
Lightweight Lemmas in �Prolog:Extended Version 1Andrew W. AppelBell Labs and Princeton Universityappel@princeton.eduAmy P. FeltyBell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974, USAfelty@research.bell-labs.comAbstract�Prolog is known to be well-suited for expressing and implementing logics and in-ference systems. We show that lemmas and de�nitions in such logics can be imple-mented with a great economy of expression. We encode a polymorphic higher-orderlogic using the ML-style polymorphism of �Prolog. The terms of the metalanguage(�Prolog) can be used to express the statement of a lemma, and metalanguagetype-checking can directly type-check the lemma. But to allow polymorphic lem-mas requires either more general polymorphism at the meta-level or a less conciseencoding of the object logic. We discuss both the Terzo and Teyjus implementationsof �Prolog as well as related systems such as Elf.1 IntroductionIt has long been the goal of mathematicians to minimize the set of assump-tions and axioms in their systems. Implementers of theorem provers use thisprinciple: they use a logic with as few inference rules as possible, and provelemmas outside the core logic in preference to adding new inference rules.In applications of logic to computer security { such as proof-carrying code[18] and distributed authentication frameworks [1] { the implementation ofthe core logic is inside the trusted code base (TCB), while proofs need notbe in the TCB because they can be checked.Two aspects of the core logic are in the TCB: a set of logical connectivesand inference rules, and a program in some underlying programming lan-guage that implements proof checking { that is, interpreting the inferencerules and matching them against a theorem and its proof.De�nitions and lemmas are essential in constructing proofs of reasonablesize and clarity. A proof system should have machinery for checking lemmas,and applying lemmas and de�nitions, in the checking of proofs. This ma-chinery also is within the TCB; see Figure 1. Many theorem provers supportde�nitions and lemmas and provide a variety of advanced features designed1Princeton University Technical Report CS-TR-607-99. A shorter version of this paperappears in Sixteenth International Conference on Logic Programming, November 1999.1
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Trusted code baseFigure 1: Lemma machinery is inside the TCB.to help with tasks such as organizing de�nitions and lemmas into libraries,keeping track of dependencies, and providing modularization; in our work weare particularly concerned with separating that part of the machinery neces-sary for proof checking (i.e., in the TCB) from the programming-environmentsupport that is used in proof development. In this paper we will demonstratea de�nition/lemma implementation that is about two dozen lines of code.The �Prolog language [14] has several features that allow concise andclean implementation of logics, proof checkers, and theorem provers [6]. Weuse �Prolog, but many of our ideas should also be applicable in logical frame-works such as Elf/Twelf [20, 23]. An important purpose of this paper is toshow which language features allow a small TCB and e�cient representa-tion of proofs. We will discuss higher-order abstract syntax, dynamicallyconstructed clauses, dynamically constructed goals, meta-level formulas asterms, prenex and non-prenex polymorphism, type abbreviations, arithmetic,and implementation of �-terms.2 A core logicThe clauses we present use the syntax of the Terzo implementation of�Prolog [27]. �Prolog is a higher-order logic programming language whichextends Prolog in essentially two ways. First, it replaces �rst-order termswith the more expressive simply-typed �-terms; �Prolog implementationsgenerally extend simple types to include ML-style prenex polymorphism[5, 15], which we use in our implementation. Second, it permits implica-tion and universal quanti�cation (over objects of any type) in goal formulas.We introduce types and constants using kind and type declarations,respectively. For example, a new primitive type t and a new constant f oftype t! t! t are declared as follows:2



kind t type.type f t -> t -> t.Capital letters in type declarations denote type variables and are used inpolymorphic types. In program goals and clauses, �-abstraction is writ-ten using backslash \ as an in�x operator. Capitalized tokens not boundby �-abstraction denote free variables. All other unbound tokens denoteconstants. Universal quanti�cation is written using the constant pi in con-junction with a �-abstraction (e.g., pi X\ represents universal quanti�cationover variable X). The symbols comma and => represent conjunction and im-plication. The symbol :- denotes the converse of => and is used to write thetop-level implication in clauses. The type o is the type of clauses and goalsof �Prolog. We usually omit universal quanti�ers at the top level in de�niteclauses, and assume implicit quanti�cation over all free variables.We will use a running example based on a sequent calculus for a higher-order logic. We call this the object logic to distinguish it from the metalogicimplemented by �Prolog. We implement a proof checker for this logic thatis similar to the one described by Felty [6]. We introduce two primitivetypes: form for object-level formulas and pf for proofs in the object logic.We introduce constants for the object-level connectives, such as and and impof type form! form! form, and forall of type (A! form)! form. Wealso have eq of type A! A! form to represent equality at any type. Weuse in�x notation for the binary connectives. The constant forall takes afunctional argument, and thus object-level binding of variables by quanti�ersis de�ned in terms of meta-level �-abstraction. An example of its use isforall (X\ forall (Y\ (eq X Y) imp (eq Y X)))The parser uses the usual rule for the syntactic extent of a lambda, so thisexpression is equivalent toforall X\ forall Y\ eq X Y imp eq Y XThis use of higher-order data structures is called higher-order abstract syn-tax [22]; with it, we don't need to describe the mechanics of substitution ex-plicitly in the object logic [6]. Programs 2 and 3 implement a proof checkerfor our object logic.To implement assumptions (that is, formulas to the left of the sequentarrow) we use implication. The goal A => B adds clause A to the �Prologclause database, evaluates B, and then (upon either the success or fail-ure of B) removes A from the clause database. It is a dynamically scopedversion of Prolog's assert and retract. For example, suppose we use(imp_r initial) to prove ((eq x y) imp (eq x y)); then �Prolog willexecute the (instantiated) body of the imp_r clause:(assume (eq x y)) => (initial proves (eq x y))This adds (assume (eq x y)) to the database; then the subgoal3



