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Abstract
Wedevelop a linear logical frameworkwithin theHybrid system and use it to reason about the
type system of a quantum lambda calculus. In particular, we consider a practical version of
the calculus called Proto-Quipper, which contains the core of Quipper. Quipper is a quantum
programming language under active development and recently has gained much popularity
among the quantum computing communities. Hybrid is a system that is designed to support
the use of higher-order abstract syntax for representing and reasoning about formal systems
implemented in the Coq Proof Assistant. In this work, we extend the system with a linear
specification logic (SL) in order to reason about the linear type system of Quipper. To this
end, we formalize the semantics of Proto-Quipper by encoding the typing and evaluation
rules in the SL, and prove type soundness.

Keywords Proto-Quipper · Quantum programming languages · Linear logic · Hybrid ·
Higher-order abstract syntax · Coq

1 Introduction

Quipper is a functional programming language designed for implementing quantum algo-
rithms [17]. Several variations of Quipper have been developed as part of the family
of Proto-Quipper sublanguages that offer type-safe practical versions of the original lan-
guage [20,35,36]. Whereas the language in [36] is a typed version of a subset of Quipper,
the language in [35] builds a categorical model for a subset of Quipper that is built from the
ground up. ECLNL, introduced in [20], follows the same syntax and operational semantic as
in [35] but they build their own categorical model that allows ECLNL to support recursion.
Quipper has also inspired other languages designers, e.g., the languages Q# byMicrosoft [40]
andQuil at Rigetti Computing [39]. Themathematical foundations of the Proto-Quipper frag-
ment developed in [36] retains much of the important expressive power of the full language
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and is the one that we are concerned with in this paper. As the authors themselves have
noted [37], there is a great deal of subtlety in the definitions of the syntax and semantics, and
many details were fine-tuned during the process of proving the type soundness result. This
process certainly would have benefited from formalization and the ability to recheck proofs
after each change in the definitions. Since Quipper is still under development, additional
metatheory will be proved as the language evolves. Providing an environment within a proof
assistant that allows the developers to simultaneously develop and formalize this metatheory
is a central goal of our work.

The Hybrid system [13] provides support for reasoning about object languages (OLs)
such as programming languages and other formal systems using higher-order abstract syntax
(HOAS), sometimes referred to as “lambda-tree syntax” [29,30]. It is implemented as a two-
level system, an approach first introduced in the FOλΔIN logic [25]. Using this approach,
the specification of the semantics of the OL and the meta-level reasoning about it are done
within a single system but at different levels. In the case of Hybrid, an intermediate level is
introduced by inductively defining a specification logic (SL) in Coq, and OL judgments are
encoded in the SL. The version of Hybrid we use here is implemented as two distinct libraries
in the Coq Proof Assistant. The first we adopt without change, while the development of a
new version of the second is part of the contributions of this work.

Hybrid is presented in full detail in [13], including a minimal intuitionistic logic as an
SL, and one of the first case studies proving subject reduction for big-step semantics of a
fragment of a pure functional language known as Mini-ML. A variety of other case studies
have since been carried out using this SL [9,10]. A substructral logic is presented as a second
SL in [13] and used to encode and prove type preservation of a continuation machine for
Mini-ML. This second SL is an ordered linear logic [33]. As we will see, the SL presented
here can be viewed as an extension of that early SL. In addition, both Isabelle/HOL and
Coq versions of Hybrid are discussed and compared in [13]. Further development and case
studies were carried out in the Isabelle/HOL version [23,24], but development has since
ceased. More recent work, including the work presented here, uses the Coq version. This
recent work includes the development of benchmarks for systems supporting the HOAS
approach to binders [11,12], and the implementation and comparison of these benchmarks
in three systems [14]—Hybrid, Abella [15], and Beluga [32]. In all of the work in Hybrid
mentioned so far, the SLs are implemented as sequent calculi with the restriction that all
formulas that appear in contexts must be atomic. This is sufficient for a large majority of
case studies about the metatheory of programming languages, including the one in this paper.
There are, however, some interesting case studies that have more elegant and concise proofs
in more expressive SLs, which have been presented in the literature and carried out in, for
example, Beluga [31] and Abella [42]. Beluga inherently does not have this restriction and
Abella no longer does [42]. In Hybrid, we have made a similar extension to the one in Abella
by implementing amore expressive minimal intuitionistic logic as an SL [3]. One of Hybrid’s
strengths is the ease in which different SLs can be incorporated into the system.

The first Hybrid library mentioned above provides support for expressing the syntax of
OLs. Using HOAS, binding constructs of the OL are encoded using lambda abstraction
in Coq. For instance, for Proto-Quipper, type qexp will represent terms or programs, and
App of type qexp → qexp → qexp and Fun of type (qexp → qexp) → qexp will
represent application and abstraction, respectively, of the linear lambda calculus, which forms
the core of the Proto-Quipper language. Lambda abstraction in Proto-Quipper is a binder
because the name of a variable is bound in the body of the abstraction. For example, the
term λx .λy.xy can be encoded as (Fun (λx .Fun (λy.(App x y))). Note that qexp cannot
be defined inductively because of the (underlined) negative occurrence of qexp in the type
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of Fun. Hybrid provides an underlying low-level de Bruijn representation of terms to which
the HOAS representation can be mapped internally; the user works directly with the higher
level HOAS representation.

Using such a representation, α-conversion at the meta-level directly represents bound
variable renaming at the object-level, and meta-level β-conversion can be used to directly
implement object-level substitution. As a consequence, we avoid the need to develop large
libraries of lemmas devoted to operations dealing with variables, such as capture-avoiding
substitution, renaming, and fresh name generation. In proof developments that use a first-
order syntax, such libraries are often significantly larger than the formalization of the main
metatheory results.

The secondHybrid library defines the SL and provides support for encodingOL judgments
and inference rules, and for reasoning about them. The need for different levels arises in
Hybrid because there are OL judgments that cannot be encoded as inductive propositions in
Coq. As an example, we consider assigning simple types to lambda terms. The standard rule
is as follows:

Γ , x : T � t : T ′
Γ � λx .t : T → T ′

Let qtp be the type of OL types, and let arr be a constant of type qtp → qtp → qtp
for constructing arrow types. Let typeof be a predicate expressing the relation between a
term and its type. If we consider the HOAS encoding of the above rule, using for example,
the techniques introduced in the logical framework LF [18], we can encode the above rule
as the following formula:

∀T , T ′ : qtp. ∀t : qexp → qexp.

(∀x : qexp. typeof x T → typeof (t x) T ′) →
typeof (Fun t) (arr T T ′)

The second line contains a formula with embedded implication and universal quantification
(known as hypothetical and parametric judgments), in particular universal quantification over
variable x of type qexp and an internal assumption (underlined) about the type of this x .
We note that the typeof predicate cannot be expressed inductively because this underlined
occurrence is negative. A two-level system solves this problem by allowing the encoding of
OL predicates inside the SL, where negative occurrences are allowed. We will see how this
is done in Sect. 5.1, where we encode rules such as the typing rule for lambda abstraction in
the quantum lambda calculus.

The linear SL we implement here is an extension of the ordered linear SL implemented
in [13] (mentioned above) and the ordered and linear SLs presented in [23]. We extend and
adapt this previous work to the much larger case study considered here, and we design the
new SL to be general so that it can be adopted directly for reasoning about a variety of other
OLs with linear features.

We formalize the key property of type soundness (also called subject reduction) of Proto-
Quipper, which requires several important lemmas about context subtyping.

The issue of the adequacy of HOAS representations is important (see [18]), which here
means that we must prove that the encoding in Hybrid does indeed represent the intended
language. The work described here includes extending previous work on adequacy to our
setting, where both the OL (Proto-Quipper) and the SL (a linear logic) are more complex
than those considered previously.

The work presented in this paper can be considered both more general and more narrow
than the work presented in our related paper [22]. We discuss the same Proto-Quipper case
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study in that paper with a reference to the full Coq code, but the presentation covers only a
small part, including the encoding of Proto-Quipper terms, the encoding of a few typing and
reduction rules, and an abbreviated statement of the subject reduction theorem. The current
paper covers the encoding and the metatheory of Proto-Quipper in much more depth, and in
this sense can be considered a fuller version of a previous workshop paper. That paper also
explores the idea of a more general framework for reasoning about quantum programming
languages, and includes preliminary work on a second quantum programming language,
providing enough details to do some comparison.

We begin in the next section with background material on Proto-Quipper. Then in Sect. 3,
we present the encoding of types and of the subtyping relation in Coq. Proto-Quipper types
and subtyping can be encoded directly using inductive types. There are no binders and no
substitution. One of the strengths of Hybrid as implemented in Coq is that it is straightforward
to combine such direct encodings of OL syntax with encodings that use the HOAS and SL
facilities provided by Hybrid.

In Sect. 4, we present the Hybrid system including both background information on the
first Coq library, as well as our new implementation of the second library, which encodes our
linear SL in Coq and develops some important general meta-theoretic properties that help in
reasoning about OLs.

The encoding of Proto-Quipper terms and of the typing rules, along with some properties
about them appear in Sect. 5. The encoding of reduction rules is presented in Sect. 6, along
with the statement of type soundness and a discussion of its formal proof.

We discuss adequacy of our encoding in Sect. 7, and finally, we conclude and discuss
related and future work in Sect. 8.

The files of our formalization are publicly available [21].

2 Proto-Quipper

We give a brief background of the Proto-Quipper language, focusing on the aspects that
are required for understanding the formalization in later sections. Proto-Quipper is based on
the quantum lambda calculus and focuses on Quipper’s abilities to generate and manipulate
quantum circuits [36]. The types and terms of Proto-Quipper are defined by the following
grammars:

T ,U ::= qubit | 1 | T ⊗U
A, B ::= qubit | 1 | ! 1 | bool | ! bool | A ⊗ B | !(A ⊗ B) |

A � B | !(A � B) | Circ(T ,U ) | !(Circ(T ,U ))

t ::= q | ∗ | 〈t1, t2〉
a, b, c ::= x | q | (t,C, a) | True | False | 〈a, b〉 | ∗ | ab | λx .a |

rev | unbox | boxT | if a then b else c |
let ∗ = a in b | let 〈x, y〉 = a in b

Proto-Quipper distinguishes between quantum data types (T ,U ) and types (A, B) where
the former is a subset of the latter, and similarly between quantum data terms (t) and terms
(a, b, c). Here x and y are term variables from a set V , q is a quantum variable from a setQ,
and C is a circuit constant from a set C. The sets V ,Q, and C are all assumed to be countably
infinite.

Most types and term constructs come directly from the quantum lambda calculus, e.g.,
[38]. The type Circ(T1, T2) represents the set of all circuits having an input port of type T1
and an output port of type T2. A circuit constantC represents a low-level quantum circuit, and
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qubit <: qubit 1<: 1 bool <: bool

A1 <:B1 A2 <:B2

A1 ⊗ A2 <:B1 ⊗ B2

A2 <:A1 B1 <:B2

A1 B1 <:A2 B2

T2 <:T1 U1 <:U2

Circ(T1, U1)<:Circ(T2, U2)
A <:B †
!A <:B

A <:B †
!A <: !B

† Note that the last two rules have the proviso that A and B do not have a leading !.

Fig. 1 Subtyping rules for Proto-Quipper

a term (t,C, a) represents a circuit as Proto-Quipper data, where t is a structure representing
a finite set of inputs to C , and similarly a represents a finite set of outputs. In Proto-Quipper,
it is assumed that two functions exists, I n and Out , from C to the set of all subsets of Q,
where I n(C) and Out(C) are the set of input and output quantum variables, respectively, of
circuit C . The terms rev, unbox, and boxT represent functions on circuits. We refer the reader
to [36], page 114, for further description of these types and terms. The Church-style typing
of the boxT operator is needed for the subject reduction theorem.

In quantum programming, cloning quantum data is prohibited, while cloning classical
data is not. This feature is reflected in Proto-Quipper by using the modal operator !, where
variables having type !A are called duplicable and can be cloned whereas variables of types
that do not follow this pattern are called linear and cannot be cloned or copied. Note that
instead of introducing a general ! operator on types, we restrict it to prohibit more than one
consecutive occurrence of the bang operator !. This presentation of types differs from the one
in [36].1

The use of the bang operator ! introduces a subtyping relation among types: A variable
of type !A obviously is also of type A. The subtyping rules of Proto-Quipper are shown in
Fig. 1. The subtyping relation <: is the smallest relation on types satisfying these rules.

