
A Logical Framework for Systems Biology
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Abstract. We propose a novel approach for the formal verification of
biological systems based on the use of a modal linear logic. We show how
such a logic can be used, with worlds as instants of time, as an unified
framework to encode both biological systems and temporal properties
of their dynamic behaviour. To illustrate our methodology, we consider
a model of the P53/Mdm2 DNA-damage repair mechanism. We prove
several properties that are important for such a model to satisfy and
serve to illustrate the promise of our approach. We formalize the proofs
of these properties in the Coq Proof Assistant, with the help of a Lambda
Prolog prover for partial automation of the proofs.

1 Introduction

In this paper, we consider the question of reasoning about biological systems
in a modal linear logic. We show that a new logic, called Hybrid Linear Logic
(HyLL) developed by the second author in joint work with K. Chaudhuri [8,14],
is particularly well-suited to this purpose. HyLL provides a unified framework
to encode biological systems, to express temporal properties of their dynamic
behaviour, and to prove these properties. By constructing proofs in the HyLL
logic, we directly witness reachability as logical entailment. This approach is
in contrast to most current approaches to applying formal methods to systems
biology, which generally encode biological systems either in a dedicated pro-
gramming language or in differential equations, express properties in a temporal
logic, and then verify these properties against some form of traces built using an
external simulator. In the next subsection, we review in some detail the state of
the art of such approaches, in order to further situate and motivate our new ap-
proach. In Sect. 1.2, we motivate our choice of linear logic in general and HyLL
in particular. Then in Sect. 1.3, we further outline our contributions as well as
the overall organization of the rest of the paper.

1.1 Formal Methods for Systems Biology

Computational systems biology provides a variety of methods for understanding
the structure of biological systems and for studying their dynamics, that is, the
temporal evolution of the involved entities.
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To capture the qualitative nature of dynamics, Thomas introduced a Boolean
approach for regulatory networks (an entity is present or absent) [32] and sub-
sequently generalized it to multivalued levels of concentration [33]. Contrary to
Petri nets, which are based on synchronous updating techniques [29], Thomas’
discrete models are asynchronous. Other purely qualitative approaches are π-
calculus [31], bio-ambients [30], and reaction rules [13,7].

To describe the dynamics from a quantitative point of view, ordinary or
stochastic differential equations are heavily used. More recent approaches include
hybrid Petri nets [22] and hybrid automata [1,5], piecewise linear equations [24],
stochastic π-calculus [28], and rule-based languages with continuous/stochastic
dynamics such as Kappa [13].

The Biochemical Abstract Machine Biocham [15] is a framework that allows
the description of a biochemical system in terms of reaction rules and the in-
terpretation of it at different levels of abstraction, by either an asynchronous
Boolean transition system (Boolean semantics), a continuous time Markov chain
(stochastic semantics), or a system of ordinary differential equations over molec-
ular concentrations (differential semantics).

One of the most common approaches to the formal verification of biological
systems is model checking [11]. Model checking allows one to verify desirable
properties of a system by an exhaustive enumeration of all the states reachable
by the system. In order to apply such a technique, the biological system should
be encoded as a finite transition system and relevant system properties should be
specified using propositional temporal logic. Formally, a transition system over
a set AP of atomic propositions is a tuple M = (Q, T, L), where Q is a finite
set of states, T ⊆ Q × Q is a total transition relation (that is, for every state
q ∈ Q there is a state q′ ∈ Q such that T (q, q′)), and L : Q → 2AP is a labeling
function that maps every state into the set of atomic propositions that hold at
that state.

Temporal logics are formalisms for describing sequences of transitions between
states. The computation tree logic CTL∗ allows one to describe properties of
computation trees. Its formulas are obtained by (repeatedly) applying Boolean
connectives, path quantifiers, and state quantifiers to atomic formulas. The path
quantifier A (resp., E) can be used to state that all paths (resp., some path)
starting from a given state have some property. The state quantifiers are X (next
time), F (sometimes in the future), G (always in the future), and U (until). The
branching time logic CTL is a fragment of CTL∗ that allows quantification over
the paths starting from a given state. Unlike CTL∗, it constrains every state
quantifier to be immediately preceded by a path quantifier. The linear time
logic LTL is another known fragment of CTL∗ where one may only describe
events along a single computation path. The Probabilistic Computation Tree
Logic PCTL quantifies the different paths by replacing the E and A modalities
of CTL by probabilities.

In Biocham, CTL, LTL, and a fragment of PCTL with numerical constraints
are used in the three semantics of reaction models, respectively, in the boolean
semantics, in the differential semantics and in the stochastic semantics.
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Given a transition system M = (Q, T, L), a state q ∈ Q, and a temporal logic
formula ϕ expressing some desirable property of the system, the model checking
problem consists of establishing whether ϕ holds at q or not, namely, whether
M, q |= ϕ. Another formulation of the model checking problem consists of finding
all the states q ∈ Q such that M, q |= ϕ. Observe that the second formulation is
more general than the first one.

There exist several tools for checking if a finite state system verifies a given
CTL, LTL, or PCTL formula, e.g., NuSMV [10], SPIN [23], and PRISM [20].

In contrast to the above approaches, in our new technique we encode both
biological systems and temporal properties in HyLL, and prove that the prop-
erties can be derived from the system. We focus on Boolean systems and in this
case a time unit corresponds to a transition in the system. We believe that dis-
crete modeling is crucial in systems biology because it allows taking into account
some phenomena that have a very low chance of happening (and could thus be
neglected by differential approaches), but which may have a strong impact on
system behaviour.

1.2 Linear Logic

Linear Logic (LL) [19] is particularly well suited for describing state transition
systems. LL has been successfully used to model such diverse systems as: Petri
nets, CCS, the π-calculus [6,26], concurrent ML [6], security protocols [4], mul-
tiset rewriting, and games.

In the area of biology, for example, a rule of activation (e.g., a protein activates
a gene or the transcription of another protein) can be modeled by the following
LL axiom:

active(a, b)
def
= pres(a) → (pres(a)⊗ pres(b)).