kind form type.kind pf type.type eq A! A! form.type and form! form! form. infixl and 7.type imp form! form! form. infixr imp 8.type forall (A! form)! form.type proves pf! form! o. infix proves 5.type assume form! o.type initial pf.type and_l form! form! pf! pf.type and_r pf! pf! pf.type imp_r pf! pf.type imp_l form! form! pf! pf! pf.type forall_r (A! pf)! pf.type forall_l (A! form)! A! pf! pf.type cut pf! pf! form! pf.type congr A! A! (A! form)! pf! pf! pf.type refl pf.Program 2: Type declarations for core logic.initial proves (eq x y)generates a subgoal (assume (eq x y)) which matches our dynamicallyadded clause.We have used �Prolog's ML-style prenex polymorphism to reduce thenumber of inference rules in the TCB. Instead of a di�erent forall con-structor at each type { and a corresponding pair of inference rules { we havea single polymorphic forall constructor. Our full core logic (not shown inthis paper) uses a base type exp of machine integers, and a type exp! exp offunctions, so if we desire quanti�cation both at expressions and at predicates(let alone functions at several types) we have already saved one constructorand two inference rules.We have also used polymorphism to de�ne a general congruence rule onthe eq operator, from which many other desirable facts (transitivity andsymmetry of equality, congruence at speci�c functions) may be proved aslemmas.Theorem 1 shows the use of our core logic to check a simple proof.It is important to show that our encoding of higher-order logic in �Prologis adequate. To do so, we must show that a formula has a sequent proof if andonly if its representation as a term of type form has a proof term that canbe checked using the inference rules of Program 3. Proving such a theoremshould be straightforward. In particular, since we have encoded our logicusing prenex polymorphism, we can expand out instantiated copies of all of4



A;� ` A initial proves A :- assume A.� ` A � ` B� ` A ^B (and_r Q1 Q2) proves (A and B) :-Q1 proves A, Q2 proves B.A;� ` B� ` A! B (imp_r Q) proves (A imp B) :-(assume A) => (Q proves B).A;B;� ` C(A ^B);� ` C (and_l A B Q) proves C :-assume (A and B),(assume A) => (assume B) => (Q proves C).� ` A B;� ` C(A! B);� ` C (imp_l A B Q1 Q2) proves C :-assume (A imp B), Q1 proves A,(assume B) => (Q2 proves C).� ` A(y) for any y notin conclusion� ` 8x A(x) (forall_r Q) proves (forall A) :-pi y\ ((Q y) proves (A y)).A(T );� ` C8x A(x);� ` C (forall_l A T Q) proves C :-assume (forall A),(assume (A T)) => (Q proves C).� ` A A;� ` C� ` C (cut Q1 Q2 A) proves C :-Q1 proves A,(assume A) => (Q2 proves C).� ` X = Z � ` H(Z)� ` H(X) (congr X Z H Q P) proves (H X) :-Q proves (eq X Z), P proves (H Z).� ` X = X refl proves (eq X X).Program 3: Inference rules of core logic.
(forall_r I\ forall_r J\ forall_r K\(imp_r (and_l (eq J I) (eq J K)(congr I J (X\ (eq X K))(congr J I (eq I) initial refl) initial))))proves(forall I\ forall J\ forall K\ (eq J I and eq J K) imp eq I K).Theorem 1. 8I 8J 8K (J = I ^ J = K)! I = K.
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type lemma (A! o)! A! (A! pf)! pf.(lemma Inference Proof Rest) proves C :-pi Name\ (valid_clause (Inference Name),Inference Proof,(Inference Name) => ((Rest Name) proves C)).Program 4: The lemma proof constructor.the polymorphic expressions in terms of type pf; the expanded proof termswill then map directly to sequent proof trees.3 LemmasIn mathematics the use of lemmas can make a proof more readable by struc-turing the proof, especially when the lemma corresponds to some intuitiveproperty. For automated proof checking (in contrast to automated or tra-ditional theorem proving) this use of lemmas is not essential, because thecomputer doesn't need to understand the proof in order to check it. Butlemmas can also reduce the size of a proof (and therefore the time requiredfor proof checking): when a lemma is used multiple times it acts as a kindof \subroutine." This is particularly important in applications like proof-carrying code where proofs are transmitted over networks to clients whocheck them.The heart of our lemma mechanism is the clause shown in Program 4.The proof constructor lemma takes three arguments: (1) a derived inferencerule Inference (of type A! o) parameterized by a proof constructor (oftype A), (2) a term of type A representing a proof of the lemma built fromcore-logic proof constructors (or using other lemmas), and (3) a proof of themain theorem C that is parameterized by a proof constructor (of type A).For example, we can prove a lemma about the symmetry of equality; theproof uses congruence and re
exivity of equality:pi A\ pi B\ pi P\ (P proves (eq B A) =>((congr B A (eq A) P refl) proves (eq A B))).This theorem can be checked as a successful �Prolog query to Programs 2and 3: for an arbitrary P, add (P proves (eq B A)) to the logic, then checkthe proof of congruence using this fact. The syntax F => G means exactlythe same as G :- F , so we could just as well write this query as:pi A\ pi B\ pi P\ ((congr B A (eq A) P refl) proves (eq A B) :-P proves (eq B A)).Now, suppose we abstract the proof (roughly, congr B A (eq A) P refl)from this query: 6