The Proto-Quipper typing judgment has the form Φ; Q � a : A. In this sequent, Φ is
a finite set of typing declarations of the form x : A where x is a variable and A is a type
(A may have the form !C or not). In the presentation of the rules, Φ always appears in two
parts Φ ′, ! Ψ where the types in the latter all follow the pattern ! A, while those in the former
never contain a leading !. Q is a quantum context containing a finite set of quantum variables,
typically the free quantum variables in a. Also a is a term and A is a type. The typing rules
are shown in Fig. 2. We write · to represent an empty context. The “;” is used to separate the
typing context from the quantum context whereas the “,” is used to append two contexts. The
rules containing !n abbreviate two distinct rules, one where n = 0, i.e., there is no leading
!, and one where n = 1. These rules are taken from [36], with some modifications that do
not change the semantics. For example, when !n appears in the rules there, n can be any
natural number. The restriction here takes into account our modification to the syntax of
types discussed above. Also, the axx and axc rules replace a single rule for subtyping in [36].
Here, we give an initial rule for term variables (axx ), similar to the one for quantum variables
(axq ). When using LF-style hypothetical and parametric judgments, such rules for variables
are implicit; they do not appear in the encoding of the inference rules in the SL. In general,

1 In general, when we stray from the original presentation, our intention is to simplify formalization, and we
only do so when there is a clear equivalence to the original. In this case, we simplify the formalization of the
subtyping relation without changing the semantics of types. As we will discuss in the next section, making
this kind of change also led to the discovery of a small mistake in the original presentation.
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axq
!Ψ ; q q : qubit

axx
!Ψ, x : A; x : A

!Ψ ; a : !n A !n A <:B
axc

!Ψ ; a : B

!Ac(T, U)<:B
cst

!Ψ ; c : B

∗i
!Ψ ; : !n 1 !Ψ ; True : !n bool

⊥
!Ψ ; False : !n bool

Φ, x : !n A;Q b : B
λ1

Φ;Q λx.b : !n A B

!Ψ, x : !n A; b : B
λ2!Ψ ; λx.b : !(!n A B)

Φ1, !Ψ ;Q1 c : A B Φ2, !Ψ ;Q2 a : A app
Φ1, Φ2, !Ψ ;Q1, Q2 ca : B

Φ1, !Ψ ;Q1 a : !n A Φ2, !Ψ ;Q2 b : !n B ⊗i
Φ1, Φ2, !Ψ ;Q1, Q2 a, b : !n(A ⊗ B)

Φ1, !Ψ ;Q1 b : !n(B1 ⊗ B2) Φ2, !Ψ, x : !n B1, y : !n B2;Q2 a : A ⊗e
Φ1, Φ2, !Ψ ;Q1, Q2 let x, y = b in a : A)

Φ1, !Ψ ;Q1 b : !n 1 Φ2, !Ψ ;Q2 a : A ∗e
Φ1, Φ2, !Ψ ;Q1, Q2 let ∗ = b in a : A

Φ1, !Ψ ;Q1 b : bool Φ2, !Ψ ;Q2 a1 : A Φ2, !Ψ ;Q2 a2 : A
if

Φ1, Φ2, !Ψ ;Q1, Q2 if b then a1 else a2 : A

Q1 t : T !Ψ ;Q2 a : U In(C) = Q1 Out(C) = Q2
circ

!Ψ ; (t, C, a) : !n Circ(T, U)

Fig. 2 Typing rules for Proto-Quipper

we avoid explicit treatment of variables whenever possible to get the full advantage of HOAS
encodings. In addition, the subtyping rule in [36] is restricted only to term variables. Again
to avoid specific reasoning about variables, our axc rule is valid for any valid expression of
Proto-Quipper.

In the (cst) rule c ranges over the set {box, unbox, rev}, andwewrite box(T ,U ) as boxT (U )

to make explicit that the constant box is always annotated with its type (see the grammar).
AT
box, Aunbox, and Arev are defined as follows:

AT
box(U ) := !(T � U ) � !Circ(T ,U )

Aunbox(T ,U ) := Circ(T ,U ) � !(T � U )

Arev(T ,U ) := Circ(T ,U ) � !Circ(U , T )

3 Proto-Quipper Types

In the previous section, the types supported in Proto-Quipper were presented using a context
free grammar, where there are two classes of types. Here, we consider a single “universal”
class of types, and then define predicates that discriminate between the two classes. We
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start the formalization of the Proto-Quipper types (file ProtoQuipperTypes.v) by defining an
inductive type of the universal class:

Inductive qtp: Type :=
qubit: qtp | one: qtp | bool: qtp

| tensor: qtp -> qtp -> qtp | arrow: qtp -> qtp -> qtp
| circ: qtp -> qtp -> qtp | bang: qtp -> qtp.

Certainly, the above definition does not model Proto-Quipper types. For instance, it allows
the parameters of the circuit type constructor to be of the general class, whereas the argument
expressions are supposed to be of the quantumdata type. Accordingly, we define the inductive
predicate valid that captures the notion of quantum data types (grammar T ,U ):

Inductive valid: qtp -> Prop :=
Qubit: valid qubit

| One: valid one
| Tensor: forall A1 A2, valid A1 -> valid A2 ->

valid (tensor A1 A2).

Then, we define the general validT predicate to identify the general types (grammar A, B):

Inductive validT: qtp -> Prop :=
vQubit: validT qubit

| bQubit: validT (bang qubit)
...

| vTensor: forall A B, validT A -> validT B ->
validT (tensor A B)

| bTensor: forall A B, validT A -> validT B ->
validT (bang (tensor A B))

...

| vCirc: forall A B, valid A -> valid B ->
validT (circ A B)

| bCirc: forall A B, valid A -> valid B ->
validT (bang (circ A B)).

In longer definitions such as this one, we often omit parts when it is clear how to fill in the
complete idea of the definition. We have proved that (valid A) implies (validT A),
confirming that class T ,U is a subclass of A, B.

The last step in the formalization of the Proto-Quipper types is the development of the
subtyping relation. The following inductive proposition directly encodes the rules of Fig. 1.

Inductive Subtyping: qtp -> qtp -> Prop :=
QubitSub: Subtyping qubit qubit

| OneSub: Subtyping one one
...

| CircSub: forall A1 A2 B1 B2,
Subtyping A2 A1 -> Subtyping B1 B2 ->
validT (circ A1 B1) -> validT (circ A2 B2)->
Subtyping (circ A1 B1) (circ A2 B2)

| BangSub1: forall A B, Subtyping A B ->
validT (bang A) -> Subtyping (bang A) B
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| BangSub2: forall A B, Subtyping A B ->
validT (bang A) -> Subtyping (bang A) (bang B).

Themain difference between this definition and the original subtyping rules in [36] are the last
two rules.Asmentioned inSect. 2, they are stated so that they prevent consecutive applications
of the ! operator. The first of these rules (BangSub1) is concerned with the weakening of
subtype A by adding the bang operator. The second rule concerns weakening both sides of
the subtyping relation. The use of the predicate validT throughout the definition ensures
that non-Quipper types are ruled out. This presentation of the subtyping rules for the bang
operator make the formal proof of the transitivity of the subtyping relation much easier; in
particular it avoids a lot of unneeded induction cases. An important theorem, which states
that the subtyping relation implies the validity of its arguments, is stated below.

Theorem SubAreVal: forall A B, Subtyping A B ->
validT A /\ validT B.

Given the above definition of Proto-Quipper subtyping, we successfully verified all the
required subtyping lemmas reported in [36] (page 118, Remark 8.2.13), which ensures that
the implemented definition follows the intended behavior. In the following, we list examples
of the formally proven properties:

Theorem Subtyping_qubit_inv: forall B,
Subtyping qubit B -> B = qubit.

Similar theorems have been proven for the other base types one and bool. The following
specification ensures that whenever the top-level type constructor of the super-type is the
bang operator, then the subtype should be too.

Theorem Subtyping_bang_inv: forall A B1,
Subtyping A (bang B1) ->
exists A1, A = (bang A1) /\ Subtyping A1 B1.

The second conjunct of this theorem can be concluded by inversion using the Bang_Sub2
rule. It is important to know that this property cannot be proven for the original subtyping
relation reported in [36]. Let us consider the case of (Subtyping !one !!one), from
which one cannot conclude that (Subtyping one !one). Thanks to the formal proof,
we were able to spot this ill-formed condition. The author has been contacted and confirmed
the mistake.

Similar to the bang constructor, we prove that if the outermost type constructor of the
subtype (not the super-type) is arrow then the super-type should be too:

Theorem Subtyping_arrow_inv: forall A1 A2 B,
Subtyping (arrow A1 A2) B ->
exists B1 B2,
B = arrow B1 B2 /\ Subtyping B1 A1 /\ Subtyping A2 B2.

Similar theorems have been developed for the other type constructors tensor and circ.
Finally, we provide two important properties of the subtyping relation: reflexivity and tran-
sitivity:

Theorem sub_ref: forall A, validT A -> Subtyping A A.

Note that reflexivity is subject to the validity of A, i.e., it belongs to the Proto-Quipper types.

Theorem sub_trans: forall A B C,
Subtyping A B -> Subtyping B C -> Subtyping A C.
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Note that transitivity does not require that validity of A, B, and C since it is implicitly imposed
from the subtyping antecedents (see Theorem SubAreVal).

This concludes the Proto-Quipper types formalization, where we considered the formal
development of valid Proto-Quipper types and the subtyping relation on them.

4 Two-Level Hybrid

Asmentioned, the purpose of the first Hybrid library (implemented as Hybrid.v) is to provide
support for expressing the higher-order abstract syntax of OLs. This file is described in
Sect. 4.1, focusing on the aspects that are required for understanding the formalization in
later sections. The second library (implemented as LSL.v) is described in Sect. 4.2 and
contains the encoding of the specification logic (SL), which provides the two-level reasoning
capabilities as described earlier. Hybrid allows the use of different SLs, and as mentioned,
one of the contributions of this paper is to present a new one. In fact, our goal is to provide
a general framework for reasoning about a large class of OLs that have linear features, and
preliminary work toward this goal is discussed in [22]. This aspect of our work follows the
tradition of a variety of linear logical frameworks that have been introduced in the literature
(though none that we know of is maintained in such a way that we could easily adopt it for our
work). In addition, there is growing body of OLs with linear features that would benefit from
such a framework. Examples of such frameworks and applications are discussed in Sect. 8.

4.1 Expressing Syntax of Object Languages in Hybrid

At the core is a type expr that encodes a de Bruijn representation of lambda terms. It is
defined inductively in Coq as follows:

Inductive expr: Set :=
| CON: con -> expr
| VAR: var -> expr
| BND: bnd -> expr
| APP: expr -> expr -> expr
| ABS: expr -> expr.

Here, VAR and BND represent bound and free variables, respectively, and var and bnd are
defined to be the natural numbers. The type con is a parameter to be filled in when defining
the constants used to represent an OL. The library then includes a series of definitions used
to define the operator lambda of type (expr → expr) → expr, which provides the
capability to express OL syntax using HOAS, including negative occurrences in the types
of binders. Expanding its definition fully down to primitives gives the low-level de Bruijn
representation, which is hidden from the user when reasoning about metatheory. In fact,
the user only needs CON, VAR, APP, and lambda to define operators for OL syntax. Two
other predicates from the Hybrid library will appear in the proof development, proper :
expr → Prop and abstr : (expr → expr) → Prop. The proper predicate rules
out terms that have occurrences of bound variables that do not have a corresponding binder
(dangling indices). The abstr predicate is applied to arguments of lambda and rules out
functions of type (expr → expr) that do not encode object-level syntax, discussed further
in Sect. 7. The reader may wonder if the definition of abstr is possible given that var and
bnd are natural numbers. It is, and this aspect is also covered in Sect. 7.
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976 M. Y. Mahmoud, A. P. Felty

As mentioned, the type con is actually a parameter in the Hybrid library. In particular, it
first appears inside a section in Hybrid.v, and as a result, outside this section, expr has type
Set -> Set. Once con is defined, then (expr con) is the actual type (element of Set)
used to expressOL terms. In our case study, the constants for Proto-Quipperwill be introduced
later as an inductive type called Econ and the type qexp mentioned earlier is actually a
defined term whose definition is (expr Econ). The type con is also a parameter to any
definition that uses it. For example, outside this section, VAR has type forall con:Set,
var -> expr con.