The formula active(a, b) describes the fact that a state where a is present
(pres(a) is true) can evolve into a state where both pres(a) and pres(b) are
true.

Propositions such as pres(a) are called resources, and a rule in the logic can
be viewed as a rewrite rule from a set of resources into another set of resources,
where a set of resources describes a state of the system. Thus, a particular state
transition system can be modeled by a set of rules of the above shape. The rules
of the logic then allow us to prove some desired properties of the system, such
as, for example, the existence of a stable state.

However, linear implication is timeless: there is no way to correlate two con-
current transitions. If resources have lifetimes and state changes have temporal,
probabilistic or stochastic constraints, then the logic will allow inferences that
may not be realizable in the system being modeled. This was the motivation of
the development of HyLL, which was designed to represent constrained transi-
tion systems.
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1.3 Contributions and Organization

In this work, we present some first applications of HyLL to systems biology. We
present HyLL in Sect. 2 and the overall approach to the application domain in
Sect. 3. We choose a simple yet representative biological example concerning the
DNA-damage repair mechanism based on proteins p53 and Mdm2, and present
and prove several properties of this system (Sect. 4). We fully formalize these
proofs in a theorem prover we have implemented in the Coq Proof Assistant [2]
and λProlog [27] (Sect. 5). This prover is designed to both reason in HyLL and
to formalize meta-theoretic properties about it.

We discuss the merits and eventual drawbacks of this new approach compared
to approaches using temporal logic and model checking. To better illustrate the
correspondence with such approaches, we also present in some detail the encoding
of temporal logic operators in HyLL (Sect. 6).

We conclude and discuss future work in Sect. 7.
An electronic appendix (fmmb-eappendix.pdf) as well as the formal proofs

and a report describing our informal proofs in more detail can be found at
www.eecs.uottawa.ca/~afelty/fmmb14/. All references to the appendix in this
paper point to this web site.

2 A Hybrid Linear Logic

HyLL is a conservative extension of intuitionistic first-order linear logic (LL) [19]
where the truth judgements are parameterized on a constraint domain: A @ w
stands for the truth of A under constraint w. A typical example of such a judge-
ment is “A is true at time t”, or “with probability p.”

2.1 HyLL Syntax

Like in the linear logic LL, propositions are interpreted as resources which may
be composed into a state using the usual linear connectives, and the linear impli-
cation (→) denotes a transition between states. The world label w of a judgement
A @ w represents a constraint on states and state transitions; particular choices
for the worlds produce particular instances of HyLL. The common component
in all the instances of HyLL is the proof theory, which is fixed once and for all.
The minimal requirement on the kinds of constraints that HyLL can deal with
is defined as follows:

Definition 1. A constraint domain W is a monoid structure 〈W, ., ι〉. The el-
ements of W are called worlds, and the partial order � : W × W—defined as
u � w if there exists v ∈ W such that u.v = w—is the reachability relation in
W.

The identity world ι is �-initial and is intended to represent the lack of any
constraints. Thus, the ordinary first-order linear logic is embeddable into any

fmmb-eappendix.pdf
www.eecs.uottawa.ca/~afelty/fmmb14/
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instance of HyLL by setting all world labels to the identity. A typical and sim-
ple example of constraint domain is T = 〈	+,+, 0〉, or 〈IN,+, 0〉, representing
instants of time.

Atomic propositions are written using lowercase letters (p, q, ...) applied to a
sequence of terms (s, t, . . .), which are drawn from an untyped term language con-
taining constants (c, . . .), term variables (x, y, . . .) and function symbols (f, g, ...)
applied to a list of terms (�t). Non-atomic propositions are constructed from the
connectives of first-order intuitionistic linear logic and the two hybrid connec-
tives satisfaction (at), which states that a proposition is true at a given world
(w, ι, u.v, . . .), and localization (↓), which binds a name for the (current) world
the proposition is true at. The following grammar summarizes the syntax of
HyLL terms (t), and propositions (A, B).

t ::= c | x | f(�t)
A,B ::= p(�t) | A⊗B | 1 | A → B | A&B | � | A⊕B | 0 | !A |

∀x. A | ∃x. A | (A at w) | ↓ u. A | ∀u. A | ∃u. A
Note that world u is bound in the propositions ↓ u.A, ∀u. A and ∃u. A.

World variables cannot be used in terms, and neither can term variables occur
in worlds; this restriction is important for the modular design of HyLL because
it keeps purely logical truth separate from constraint truth. We let α range over
variables of either kind. Note that ↓ and at commute freely with all non-hybrid
connectives [8].

2.2 Sequent Calculus for HyLL

We present the syntax of hybrid logic in a sequent calculus style [18], using
sequents of the form Γ ;Δ � C @ w where Γ and Δ are sets of judgements of
the form A @ w, with Δ being moreover a multiset. Γ is called the unrestricted
context : its hypotheses can be consumed any number of times. Δ is a linear
context : every hypothesis in it must be consumed singly in the proof. Note that
in a judgement A @ w (as in a proposition A at w), w can be any expression in
W , not only a variable.

The main set of inference rules is in Fig. 1 (the complete set is in Appendix
A). The rules for the first-order quantifiers (omitted) and the exponential ! are
completely standard. A brief discussion of the hybrid rules follows. To introduce
the satisfaction proposition (A at u) (at any world w) on the right, the proposi-
tion A must be true in the world u. The proposition (A at u) itself is then true
at any world, not just in the world u. In other words, (A at u) carries with it
the world at which it is true. Therefore, suppose we know that (A at u) is true
(at any world v); then, we also know that A @ u, and we can use this hypothesis
(rule “at L”). The other hybrid connective of localisation, ↓, is intended to be
able to name the current world. That is, if ↓ u. A is true at world w, then the
variable u stands for w in the body A. This interpretation is reflected in its
right introduction rule ↓ R. For left introduction, suppose we have a proof of
↓ u. A @ v for some world v. Then, we also know, and thus can use A[v/u] @ v.