(lemma(Symmx\ pi A\ pi B\ pi P\(Symmx A B P) proves (eq A B) :- P proves (eq B A))(A\B\P\(congr B A (eq A) P refl))(symmx\ (forall_r I\ forall_r J\ imp_r (symmx J I initial))))proves (forall I\ forall J\ eq I J imp eq J I).Theorem 2. 8I 8J (I = J ! J = I).(Inference = (PCon\ pi A\ pi B\ pi P\(PCon A B P) proves (eq A B) :- P proves (eq B A)),Proof = (A\B\P\ congr B A (eq A) P refl),Query = (Inference Proof),Query)The solution of this query proceeds in four steps: the variable Inferenceis uni�ed with a �-term; Proof is uni�ed with a �-term; Query is uni�edwith the application of Inference to Proof (which is a term �-equivalent tothe query of the previous paragraph), and �nally Query is solved as a goal(checking the proof of the lemma).Once we know that the lemma is valid, we make a new �Prolog atomsymmx to stand for its proof, and we prove some other theorem in a contextwhere the clause (Inference symmx) is in the clause database; rememberthat (Inference symmx) is �-equivalent topi A\ pi B\ pi P\ ((symmx A B P) proves (eq A B) :-P proves (eq B A)).This looks remarkably like an inference rule! With this clause in the data-base, we can use the new proof constructor symmx just as if it were primitive.To \make a new atom" we simply pi-bind it. This leads to the recipefor lemmas shown in Program 4 above: �rst execute (Inference Proof) asa query, to check the proof of the lemma itself; then pi-bind Name, and runRest (which is parameterized on the lemma proof constructor) applied toName. Theorem 2 illustrates the use of the symmx lemma. The symmx proofconstructor is a bit unwieldy, since it requires A and B as arguments. Wecan imagine writing a primitive inference rule(symm P) proves (eq A B) :- P proves (eq B A).using the principle that the proof checker doesn't need to be told A and B,since they can be found in the formula to be proved.Therefore we add three new proof constructors { elam, extract, andextractGoal { as shown in Program 5. These can be used in the followingstereotyped way to extract components of the formula to be proved. Firstbind variables with elam, then match the target formula with extract. The-orem 3 is a modi�cation of Theorem 2 that makes use of these constructors.The extractGoal asks the checker to run �Prolog code to help construct7



type elam (A! pf)! pf.type extract form! pf! pf.type extractGoal o! pf! pf.(elam Q) proves B :- (Q A) proves B.(extract B P) proves B :- P proves B.(extractGoal G P) proves B :- valid_clause G, G, P proves B.Program 5: Proof constructors for implicit arguments of lemmas.(lemma(Symm\ pi A\ pi B\ pi P\(Symm P) proves (eq A B) :- P proves (eq B A))(P\ elam A\ elam B\ extract (eq A B) (congr B A (eq A) P refl))(symm\ (forall_r I\ forall_r J\ imp_r (symm initial))))proves (forall I\ forall J\ eq I J imp eq J I).Theorem 3. 8I 8J (I = J ! J = I).the proof. Of course, if we want proof checking to be �nite we must re-strict what kinds of �Prolog code can be run, and this is accomplished byvalid_clause (see below). The proof of lemma def_l in Section 4 is anexample of extractGoal.Of course, we can use one lemma in the proof of another, as shown byTheorem 4.Since the type of (Inference Proof) is o, the lemma Inference mightconceivably contain any �Prolog clause at all, including those that do in-put/output. Such �Prolog code cannot lead to unsoundness { if the resultingproof checks, it is still valid. But there are some contexts where we wish torestrict the kind of program that can be run inside a proof. For example, ina proof-carrying-code system, the code consumer might not want the proofto execute �Prolog code that accesses private local resources.To limit the kind and amount of execution possible in the executablepart of a lemma, we introduce the valid_clause predicate of type o! o(Program 6). A clause is valid if it contains pi, comma, :-, =>, proves,assume, and nothing else. Of course, a proves clause contains subexpres-sions of type pf and form, and an assume clause has a subexpression of typeform, so all the constants in proofs and formulas are also permitted. Absentfrom this list are �Prolog input/output (such as print) and the semicolon(backtracking search).In principle, we do not need lemmas at all. Instead of the symmetrylemma, we can prove (forall A\ forall B\ (eq B A imp eq A B)) andthen cut it into the proof of a theorem using the ordinary cut of sequentcalculus. To make use of this fact requires two forall_l's and an imp_l.This approach adds undesirable complexity to proofs.It should be possible to directly extend soundness and adequacy to the8



(lemma(Symm\ pi X\ pi Y\ pi P\(proves (Symm P) (eq X Y) :- proves P (eq Y X)))(P\ elam X\ elam Y\(extract (eq X Y) (congr Y X (eq X) P refl)))symm\(lemma(Trans\ pi X\ pi Y\ pi Z\ pi P1\ pi P2\(proves (Trans Z P1 P2) (eq X Y) :-proves P1 (eq X Z), proves P2 (eq Z Y)))(Z\ P1\ P2\ elam X\ elam Y\(extract (eq X Y) (congr Y Z (eq X) (symm P2) P1)))trans\(lemma(And_imp\ pi A\ pi B\ pi C\ pi Q\(proves (And_imp Q) ((A and B) imp C) :-proves Q (A imp B imp C)))(Q\ elam A\ elam B\ elam C\ (extract ((A and B) imp C)(imp_r (and_l A B(cut Q (imp_l A (B imp C) initial(imp_l B C initial initial)) (A imp B imp C))))))and_imp\(forall_r I\ forall_r J\ forall_r K\(and_imp (imp_r (imp_r (trans J (symm initial)initial)))))))))))proves(forall I\ forall J\ forall K\ (eq J I and eq J K) imp eq I K)Theorem 4. 8I 8J 8K (J = I ^ J = K)! I = K.
valid_clause (pi C) :- pi X\ valid_clause (C X).valid_clause (A,B) :- valid_clause A, valid_clause B.valid_clause (A :- B) :- valid_clause A, valid_clause B.valid_clause (A => B) :- valid_clause A, valid_clause B.valid_clause (P proves A).valid_clause (assume A).Program 6: Valid clauses.
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system with lemmas by showing that it is possible to replace any lemmawith a cut-in formula in the way we have discussed for symm.4 De�nitionsDe�nitions are another important mechanism for structuring proofs to in-crease clarity and reduce size. If some property (of a base-type object, orof a higher-order object such as a predicate) can be expressed as a logicalformula, then we can make an abbreviation to stand for that formula.For example, we can express the fact that f is an associative function bythe formula 8X 8Y 8Z f X (f Y Z) = f (f X Y )Z. Putting this formula in�Prolog notation and abstracting over f , we get the predicate:F\ forall X\ forall Y\ forall Z\ eq (F X (F Y Z)) (F (F X Y) Z)A de�nition is just an association of some name with this predicate:eq assoc(F\ forall X\ forall Y\ forall Z\ eq (F X (F Y Z)) (F (F X Y) Z))To use de�nitions in proofs we introduce three new proof rules: (1) defineto bind a �-term to a name, (2) def r to replace a formula on the right ofa sequent arrow with the de�nition that stands for it (or viewed in terms ofbackward sequent proof, to replace a de�ned name with the term it standsfor), and (3) def l to expand a de�nition on the left of a sequent arrowduring backward proof. All three of these proof constructors are just lemmasprovable in our system using congruence of equality, as Program 7 shows.Theorem 5 shows a proof using de�nitions.To check a proof (define Formula (Name\ (RestProof Name))) thesystem interprets the pi D within the define lemma to create a new atom Dto stand for the Name. It then adds (assume(eq D Formula)) to the clausedatabase. Finally it substitutes D for Name within RestProof and checks theresulting proof. If there are occurrences of (def_r D) or (def_l D) within(RestProof D) then they will match the newly added clause.To check that (def_r assoc (A\ A f) P) is a proof of the formula(assoc f) the prover checks that (A\ A f)(assoc) matches (assoc f)and that (assume (eq assoc Body)) is in the assumptions for some for-mula, predicate, or function Body. Then it applies (A\ A f) to Body, ob-taining the subgoal (Body f), of which P is required to be a proof.To check that (def_l assoc (A\ A f) P) proves some formula D, thechecker �rst reduces (A\ A f)(assoc) to (assoc f), and then checks that(assume (assoc f)) is among the assumptions in the �Prolog database.Then it veri�es that (assume (eq assoc Body)) is in the assumption data-base for some Body. Finally the checker introduces (assume (Body f)) intothe assumptions and veri�es that, under that assumption, Q proves D.If there is more than one formula of the form (eq assoc _) among theassumptions, then either the checker will backtrack or { if cuts are introduced10