Before describing our SL in the next section, we include here a summary of the steps of
the implementation of any SL. Formulas of the SL are implemented as an inductive type
oo. This definition introduces constants for the connectives of the SL and their Coq types.
The rules of the SL are defined as a Coq inductive proposition, where each clause represents
one rule. This definition is called seq and has one argument for each of the elements of a
sequent, which includes the context(s) of assumptions and the conclusion of the sequent. It
may also include a natural number used to keep track of the height of a deriviation.

The rules of the OL are also defined as an inductive propostion called prog. In our
case, prog defines the inference rules for well-formedness of Proto-Quipper terms, typing
of Proto-Quipper terms, and the reduction relation for evaluating Proto-Quipper terms. Its
definition uses the capability to express hypothetical and parametric judgments. In the library
file defining the SL, prog is a parameter to the definition of seq.

When encoding an OL, the file Hybrid.v must be imported since it is (usually) required
to represent the syntax of the OL, while the file containing the SL must be imported when
defining prog. When an element of the syntax can be defined directly as an inductive type,
however, there is no need to import any Hybrid files. This is the case for the syntax of types
of Proto-Quipper as we have seen. The terms of Proto-Quipper, however, cannot be defined
inductively; instead we will define a HOAS representation, which uses the lambda operator
and other constructors of type expr. As mentioned, using Hybrid provides the flexibility to
mix both kinds of representations.

4.2 A Linear Specification Logic

In this section, we will give a brief account of linear logic, highlighting differences with
minimal intuitionistic logic, which is the main SL used in Hybrid historically [9]. Then we
present the sequent calculus of our selected version of linear logic, namely an intuitionistic
linear logic. It has both an intuitionistic and a linear context of assumptions. The latter is
important for modeling the type system of Proto-Quipper.

Inminimal intuitionistic logic, there are three logical connectives (∧,∨ and⇒), in addition
to the logical constants True and False. A sequent in this logic has the form Γ � C where
Γ is a logical context (a set of formulas) and C is a formula. If a sequent Γ � C is valid
in intuitionistic logic, then the sequent obtained by adding a hypothesis B to the context,
i.e., Γ , B � C , is also valid. This is called context weakening. If a sequent of the form
Γ , B, B � C is valid in intuitionistic logic, then the sequent Γ , B � C is also valid. This
is called context contraction. These two key structural properties of intuitionistic logic are
primarily prohibited in linear logic,wherewedealwith the context as a collectionof resources,
i.e., the hypotheses are considered as resources that can be used one time and they must be
consumed (or used). Accordingly, Γ � C does not guarantee the linear validity of Γ , B � C ,
and Γ , B, B � C does not guarantee the linear validity of Γ , B � C . In addition, linear
logic has two types of logical connectives: the multiplicative connectives (⊗,

&

and�), and
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the additive connectives &, ⊕ and ⇒. In addition to the intuitionistic constants, there is the
universal consumer constant�, which can consume any linear resource (i.e., hypothesis). Our
choice for SL is a slightly different version of the standard linear logic, namely intuitionistic
multiplicative linear logic with connectives ⊗, &, �, ⇒, and �. Sequents include the two
kinds of contexts mentioned above: the intuitionistic context Γ (a set of formulas) and the
linear context Δ (a multiset of formulas). The contraction and weakening rules are permitted
for the intuitionistic context Γ . The logic has two classes of formulas—goals and program
clauses (adapted from the ordered SL in [13])—whose syntax is:

Goals G ::= A | � | ∀x : τ G | A ⇒ G | G1&G2 | G1 ⊗ G2 | A � G
Clauses P ::= ∀(A ←− [G1, . . . ,Gm][G ′

1, . . . ,G
′
n])

In the above grammar, A is an atomic formula. Note that this logic includes universal quan-
tification over typed variables. Here, τ is a primitive type. It will be instantiated with qexp in
our case study. A clause in the form above consists of two lists, the first one of intuitionistic
goals, the other of linear ones. It is an abbreviation for the formula:

∀(G1 ⇒ · · · ⇒ Gm ⇒ G ′
1 � · · · � G ′

n � A)

where the outer ∀ represents quantification over all free variables in G1, . . . ,Gm,G ′
1, . . .

G ′
n, A, whose types may be τ or τ → τ , where τ is primitive. Thus, our logic is second-

order in the sense that it is possible to quantify over functions (of type qexp -> qexp in
our case).

Sequents of this logic have the form Γ ;Δ �Π G, where G is a goal formula, Γ is an
intuitionistic context of formulas, Δ is a linear context, with the restriction mentioned earlier
that Γ and Δ contain only atomic formulas. Π is a set of program clauses, which we omit
when presenting the rules because it is fixed and does not change within a proof. This format
emphasizes the view of this calculus as a non-deterministic logic programming interpreter,
which is a feature of most SLs implemented in the two-level style. See e.g., [13,28]. The
sequent rules of such a logic are shown in Fig. 3. There are two initialization rules. The linear
rule (l_init) strictly prohibits the existence of any hypothesis inside Δ except A, and it does
not care about the contents of Γ . The intuitionistic rule (i_init) strictly requires an empty Δ

whereas A should be part of Γ . We can use & if its operands can be proven linearly at the
same time, i.e., all the required linear resources are available in the contexts of both premises
(&-R). Recall that a linear resource can be used only once. Thus, multiplicative conjunction
requires that the resources be split between the two premises, and thus each resource is used
in the proof of only one of the two premises (⊗-R). This connective is suitable when the
operands are sharing the linear resources. The implication rules (⇒-R and �-R) vary based
on which context the antecedent A comes from. The ∀-R rule has the usual proviso that y
does not appear in Γ , Δ, or B.

Instead of left sequent rules, we use the bc rule, which allows for logic programming
style backchaining. This kind of rule is common in two-level systems such as Hybrid and
Abella. In this rule, Π represents the inference rules of the OL; each one has the form
∀(A ←− [G1, . . . ,Gm][G ′

1, . . . ,G
′
n]) following the above grammar P , where A is the

rule’s conclusion, G1, . . . ,Gm are the premises that must be proven intuitionistically, and
G ′

1, . . . ,G
′
n are the premises that must be proven linearly. These rules are encoded as the

inductive predicate prog, whose name is chosen because of its correspondence to a logic
program. The formula (prog A iL lL) appears in the Coq encoding of the bc rule
described below, where the predicate prog is the implementation of ←−, the argument
A corresponds to A, iL is a list representing G1, . . . ,Gm and lL is a list representing
G ′

1, . . . ,G
′
n . When the right hand side of a provable sequent is an atomic formula, then
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l init
Γ ;A A

i init
Γ, A; A

Γ ;Δ1 B Γ ;Δ2 C ⊗-R
Γ ;Δ1, Δ2 B ⊗ C

Γ ;Δ B Γ ;Δ C
&-R

Γ ;Δ B&C

Γ, A;Δ B ⇒-R
Γ ;Δ A ⇒ B

Γ ;Δ, A B
-R

Γ ;Δ A B

-R
Γ ;Δ

Γ ;Δ B[y/x]
∀-R

Γ ;Δ x.B

Γ, A, A;Δ B
Contraction

Γ, A;Δ B

Γ, A1;Δ B
Weakening

Γ, A1, A2;Δ B

A [G1, . . . , Gm][G1, . . . , Gn] ∈ [Π]
Γ ; . Gi (i = 1, . . . , m)
Γ ;Δi Gi (i = 1, . . . , n)

bc
Γ ;Δ1, . . . , Δn A

Fig. 3 Intuitionistic linear logic sequent rules

either it is in one of the contexts of assumptions, or it is an instance of a program clause
and the bc rule applies. In this rule, [Π] represents all possible instances of clauses in Π

(clauses with instantiations for all variables quantified at the outermost level). Applying this
rule in a backward direction corresponds to backchaining on a clause in Π , instantiating the
universal quantifiers so that the head of the clause matches A. There is one hypothesis for
each subgoal, both linear and intuitionistic.

The first step towards the formalization of the linear specification logic in Coq is defining
an inductive type oo for formulas given by the G and P grammars:

Inductive oo: Set :=
| atom: atm -> oo
| T: oo
| Conj: oo -> oo -> oo
| And: oo -> oo -> oo
| Imp: atm -> oo -> oo
| lImp: atm -> oo -> oo
| All: (expr con -> oo) -> oo.

where the atom constructor accepts an atomic formula of type atm and casts it into the
formula type oo. The type atm is defined for each OL and typically includes the atomic
relations or predicates of the OL, e.g., typeof for Proto-Quipper typing (see Sect. 5.2). The
constructor T corresponds to the universal consumer, Conj corresponds to multiplicative
conjunction and And to additive conjunction. The type constructors Imp and lImp corre-
spond to intuitionistic and linear implication, respectively, where in both cases, the formula
on the left must be an atom. The All constructor takes a function as an argument, and thus
the bound variable in the quantified formula is encoded using lambda abstraction in Coq.

The next step is defining the sequent rules themselves. This step is done using an inductive
predicate definition as follows:

Inductive seq: nat -> list atm -> list atm -> oo -> Prop :=
| s_bc: forall (i:nat) (A:atm) (IL LL:list atm)

(lL iL:list oo), prog A iL lL ->
splitseq i IL [] iL -> splitseq i IL LL lL ->
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seq (i+1) IL LL (atom A)
...

| s_all: forall (i:nat) (B:expr con -> oo) (IL LL:list atm),
(forall x:expr con, proper x -> seq i IL LL (B x)) ->
seq (i+1) IL LL (All B)

with
splitseq: nat -> list atm -> list atm -> list oo -> Prop :=
| ss_init: forall (i:nat) (IL:list atm), splitseq i IL [] []
| ss_general: forall (i:nat) (IL lL1 lL2 lL3:list atm)

(G:oo) (Gs:list oo),
split lL1 lL2 lL3 -> seq i IL lL2 G ->
splitseq i IL lL3 Gs -> splitseq i IL lL1 (G::Gs).

wherewe use the variablesIL to represent the intuitionistic context, and LL for the linear one.
The definition of seq follows the standard rules described earlier. Only a representative set
of the inference rules of the formal definition is shown above. The natural number argument
allows proofs by induction over the height of a sequent derivation, which we often use. This
argument can be ignored when doing proofs by structural induction. The reader is referred
to [21] for the full definition. In the s_bc rule the predicate splitseq is used to check
the provability of a list of subgoals. The predicate splitseq is used twice; once for the
intuitionistic subgoals iL under the empty linear context, and once for the linear subgoals
lL. When we discuss the rules for prog later, we will say that we must intuitionistically
prove the goals in iL and linearly prove the goals in lL. The predicates seq and splitseq
are defined using Coq’s mutual induction. The inductive definition of splitseq is at the
very end of the definition. In the case when the list of goals is non-empty, the head subgoal
G is proven under the linear context lL2 and the remaining list of subgoals Gs is proven
under the context lL3 if and only if there exists a context lL1 such that split lL1 lL2
lL3. We describe the split predicate by example (and omit its definition here): the split
of [A;B;C] can be [A;B] and [C], [C] and [A;B], [A] and [B;C], or [B] and [A;C]. The idea
of the split is that the two sublists divide the big list, regardless of the order of elements
inside the sublist. This is to ensure that there are no shared linear resources between lL2 and
lL3. Finally, (prog A iL lL) represents a formula from the program context defining
the rules of the OL (i.e., Π). Later (in Sect. 5.2), we will see the implementation of prog
for Proto-Quipper.

The rule for All has an argument of function type expr con → oo, unlike the other
rules, since quantification is over terms of the OL. Recall that con is a parameter to the type
expr, and must be implemented for each OL. Note that we restrict x to terms satisfying the
proper predicate (terms without dangling indices).

The implemented specification logic has been validated by proving a number of essential
properties. We show two here. The first property is admissibility of cut for atomic formulas
in the intuitionistic context:

A, Γ ;Δ � B Γ ; · � A
cut

Γ ;Δ � B

Since our contexts are implemented as lists, the statement of this theorem uses the remove
operator from the Coq list library, which operates on A, Γ to produce Γ .

Lemma seq_cut_aux:
forall (i j:nat) (a:atm) (b:oo) (il ll:list atm),
seq i il ll b -> In a il ->
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seq j (remove eq_dec a il) [] (atom a) ->
seq (i+j) (remove eq_dec a il) ll b).

The theorem states that if we remove all instances of the hypothesis a from the list of
intuitionistic hypotheses il, and a is found to be provable under the new list of hypotheses,
then eliminating a does not affect the provability of b. Note that the remove function has
an argument for the equality operator. Its use in the above statement, which is (remove
eq_dec a il), involves checking whether or not a is equal to each element of il. Since
the type of a is atm and the definition of atm is a parameter to the SL that must be filled in
later, we cannot define equality until after we instantiate atm. Thus, both atm and eq_dec
are parameters to the SL. Once we fill in the definition of atm for Proto-Quipper (see
Sect. 5.2), it is straightforward to define equality on this type.