Note that there are only two structural rules in HyLL. Weakening and con-
traction are admissible rules. For example:
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Judgemental rules

Γ ; p(�t) @ w � p(�t) @ w [init]
Γ,A @ u;Δ,A @ u � C @ w

Γ,A @ u;Δ � C @ w
copy

Multiplicative

Γ ;Δ � A @ w Γ ;Δ′ � B @ w

Γ ;Δ,Δ′ � A⊗B @ w
⊗R

Γ ;Δ,A @ u, B @ u � C @ w

Γ ;Δ,A⊗B @ u � C @ w
⊗ L

Γ ; . � 1 @ w [1R]
Γ ;Δ � C @ w

Γ ;Δ, 1@ u � C @ w
1L

Γ ;Δ, A @ w � B @ w

Γ ;Δ � A → B @ w
→ R

Γ ;Δ � A @ u Γ ;Δ′, B @ u � C @ w

Γ ;Δ,Δ′, A → B @ u � C @ w
→ L

Additive

Γ ;Δ � T @ w [T R] Γ ;Δ,0 @ u � C @ w [0L]

Γ ;Δ � A @ w Γ ;Δ � B @ w

Γ ;Δ � A&B @ w
&R

Γ ;Δ,Ai @ u � C @ w

Γ ;Δ,A1 &A2 @ u � C @ w
& Li

Γ ;Δ � Ai @ w

Γ ;Δ � A1 ⊕ A2 @ w
⊕Ri

Γ ;Δ,A @ u � C @ w Γ ;Δ,B @ u � C @ w

Γ ;Δ,A⊕B @ u � C @ w
⊕ L

Exponentials rules

Γ ; . � A @ w

Γ ; . � !A @ w
!R

Γ,A @ u;Δ � C @ w

Γ ;Δ, !A @ u � C @ w
!L

Hybrid connectives

Γ ;Δ � A @ u

Γ ;Δ � (A at u) @ w
[at R]

Γ ;Δ,A @ u � C @ w

Γ ;Δ, (A at u) @ v � C @ w
[at L]

Γ ;Δ � A[w/u] @ w

Γ ;Δ �↓ u.A @ w
[↓ R]

Γ ;Δ,A[v/u] @ v � C @ w

Γ ;Δ, ↓ u.A @ v � C @ w
[↓ L]

Fig. 1. (Part of) the sequent calculus for HyLL

Theorem 2 (weakening). If Γ ;Δ � C @ w, then Γ, Γ ′;Δ � C @ w.

The most important structural properties are the admissibility of the identity
and cut theorem; the latter guarantees consistency.

Theorem 3 (identity). Γ,A @ w � A @ w.

Theorem 4 (cut)
1. If Γ ;Δ � A @ u and Γ ;Δ′, A @ u � C @ w, then Γ ;Δ,Δ′ � C @ w
2. If Γ ; . � A @ u and Γ,A @ u;Δ � C @ w, then Γ ;Δ � C @ w.

An example of derived statements, true in every semantics for worlds, is the
following:
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Proposition 5 (relocalisation). Any true judgement can be relocated at any
time in the future:

Γ ;A1 @ w1 · · ·Ak @ wk � B @ v

Γ ;A1 @ u.w1 · · ·Ak @ u.wk � B @ u.v

This property is particularly well suited to applications in biology. The interested
reader can find proofs and further meta-theoretical theorems about HyLL in [8].

2.3 Some Definitions for Biology

We can define modal connectives in HyLL as follows:

Definition 6 (modal connectives)

�A
def
= ↓u. ∀w. (A at u.w) ♦A def

= ↓u. ∃w. (A at u.w)

δv A
def
= ↓u. (A at u.v) †A def

= ∀u. (A at u)

The connective δ represents a form of delay. Note its derived right rule:

Γ � A @ w.v

Γ � δv A @ w
[δR]

The proposition δv A thus stands for an intermediate state in a transition to
A. Informally it can be thought to be “v before A”. The modally unrestricted
proposition †A represents a resource that is consumable in any world; it is mainly
used to make transition rules applicable at all worlds.

Oscillation is one of the typical properties of interest in biological systems
(illustrated here by Property 1 in Sect. 4.3). In our logic, we can define one
oscillation between A and B, with respective delays u and v, as follows:

Definition 7 (one oscillation)

oscillate1 (A,B, u, v)
def
= A & δu(B & δv A) & (A&B → 0)

Note that the above HyLL proposition closely corresponds to the temporal
formula A ∧ EF(B ∧ EFA).

Oscillation can be more generally defined by the following proposition in
HyLL:

Definition 8 (oscillation)

oscillateh (A,B, u, v)
def
= †[(A → δu B) & (B → δv A)] & (A&B → 0).

However, since oscillation can be considered a meta-level property of the bio-
logical systems modeled in HyLL, this property is perhaps more naturally defined
as follows:

Definition 9 (oscillation). oscillate (A,B, u, v)
def
= for any w,

(A @ w � B @ w.u), (B @ w.u � A @ w.u.v), and (� A&B → 0 @ w).
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2.4 Temporal Constraints

In this paper, we only consider the constraint domain T = 〈IN,+, 0〉 representing
(discrete) instants of time, and we write HyLL[T ] for this instantiation of HyLL.
Delay (Definition 6) in HyLL[T ] represents intervals of time; δdA means “A will
become available after delay d”. For our temporal specifications the notion of
addition on times is fundamental.

3 Approach

In this work we take into consideration Boolean models consisting of (i) a set
of Boolean variables, (ii) a (partially defined) initial state denoting the pres-
ence/absence of (some) variables, and (iii) a set of rules of the form Li ⇒ Ri,
where the left (resp. right) hand side of the rule Li (resp. Ri) is the conjunction
of a set of predicates concerning the presence/absence of variables. For example,
x1 ∧ x2 ⇒ ¬x3 is a valid rule. This kind of rule can be used to describe state
transitions involving control variables or abstract processes. In Biocham [15],
they are mostly used to represent biochemical reactions (observe that Biocham
rules are more restrictive, they do not express the absence of a variable). In this
paper, we take advantage of these rules to express influence rules (e.g. activations
and inhibitions) in a biological system.

