ0) above the root such that there are no other applications of(APP-FAM) or (APP-OBJ) below it. Let �0 be the context, and x :A be the variable and itstype bound by � in the conclusion of this application of (ABS-OBJ0). Then �0 ` A : Typeis provable.Proof : Let Q : �x1 :A1 : : :�xn :An:P be the context item used in the rule application atthe root, and N1; : : : ; Nn the terms on the right of the colon in the remaining premises.Since there is an (ABS-OBJ0) application above the root, then for some i such that 1 �i � n, Ai has the form �z :B:C, the corresponding premise of the (APP) rule has theform � ` Ni : ([N1=x1; : : : ; Ni�1=xi�1]�z :B:C)�;where Ni has the form �z : ([N1=x1; : : : ; Ni�1=xi�1]B)� :M , and the rule application atthe root of this premise is (ABS-OBJ0). We show that ([N1=x1; : : : ; Ni�1=xi�1]B)� is atype. We know that �x1 :A1 : : :�xn :An:P is a type or kind, since � is a valid context.A proof of this fact contains a subproof of�; x1 :A1; : : : ; xi�1 :Ai�1 ` �z :B:C : Type:By Lemma 18, using the premises of the (APP) rule, we can conclude that the assertion� ` ([N1=x1; : : : ; Ni�1=xi�1]�z :B:C)� : Type is provable. A proof of this fact containsa proof of the desired result. By similar reasoning, all other x : A bound by � in anapplication of (ABS-OBJ0) can be shown to be types with respect to the correspondingcontext.Theorem 20 Let � be a context that is valid in LF and LF0, and let � be a judgment.30



1. If � ` � is provable in LF, then it is also provable in LF0.2. If � ` � is provable in LF0 and all types bound by � in outermost abstractions inthe term on the left in � are valid in LF0, then � ` � is provable in LF.Proof : (1) is proved by a straightforward induction on the height of an LF derivation of� ` �. (2) is proved by induction on the structure of the term on the left in �. For thecase when the term is an application, the last rule in a derivation must be an (APP) rule.Lemma 19 is required to show that all of the types bound by � in outermost abstractionsin the premises are valid in LF0, so that the induction hypothesis can be applied to theseassertions. All other cases follow directly from the induction hypothesis.
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