(lemma(Define\ pi F\ pi P\ pi B\((Define F P) proves B :-pi D\ (assume (eq d F) => (P D) proves B)))(F\P\ (cut refl (P F) (eq F F)))define\(lemma(Def_r\ pi Name\ pi B\ pi F\ pi P\((Def_r Name B P) proves (B Name) :-assume (eq Name F), P proves (B F)))(Name\B\P\ elam F\ (extract (B Name)(extractGoal (assume (eq Name F)) (congr Name F B initial P))))def_r\(lemma(Def_l\ pi Name\ pi B\ pi D\ pi F\ pi Q\((Def_l Name B Q) proves D :- assume (B Name),assume (eq Name F), (assume (B F) => Q proves D)))(Name\B\Q\ elam F\ (extractGoal (assume (eq Name F))(cut (congr F Name B (symm initial) initial) Q (B F))))def_l\ ... Program 7: Machinery for de�nitions.into the checker to prohibit backtracking { the checker will fail. It is up to theauthor of the proof to avoid this situation. However, such backtracking orfailure cannot lead to unsoundness, that is, to invalid proofs being accepted.5 Dynamically constructed clauses and goalsOur technique allows lemmas and de�nitions to be contained within theproof. We do not need to install new \global" lemmas and de�nitions intothe proof checker. The dynamic scoping also means that the lemmas of oneproof cannot interfere with the lemmas of another, even if they have thesame names. This machinery uses several interesting features of �Prolog:Metalevel formulas as terms. As we have seen, the symm lemma(Symm\ pi A\ pi B\ pi P\(Symm P) proves eq A B :- P proves eq B A)occurs inside the proofs as an argument to the lemma constructor and so isjust a data structure (parameterized by Symm); it does not \execute" any-thing, in spite of the fact that it contains the �Prolog connectives :- andpi. This gives us the freedom to write lemmas using the same syntax as weuse for writing primitive inference rules.11



(lemma ... symm\(lemma ... trans\(lemma ... define\(lemma ... def_l\(lemma ... def_r\(define(f\ (forall a\ forall b\ forall c\(eq (f a (f b c)) (f (f a b) c))))assoc\(lemma(Assoc_inst\ pi F\ pi A\ pi B\ pi C\((Assoc_inst F) proves(eq (F A (F B C)) (F (F A B) C)) :- assume (assoc F)))(F\ elam A\ elam B\ elam C\(extract (eq (F A (F B C)) (F (F A B) C))(def_l assoc (Assoc\ (Assoc F))(forall_l (a\ forall b\ forall c\(eq (F a (F b c)) (F (F a b) c)) A)(forall_l (b\ forall c\(eq (F A (F b c)) (F (F A b) c)) B)(forall_l (c\ (eq (F A (F B c)) (F (F A B) c)) C)initial))))))assoc_inst\(forall_r f\ (imp_r (forall_r a\(cut (def_r assoc (Assoc\ (Assoc f)) initial)(trans (f (f a a) (f a a)) (assoc_inst f) (assoc_inst f))(assoc f))))))))))))proves(forall f\((forall a\ forall b\ forall c\(eq (f a (f b c)) (f (f a b) c))) imp(forall a\ eq (f a (f a (f a a))) (f (f (f a a) a) a)))).Theorem 5. (8a; b; c fa(fbc) = f(fab)c)! 8a fa(fa(faa)) = f(f(faa)a)a.
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Dynamically constructed goals. When the clause from Program 4 forthe lemma proof constructor checks the proof of a lemma by executing thegoal (Inference Proof), we are executing a goal that is built from a run-time-constructed data structure. Inference will be instantiated with termssuch as the one above representing the symm lemma. It is only when sucha term is applied to its proof and thus appears in \goal position" that itbecomes the current subgoal on the execution stack.Dynamically constructed clauses. When, having successfully checkedthe proof of a lemma, the lemma clause executes(Inference Name) => ((Rest Name) proves C))it is adding a dynamically constructed clause to the �Prolog database.The Teyjus system does not allow => or :- to appear in arguments ofpredicates. It also does not allow variables to appear at the head of theleft of an implication. These restrictions come from the theory underlying�Prolog [12]; without this restriction, a runtime check is needed to insurethat every dynamically created goal is an acceptable one. We now show thatit is possible to relax the requirements on dynamically constructed clausesand goals to accommodate Teyjus's restrictions.We can avoid putting :- inside arguments of predicates by writing thelemma as(Symm\ pi A\ pi B\ pi P\(Symm P) proves (eq A B) <<== P proves (eq B A))where <<== is a new in�x operator of type o! o. But this, in turn, meansthat the clause for checking lemmas cannot add (Inference Name) as a newclause, since <<== has no operational meaning. Instead, Program 8 containsa modi�ed lemma clause that adds the clause (cl (Inference Name)) wherecl is a new atomic predicate of type o! o. The rest of Program 8 imple-ments an interpreter to handle clauses of the form (cl A) and goals of theform (A <== B) and (A ==>> B). The use of cl is the only modi�cationto the lemma clause. The new clause for the proves predicate is used forchecking nodes in a proof representing lemma applications and illustrates theuse of the new atomic clauses. The (cl Cl) subgoal looks up the lemmasthat have been added one at a time and tries them out via the backchainpredicate. This predicate processes the clauses in a manner similar to the�Prolog language itself. The remaining two clauses are needed in both check-ing lemmas and in checking the rest of the proof for interpreting the newimplication operators when they occur at the top level of a goal.Handling new constants for :- and => is easy enough operationally. How-ever, it is an inconvenience for the user, who must use di�erent syntax inlemmas than in inference rules.If the metalanguage prohibits all terms having o in their types as argu-ments to a predicate, we can go further and introduce a new constant for13