Observe that, given a Boolean model of this kind, although we do not do it,
it is always possible to build a transition system where the set of states is the
set of all tuples of Boolean values denoting the presence/absence of the different
variables, and a pair of states (s,s′) belongs to the relation if and only if there
exists a rule i such that s satisfies Li, s

′ satisfies Ri, and all the variables not
involved in rule i have the same value in s and s′.

If Li speaks about the presence of a variable x, nothing can be said about
the presence/absence of x in s′. In other words, nothing can be inferred about
the consumption of variables appearing in the left hand side of rules. If we
want to force consumption/not consumption, we have to specify it explicitly.
Furthermore, our rules are asynchronous: one rule can be fired at a time. If several
rules can be taken from a given state, one of them is non-deterministically chosen.
As in Biocham, we choose an asynchronous semantics in order to eliminate the
risk of affecting fundamental biological phenomena such as the masking of a
relation by another one and the consequent inhibition/activation of biological
processes.

To verify whether a Boolean model satisfies a given temporal property, our
approach consists of encoding both the model and the property in the HyLL logic
and producing a proof. Observe that we do not explicitly build the transition
system, we just give a set of variables and rules. Proving temporal properties can
result in building a sub-part of the system. There is an analogy with on-the-fly
model checking [12], a technique that in many cases avoids the construction of
the entire state space of the system (because the property to test guides the
construction of the system).
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4 Example

In this section we focus on the P53/Mdm2 DNA-damage repair mechanism. P53
is a tumor suppressor protein that is activated in reply to DNA damage. In
normal conditions, the concentration of p53 in the nucleus of a cell is weak: its
level is controlled by another protein, Mdm2. These two proteins present a loop
of negative regulation. In fact, P53 activates the transcription of Mdm2 while
the latter accelerates the degradation of the former.

DNA damage increases the degradation rate of Mdm2 so that the control of
this protein on P53 becomes weaker and the concentration of p53 can increase.
P53 can thus exercise its functions, either stopping the cell cycle to allow DNA
repair, or provoking apoptosis, if damage is too heavy.

When Mdm2 loosens its influence on P53, it is possible to observe some os-
cillations of P53 and Mdm2 concentrations. The answer to a stronger damage
is a bigger number of oscillations. In the literature, several models have been
proposed to model the oscillatory behaviour of proteins P53 and Mdm2 (see e.g.
Ciliberto et al. [9]). In [25] it is shown how a model of the P53/Mdm2 DNA-
damage repair mechanism can be exploited in the study of cancer therapies.

4.1 Definition

In the following we propose a simple Boolean model considering the presence/ab-
sence of the three variables DNAdam, P53, and MdM2. Initial states are the ones
where P53 is absent and Mdm2 is present.

The behaviour of the biological system is specified by the six following rules:

1) Dnadam ⇒ ¬Mdm2 4) Mdm2 ⇒ ¬P53
2) ¬Mdm2 ⇒ P53 5) P53 ⇒C ¬Dnadam
3) P53 ⇒ Mdm2 6) ¬Dnadam ⇒ Mdm2

In rule 5, we use ⇒C to force consumption, i.e., if P53 is present, after firing the
rule both P53 and Dnadam are absent. Note that, if Dnadam is present in the
initial state, this rule (that refers to damage repair) can be non-deterministically
fired after one, a few, or several P53/MdM2 oscillations. This is consistent with
experiments, where the number of oscillations preceding damage repair depends
on the damage entity. In the other rules we assume there is no consumption.

4.2 Specification in HyLL

The biological system is modeled in HyLL by a set of axioms of two kinds. First,
each rule of the biological system is modeled by a formula in HyLL, as it would be
in ordinary linear logic, with the additional use of the delay operator δv, making
precise the delay taken by the corresponding transition. The domain of world
is T = 〈IN,+, 0〉 and we fix all time delays to 1. Then we add a set of axioms
stating some well-definedness conditions and the initial state. To encode the
basic Boolean model, we use two predicates: pres(a) (seen earlier) and abs(a)
to indicate the presence or absence of variable a. The full model is given in Fig. 2.
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Activation/Inhibition Rules. For the sake of clarity, we first define generic
activation/inhibition actions. These actions can be defined in various ways. A
first attempt at describing an activation rule without consumption, for example,
might be the following:

w active(a, b)
def
= pres(a) → δ1(pres(a)⊗ pres(b)).

Note that in the case where b is present, the above rule does not modify the
state. In order to avoid uninteresting proofs, we might alternatively define our
activation rule in a more precise way, as follows:

s active(a, b)
def
= pres(a)⊗ abs(b) → δ1(pres(a)⊗ pres(b)).

We call the first kind of rules weak rules, and the second one strong rules. For
the sake of completeness, let us mention a third kind of rules, that we might call
useless:

u active(a, b)
def
= pres(a)⊗ pres(b) → δ1(pres(a)⊗ pres(b)).

The general form of an activation rule, taking in account the various possible
values of b, and our eventual missing knowledge of this, is then the following:

active(a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))⊕ (pres(a)⊗ abs(b)))

→ δ1(pres(a)⊗ pres(b)).

The properties stated in the present paper will all use the general form of the
biological rules, except Property 4, which is only valid for strong rules.

There are further alternatives for the activation/inhibition rules. Let us con-
sider the above strong variant s active(a, b). We can define an activation with
consumption (of the product a) as follows:

s activec(a, b)
def
= pres(a)⊗ abs(b) → δ1(abs(a)⊗ pres(b)),

while a strong activation will have an inhibitor effect, in case of absence of a:

s actives(a, b)
def
= abs(a)⊗ pres(b) → δ1(abs(a)⊗ abs(b)).

Our example also uses the corresponding three kinds of rules for the inhibition
actions (see Fig. 2). Of course, we could also define activation/inhibition rules
accounting for a lack of information concerning consumption.