The second property is a combined rule for weakening, contraction, and exchange for the
intuitionistic context.

Γ ⊆ Γ ′ Γ ;Δ � B

Γ ′;Δ � B

It is most often used for weakening, which is reflected in its name.

Theorem seq_weakening_cor:
forall (i:nat) (b:oo) (il il’ ll:list atm),
(forall (a:atm), In a il -> In a il’) ->
seq i il ll b -> seq i il’ ll b.

The Coq predicate In expressing membership in a list is used to implement the first premise
of the rule for our implementation of contexts as lists. Note that exchange is implicit in our
presentation of the rules, but incorporated into our Coq implementation via this theorem.

This concludes the formalization of the linear specification logic and some of its metathe-
ory. The full formalization includes a number of other properties including admissibility of
cut for atomic formulas in the linear context. We remark here that theorems about admis-
sibility of cut provide an important substitution lemma “for free”, another advantage of the
HOAS approach, in addition to variable renaming and substitution for OL terms mentioned
earlier. In particular, it allows substitution at the proof level in the form of substitution for
an assumption. This kind of substitution is important for subject reduction theorems, where
cases for evaluation of OL terms that involve any form of β-reduction are proved directly by
applying one of these theorems, rather than requiring special substitution lemmas that can
be long and complex.

In the following sections, we will present Proto-Quipper as an OL that benefits from
this logic, where will give a concrete implementation for the parameters presented in this
section, in particular, atm, con, and prog, as well as prove decidability of equality for our
instantiation of atm.

5 Encoding Proto-Quipper Programs and Semantics in Hybrid

In this section, we discuss a key aspect of this work, where we present the encoding of Proto-
Quipper in the Hybrid framework. This includes the formalization of Proto-Quipper syntax
as a concrete implementation of the types con and atm (in ProtoQuipperSyntax.v), and the
main parts of the program context prog (in ProtoQuipperProg.v), which includes the typing
rules in Fig. 2.
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5.1 Encoding Proto-Quipper Terms

Recall that in Hybrid, con is a parameter to the type expr. The implementation of con for
an OL typically includes all constants that appear in the language. This includes the names
of the operations supported by the OL, e.g., if and let. The implementation of con for
Proto-Quipper is as follows:

Inductive Econ: Set :=
| qABS: Econ | qAPP: Econ | qPROD: Econ
| qLET: Econ | sLET: Econ | qCIRC: Econ | qIF: Econ
| BOX: qtp -> Econ | UNBOX: Econ | REV: Econ
| TRUE: Econ | FALSE: Econ | STAR: Econ
| Qvar: nat -> Econ | Crcons: nat -> Econ.

This definition might cause some confusion since it does not differentiate between constants
like TRUE and FALSE, and operations like lambda abstraction qABS and the let statement
qLET. Actually, these are just constants and this definition does not include any semantics
or functionality by itself. The functionality of these operations will be addressed next. In
our formalization, we encode all quantum variables of Proto-Quipper as constants using the
constant Qvar, which maps natural numbers to quantum variables. Similarly, the constant
Crcons models the names of quantum circuits, i.e., the circuit constant C (see Sect. 2).
The argument of type qtp to the BOX operator encodes the type superscript in boxT . As
mentioned earlier, qexp is an abbreviation for (expr Econ).

Definition qexp: Set := expr Econ.

As stated earlier, all OL constructs are encoded usingCON,VAR,APP and lambda. These
definitions are the only place where the constructors of the expr type and the lambda
operator are seen explicitly. Once the new constants are defined, we use only these. We start
with the simplest item in the language, namely variables:

Definition Var: var -> qexp := VAR Econ

The definition is simple as it just uses the Hybrid VAR parameterized with the Proto-Quipper
constants Econ. Another simple example of encoding Proto-Quipper operations in Hybrid
is function application:

Definition App (e1 e2:qexp) : qexp :=
APP (APP (CON qAPP) e1) e2.

Tohelp the reader to understand the above definition, it is better to view theHybrid constructor
APP as a concatenation operator.Another possible definition is(APP (CON qAPP) (APP
e1 e2)). One might wonder if it is useless to add the constant qAPP. Remember that
the APP constructor is used to represent other program statements, e.g., the if statement.
Therefore, we need to add such constants for each type of expression so we can identify
statements with different meanings. Similarly, we formally define the product and circuit
statements as follows:

Definition Prod (e1 e2:qexp) : qexp :=
APP (APP (CON qPROD) e1) e2.

Definition Circ (e1:qexp) (i:nat) (e2:qexp) : qexp :=
APP (APP (APP (CON qCIRC) e1) (CON (Crcons i))) e2.
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Now, let us turn to a Proto-Quipper construct that is a bit more difficult, namely function
abstraction.

Definition Fun (f:qexp -> qexp) : qexp :=
APP (CON qABS) (lambda f).

This expression has an argument that is a function of type (qexp -> qexp). To better
understand this construct, we give some examples. Let f be the function fun x => App
(Var 0) x. Consider the term (lambda f). If definitions are expanded, the Hybrid
operator lambda disappears and the result is the de Bruijn format of this term which
replaces the bound variable x by the correct de Bruijn index. For the above example,
(lambda f) unfolds to ABS (APP (VAR ECON 0) (BND 0)). As stated, we never
need to expand such definitions. Now that we have the full encoding of Proto-Quipper terms,
we can return to the example term from the introduction, λx .λy.xy, which is encoded as
(Fun (fun x:qexp => (Fun (fun y:qexp => (App x y))))).

Similarly, we handle the more difficult case of the Let expression.

Definition Let (f:qexp -> qexp -> qexp) (e1:qexp) : qexp :=
APP (CON qLET) (APP (lambda (fun x => (lambda (f x)))) e1).

Recall that the let statement in Proto-Quipper is restricted to product expressions, i.e., it
always takes the form let 〈x, y〉 = a in b. Therefore, we have two function abstractions,
e.g., fun x => fun y => App y x. Since the lambda is only defined for functions
of type exp -> exp (not exp -> exp -> exp), we have to make two applications of
lambda in the way presented in the above definition in order to satisfy the typing condition
of lambda. This is the first case study using Hybrid that requires a function of more than
one argument to represent OL syntax.

Wenote that terms inHybrid are equivalent up toη-conversion, so the body of the definition
of Fun and Let operators, respectively, could also be written:

(APP (CON qABS) (lambda (fun x => (f x)))).
(APP (CON qLET)

(APP (lambda (fun x => (lambda (fun y => (f x y))))) e1)).

The formal encoding of the other Proto-Quipper expressions is similar to the definitions
presented above [21].

We also define the following predicate that holds for expressions that only involve quantum
variables, the star constant, and the product constructor Prod.

Inductive quantum_data: qexp -> Prop :=
vQVAR: forall i, quantum_data (CON (Qvar i))

| vSTAR: quantum_data (CON STAR)
| vTENSOr: forall a b, quantum_data a -> quantum_data b ->

quantum_data (Prod a b).

This subset of expressions are those whose types satisfy the valid predicate.

5.2 Encoding Proto-Quipper Semantics

Themain purpose of this section is to discuss the implementation of the atomic predicatesatm
and the program context prog for Proto-Quipper. Here, atm contains three constructors,
one that relates a Proto-Quipper type qtp to a Proto-Quipper expression qexp, one for
representing reduction rules, and one that identifies valid (well-formed) expressions of Proto-
Quipper.
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Inductive atm : Set :=
| typeof : qexp -> qtp -> atm
| reduct : Econ -> qexp -> Econ -> qexp -> atm
| is_qexp : qexp -> atm.

It is important to clarify that the formalization presented in the previous section does not
guarantee that all instances of the type qexp are valid in Proto-Quipper. (It just defines
expressions that we are interested in.) This will be done as part of the program context prog
with the help of the constructor is_qexp.

Now, we turn to the crucial step in our whole formalization, the implementation of prog.
The formal definition of such a predicate is quite long. Accordingly, we choose to present
it rule by rule, where we address only the major rules, and others can be found in [21]. We
discuss clauses for is_qexp and typeof here, and leave the discussion of reduct to
Sect. 6.

Now that we have instantiated the parameters con and atm, we can define the first two
abbreviations below.

Definition oo_ := oo atm Econ.
Definition atom_: atm -> oo_ := atom Econ.
Definition seq_: nat -> list atm -> list atm -> oo_ -> Prop :=

seq prog.
Definition splitseq_:

nat -> list atm -> list atm -> list oo_ -> Prop :=
splitseq prog.

The third and fourth are useful once we have completed the definition of prog. Thus the
general form of sequents of the SL will be written seq_ n IL LL G, where the arguments
are the height of the proof, the intuitionistic and linear contexts of assumptions of type atm,
and the conclusion (formula on the right of the turnstile), respectively. We will sometimes omit
the height argument for readability when it is not important for the discussion, and in particular
in the statements of theorems, seq_ IL LL G will mean that there exists an n such that
seq_ n IL LL G.

Theprogpredicate has type atm -> list oo_ -> list oo_ -> Prop,whose
arguments are: the atomic statement, the list of intuitionistic subgoals, and the list of linear
subgoals. Recall that it appears in the definition of seq in the s_bc clause, which implements
the bc rule in Fig. 3. It is the implementation of the program clauses Π . In the upcoming rules,
this predicate reads as follows: the atomic statement is valid in the context of Proto-Quipper
program if the list of intuitionistic and linear subgoals can be proven using the linear specifi-
cation logic presented in Fig. 3 (as implemented by seq). We start by presenting examples of
syntax rules that define valid expressions inside Proto-Quipper:

| starq: prog (is_qexp (CON STAR)) [] []
| trueq: prog (is_qexp (CON TRUE)) [] []
| boxq: prog (is_qexp (CON BOX)) [] []

Constants of Proto-Quipper are unconditionally valid; the list of linear and intuitionistic sub-
goals are empty. Similar clauses are included in prog for the constants FALSE, UNBOX, and
REV.

Note that we have defined the syntax of terms in Sect. 2 as grammars. As argued in [12],
grammars contain implicit information, and specifying well-formedness as inference rules
makes some of this information explicit, which is useful for formally defining valid terms.
For example, consider the sublanguage of Proto-Quipper terms containing term variables,
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application, and function abstraction. One possible set of rules expressing valid syntax is as
follows:

is_qexp x ∈ Φ

Φ � is_qexp x
Φ � is_qexp a Φ � is_qexp b

Φ � is_qexp ab

Φ, is_qexp x � is_qexp a
Φ � is_qexp λx .a

Here, Φ is an explicit context of variables, and a term is only considered well-formed if all of
its free variables come from this set. Stated formally in our setting, for a sequent seq_ IL
[] (atom_ (is_qexp a)) to be provable, for each free variable x of type qexp that
appears in a, the atom is_qexp x must be in the intuitionistic context IL. Note that the
list of linear subgoals is empty. This is the case for all well-formedness of syntax rules, as the
context elements expressing validity of an expression can be used as many times as we want,
i.e., they are infinitely consumable resources.

The following clause encodes the well-formedness of the application expression:

| apq: forall E1 E2:qexp,
prog (is_qexp (App E1 E2))
[And (atom_ (is_qexp E1)) (atom_ (is_qexp E2))] []

As mentioned, the list of linear subgoals is empty. In the intuitionistic goals, notice the use
of additive conjunction (And). The use of And for intuitionistic subgoals has the same power
as the use of multiplicative conjunction (Conj). This is because additive and multiplicative
conjunction are equivalent in a non-linear setting. This case is non-linear because only the
intuitionistic context will be used to prove the subgoal. The intuitionistic context has infinitely
consumable resources, and hencewe can show the validity of E1 and E2 from the same context.
Similar rules are defined for theProd andSlet expressions, and also theIf expression,where
we have three sub-expressions instead of two.