type ==>> o -> o -> o.infixr ==>> 4.type <<== o -> o -> o.infixl <<== 0.type cl o -> o.type backchain o -> o -> o.(lemma Inference Proof Rest) proves C :-pi Name\ (valid_clause (Inference Name),Inference Proof,cl (Inference Name) => ((Rest Name) proves C)).P proves A :- cl Cl, backchain (P proves A) Cl.backchain G G.backchain G (pi D) :- backchain G (D X).backchain G (A,B) :- backchain G A; backchain G B.backchain G (H <<== G1) :- backchain G H, G1.backchain G (G1 ==>> H) :- backchain G H, G1.(D ==>> G) :- (cl D) => G.(G <<== D) :- (cl D) => G.Program 8: An interpreter for dynamic clauses.each metalevel connective, and extend the interpreter to handle them all.Such an implementation makes it possible to implement lemmas nearly asdirectly as in Section 3 even if the metalanguage does not allow metalevelformulas in terms at all. Note that when metalevel formulas are not allowed,there is no possibility for dynamically created goals or clauses.To write a full interpreter, we introduce a new type goal and connectiveswhich build terms of this type. In particular, we now give <<== and ==>>the type goal! goal! goal. We also introduce a new constant ^^ for con-junction having the same type as the implication constructors. Finally, weintroduce all for universal quanti�cation having type (A! goal)! goal.In addition, we change the type of backchain to goal! goal! o, and mod-ify the clauses for comma and pi to use the new constants. In the clausesfor <<== and ==>> in Program 8, note that the goal G1 which appears as anargument inside the head of the clause also appears as a goal in the body ofthe clause. In the full interpreter, we cannot do this. G1 no longer has typeo; it has type goal and is constructed using the new connectives. Instead,we replace G1 with (solveg G1) and implement the solveg predicate tohandle the solving of goals. The new code for solveg and the modi�ed codefor backchain is in Program 9. In order to use this interpreter to solve goalsof the form (P proves A), the proves predicate must be a constructor forterms of type goal, and the meta-level goal presented to �Prolog must havethe form (solveg (P proves A)). Similarly, inference rules must also be14



kind goal type.type ==>> goal -> goal -> goal.infixr ==>> 4.type <<== goal -> goal -> goal.infixl <<== 0.type ^^ goal -> goal -> goal.infixl ^^ 3.type all (A -> goal) -> goal.type cl goal -> o.type backchain goal -> goal -> o.type solveg goal -> o.type proves pf -> form -> goal.type assume form -> goal.type valid_clause goal -> goal.solveg (all G) :- pi x\ (solveg (G x)).solveg (G1 ^^ G2) :- solveg G1, solveg G2.solveg (D ==>> G) :- (cl D) => solveg G.solveg (G <<== D) :- (cl D) => solveg G.solveg G :- cl D, backchain G D.backchain G G.backchain G (all D) :- backchain G (D X).backchain G (A ^^ B) :- backchain G A; backchain G B.backchain G (H <<== G1) :- backchain G H, solveg G1.backchain G (G1 ==>> H) :- backchain G H, solveg G1.Program 9: A full interpreter.

15



cl (proves initial A <<== assume A).cl (proves (and_r Q1 Q2) (A and B) <<==proves Q1 A ^^ proves Q2 B).cl (proves (imp_r Q) (A imp B) <<==(assume A) ==>> (proves Q B)).cl (proves (forall_r Q) (forall A) <<==all y\ (proves (Q y) (A y))).cl (proves (lemma Inference LemmaProof RestProof) C <<==all Name\(valid_clause (Inference Name) ^^Inference LemmaProof ^^(Inference Name) ==>> (proves (RestProof Name) C))).Program 10: Clauses used by the full interpreter.(lemma (Symm\ pi A\ pi B\ pi P\(Symm P) proves (eq A B) :- P proves (eq B A))(P\ elam A\ elam B\(extract (eq A B) (congr B A (eq A) P refl)))(symm\ (forall_r f\ forall_r g\ forall_r x\(imp_r (imp_r (and_r (symm initial) (symm initial)))))))proves(forall f\ forall g\ forall x\(eq f g) imp (eq (f x) x) imp ((eq g f) and (eq x (f x)))).Theorem 6. 8f; g; x:f = g ! f(x) = x! (g = f ^ x = f(x)).represented as objects of type goal and wrapped inside cl to form �Prologclauses. Several examples of clauses for inference rules are given in Pro-gram 10 to illustrate. The last clause is the new clause for handling lemmas.Note that in this version, valid_clause constructs objects of type goal;thus all the clauses for valid_clause must also be wrapped in cl.6 Meta-level typesIn the encoding we have presented, ML-style prenex polymorphism is used inthe forall_r and congr rules of Program 3 and in implementing lemmas asshown in Program 4. We now discuss the limitations of prenex polymorphismfor implementing lemmas which are themselves polymorphic; and we discussways to overcome these limitations both at the meta-level and at the objectlevel. The symm lemma is naturally polymorphic: it should express the ideathat a = 3 ! 3 = a (at type int) just as well as f = �x:3 ! (�x:3) = f(at type int! int). But Theorem 6, which uses symm at two di�erent types,fails to type-check in our implementation. When the �Prolog type-checker�rst encounters symm as a �-bound variable, it creates an uninstantiated typemetavariable to hold its type. The �rst use of symm uni�es this metavariable16