The System. Before giving the complete definition of our system, we need
to additionally specify, in each rule, that if a variable is not touched, then its
value remains the same in the next state. This is the purpose of the unchanged
predicate, which in turn leads us to introduce a parameter vars, specifying the
set of variables of the biological system.

Note that the definition of the unchanged predicate relies on the hypothesis
(discussed earlier, in Sect. 3) that only one rule of the biological system can fire
at a time. Note also the use of the ! and & operators in its definition: this is an
intuitionistic predicate.
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– Variables:

unchanged(x,w)
def
= ! [(pres(x) at w → pres(x) at w.1) &

(abs(x) at w → abs(x) at w.1)].

unchanged(V,w)
def
= ⊗x∈V unchanged(x,w).

– Activation:

active(V, a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))⊕ (pres(a)⊗ abs(b)))

→ δ1(pres(a)⊗ pres(b)) ⊗ ↓ u. unchanged(V \ {a, b}, u)).
– Activation with consumption:

activec(V, a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))⊕ (pres(a)⊗ abs(b)))

→ δ1(abs(a)⊗ pres(b)) ⊗ ↓ u. unchanged(V \ {a, b}, u)).
– Strong activation:

actives(V, a, b)
def
= (abs(a)⊕ (abs(a)⊗ pres(b))⊕ (abs(a)⊗ abs(b)))

→ δ1(abs(a)⊗ abs(b)) ⊗ ↓ u. unchanged(V \ {a, b}, u)).
– Inhibition:

inhib(V, a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))⊕ (pres(a)⊗ abs(b)))

→ δ1(pres(a)⊗ abs(b)) ⊗ ↓ u. unchanged(V \ {a, b}, u)).
– Inhibition with consumption:

inhibc(V, a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))⊕ (pres(a)⊗ abs(b)))

→ δ1(abs(a)⊗ abs(b)) ⊗ ↓ u. unchanged(V \ {a, b}, u)).
– Strong inhibition:

inhibs(V, a, b)
def
= (abs(a)⊕ (abs(a)⊗ pres(b))⊕ (abs(a)⊗ abs(b)))

→ δ1(abs(a)⊗ pres(b)) ⊗ ↓ u. unchanged(V \ {a, b}, u)).
– Well definedness:

well defined0(V )
def
= ∀a ∈ V. [pres(a)⊗ abs(a) → 0].

well defined1(V )
def
= ∀a ∈ V. [pres(a)⊕ abs(a)].

well defined(V )
def
= well defined0(V ), well defined1(V ).

– The system :

vars
def
= {p53, Mdm2, DNAdam}.

rule(1)
def
= inhib(vars, DNAdam, Mdm2). rule(4)

def
= inhib(vars, Mdm2, p53).

rule(2)
def
= inhibs(vars, Mdm2, p53). rule(5)

def
= inhibc(vars, p53, DNAdam).

rule(3)
def
= active(vars, p53, Mdm2). rule(6)

def
= inhibs(vars, DNAdam, Mdm2).

system
def
= vars, rule(1), rule(2), rule(3),

rule(4), rule(5), rule(6), well defined(vars).

– Initial state:
initial state

def
= abs(p53)⊗ pres(Mdm2), initial state at 0.

Fig. 2. Representation of the System in HyLL

4.3 Proofs

Although linear logic is well suited to describing transition systems, as we do
here in the area of biology, this logic can sometimes be too precise in its resource
management for our needs. To solve this constraint, we sometimes make precise
that we do not care about the value of some variables. We define a dont care

predicate for this purpose:

dont care(x)
def
= pres(x)⊕abs(x) dont care(V )

def
= ⊗x∈V dont care(x).
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This predicate is used in the statement of two of the four properties we present
in this paper (Properties 1 and 4).

Additionally, in some proofs, when we do not know the value of some variables
of the system, we sometimes need to perform a case analysis on their two possible
values, using the well defined1 predicate introduced for this purpose.

Finally let us give two definitions in order to further shorten propositions and
proofs (state0 is a state equivalent to the initial state):

state0
def
= abs(p53)⊗ pres(Mdm2) state1

def
= pres(p53)⊗ abs(Mdm2).

Property 1. As long as there is DNA damage, the above system can oscillate
(with a short period) from state0 to state1 and back again. We outline the proof
informally for this property only. Others are omitted. We refer the reader to the
electronic appendix (for both the sequent proofs and their formalization).

From state0 and pres(DNAdam) we get abs(p53), abs(Mdm2), and pres(DNAdam)
by rule 1. Then pres(p53), abs(Mdm2), and pres(DNAdam) (state1) by rule 2.
Then pres(p53), pres(Mdm2), and pres(DNAdam) by rule 3, and finally abs(p53),
pres(Mdm2), and pres(DNAdam) (state0) by rule 4.

We define (and prove) our property in the two possible ways discussed earlier
(Sect. 4.2), roughly corresponding to Definitions 7 and 9, respectively. The dif-
ference here is that our initial state (the one from which the oscillation starts)
includes the presence of DNA damage.

Proposition (Property 1, Version 1). For any world w, there exists two
worlds u and v such that both u and v are less than 3 and the following holds:

† system @ 0 ; state0 ⊗ pres(DNAdam) @ w
� δu[(state1 ⊗ dont care(DNAdam)) &

(δv(state0 ⊗ dont care(DNAdam)))] @ w

Alternatively, our property can be defined:

Proposition (Property 1, Version 2). For any world w, there exists two
worlds u and v such that both u and v are less than 3 and the following holds:

† system @ 0 ; state0 ⊗ pres(DNAdam) @ w
� state1 ⊗ dont care(DNAdam) @ w.u and

† system @ 0 ; state1 @ w.u � state0 @ w.u.v

There are no dont care’s needed in the conclusion of the second sequent because
only rules 3 and 4 are used, which don’t involve DNAdam.

Property 2. DNA damage can be quickly recovered. This property can be
stated directly as follows.