The following clause corresponds to the function abstraction (Fun) case.

| lambdaq: forall (E:qexp -> qexp), abstr E ->
prog (is_qexp (Fun E))
[All (fun x:qexp =>

Imp (is_qexp x) (atom_ (is_qexp (E x))))] []

For a function expression containing E to be valid in Proto-Quipper, E should first satisfy
the Hybrid abstr condition. This predicate guarantees that E encodes object-level syntax
(discussed earlier and in more detail in Sect. 7). One of the big advantages of the Hybrid
framework is that it hides such details when reasoning about OLs. The term (Fun E) is said
to be valid if for all valid expressionsx, the expression E x a is valid Proto-Quipper expression.
Again, this subgoal needs to be proved intuitionistally. Proving this subgoal involves assuming
that a new variable x is a valid expression and showing that the term obtained by replacing the
bound variable in E by x is a valid expression. A similar clause can be developed for the Let
expression, with the difference that E is a function of two parameters instead of one:

| letq: forall (E:qexp -> qexp -> qexp) (e1:qexp),
abstr (fun x => lambda (E x)) ->
abstr (fun y => lambda (fun x => (E x y))) ->
prog (is_qexp (Let E e1))
[All (fun x : qexp => (All (fun y:qexp =>

Imp (is_qexp x) (Imp (is_qexp y)
(atom_ (is_qexp (E x y)))))));
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atom_ (is_qexp e1)]
[]

This case illustrates how abstr is used for functions of more than one argument. Another
difference from the Fun case is that a second subgoal ensures the validity of the e1 argument
representing the body of the let expression.

The last syntactic rule we present here is the quantum circuit rule circ. Note that in the
sample rules for well-formedness of Proto-Quipper expressions given above, the context Φ

should contain all the free term variables; we did not include a second context for quantum
variables. Following the style of the typing rule circ, we use the I n and Out functions to
identify free quantum variables and then these variables occur in the corresponding premises,
but not in the conclusion. In the rule below, if Q is a set of quantum variables q1, . . . qn for
n ≥ 0, we write ΦQ to abbreviate the context is_qexp q1, . . . , is_qexp qn .

Φ,ΦQ1 � is_qexp t Φ,ΦQ2 � is_qexp a In(C) = Q1 Out(C) = Q2

Φ � is_qexp (t,C, a)

This rule is encoded as the following clause of the prog definition.

| Circq: forall (C:nat) (t a:qexp), quantum_data t ->
prog (is_qexp (Circ t C a))
[toimpexp (FQ a) (atom_ (is_qexp a))] []

Recall that quantum_data is a predicate that holds for expressions that only involve quantum
variables, the star constant, and the product constructor Prod. This predicate is used to directly
prove the first premise Φ,ΦQ1 � is_qexp t . The encoding of the second premise appears in
the intuitionistic list of subgoals (the second argument to prog). The Coq function FQ returns
a list of free quantum variables of an expression, and toimpexp is a function that takes a list
quantum variables and using intuitionistic implication, adds them recursively as antecedents
to a the predicate expressing well-formedness of the term. We illustrate by example:

toimpexp (FQ (Prod (CON Qvar 0) (CON Qvar 1)))
(atom_ (is_qexp (Prod (CON Qvar 0) (CON Qvar 1)))) =

Imp (is_qexp (CON Qvar 0)
(Imp (is_qexp (CON Qvar 1))

(atom_ (is_qexp (Prod (CON Qvar 0) (CON Qvar 1))))))

In general, proving such an implication requires repeated applications of the ⇒-R rule of
the SL (Fig. 3) in a backward direction, moving antecedents of the form is_qexp q into the
intuitionistic context, resulting in a context that encodes ΦQ2 .

As stated above, we have defined FQ as a Coq function. In general, users of Hybrid need
to take care when defining functions with arguments whose types instantiate expr (defined
in Sect. 4), which in our specific case includes the type qexp (defined as expr Econ in
Sect. 5.1). In particular, proving properties of such functions may require exposing the de
Bruijn representation of these arguments. The FQ function is one such example. In particular,
our proofs require the following three axioms:

Hypothesis FQ_FUN: forall i E,
abstr E -> FQ (Fun E) = FQ (E (Var i)).

Hypothesis FQ_LET: forall i E b,
abstr (fun x => lambda (E x)) ->
(forall x, proper x -> abstr (E x)) ->
FQ (Let E b) = (FQ (E (Var i) (Var i))) ++ (FQ b).

Hypothesis FQU_LET: forall i E b,
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abstr (fun x => lambda (E x)) ->
(forall x, proper x -> abstr (E x)) ->
FQU (Let E b) = (FQU (E (Var i) (Var i))) ++ (FQU b).

These axioms are provable, but require complex proofs. Replacing the definition of the FQ
function with an inductive predicate that relates the input and output would solve this problem.2

This concludes the presentation of the rules for well-formedness of Proto-Quipper terms.
Such clauses actually play two roles in proofs of OL meta-theory. First, induction on well-
formedness derivations is often useful, since induction directly on terms is not currently
available in Hybrid. Second showing that rules are adequately represented requires these
clauses. (See Sect. 7.)

In the following, we will present the formal typing rules that correspond to the sequent rules
presented in Fig. 2. Recall that the Proto-Quipper typing judgment has the form Φ, ! Ψ ; Q �
a : A. The latter context Q contains all free quantum variables that appear on the right of a
sequent; they appear in such a context without specifying the type since it is implicitly known
to be qubit. The other context contains term variables and their types and has two parts where
the types in !Ψ contain a leading ! and the types inΦ do not. Recall also that the sequents of the
SL, which we will now use to encode these rules, have the general form Γ ; Δ � A, where A is
a formula of the SL, Γ is an intuitionistic context of atomic formulas, andΔ is a linear context,
also of atomic formulas. In our formalization, elements of the contexts of the Proto-Quipper
typing judgment will be encoded as atomic formulas of the form (typeof x A) in the SL;
in particular, the encoding of elements of ! Ψ will appear in the intuitionistic context Γ of the
SL, while elements of the typing context Φ will appear in the linear context Δ of the SL. Each
quantum variable q in Q will be placed in Δ explicitly associated with the type qubit, i.e.,
typeof (CON (Qvar qi)) qubit, where qi is the natural number encoding variable
q .

We start with the axc rule, which we specify as two clauses depending on whether or not
the first argument to the subtype relation has a leading bang.

| axc1: forall (A B:qtp) (x:qexp), validT (bang A) ->
Subtyping A B ->
prog (typeof x B) [atom_ (is_qexp x)] [atom_ (typeof x A)]

| axc2: forall (A B:qtp) x, Subtyping (bang A) B ->
prog (typeof x B)
[(And (atom_ (typeof x (bang A))) (atom_ (is_qexp x)))] []

In axc1, the validT (bang A) condition ensures that A has no leading bang, and as
a consequence of theorem Subtyping_bang_inv, B also has no leading bang. Thus it
is required to linearly prove that atom_ (typeof x A), whereas in axc2, it is required
to intuitionistically prove atom_ (typeof x (bang A)). Note that for reasons of ade-
quacy, there is the additional proof obligation to show that x is a valid Proto-Quipper expression
(in both cases).

Regarding the axq and axx rules, as mentioned they are not encoded as clauses of prog.
In particular, they are already covered by the initial rule of the SL (l_init of Fig. 3 encoded as
part of the definition of seq).

The following clauses implement the two versions of the � rule, the first for n = 0 and the
second for n = 1, and the cst rule for boxT . The � rules are axioms and thus have no premises;
in particular note that [] appears as the lists of both intuitionistic and linear subgoals in
the clauses implementing these rules, and also in the implementation of the boxT rule. The

2 This is straightforward change, but it affects a large portion of the proof development and is left for (very
near) future work.
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subtyping premise of the boxT rule is implemented as a condition expressed directly in Coq
using our definition of Subtyping. Recall that the OL rules for subtyping are not included
in the definition of prog. It was possible (and simpler) to encode them directly as a Coq
inductive definition. This clause also includes a check that T and U are quantum data types
(i.e., belonging to the grammar T ,U ).

| truel: prog (typeof (CON TRUE) bool) [] []
| truei: prog (typeof (CON TRUE) (bang bool)) [] []
| box: forall T U B, valid T -> valid U ->

Subtyping (bang (arrow (bang (arrow T U))
(bang (circ T U)))) B ->

prog (typeof (CON (BOX T)) B) [] []

The prog definition includes similar clauses for the other rules about constants and functions
on circuits, i.e, the two versions of the ∗i and ⊥ rules, and the cst rules for unbox and rev.

The next two clauses encode the λ1 rules. Similar to the axc rule, we develop intuitionistic
and linear versions of λ1, depending on the type of the bound variable (whether or not it has a
leading !):

| lambda1l: forall (T1 T2:qtp) (E:qexp -> qexp),
abstr E -> validT (bang T1) -> validT T2 ->
prog (typeof (Fun (fun x => E x)) (arrow T1 T2)) []
[(All (fun x:qexp => Imp (is_qexp x)

(lImp (typeof x T1) (atom_ (typeof (E x) T2)))))]
| lambda1i: forall (T1 T2:qtp) (E:qexp -> qexp),

abstr E -> validT (bang T1) -> validT T2 ->
prog (typeof (Fun (fun x => E x)) (arrow (bang T1) T2)) []
[(All (fun x:qexp => Imp (is_qexp x)

(Imp (typeof x (bang T1)) (atom_ (typeof (E x) T2)))))]

Note that in both cases, the subgoal is required to be proved linearly regardless of the type of
the bound variable. This is because the type of the whole expression Fun (fun x => E
x) is linear. The difference between the two rules is the use of lImp when the type of the
bound variable is linear, and the use of Imp when the type of the bound variable is duplicable.
In contrast, the corresponding subgoal will be required to be proved intuitionistically for both
cases of the λ2 rule. We omit the clauses for these rules, as well as those for the ⊗e rule, since
they are similar to the encoding of λ1 presented above.

The following clause implements the app rule. This case requires that both expressions be
available at the same time. Accordingly, it uses multiplicative conjunction (Conj):

| tap: forall E1 E2:qexp, forall T T’:qtp,
validT (arrow T T’) -> prog (typeof (App E1 E2) T) []
[(Conj (atom_ (typeof E1 (arrow T’ T)))

(atom_ (typeof E2 T’)))]

In other words, considering backward proof from the app rule of Fig. 2, the linear context of
the conclusion must be divided into two disjoint contexts. The use of Conj means that the
⊗-R rule of Fig. 3 will be used to achieve this division. Note here that there is only one app
rule, and thus only one corresponding clause in prog since, whether or not T has a leading
bang, the typing judgments for E1 and E2 must be proved linearly.
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The encoding of the two ⊗i rules is similar to app:

| ttensorl: forall E1 E2:qexp, forall T T’:qtp,
validT (tensor T T’) ->
prog (typeof (Prod E1 E2) (tensor T T’)) []
[Conj (atom_ (typeof E1 T)) (atom_ (typeof E2 T’))]

| ttensori: forall E1 E2:qexp, forall T T’:qtp,
validT (bang T) -> validT (bang T’) ->
prog (typeof (Prod E1 E2) (bang (tensor T T’))) []
[Conj (atom_ (typeof E1 (bang T)))

(atom_ (typeof E2 (bang T’)))]

We omit the clauses for ∗e and if, since their encoding is similar to rules already presented.
The last rule is circ. We encode this rule similarly to the encoding of the well-formedness

rule for circuits: in this case the lists of free variables Q1 and Q2 have been moved in front of
the turnstile symbol with the help of linear implication for typeof atoms, and intuitionistic
implication for the is_qexp atoms:

| tCricl: forall (C:nat) (t a:qexp), forall T U,
circIn (Crcons C) = FQ t ->
circOut (Crcons C) = FQ a ->
quantum_data t -> validT (circ T U) ->
prog (typeof (Circ t C a) (circ T U))
[And (toimp (FQ a) (atom_ (typeof a U)))

(toimp (FQ t) (atom_ (typeof t T)))] []
| tCrici: forall (C:nat) (t a:qexp), forall T U,

circIn (Crcons C) = FQ t ->
circOut (Crcons C) = FQ a ->
quantum_data t -> validT (circ T U) ->
prog (typeof (Circ t C a) (bang (circ T U)))
[And (toimp (FQ a) (atom_ (typeof a U)))

(toimp (FQ t) (atom_ (typeof t T)))] []

Similar to the toimpexp presented earlier, we define toimp which iteratively adds well-
formedness and typing assumptions for free quantum variables to a statement with the help of
linear implication. Again, we illustrate by example:

toimp (FQ (Prod (CON (Qvar 0)) (CON (Qvar 1))))
(atom_ (typeof (Prod (CON (Qvar 0)) (CON (Qvar 1)))

A)) =
Imp (is_qexp (CON (Qvar 0)))
(lImp (typeof (CON (Qvar 0)) qubit)
(Imp (is_qexp (CON (Qvar 1)))
(lImp (typeof (CON (Qvar 1)) qubit)
(atom_ (typeof (Prod (CON (Qvar 0)) (CON (Qvar 1))) A)))))

It is important to note here that both the linear and duplicable versions of the circuit rule require
the subgoal to be proved intuitionistically. Moreover, the subgoal is the same for both cases.
Although this is in contrast with other rules, it reflects the real semantics of circuits, because
if a circuit has been proven to be of a certain type, then it should be possible to use as many
instances of this circuit as needed; it is independent and does not rely on anything else, and thus
is persistent. If it happens that a free variable appears in a circuit construct, then this variable is
of duplicable type. This semantics is imposed by the above rules since we keep the list of linear
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subgoals empty. According to [36], quantum variables appearing in the circuit constructs are
called bounded quantum variables. That is why FQ of a circuit construct is supposed to return
an empty list. Also, the free variables of t should match the input of the circuit C, and the free
variables of a should match the output of C.