type variable with the type T of x, and then the use of symm at type T! Tfails to match. Prohibiting �-bound variables from being polymorphic is theessence of prenex polymorphism. On the other hand, the proof of Theorem3 type-checks because symm is used at only one type. We can �x Theorem 6by including two copies of the symm lemma inside the proof and using eachone only at one type. This problem was in fact already hidden inside theproof of Theorem 5. In this proof, the symm lemma is used in the proofsof both trans and def_l, def_l is used in the proof of assoc_inst, andboth trans and assoc_inst are used in the proof of the theorem. Tracingthrough the types, we see that symm is used as some type A via trans, andalso at a di�erent type (A! A! A) via assoc_inst. The (hidden) reasonthat this proof checks is that it contains a proof of def_l that is di�erentfrom the one given in Program 7 and in fact doesn't use symm at all.We can generalize the prenex polymorphism of the metalanguage by re-moving the restriction that all type variables are bound at the outermostlevel and allow such binding to occur anywhere in a type, to obtain thesecond-order �-calculus. We start by making the bindings clear in our cur-rent version by annotating terms with fully explicit bindings and quanti�ca-tion. The result will not be �Prolog code, as type quanti�cation and typebinding are not supported in that language. So we will use the standard�Prolog pi and \ to quantify and abstract term variables; but we'll use �and � to quantify and abstract type variables, and use italics for typearguments and other nonstandard constructs.type congr �T. T ! T ! (T ! form)! pf! pf! pf.type forall_r �T. (T ! pf)! pf.�T. pi X: T \ pi Z: T \ pi H: T ! form\ pi Q: pf\ pi P: pf\(congr T X Z H Q P) proves (H X) :-Q proves (eq T X Z), P proves (H Z).�T. pi A: T ! form\ pi Q: T ! pf\(forall_r T Q) proves (forall T A) :- pi Y:T \ (Q Y proves A Y).Every type quanti�er is at the outermost level of its clause; the ML-styleprenex polymorphism of �Prolog can typecheck this program. However, werun into trouble when we try to write a polymorphic lemma. The lemmaitself is prenex polymorphic, but the lemma de�ner is not.Figure 11 is pseudo-�Prolog in which type quanti�ers and type bindingsare shown explicitly. The line marked here contains a �-term, �Symm.body, inwhich the type of Symm is �T.pf! pf. Requiring a function argument to bepolymorphic is an example of non-prenex polymorphism, which is permittedin second-order �-calculus but not in an ML-style type system.Polymorphic de�nitions (using define) run into the same problems andalso require non-prenex polymorphism. For example, the given proof of The-orem 7 cannot be checked in a prenex framework. Thus prenex polymor-phism is su�cient for polymorphic inference rules; non-prenex polymorphism17



type lemma �T. (T ! o)! T ! (T ! pf)! pf.(lemma T Inference Proof Rest) proves C :-pi Name:T\ (valid_clause (Inference Name),Inference Proof,(Inference Name) => ((Rest Name) proves C)).(lemma T(Symm: �T. pf! pf \  here!�T. pi A:T\ pi B:T\ pi P:pf\(Symm T P) proves (eq T A B) :- P proves (eq T B A))(�T. P:pf\ elam A:T\ elam B:T\(extract (eq T A B) (congr T B A (eq T A) P refl)))(symm\ (forall_r I:int\ forall_r J:int\(imp_r (symm int initial)))))proves (forall I\ forall J\ (eq int I J) imp (eq int J I)).Figure 11: Explicitly typed version of Theorem 3.is necessary to directly extend the encoding of our logic to allow polymorphiclemmas, although one can scrape by with monomorphic lemmas by alwaysduplicating each lemma at several di�erent types within the same proof.Proofs in a nonprenex polymorphic calculus cannot, in general, be ex-panded out to monomorphic proofs. Therefore we cannot prove adequacywith respect to Church's higher-order logic. Instead, we can view the (non-prenex polymorphic) object logic as a sublogic of the calculus of construc-tions [4], and prove the soundness and adequacy of our system with respectto that logic (although we have not done such a proof).The prenex-polymorphic �Prolog language can represent only a restrictedset of �-terms, su�cient for polymorphic inference rules but not polymorphiclemmas and de�nitions. Perhaps the problem lies in using a statically typedmetalanguage. Lamport and Paulson [10] have argued that types are notnecessary to a logical metalanguage; the errors that would be caught by astatic type system will always be caught eventually because invalid theoremssimply won't prove, and sometimes the types just get in the way.Types, however, play an essential role in �Prolog [15]. For example, theyare necessary for uni�cation. There is a sublanguage called L� [11] in whichuni�cation doesn't require types, but it is too weak (with restrictions on �-equivalence) to encode our logic without extra rules to perform substitutionexplicitly.Regardless of whether the metalanguage is typed, our logic must cer-tainly be typed. Just as untyped set theory is unsound (with paradoxesabout sets that contain themselves), the untyped version of our higher-orderlogic is also unsound. The proof is simple: in untyped �Prolog we could rep-resent the �xed-point function Y = (F\ (X\ F(X X))(X\ F(X X))), withthe theorem 8f: Y f = f(Y f). By applying Y to (X\ X imp false) we canprove 9x: x = (x! false) from which anything can be proved.18