Proposition (Property 2). For any world w, there exists a world u such that
u is less than 5 and the following holds:

† system @ 0; state0 ⊗ pres(DNAdam) @ w � state0 ⊗ abs(DNAdam) @ w.u
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Induction/Case Analysis. Most of interesting proofs require case analysis
or induction; this is the case for Properties 3 and 4 below. More precisely, we
need here case analysis on the set of fireable rules. We implement this by a case
analysis on the interval [1..6] of our six rules, together with a new predicate
fireable defining the necessary conditions for each rule to fire. We shall also
need the negation of this predicate: not fireable. We give here the definitions
of these predicates for the first rule of our system, for both (strong and general)
styles of the rules used in the present paper (the complete definitions can be
found in Appendix B):

fireables(1)
def
= pres(DNAdam)⊗ pres(Mdm2)⊗ dont care(p53)

not fireables(1)
def
=

((abs(DNAdam)⊗ pres(Mdm2)) ⊕ (pres(DNAdam)⊗ abs(Mdm2)) ⊕
(abs(DNAdam)⊗ abs(Mdm2))) ⊗ dont care(p53)

fireable(1)
def
=

(pres(DNAdam)⊕ (pres(DNAdam)⊗ pres(Mdm2))⊕
(pres(DNAdam)⊗ abs(Mdm2))) ⊗ dont care(p53)

not fireable(1)
def
= abs(DNAdam) ⊗ dont care({Mdm2, p53})

An (informal) formula like “for any fireable rule r, P” will be written as “for any
rule r in the interval [1..6], the following holds: (fireable(r) & P ) ⊕
not fireable(r)”. Note that both definitions of fireable and not fireable

could be generated from the definitions of the biological rules, as the rules we
consider in the present paper always have the same shape.

Property 3. If there is no DNA damage, the system remains in the initial state.
A first attempt at formalizing this property might be:

For any world w, the following holds: † system @ 0, abs(DNAdam) @ 0 �
state0 ⊗ abs(DNAdam) @ w.

However, the above statement does not model our property. We want to prove
that if abs(DNAdam) @ 0 then state0 ⊗ abs(DNAdam) @ w holds, for all worlds
w, no matter which rule is fired to get to w. Thus our property requires a case
analysis on the rules of the biological system.

Proposition (Property 3). Let P denote the formula state0 ⊗ abs(DNAdam).
For any world w, the following holds: † system @ 0, P @ 0 � P at 0 @ w;
and for any world w, for any rule r in the interval [1..6], the following holds:

† system @ 0 � P → (fireable(r) & δ1 P) ⊕ not fireable(r) @ w

The proof of the second statement proceeds by case analysis on the rules (r)
of the biological system. There are only two fireable rules: rule(4) and rule(6).

Property 4. There is no path with two consecutive states where p53 and Mdm2

are both present or both absent. In other words: from any state where p53 and
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Mdm2 are both present or both absent, we can only go to a state where either
p53 is present and Mdm2 is absent or p53 is absent and Mdm2 is present.

This requires a stronger (natural) hypothesis: we need the property that each
rule modifies at least one entity in the system. In order to achieve this, we shall
use the strong style of definitions for our inhibition and activation rules discussed
earlier (Sect. 4.2). For example, the activation rule will be defined as follows:

s active(V, a, b)
def
= pres(a)⊗ abs(b) →

δ1(pres(a)⊗ pres(b))⊗ ↓ u. unchanged(V \ {a, b}, u)).
The complete set of strong rules can be found in Appendix B.

Let L and R denote the following two formulas:

L := (pres(p53) ⊗ pres(Mdm2)) ⊕ (abs(p53) ⊗ abs(Mdm2))
R := ((pres(p53) ⊗ abs(Mdm2)) ⊕

(abs(p53) ⊗ pres(Mdm2)))⊗ dont care(DNAdam)

We want to prove that from state L we can only go to state R, no matter which
rule is fired. Here again, we need case analysis on the set of fireable rules :

Proposition (Property 4). For any world w, for any rule r in the interval
[1..6], the following holds:

† system @ 0; . � L → (s fireable(r) & δ1 R) ⊕ s not fireable(r) @ w

Property 4 could be written as the CTL formula AG(L → AXR) (see Sect. 6
for the encoding of such a formula in HyLL). Nevertheless, to simplify the proof
we can observe that the argument property of AG contains an implication and
thus all the possible states verifying the left hand side of the implication should
be taken into account in the proof. As a matter of fact, at each step we do not
make assumptions on the state where L holds. The system satisfies Property 4 if
all its states satisfy L → AXR. Since in our transition system all the states are
reachable from the initial states, this corresponds to requiring the satisfaction
of Property 4 at (that is, from) the initial states. In case we want to test such
a property at a state Si that is not connected to all the other states, we only
need to prove the property in the subtree of the transition system rooted in Si.
In HyLL, we should prove the following theorem: if reachable(S, Si) then S �
L → ∀r ∈ R. δ1R, where reachable(S, Si)

def
= ∃u. Si → δuS.

5 Formal Proofs

Our approach is to fully formalize proofs in Coq, using the λProlog prover to
help with partial automation of the proofs. The λProlog prover is a tactic-style
interactive theorem prover implemented in the manner described in [16], also
given as an example in Sect. 9.4 of [27]. The code described there can be viewed
as a logical framework, implementing a tactic-style architecture. We use this
code directly, and instantiate the framework with tactics implementing the basic
inference rules of HyLL.

We use Coq for two reasons. First, we can build libraries in Coq that allow us
to reason at two levels. We can prove meta-level properties of HyLL (for example,
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we have formalized Theorem 2), and we can reason at the object-level, which in
this case means that we can prove HyLL sequents directly. To do so, we adopt the
two-level style of reasoning used in Hybrid [17] where the logic wewant to reason in
and about is called the specification logic and is implemented as an inductive pred-
icate in Coq. The inductive predicate in this case defines HyLL sequents, and its
definition is a fairly direct modification of the ordered linear logic in [17]. Second,
once a proof is complete, Coq provides a proof certificate. In particular, Coq imple-
ments the calculus of inductive contstructions (CIC), where a property is stated
as a type in CIC and a proof is a λ-term inhabiting that type. This λ-term serves
as a certificate, which can be stored and checked independently.