The functions circIn and circOut are defined as abstract functions. In particular, [36]
does not provide specific definitions for these functions. They are identified only by their
domains and co-domains. Since, like [36], we are proving only meta-level properties, we leave
them abstract also. In the Coq code, we define them as variables in a module. Before proving
properties about a specific set of circuits, these variables must be instantiated with a particular
definition. We describe one possible way to do so. Recall that a circuit is represented as (Circ
e1 i e2) where i is a natural number. Each number uniquely determines a circuit. Instead
of an arbitrary number, we could replace i with a natural number that codes the input and
output quantum variables names, along with a predicate that determines if a particular natural
number is a valid code. Then circIn and circOut could be defined as functions that takes
a valid code as input and returns a list of the input and output variable names, respectively. To
define specific circuits, we could augment the code to include information about the internals
of the circuit.

6 Type Soundness

In this section, we formally verify the type soundness of Proto-Quipper by addressing three
important properties: a type soundness under subtyping rule, inversion lemmas for Proto-
Quipper values, and the subject reduction theorem. The first property and the inversion lemmas
are found in ProgLemmas1.v and ProgLemmas2.v. The subject reduction theorem and proof
are in SubjectReduction.v

6.1 Context Subtyping

In a type systemwith subtyping, an important soundness lemma is one that expresses that typing
is preserved under the subtype relation extended to contexts. In our setting, the statement of
this lemma is in a sense, a general form of the axc rule where the contexts in the premise
and conclusion are not the same, but instead have a subtyping relation between them, in this
case a kind of “contravariant” one. The lemma states, roughly, that if seq_ il ll (atom_ A)

holds, A is a subtype of B, and the pair (il′,ll′) is a “subtype” of the pair (il,ll), then
seq_ il′ ll′ (atom_ B) holds. Context subtyping includes an extension of subtyping in the
obvious way; an atom typeof a t1 occurs in il′ or ll′ if and only if an atom typeof b t2
occurs in the corresponding il or ll and Subtyping t1 t2 holds.

Before we can make the above statement formal, we must consider additional constraints
on the contexts in the sequents. As discussed in [12], in general when formalizing meta-
theory, statements of theorems often relate two or more judgments and if the contexts in these
judgments are non-empty, a context relation is often needed to specify the constraints in the form
of a relation between them. The above lemma is an example that relates exactly two statements
about the seq_ predicate with their corresponding contexts. A variety of examples in a simpler
setting with an intuitionistic SL are discussed in detail in [14]. We adopt this notion of context
relation here, extending it to express our requirements, which are significantly more complex.
We capture both the subtyping constraints as well as the necessary additional constraints in the
following inductive definition.
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Inductive Subtypecontext :=
| subcnxt_i: Subtypecontext [] [] [] []
| subcnxt_q: forall a il il’ ll ll’,

Subtypecontext il’ ll’ il ll ->
Subtypecontext (is_qexp a::il’) ll’ (is_qexp a::il) ll

| subcnxt_iig: forall a t1 t2 il il’ ll ll’,
Subtyping t1 t2 -> (exists c, t2 = bang c) ->
Subtypecontext il’ ll’ il ll ->
Subtypecontext (is_qexp a::typeof a t1::il’) ll’

(is_qexp a::typeof a t2::il) ll
| subcnxt_llg: forall a t1 t2 il il’ ll ll’,

validT (bang t1) -> validT (bang t2) ->
Subtyping t1 t2 -> Subtypecontext il’ ll’ il ll ->
Subtypecontext (is_qexp a::il’) (typeof a t1::ll’)

(is_qexp a::il) (typeof a t2::ll)
| subcnxt_lig: forall a t1 t2 il il’ ll ll’,

validT (bang t2) -> (exists c, t1 = bang c) ->
Subtyping t1 t2 -> Subtypecontext il’ ll’ il ll ->
Subtypecontext (is_qexp a::typeof a t1::il’) ll’

(is_qexp a::il) (typeof a t2::ll).

The additional constraints include, for example, that every time there is a typing assump-
tion (typeof a t) in either a linear or intuitionistic context, there must be an assump-
tion of the form (is_qexp a) in the intuitionistic context. Note that we can write
Subtypecontext il ll il ll, where the first and third arguments are the same, and
similarly for the second and fourth, when we want to ignore subtyping and care only that these
additional constraints are met. We will use Subtypecontext for this secondary purpose
rather than define a new context relation.

Before expressing and proving the central lemma mentioned above, we have to tackle a
crucial theorem that is very helpful for splitting a linear context:

Theorem subcnxt_split: forall il il’ ll ll’ ll1 ll2,
Subtypecontext il’ ll’ il ll -> split ll ll1 ll2 ->
exists il1 il2 ll1’ ll2’,

split ll’ ll1’ ll2’ /\
(forall a, In a il -> In a il1) /\
(forall a, In a il -> In a il2) /\
Subtypecontext il’ ll1’ il1 ll1 /\
Subtypecontext il’ ll2’ il2 ll2.

This theoremexplains the effect of splitting a linear context in theSubtypecontext relation.
Recall that list splitting means dividing a list into two lists with elements in any order. This
theorem helps when we are dealing with several subgoals in splitseq or multiplicative
conjunction goals, and we want to split the linear context without losing the benefit of the
Subtypecontext relation. This situation is pretty common in our proofs.

We are now ready to state the central lemma.

Theorem subtypecontext_subtyping: forall a IL IL’ LL LL’ B A,
Subtypecontext IL’ LL’ IL LL ->
seq_ IL LL (atom_ (typeof a A)) -> Subtyping A B ->
seq_ IL’ LL’ (atom_ (typeof a B)).
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With the help of the above lemma and others, we successfully prove this theorem. The proof
amounts to 800 lines of Coq script. The proof is by induction on the height of the sequent
derivations, with cases for every possible typing rule defined in the program context prog.

6.2 Inversion Rules for Values

A Proto-Quipper expression is considered a value, or non-reducible expression, if it matches
one of the following cases:

Inductive is_value: qexp -> Prop :=
Varv: forall x, is_value (Var x)

| Qvarv: forall x, is_value (CON (Qvar x))
| Circv: forall a t i, quantum_data t -> quantum_data a ->

is_value (Circ t i a)
| Truev: is_value (CON TRUE) | Falsev: is_value (CON FALSE)
| Starv: is_value (CON STAR) | Boxv: is_value (CON BOX)
| Unboxv: is_value (CON UNBOX) | Revv: is_value (CON REV)
| Funvv: forall f, abstr f -> is_value (Fun f)
| Prodv: forall v w, is_value v -> is_value w ->

is_value (Prod v w)
| Unboxappv: forall v, is_value v ->

is_value (App (CON UNBOX) v).

The major role of these special expressions is in defining the language reduction rules (i.e.,
operational semantics), as detailed in the next section, where the main objective is to reduce a
Proto-Quipper expression to one of these forms. The casesmentioned above in the definition are
obvious, except for Unboxappv. The reason behind considering (App (CON UNBOX) v)
a value is because the resulting expression is of function type; as stated in [36], the unbox
operator turns a circuit into a circuit-generating function, and thus this case is similar toFunvv.

Now that we have the language values, we can prove a number of inversion lemmas (corre-
sponding to lemmas in [36]). In each, we prove that a well typed value v should follow certain
Proto-Quipper format(s). Here is the first example:

Theorem sub_one_inv: forall IL a,
˜(In (is_qexp (CON UNBOX)) IL) -> is_value a ->
Subtypecontext IL [] IL [] -> ˜(In (is_qexp a) IL) ->
seq_ IL [] (atom_ (typeof a one)) -> a = CON STAR.

In this particular inversion theorem, a value of type one should be the STAR constant. To make
sure that the context is not misused, we must prevent assumptions about well-formedness of
value terms from occurring in the context. To do so, we use the Subtypecontext relation to
ensure that every(is_qexp a) that appears inIL is associatedwith a typing atom (typeof
a A) in IL. This way, if ˜(In (is_qexp a) IL) is assumed in the inversion theorem
then no typing hypothesis for the value “a” appears in IL. We add a similar condition for the
UNBOX due to the fact that (App (CON UNBOX) v) is a value: if UNBOX is assumed in
IL to be of type (arrow A one) (which is a false assumption according to Proto-Quipper
typing rules), then by assuming the existence of a value v of type A, one can prove that “a” has
the form (App (CON UNBOX) v), which is wrong. The conclusion of the above theorem
is also valid for the type (bang one), which is also formally proved. Similar results have
been proved for all other values. To avoid repetition, we pick one more interesting example to
illustrate, however, the reader still can find a full list of the inversion rules online at [21].
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The following theorem is concerned with the values of the arrow type constructor. In
contrast to the previous theorem (and all other cases), we have several possibilities that satisfy
this typing format:

Theorem sub_bangarrow_inv: forall IL LL a T U,
˜(In (is_qexp (CON UNBOX)) IL) -> valid T -> valid U ->
(forall v, a = App (CON UNBOX) v -> ˜(In (is_qexp v) IL)) ->
is_value a -> Subtypecontext IL LL IL LL ->
˜(In (is_qexp a) IL) ->
seq_ IL LL (atom_ (typeof a (bang (arrow T U)))) ->
(exists f, a = Fun f) \/ (exists T0, a = CON (BOX T0)) \/
(a = CON UNBOX) \/ (a = CON REV) \/
(exists t i u, a = App (CON UNBOX) (Circ t i u)).

According to above theorem, the value “a” would be a function, a quantum circuit conversion
function, or a function application over the UNBOX constant.

The proofs of the above inversion rules are done by case analysis of the possible values.
For each case, it is proved that seq_ IL LL (atom_ (typeof a A)) requires that
(In (typeof a A) IL) or (In (typeof a A) LL), which leads to a contradiction
except for the particular valuewe are interested in. For instance, in the theoremsub_one_inv,
assuming that seq_ IL LL (atom_ (typeof a one)) leads to a contradiction in all
cases except for the STAR constant.

We also prove inversion rules that serve the opposite purpose from the above ones, where the
expression format is provided and the theorems conclude the right corresponding type and/or
typing rules. Those rules are more general, i.e., they are not restricted to values. For instance,
the following theorem characterizes the typing rules for the Slet statement:

Theorem sub_slet_inv: forall IL LL a b A,
Subtypecontext IL LL IL LL ->
seq_ IL LL (atom_ (typeof (Slet a b) A)) ->
˜(In (is_qexp (Slet a b)) IL) ->
(exists B, Subtyping B A /\
(splitseq_ IL LL

[Conj (atom_ (typeof a B)) (atom_ (typeof b (bang one)))] \/
splitseq_ IL LL
[Conj (atom_ (typeof a B)) (atom_ (typeof b one))])) \/

(validT A /\
(splitseq_ IL LL

[Conj (atom_ (typeof a A)) (atom_ (typeof b (bang one)))] \/
splitseq_ IL LL
[Conj (atom_ (typeof a A)) (atom_ (typeof b one))])).

The Subtypecontext is used here again to ensure that we are dealing with a valid typing context
as explained earlier; it has nothing to do with the subtyping between contexts since the super-context
and subcontext are the same. The above theorem concludes two possible cases for a well-typed Slet
expression. First, the right side of the main disjunction corresponds to the case when the type A is
deduced directly from the SLet typing rules (see the tsletl and tsleti of the Prog definition
in [21]). Second, the left disjunct corresponds to the case when the typing deduction has gone through
one or more subtyping rules (see rules axc1 and axc2 of the prog definition discussed above and in
[21]) followed by the regular SLet typing rules).