(lemma ... symm\(lemma ... define\(lemma ... def_l\(lemma ... def_r\(define ... assoc\(forall_r f (forall_r g (imp_r (imp_r (imp_r(cut (def_r assoc (Assoc Assoc f) initial)(cut (def_r assoc (Assoc Assoc g) initial)(and_r(def_l assoc (Assoc Assoc f) initial)(def_l assoc (Assoc Aassoc g) initial))(assoc g))(assoc f))))))))))))proves(8f; g (gff = f))!(8a; b; c (fa(fbc) = f(fab)c))! (8a; b; c (ga(gbc) = g(gab)c)) !(8a; b; c (fa(fbc) = f(fab)c) ^ 8a; b; c (ga(gbc) = g(gab)c))Theorem 7.Therefore, if we build our system in an untyped logical framework thenour checker would have to include an implementation of static polymorphictypechecking of object-logic terms. The machinery for typechecking theobject logic { written out as �Prolog inference rules { would be about aslarge as the proof-checking machinery shown in Figure 3; it is this machinerythat we avoid by using a statically typed metalanguage.There are also several ways to encode our polymorphic logic and allow forpolymorphic lemmas without changing the metalanguage. One possibility isto encode object-level types as meta-level terms. The following encoding ofthe congr rule illustrates this approach.kind tp type.kind tm type.type arrow tp! tp! tp.type form tp.type eq tp! tm! tm! tm.type congr tp! pf! pf! (tm! tm)! tm! tm! pf.congr T Q P H X Z proves H X :-typecheck X T, typecheck Z T, Q proves (eq T X Z), P proves H Z.This encoding also requires the addition of explicit app and abs constructors,primitive rules for �- and �-reduction, and typechecking clauses for termsof types exp and form, but not pf. To illustrate, the new constructors andcorresponding type checking clauses are given below.
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type app tp ! tm ! tm ! tm.type lam (tm ! tm) ! tm.typecheck (app T1 F X) T2 :-typecheck F (arrow T1 T2), typecheck X T1.typecheck (lam F) (arrow T1 T2) :-pi X\ (typecheck X T1 => typecheck (F X) T2).This encoding loses some economy of expression because of the extra con-structors needed for the encoding, and requires a limited amount of type-checking, though not as much as would be required in an untyped framework.For instance, in addition to typechecking subgoals such as the ones in thecongr rule, it must also be veri�ed that all the terms in a particular se-quent to be proved have type form. In this encoding, polymorphism at themeta-level is no longer used to encode formulas, although it is still used forthe lemma constructor. Lemma polymorphism can also be removed by usingan application constructor at the level of proofs, though this would requireadding typechecking for proofs also.Another alternative is to use an encoding similar to one by Harper etal. [7] (for a non-polymorphic higher-order logic) in a metalanguage suchas Elf/Twelf [20, 23]. The extra expressiveness of dependent types allowsobject-level types to be expressed more directly as meta-level types, elimi-nating the need for any typechecking clauses. This encoding still requires ex-plicit constructors for app and abs as well as primitive rules for ��-reduction.The following Twelf clauses, corresponding to �Prolog clauses above, illus-trate the use of dependent types for this kind of encoding.tp : type.tm : tp! type.form : tp.pf : tm form! type.arrow : tp! tp! tp.eq : {T:tp}tm T! tm T! tm form.congr : {T:tp}{X:tm T}{Z:tm T}{H:tm T! tm form}pf (eq T X Z)! pf (H Z)! pf (H X).Elf [20] and Twelf [23] are both implementations of LF [7], the Edinburghlogical framework. Elf 1.5 has full (nonprenex) statically checked polymor-phism with explicit type quanti�cation and explicit type binding, which wehave used to implement polymorphic lemmas approximately as shown in Fig-ure 11. But polymorphism in Elf 1.5 is undocumented and discouraged [21],so we recommend the above encoding instead. Twelf is the successor to Elf.Like Elf, it has higher-order data structures with a static type system, butTwelf is monomorphic. Thus, the above encoding is the only possibility.Both of the above �Prolog and Twelf encodings look promising as a basisfor a proof system with polymorphic lemmas [2].
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kind exp type.type const int! exp.type plus,minus exp! exp! exp.type greater exp! exp! form.eval_plus proves (eq (plus (const I) (const J)) (const K)) :-K is (I + J).gt_c proves (greater (const I) (const J)) :- I > J.plus_zero proves (eq (plus A (const 0)) A).plus_comm proves (eq (plus A B) (plus B A)).(trans_gt P1 P2 C) proves (greater A B) :-P1 proves (greater A C), P2 proves (greater C B).Program 12: Inference rules for arithmetic (excerpt).7 Type abbreviationsIn the domain of proof-carrying code, we encode types as predicates whichthemselves take predicates as arguments. For example, our program hasdeclarations like this one:type hastype (exp! form)! (exp! exp)! exp!((exp! form)! (exp! exp)! exp!form) ! form.Neither Terzo nor Teyjus allow such abbreviations and this is rather aninconvenience. ML-style (nongenerative) type abbreviations would be veryhelpful. In the object-types-as-meta-terms encoding (Section 6) in Twelf,de�nitions provided by Twelf can act as type abbreviations, which is a greatconvenience.8 ArithmeticFor proof-carrying code, we wish to prove theorems about machine instruc-tions that add, subtract, and multiply; and about load/store instructionsthat add o�sets to registers. Therefore we require some rudimentary integerarithmetic in our logic; Program 12 shows some of the inference rules weuse.The is used in the eval_plus rule is the Prolog arithmetic evaluationoperator, and the > used in the gt_c rule is the Prolog arithmetic compar-ison operator. Both of these operators require their arguments to be fullyinstantiated; this restriction poses no problem.Now consider the following lemma:
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lemma(Proof\ pi A\ pi I\ pi J\ pi K\(Proof proves(eq (plus (plus A (const I)) (const J)) (plus A (const K)) :-K is (I + J)))( ... proof ... )plus_redex\ : : :The premise of this lemma is that K is I + J, and the conclusion, roughlyspeaking, is that (A + I) + J = A + K. When we apply this lemma in aproof, we will be attempting to prove some subformula such aseq (plus (plus a (const 2)) (const 3)) (plus a (const 5))and one of the �Prolog subgoals will be to check that 5 is 2 + 3. How-ever, when proving this lemma, we make up new Prolog atoms I,J,K (bypi-binding) and then add the clause K is I + J to the clause databasewhile checking that proof proves the lemma. Presumably, somewhere in-side proof is a use of eval_plus which will check that K is I + J.Teyjus �Prolog does not permit the addition of new clauses for the isoperator. This forces us to make a new operator is' with a default clausethat applies the is operator:type is' int! int! o.A is' B :- A is B.Then our inference rules and lemmas can use is' everywhere; adding newclauses for is' works, and checking an is' subgoal �rst tries the new clauses,and then tries is.Some logical frameworks have powerful arithmetic primitives, such asthe ability to solve linear programs [19] or to handle general arithmeticconstraints [8]. For example, Twelf will soon provide a complete theory ofthe rationals, implemented using linear programming [24]. Some such as Elf1.5 have no arithmetic at all, forcing us to de�ne integers ourselves. On theone hand, linear programming is a powerful and general proof technique,but we fear that it might increase the complexity of the trusted computingbase. On the other hand, synthesizing arithmetic from scratch is no picnic.The standard Prolog is operator seems a good compromise and has beenadequate for our needs.Floating-point or real arithmetic is not as important for our application.We are trying to prove merely the safety of programs, and not correctness.Many safety policies speak only of memory addresses and system-call argu-ments, which rely only on integer arithmetic. We can treat 
oating-pointarithmetic instructions completely abstractly and still prove the safety ofthese programs. Only if we needed to prove properties such as the avoidanceof arithmetic over
ow or division by zero would we need \real" arithmeticin the logic. 22