It is, of course, possible to prove the properties in Sect. 4 only using Coq, but in
general, proofs in Coq of HyLL sequents quickly become cumbersome because of
the amount of detail required to apply each inference rule of HyLL. The λProlog
prover is used to automatically infer much of this detail. For example, because
we implement HyLL directly as an inductive predicate in Coq, in order to apply
the ⊗L rule (see Fig. 1), Coq’s apply tactic requires arguments to be given ex-
plicitly for the instantiation of formulas A and B, world u, and multisets Δ and
Δ,A @ u,B @ u. (Using the more flexible eapply does not help with the proofs
considered here.) As a result, the Coq proofs are verbose and often contain redun-
dant information. In λProlog on the other hand, our primitive tactics for applying
HyLL inference rules use unification to infer these arguments. We could instead
program a more automated version of the apply tactic in Coq, tailored to apply-
ingHyLL rules usingCoq’s Ltac facility, but this taskwould likely bemore complex
and adhoc, since unification is not one of the primitive operations of Coq.

It is also straightforward to represent HyLL proof terms in λProlog, and
implement the construction of these proof terms as part of the implementation
of the primitive tactics. In our λProlog prover, we construct such proof terms and
then translate them to strings representing Coq proof script. This translation is
also implemented in λProlog. These automatically generated proof scripts are
imported into Coq, and then after some fine-tuning of the script, we obtain a
proof certificate for the entire proof.

Note that we do not use λProlog to fully automate proofs; the λProlog prover
is also interactive. The user indicates what HyLL rule to apply at each step,
possibly with some other basic information such as the position in Δ of the
formula to which the rule is to be applied. The arguments needed to apply the
rule are then inferred automatically. We could build more automation into the
prover, possibly in the style of the linear logic programming language presented
in [21] for general automation, with the addition of heuristics tailored to our
application. This is left for future work.

The reader is referred to the electronic appendix for the encoding of our
biological system in Coq. Here, for illustration purposes, we simply state and
discuss Property 3 exactly as it appears in Coq.

Theorem Property3 : forall w:world,

seq Gamma ((PP @ 0)::nil) ((PP at 0) @ w) /\

forall (n:nat) (A B:oo_), fireable n A -> not_fireable n B ->

seq Gamma nil ((PP ->> ((A &a step PP) +o B)) @ w).
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In general, sequents have the form (seq Gamma Delta (A @ W)), where A rep-
resents a HyLL formula (of type oo in the Coq encoding) and W is a world,
which are encoded using Coq’s built-in type for natural numbers. Gamma is a list
of HyLL formulas (using the built-in lists of Coq) and Delta is a multiset of
elements of type oo , where we build our own custom multiset library. In the
above theorem, Gamma is the Coq encoding of († system @ 0). In the first sequent
in the statement of the theorem, Delta contains only (PP @ 0) where PP is the
Coq encoding of (state0 ⊗ abs(DNAdam)), and in the second sequent Delta is
empty. The symbols and constants @, at, ->>, &a, step, and +o represent the
HyLL operators @, at, →, &, δ1, and ⊕, respectively. The predicates fireable
and not fireable are defined inductively in Coq, where the first argument is a
natural number specifying the rule number.

The Coq proof of the second conjunct proceeds by case analysis on n, followed
by inversion on (fireable n A) and (not fireable n B), which provides in-
stantiations for A and B (the conditions that express whether the rule is fireable
or not). The resulting 6 subgoals are sent to the λProlog prover, whose output
is imported back into Coq as described above.

6 Comparison with Model Checking

While temporal logics such as LTL, CTL, or CTL∗ have been very successful in
practice with efficient model checking tools, the proof theory of these logics is
very complex. In contrast, HyLL has a very traditional proof theoretic pedigree:
it is presented in the sequent calculus and enjoys cut-elimination and focus-
ing [8]. A further advantage of our approach with respect to model checking is
that it provides an unified framework to encode both transition rules and (both
statements and proofs of) temporal properties.

Let us examine both approaches in more details.

6.1 Temporal Operators

We propose the following encoding of temporal logic operators in HyLL[T ],
where T = 〈IN,+, 0〉, representing instants of time. While this domain does
not have any branching structure like CTL, it is expressive enough for many
common idioms because of the branching structure of derivations involving ⊕.

State quantifiers can be easily mapped. There is a clear correspondence be-
tween F (resp. G) and ♦ (resp. �), see Definition 6. The encodings of X and
U are the following ones: XP ⇔ δ1P and P1UP2 ⇔↓ u. ∃v. P2 at u.v ⊗ ∀w <
v. P1 at u.w. where P , P1, and P2 are some propositions (not necessarily atomic
ones).1

As for path quantifiers, the question is more subtle. The idea is that E corre-
sponds to the existence of a proof, while for A it is necessary to look at a proof
considering all the possible rules to be applied at each step (at each step of the
proof, the chosen rule should not influence the property satisfaction).

1 Observe that a proposition characterizes a set of states.
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We came to the conclusion that the encoding of A in HyLL depends on the
state quantifier following it. Let R be the set of rules of our transition system.
The mapping we propose is the following one:

– AXP . In HyLL, we write ∀r ∈ R δ1P . More precisely, the encoding contem-
plating fireable rules is ∀r ∈ R (fireable(r) & δ1P )⊕not fireable(r) (see
Sect. 4.3). For the sake of simplicity, in the following we omit such details
concerning fireable rules.

– AGP . It is equivalent to P ∧ AG(P → AX(P )). In HyLL, we write P ⊗
∀n(P at n) → ∀r ∈ R(P at n+ 1).

– AFP . It is equivalent to P ∨ AX(AFP ). If we have a bound k on the num-
ber of steps needed to satisfy the property, we can expand this formula by
obtaining: P ∨ AX(P ∨ AX(. . .AXP )), with k nested occurrences of AX. In
HyLL, we write P ⊕ ∀r ∈ R(δ1P ⊕ (∀r ∈ R(. . . δkP ))). Notice that another
alternative is to express the F operator by using U (FP ⇔ true UP ).