Here is another example for the circuit construct:

Theorem sub_Circ_inv: forall IL LL t a c A,
Subtypecontext IL LL IL LL ->
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seq_ IL LL (atom_ (typeof (Circ t c a) A)) ->
˜(In (is_qexp (Circ t c a)) IL) ->
(exists T T’ B,

Subtyping B A /\ validT (circ T T’) /\ LL = [] /\
splitseq_ IL []
[And (toimp (FQ a) (atom_(typeof a T’)))

(toimp (FQ t) (atom_(typeof t T)))] /\
(B = circ T T’ \/ B = bang (circ T T’))) \/

(exists T T’,
validT (circ T T’) /\ LL = [] /\
splitseq_ IL []
[And (toimp (FQ a) (atom_(typeof a T’)))

(toimp (FQ t) (atom_(typeof t T)))] /\
(A = circ T T’ \/ A = bang (circ T T’))).

An interesting fact about a well-typed circuit construct is that its linear context should be empty, and
this is expected as the circuit is supposed to be used several times, and hence it does not depend on
linear typing atoms. Recall that the quantum variables that appear in “t” and “a” are considered bound
variables.

Similar results have been proved for other Proto-Quipper expressions, e.g., functions, function appli-
cation, circuit conversion constants, etc.

6.3 Subject Reduction

Reduction rules, i.e., operational semantics, are crucial for any programming language, defining how
valid expressions in a language are simplified until a non-reducible expression is reached, i.e. a value.
In the context of a language’s reduction rules, it is very important to ensure the integrity of typing rules
by ensuring that a reduction of a well-typed expression should not affect the expression’s type (i.e.,
type soundess). In Proto-Quipper, there are seventeen reduction rules, which handle all possible cases
while ensuring that only one reduction rule can be applied at a time. To keep the description concise,
we choose five reduction rules to explain in this paper, which are good representative samples. Similar
to typing rules, we encode Proto-Quipper reduction rules as part of the inductive definition of prog.
For the complete set of rules, we refer the reader to [36], and for their complete encoding in Coq, see
[21].

Given a closure pair [C, a], where C is a circuit constant and a is a Proto-Quipper expression such
that FQ(a) ∈ Out(C), an if statement is reduced according to the rules listed in Fig. 4. The formal
Coq presentation of the rules in Fig. 4 as part of the prog definition is as follows:

| ifr: forall C C’ b b’ a1 a2, valid_c C (If b a1 a2) ->
valid_c C’ (If b’ a1 a2) -> ˜(is_value b) ->
prog (reduct C (If b a1 a2) C’ (If b’ a1 a2))

[atom_ (reduct C b C’ b’);
atom_ (is_qexp a1); atom_ (is_qexp a2)] []

| truer: forall C a1 a2, valid_c C (If (CON TRUE) a1 a2) ->
prog (reduct C (If (CON TRUE) a1 a2) C a1)

[atom_ (is_qexp a1); atom_(is_qexp a2)] []
| falser: forall C a1 a2, valid_c C (If (CON FALSE) a1 a2) ->

prog (reduct C (If (CON FALSE) a1 a2) C a1)
[atom_ (is_qexp a1); atom_(is_qexp a2)] []

where valid_c ensures that [C’,(If b’ a1 a2)] forms a valid closure. Note that the rule ifr
is only applicable if “b” is not a value, otherwise this rule would be applied an infinite number of times
without achieving any progress. When “b” is a value, i.e., True or False one of the other two rules
can be applied.
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[C, a] → [C , a ]
cond

[C, if a then b else c] → [C , if a then b else c]

ifT
[C, if True then b else c] → [C, b]

ifF
[C, if False then b else c] → [C, c]

Fig. 4 If statement reduction rules

[D,a] → [D , a ]
circ

[C, (t, D, a)] → [C, (t, D , a )]

SpecFQ(v)(T ) = t New(FQ(t)) = D
box

[C, box(v)] → [C, (t, D, v t)]

bind(u, v) = b Append(C, D, b) = (C , b )
unbox

[C, (unbox (u, D, u )) v] → [C , b (u )]

Fig. 5 Circuit reduction rules

The remaining examples of Proto-Quipper reduction rules that we consider here are the circuit
construct and its conversion function boxing and unboxing rules, which appear in Fig. 5. SpecQ is a
function that given a quantum data type T , returns a specimen t of that type, i.e., a quantum data term
having type T that has the further property that all quantum variables in t are “fresh” with respect to
the quantum variables occurring in Q. New is a function that creates a new identity circuit, i.e., given
a set of quantum variables, these variables serve as the inputs and outputs, and the new circuit contains
only wires where inputs are mapped directly to the same outputs.

The notion of a binding expresses the way in which wires should be connected. The bind function is
a bijection on quantum variables, where it wires each quantum variable in u with the corresponding one
in v. For example, bind(〈q1, q2〉, 〈q3, q4〉) = {(q1, q3); (q2, q4)}. The Append function is responsible
for appending two circuits. It returns the new circuit and a binder to rename the outputs of the newly
created circuit. This rename step is not really required since the newly created circuit can use the same
names of the output of the circuit D as its output; however, it is considered an added feature in the
Proto-Quipper language. The following are the corresponding formal reduction rules of the box and
unbox rules listed in Fig. 5:

| boxr: forall v T t C, valid T -> is_value v ->
t = (Spec (newqvar v) T) ->
prog (reduct C (App (CON (BOX T)) v) C

(Circ t (circNew (FQ t)) (App v t)))
[atom_ (is_qexp v)] []

| unboxr: forall u u’ v C C’ D b’,
quantum_data u -> quantum_data u’ -> quantum_data v ->
bind u v -> bind u’ b’ ->
circApp (Crcons C) (Crcons D) = C’ ->
prog (reduct (Crcons C)

(App (App (CON UNBOX) (Circ u D u’)) v) C’ b’)
[atom_ (is_qexp v); atom_ (is_qexp b’)] []

In the boxr clause, the function newqvar returns a variable that is fresh with respect to its argument,
which is a quantum term. In our implementation of the Spec function, the first argument is a natural
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number and all quantum variables in the result are represented by numbers greater than this input
number. Together Spec and newqvar implement the Spec function in the box rule.

In our formalization, we implement a relation (bind u v), which holds if u and v are related by
some binding, i.e., they are the same quantum data terms up to the renaming of quantum variables. This
relation is used twice in the unboxr clause to implement the binding relations in the unbox rule. We
note that the Append function is formalized as an abstract function without concrete implementation,
where Proto-Quipper does not provide one; rather it provides its properties which we axiomatize in the
above rule.

Similar rules have been formalized for the rest of Proto-Quipper expressions and can be found in
[21].

Now, we can present the most important property of the Proto-Quipper language, namely subject
reduction, which completes the type soundness result of the Proto-Quipper type system and its opera-
tional semantics:

Theorem subject_reduction: forall i IL C C’ a a’ LL1 LL2 A,
(forall V, In V (get_boxed a) ->

˜(exists n, V = (Var n) \/ V = (CON (Qvar n)))) ->
NoDup (FQUC a’) -> NoDup (FQU a’) ->
(forall t, In t IL ->

(exists n, t = is_qexp (Var n) \/
t = is_qexp (CON (Qvar n)) \/
exists T, t = typeof (Var n) T)) ->

(forall q, In q (FQ a’) -> In (typeof q qubit) LL2) ->
Subtypecontext IL LL1 IL LL1 ->
Subtypecontext IL LL2 IL LL2 ->
common_ll a a’ LL1 LL2 ->
seq_ i IL [] (atom_ (reduct C a C’ a’)) ->
exists j, seq_ j IL LL1 (atom_ (typeof a A)) ->
exists k, seq_ k IL LL (atom_ (typeof a’ A)).

The three underlined predicates represent the core of the the subject reduction theorem. The three
predicates translate the typical meaning of the subject reduction: an expression a’, that is the reduction
of a well-typed expression a, is also well-typed and has the same type as the original expression a.

The remaining hypotheses belong to two categories and require explanation. The three lines following
the theorem name are additional well-formedness constraints. As we will describe below, the one
involving get_boxed was unexpected and illustrates the merits of formal proofs to check paper-and-
pencil ones, which often overlook the kind of detail captured by this definition. The remaining lines
are conditions on contexts. We are able to reuse our Subtypecontext definition to capture some of
the requirements, but in addition, we define an additional context relation common_ll as well as add
some additional requirements on the form of assumptions appearing in contexts.

In general, type soundness results are often stated and proved for typing of closed terms and empty
contexts. Here, we could restrict terms so that they contain no free term variables (in particular, require
that a and a’ contain no free term variables), but we cannot do the same for quantum variables since
there is no lambda binder for quantum variables in the language. Most of our additional hypotheses
provide the required structure for the appearance of assumptions about quantum variables in contexts,
but we go beyond that and also allow free term variables in a and a’. Doing so requires some additional
hypotheses in the statement of the theorem, but allows us to prove a more general form. The version
requiring a and a’ to be closed follows as a corollary. In summary, the basic requirements for free
quantum variables are that for every variable q (of the form (CON (Qvar n))), q is free in a or a’
if and only if there is an assumption (is_qexp q) in IL, q is free in a if and only if there is an
assumption of the form (typeof q qubit) in LL1, and q is free in a’ if and only if there is an
assumption of the form (typeof q qubit) in LL2.
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We explain the hypotheses in more detail one by one in the following.

– (forall t, In t IL ->
(exists n, t = is_qexp (Var n) \/

t = is_qexp (CON (Qvar n)) \/
exists T, t = typeof (Var n) T)):

This hypothesis restricts the intuitionistic context so that it includes only typing and well-
formedness assumptions about term variables and quantum variables. Note that the inversion rules
sub_one_inv, sub_bangarrow_inv, sub_slet_inv, and sub_Circ_inv in Sect. 6.2
all restrict the form of the argument to is_qexp, which is the expression subject to inversion,
when it appears in the intuitionistic context. In these theorems, the restrictions are carried over to
the linear contexts because of the way the contexts are related according to the Subtypecontext
predicate. The same applies here.

– Subtypecontext IL LL1 IL LL1 and Subtypecontext IL LL2 IL
LL2:
These predicates ensures that the constraints discussed in Sect. 6.1 about the relationship between
the intuitionistic and linear contexts are met. For example, each typing assumption of the
form (typeof a t) in any context must be associated with a well-formedness assumption
(is_qexp a) in the intuitionistic context. In addition, it restricts the linear context to contain
typeof assumptions only.

– common_ll a a’ LL1 LL2:
Onemight wonder why the theorem requires two different linear contexts (LL1 and LL2); in partic-
ular, the common subject reduction for classical OLs maintains the same context in all judgments.
The answer is quantum variables. Proto-Quipper reduction rules allow for quantum variable renam-
ing (i.e., in the case of circuit appending), and allow introduction of new quantum variables (e.g.,
a circuit with zero inputs that produces quantum variables at the output, which typically represents
an initialization circuit). As a result, the linear context of the original expression is usually a bit
different from the context for the reduced one; they are similar modulo quantum variables. That
is why we have defined the predicate common_ll, which ensures that all typing assumptions in
LL1 and LL2 are the same except for quantum variables, where quantum variables in LL1 belong
to the set of free quantum variables of a, and quantum variables in LL2 belong to the set of free
quantum variables of a’.

– (forall q, In q (FQ a’) -> In (typeof q qubit) LL2):
The previous predicate does not assure that LL2 contains assumptions about all free quantum
variables of a’; it only ensures if a quantum variables exists in LL2 then it belongs to (FQ a’).
That is why we added this assumption. One might ask why not to do the same for LL1; the answer
that we do not need that assumption since a is well-typed under LL1 and hence it must contain all
quantumvariable of (FQ a). This fact is proved as per the following theorem (note the equivalence
in the last two lines):

Theorem LL_FQ: forall u A IL LL,
(forall q T,

In (typeof (CON (Qvar q)) T) LL -> T = qubit) ->
(forall q T, In (typeof (CON (Qvar q)) T) LL ->

count_occ eq_dec LL (typeof (CON (Qvar q)) T) = 1) ->
(forall t, In t IL ->

(exists n, t = is_qexp (Var n) \/
t = is_qexp (CON (Qvar n)) \/
exists T, t = typeof (Var n) T)) ->

Subtypecontext IL LL IL LL ->
seq_ IL LL (atom_ (typeof u A)) ->
(forall q, In (CON (Qvar q)) (FQ u) <->

In (typeof (CON (Qvar q)) qubit) LL).

– NoDup (FQUC a’) and NoDup (FQU a’):
FQU is similar to FQ in that it returns the free quantum variables occurring in a term. The difference
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is that FQ returns a set, while FQU returns a list so that if there is more than one occurrence of a
free variable in a term, it occurs more than once in the output list. FQUC is similar, but also includes
bounded quantum variables of quantum circuits. (In FQ and FQU, those variables are excluded.)
The predicate NoDup comes from Coq’s list library and is true of lists that contain no duplicates.
In quantum calculus, quantum variables are processed once. We use FQU to rule out expressions
that involve quantum replicas. FQUC ensures no quantum variable replicas inside circuit bodies.