9 Representing proof termsParameterizable data structures with higher-order uni�cation modulo �-equivalence provide an expressive way of representing formulas, predicates,and proofs. We make heavy use of higher-order data structures with bothdirect sharing and sharing modulo �-reduction. The implementation of themetalanguage must preserve this sharing; otherwise our proof terms willblow up in size.Any logic programming system is likely to implement sharing of termsobtained by copying multiple pointers to the same subterm. In Terzo, thiscan be seen as the implementation of a reduction algorithm described byWadsworth [25]. But we require even more sharing. The similar terms ob-tained by applying a �-term to di�erent arguments should retain as muchsharing as possible. Therefore some intelligent implementation of higher-order terms within the metalanguage|such as Teyjus's use of explicit sub-stitutions [16, 17]|seems essential. Perhaps even a more sophisticated rep-resentation such as optimal reductions [9, 3] would be useful.10 Programming the proverIn this paper, we have concentrated on an encoding of the logic used forproof checking. But of course, we will also need to construct proofs. Forexample, a typical safety property is \the program never stores to a memorylocation outside the address range low . . . high." One way to construct sucha proof is to write programs in a soundly typed source language, such asML or Java, and use a type-preserving compiler to produce a soundly typedlow-level intermediate language [13]. The compiler's typing judgements onthis language can be used as loop invariants (and function preconditions) fora safety proof.A di�erent way to produce proof-carrying code is to take an unsafemachine-language program of unknown provenance and transform it usingsandboxing, which inserts extra instructions before each load and store in-struction that will bound the range of addresses accessed by the load or store(e.g., by bitwise and-ing the address with a constant mask) [26]. Data
owanalysis can be used to eliminate many of these extra instructions. A sand-boxer could, in principle, generate a safety proof for the program it outputs;this proof would be very di�erent from a type-based proof.The point of these two examples is that a program prover will take ad-vantage of speci�c structural properties of the class of programs producedusing a certain method, whether it is type-safe compilation or 
ow-basedsandboxing. To do so, we write a program with special-purpose algorithmsto prove our special class of theorems. For implementing this prover, wehave found that the Prolog-style control primitives (such as the cut (!) op-erator and the is predicate), which are also available in �Prolog, are quiteimportant. 23



�Prolog also provides an environment for implementing tactic-style in-teractive provers [6]. This kind of prover is useful for proving the lemmasthat are used by the automatic prover.Neither Elf nor Twelf have any control primitives. However, there areplans to add an operator to Twelf similar to Prolog cut [21], which wouldallow us to implement the automatic prover in the same way as in �Prolog.It is not possible to build interactive provers in Elf or Twelf, so proofs oflemmas used by the automatic prover must be constructed by hand.11 ConclusionThe logical frameworks discussed in this paper are promising vehicles forproof-carrying code, or in general where it is desired to keep the proof checkeras small and simple as possible. We have proposed a representation for lem-mas and de�nitions that should help keep proofs small and well-structured,and it appears that each of these frameworks has features that are useful inimplementing, or implementing e�ciently, our machinery.Although the lemma system shown in this paper is particularly lightweightand simple to use, its lack of polymorphic de�nitions and lemmas has led usto further investigate the encodings (sketched in Section 6) that use object-level polymorphic types [2].AcknowledgementsWe thank Robert Harper, Frank Pfenning, Carsten Sch�urmann for advice about en-coding polymorphic logics in a monomorphic dependent-type metalanguage; RobertHarper and Daniel Wang for discussions about untyped systems; Ed Felten, Neophy-tos Michael, Kedar Swadi, and Daniel Wang for providing user feedback; GopalanNadathur and Dale Miller for discussions about �Prolog.References[1] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In6th ACM Conf. on Computer and Communications Security, Nov. 1999.[2] Andrew W. Appel and Amy P. Felty. Polymorphic lemmas in LF and �Prolog.In preparation, 1999.[3] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Func-tional Programming Languages. Cambridge University Press, 1998.[4] Thierry Coquand and G�erard Huet. The calculus of constructions. Informationand Computation, 76(2/3):95{120, February/March 1988.[5] Luis Damas and Robin Milner. Principal type-schemes for functional programs.In Ninth ACM Symposium on Principles of Programming Languages, pages207{12, New York, 1982. ACM Press.24
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