– A(P1UP2). It is equivalent to P2 ∨ (P1 ∧ AX(P1UP2). If we have a bound k
on the number of steps needed to satisfy the property, we can expand this
formula by obtaining: P2∨(P1∧AX(P2∨(P1∧AX(. . .AXP2)))), with k nested
occurrences of AX. In HyLL, we write P2⊕ (P1⊗∀r ∈ R(δ1P2⊕ (δ1P1⊗∀r ∈
R(. . . δkP2)))).

In addition to the future connectives, the domain T also admits past connectives
if we add saturating subtraction (i. e., a − b = 0 if b ≥ a) to the language of
worlds. We can then define the duals H (historically) and O (once) of G and F
as:

H P
def
= ↓ u.∀w.(P at u− w) O P

def
= ↓ u.∃w.(P at u− w)

6.2 Model Checking

A strength of our approach with respect to model checking is that, when we
prove an existential property using certain rules of a model, we have the guar-
antee that all the models containing such rules satisfy the property. This is
important because in biology we often deal with incomplete information. It is
also worth noting that in model checking, all objects are finite: both the number
of states, and the number of transitions in the state graph. In HyLL, objects can
potentially be infinite; in particular, we can have an infinite number of states. Let
us point out further advantages of our approach with respect to model checking.
First of all, when proving a given property we do not need to blindly try all pos-
sible rules at each step but we can guide the proof (see Sect. 7). Observe that a
successful proof of a given property can be exploited to prove similar properties.
Furthermore, suppose we are able to prove a property of the system which is not
desirable. In this case the proof we get can help us in understanding what should
be modified in the system so that the property is not satisfied. More precisely,
we can look for the rules to be removed/modified among those that have been
used in the proof. In model checking, when a property turns out to be true, the
reason is not investigated. Finally, in [34], temporal logic is extended to allow
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the expression of properties such as “P is true at every even state of an infinite
path.” A decision procedure for this extended logic is also defined, but to the
best of our knowledge, there is no model checking tool for it. In HyLL, if we add
equality on worlds, we can write ∀n = 2k. P at n.

Note that in some of the temporal properties we test, there is a bound on
the number of time units, and thus on the length of the proof. In this particular
case, there is a strong analogy with “bounded model checking” [3].

A drawback of theorem proving with respect to model checking is that this
method can be time consuming and needs an expert. Recent advances in both
proof theory and systems however provide us with at least partial, and sometimes
complete, automation of the proofs.

7 Conclusion and Future Work

In this paper we argued that the HyLL logic can be successfully exploited for
formally verifying Boolean biological systems. This work is a first experiment
along this new line of research (although we already provide fully mechanized
proofs). We focussed on a simple regulatory network but our framework could
be adopted to model several other kinds of biological networks (e.g., neuronal,
predator-prey, or ecological networks).

A natural extension of this work consists of applying our methodology to
multivalued, continuous, and stochastic biological models. As far as the first
case is concerned, the extension is straightforward, we just need to replace
present/absent predicates by predicates indicating the discrete values of vari-
ables. The latter two cases are more involved. We could try to use the domain of
world W = 〈	+,+, 0〉, use predicates to represent variable concentrations and
express the evolution of each variable in terms of functions involving kinetic ex-
pressions such as the mass action law, Hill, or Michaelis-Menten kinetics. In [8],
several alternatives for the worlds in the probabilistic case are also discussed. In
any case, the challenge would consist of being able to perform symbolic calcula-
tion as much as possible without evaluating functions.

Proofs of properties such as 1 and 2 require finding a path through the system,
which here means specifying a series of rules that can be applied in a particular
order. At each step, there may be a choice between several potential fireable
rules. In the interactive proofs, such choices were made by hand. Our future
work includes building automated procedures (e.g., Coq tactics) to guide the
proof. We would also like to extend our model to include axioms for events such
as those considered in Biocham, which make it possible to change the value of
some variables under certain special conditions. Such events often correspond to
external inputs and have priority over the ordinary rules of a model.

Our aim is to find the logical essence of biochemical reactions. What we en-
vision for the domain of “biological computation” is a resource-aware stochastic
or probabilistic λ-calculus that has HyLL propositions as (behavioral) types.
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eling and querying biochemical interaction networks. Theoretical Computer Sci-
ence 325(1), 25–44 (2004)

8. Chaudhuri, K., Despeyroux, J.: A hybrid linear logic for constrained transition
systems with applications to molecular biology. Tech. Rep. inria-00402942, INRIA-
HAL (October 2013)

9. Ciliberto, A., Novák, B., Tyson, J.J.: Steady states and oscillations in the
p53/Mdm2 network. Cell Cycle 4(3), 488–493 (2005)

10. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic
model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

11. Clarke, J.E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge
(1999)

12. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-efficient al-
gorithms for the verification of temporal properties. Formal Methods in System
Design 1(2/3), 275–288 (1992)

13. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Sci-
ence 325(1), 69–110 (2004)

14. Despeyroux, J., Chaudhuri, K.: A hybrid linear logic for constrained transition
systems. To Appear in Types for Proofs and Programs, Post-Proceedings of TYPES
2013. LIpIcs (Leibniz International Proceedings in Informatics) (2014)

15. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry 4(2), 64–73 (2004)

16. Felty, A.: Implementing tactics and tacticals in a higher-order logic programming
language. Journal of Automated Reasoning 11(1), 43–81 (1993)

17. Felty, A.P., Momigliano, A.: Hybrid: A definitional two-level approach to reasoning
with higher-order abstract syntax. Journal of Automated Reasoning 48(1), 43–105
(2012)

18. Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Col-
lected Papers of Gerhard Gentzen, pp. 68–131. North-Holland Publishing Co., Am-
sterdam (1969)



A Logical Framework for Systems Biology 155

19. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
20. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-

matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

21. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear
logic. Journal of Information and Computation 110(2), 327–365 (1994)
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