– (forall V, In V (get_boxed a) ->
˜(exists n, V = (Var n) \/ V = (CON (Qvar n)))):

The function get_boxed returns a list of all expression that are arguments to the boxT operator,
i.e., for the expression (APP (CON (BOX T)) a), it returns a. We want to make sure that
those expressions are neither free variables nor quantum variables. Unlike the other hypotheses
in the theorem, which are mostly due to our method of formalization, this condition should be
respected in the language implementation itself; otherwise the language allows for expressions that
are not values and there is no reduction rule that applies. Without this, neither subject reduction nor
progress properties hold for Proto-Quipper.

The proof of the above theorem involves several lemmas and theorems and makes significant use of
a number of the inversion rules discussed in the previous section. It is proved by induction on i, the
height of the proof of the sequent containing the typing judgment, followed by a case analysis of 17
reduction rules, each of which require at least 10 major subgoals due to case analysis and inversions.

This concludes our formalization of Proto-Quipper in Hybrid, along with our development of a
generic linear specification logic used as a platform to reason about quantum programming languages.
In the following section, we will discuss a very critical aspect of our development where we ensure that
the developed formalization models the intended behavior of Proto-Quipper as presented in [36].

7 Adequacy

It is important to show that both syntax and inference rules are adequately represented in Hybrid. Ade-
quacy of syntax encoding, also called representational adequacy, is discussed for the lambda calculus
as an OL in Hybrid in [2] and proved in detail in [5], while adequacy for a fragment of a functional pro-
gramming language known as Mini-ML is proved in [13]. Proto-Quipper contains the lambda calculus
as a sublanguage, and representational adequacy for the full language is a straightforward extension of
these other results. We give a brief overview here.

First, the proper and abstr predicates, defined in the Hybrid library, provide important tools for
proving representational adequacy of anyOL. Asmentioned, theproper predicate rules out termswith
dangling indices, which clearly cannot occur in well-formed terms of any OL. The abstr predicate,
as mentioned, applies to arguments of the lambda operator. Recall that this operator has one argument
of functional type (expr → expr). To adequately represent OL syntax, we must rule out exotic
functions, i.e., functions that do not encode OL lambda terms. To illustrate, we consider the example
from [13]. Suppose we have (lambda e), where e = (λx .count x) where (count x) counts the total
number of variables and constants occurring in x . This function clearly does not represent syntax. Only
functions that behave uniformly or parametrically on their arguments, such as the one discussed in the
introduction, represent OL terms. The abstr predicate identifies exactly this set of functions.

The core of the definition of abstr is a predicate abst_aux whose type is bnd -> (expr
-> expr) -> Prop, defined inductively, descending through the function body to make sure that
it contains only constructors from the inductive definition of expr (whose definition is given in
Sect. 4.1). There is an additional base case stating that (fun x => x) is allowed. The first argu-
ment (of type bnd) is a number representing the maximum de Bruijn dangling index allowed, which is
needed because this index changes when descending through a term of the form (ABS e). Equality
at type (expr → expr) is defined to be extensional equality. The abstr predicate adds the required
additional constraints to abst_aux, i.e., (abstr f) holds whenever f is extensionally equal to a
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function f’ that satisfies abst_aux; furthermore the first argument to abst_aux must be 0 (no
dangling indices allowed). For more details and analysis on ruling out exotic terms, see [6] and the
related work section of [13]. The former applies specifically in the context of Coq. Also, see [21] for
the precise definitions of all of the predicates described here.

Second, proving representational adequacy requires defining an encoding function betweenOL terms
and their representation in Hybrid, and showing that this function is a bijection. In particular, we write
εΓ (·) for the encoding function from Proto-Quipper terms with free term variables in Γ to terms of type
qexp. We omit its definition, but note that it maps each term variable x in Γ to a distinct Coq variable
x : qexp, and each quantum variable q in Γ to an expression of the form (CON (Qvar qi )), where qi
is a distinct natural number for each quantum variable. Consider the judgment Γ � is_qexp a and a full
set of inference rules for this judgment in the style of those presented in Sect. 5.2. Let {x1, . . . , xn} be
the set of term variables in Γ and let x1, . . . ,xn be the encodings of these variables. We must prove
that for any Proto-Quipper term a, if Γ � is_qexp a, then the following is provable in Coq:

proper x1 → · · ·proper xn →
exists (i : nat),

seq i [(is_qexp x1); . . . ; (is_qexp xn)] []
(atom_ (is_qexp εΓ (a)))

Furthermore, we write δΓ(·) for the decoding function. Let Γ be Coq variables and terms
{x1, . . . ,xn, (CON (Qvar qi1 )), . . . , (CON (Qvar qim ))} of type qexp, let E be a term of type qexp,
and let Γ be:

{δΓ(x1), . . . , δΓ(xn), δΓ(CON (Qvar qi1 )), . . . , δΓ(CON (Qvar qim ))}.
We must prove that if the following is provable in Coq:

proper x1 → · · ·proper xn →
exists (i : nat),

seq i [(is_qexp x1); . . . ; (is_qexp xn)] [] (atom_ (is_qexp E))

then δΓ(E) is defined and yields a Proto-Quipper term a such that Γ � is_qexp a. Additionally,
εΓ (δΓ(E)) = E and δΓ(εΓ (a)) = a. The above results correspond to Lemma 21 (called Validity of
Representation) and Lemma 22 (Completeness of Representation), respectively, in [13].3

Proving the adequacy of the encoding of inference rules is similar. Note that in the above statements,
well-formedness was expressed as a set of inference rules of a judgment of the form Γ � is_qexp a, and
the proofs of these statements require showing a bijection between proofs (on paper) using the inference
rules of this judgment, and proofs using our encodings of prog and seq. The same approach is used
to prove the adequacy of the other two judgments Γ ; Q � a : A and [C, a] → [C ′, a′]. Additionally,
for all judgments except well-formedness, internal adequacy lemmas must be proven. Such lemmas
correspond to Lemma 20, clauses 2 and 4 for the reduction and typing judgments, respectively, of
MiniML in [13].4 They are called internal adequacy lemmas because they can be formalized in Hybrid
and they are an important part of the general adequacy proofs for these judgments. Their statements
and proofs are found in PQAdequacy.v. In general, such properties state that whenever an OL judgment
that is defined as part of the definition of prog can be proved, then the OL terms in this judgment are
well-formed. The abstr conditions are important for proving these lemmas. The following theorem
expresses internal adequacy for the Proto-Quipper typing judgment.

Lemma hastype_isterm_ctx :
forall (M:qexp) (T:qtp) (iq it lt:list atm),
ctxR iq it lt ->
seq_ it lt (atom_ (typeof M T)) ->
seq_ iq [] (atom_ (is_qexp M)).

3 We also impose the restriction that the Coq derivation must beminimal in the same sense as described there.
See [13] for details.
4 A variety of other internal adequacy lemmas are shown in [14].
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Note that it uses a context relation ctxR relating the intuitionistic and linear contexts of the typeof
predicate to the intuitionistic context of the is_qexp predicate. (The linear context is always empty
when proving well-formedness of terms.) The definition of this relation is as follows:

Inductive ctxR: list atm -> list atm -> list atm -> Prop :=
| nil_cr: ctxR nil nil nil
| cons_q_cr: forall (iq it lt:list atm) (x:qexp),

proper x -> ctxR iq it lt ->
ctxR (is_qexp x::iq) (is_qexp x::it) (lt)

| cons_l_cr: forall (iq it lt:list atm) (x:qexp)
(T:qtp), proper x -> ctxR iq it lt ->
ctxR (is_qexp x::iq) (is_qexp x::it) (typeof x T::lt)

| cons_i_cr: forall (iq it lt:list atm) (x:qexp)
(T:qtp), proper x -> ctxR iq it lt ->
ctxR (is_qexp x::iq) (typeof x T::is_qexp x::it) lt.

In addition the following two lemmas are needed. The first is a standard lemma about intuitionistic
contexts as found in the examples in [14]. The second is unique to linear contexts, and thus is new.

Lemma qexp_strengthen_weaken:
forall (M:qexp) (Phi1 Phi2:list atm),
(forall (M:qexp),

In (is_qexp M) Phi1 -> In (is_qexp M) Phi2) ->
seq_ Phi1 [] (atom_ (is_qexp M)) ->
seq_ Phi2 [] (atom_ (is_qexp M)).

Theorem ctxRconcat: forall iq it lt lt1 lt2,
ctxR iq it lt -> lt = lt1++lt2 ->
exists it1 it2,

(forall a, In a it -> In a it1) /\
(forall a, In a it -> In a it2) /\
ctxR iq it1 lt1 /\ ctxR iq it2 lt2.

Note that the conclusion of the hastype_isterm_ctx lemma only involves the term M. No
similar conclusion is required for T because Proto-Quipper types are defined directly as an inductive
type in Coq. There are no binders in types, and thus the correspondence between terms of type T and
types of Proto-Quipper is direct.

We have proved a similar result for the reduction rules, showing that the language’s operational
semantics does not lead to invalid expressions (see [21]).

8 Conclusion

We have presented our formalization of Proto-Quipper in Hybrid. This work involved encoding a linear
specification logic and carrying out a large case study in Hybrid, in the sense that we encode and reason
about the complete Proto-Quipper specification, the most complex OL considered so far, and we prove
type soundness, one of the central results in [36].

In order for Hybrid with a linear SL to become a fully operational logical framework, we will need
to provide suitable automation of proofs, based on lessons learned from this case study. Adding such
automation is an important direction for future work.

Another important direction is extending the formalization to other more complex properties and to
other quantum programming languages. For example, the other main result in [36] is a progress theorem
for Proto-Quipper, which is an obvious next step for us.We do not foresee any difficulty, though its proof
will likely be as long and detailed as the proof of type soundness. Also, it should be straightforward to
adapt the existing formal proofs to new versions of Proto-Quipper. For example, Proto-Quipper-M [35]
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is a version without subtyping, which shouldmean that certain aspects of formal proofs of its metatheory
will be easier. In the future, we hope to use our system as an environment in which new Proto-Quipper
metatheory can be simultaneously developed and formalized as versions of the language evolve.

It should also be possible to directly extend our work from Proto-Quipper, which is fairly expressive
though not Turing complete, to the full Turing-complete Quipper language. Similarly, we expect to be
able to extend this work directly in order to apply it to other Turing-complete quantum lambda calculi
such as those introduced by Zorsi et. al. [7,8,43] and Grattage et. al. [1,16]. As another example, the
QWIRE language in [34] is implemented in Coq and is expressive enough to include languages like
Proto-Quipper. The work in that paper focuses on proving properties of quantum programs and program
transformations, such as proving that a program meets its formal specification. In our framework, it
would be interesting to also study the meta-theory of this language.

A variety of other logical frameworks implementing linear logic have been developed. The ordered
linear logic (OLF) mentioned earlier is one such example, where type preservation for a continuation-
based abstract machine for the functional programming language Mini-ML (an OL that is simpler than
Proto-Quipper) is proven [13] following the statement in [4]. Another example of OLs that benefit
from a framework based on linear logic are those with imperative features. A common thread of such
examples is that they contain the notion of updatable state, which can be handled fairly directly by the
linear features of the framework. The case study we present in this paper is the first one in Hybrid where
the OL itself is linear, in the sense that the linear lambda calculus forms the core of Proto-Quipper.

Examples involving mutable state have motivated a variety of proposals for frameworks based on
linear logics that support HOAS. For other examples that benefit from linear features, see the overview
in [27]. Examples of frameworks proposed include Lolli [19], Forum [26], and LLF [4]. The logical
framework LF [18] and its implementation in Twelf represents one of the earliest logical frameworks
supporting HOAS and based on minimal intuitionistic logic. LLF is a conservative extension of LF with
multiplicative implication, additive conjunction, and unit.

Type soundness proofs for various OLs has been a common benchmark for logical frameworks
supporting HOAS and implementing an intuitionistic logic, starting with some of the earliest logical
frameworks like LF [41]. In [23], Mini-ML with mutable references, an imperative version of the Mini-
ML language mentioned above, is studied in Hybrid. Five versions of type soundness are proved using
three different SLs, intuitionistic, linear, and OLF as implemented in [13], and their formalizations
compared.
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