
Feature Spei�ation and AutomatiConit Detetion�Amy P. Feltyy Kedar S. NamjoshiShool of Information Tehnology and Bell Laboratories,Engineering, University of Ottawa Luent Tehnologiesafelty�site.uottawa.a kedar�researh.bell-labs.omAbstrat. We present a formal feature spei�ation language and amethod of automatially deteting feature onits (\undesirable inter-ations") at the spei�ation stage. Early onit detetion an helpprevent ostly and time-onsuming problem �xes during implementa-tion. Features are spei�ed in linear temporal logi; two features onitessentially if their spei�ations are mutually inonsistent under axiomsabout the underlying system behavior. We show how this inonsistenyhek may be performed automatially with existing model hekingtools. The model heking tools an also be used to provide witnesssenarios, both when two features onit as well as when the featuresare mutually onsistent. Both types of witnesses are useful for re�ningthe spei�ations. We have implemented a onit detetion tool, FIX(Feature Interation eXtrator), that uses the model-heker COSPANfor the inonsisteny hek. We desribe our experiene in applying thistool to a olletion of feature spei�ations derived from the Telordia(Bellore) standards.1 IntrodutionTeleommuniations servies are typially marketed to ustomers as groups of featuressuh as all-waiting and all-forwarding. Sine the groups are exible, an individualfeature is usually spei�ed without knowledge of whih other features it may be groupedwith. This failitates modular design and implementation; however, as features in agroup an be ative onurrently, problems arise when the feature requirements man-date oniting behavior. Individual implementations may resolve suh onits indi�erent ways, leading to unpreditable behavior in the system as a whole. It is there-fore essential to detet and resolve suh feature onits as early as possible, preferablyin the spei�ation stage itself 1.With this motivation, we have developed a formal feature spei�ation language,and a method of automatially deteting feature onits at the spei�ation stage,�In M. Calder and E. Magill, editors, Feature Interations in Teleommuniations and SoftwareSystems VI, IOS Press, 2000.yThis work was done while the author was at Bell Laboratories.1This notion of onit roughly orresponds to feature interferene or servie interferene as dis-ussed in the literature (see [12℄, for example); in ontrast, interation is often used more generallyand inludes interations that may be desirable.



whih is implemented in a detetion tool. Features are spei�ed by desribing theirtemporal behavior. For instane, a typial informal spei�ation for all forwarding isthat \If entity x has all forwarding enabled and alls to x are to be forwarded to zthen, whenever x is busy, any inoming all from y to x is eventually forwarded toz". This informal desription an be expressed preisely in our spei�ation language,as desribed in Setion 3. The language itself may be viewed as a sugared version oftemporal logi or !-automata. Speifying features as temporal formulae abstrats fromspei� state-mahine implementations, allowing any implementation that satis�es thespei�ations.Given that spei�ations are temporal formulae, the natural way to de�ne a featureonit is that the feature formulae are mutually inonsistent; i.e., their onjuntion isunsatis�able. As disussed in Setion 4.1, to detet feature onits, we may also needto inlude axioms about the underlying system. The system axioms desribe propertiesthat should be true of any reasonable system implementation. The need for suh systemaxioms in one form or another (for example, the network properties in [9℄) has arisen ina variety of approahes to the feature interation problem. In our ase, typial axiomsfor telephony inlude the following: (i) the system should not disonnet an establishedall, and (ii) if a all attempt is rejeted, no onnetion should be established until thenext attempt. These axioms are also spei�ed in the same spei�ation language as thefeatures. Speifying the system by axioms abstrats from partiular implementations,resulting in onit reports that have wider appliability.Conit detetion is thus redued to a satis�ability test for temporal formulae. Byonsidering only a �nite number of entities, the feature spei�ations an be madepropositional, and the test an be performed automatially with a model hekingtool. We have developed a tool, FIX (Feature Interation eXtrator), that reads infeature spei�ations, onverts them into !-automata desriptions, and uses the modelheking tool COSPAN [10℄ to perform the satis�ability test. The detetion proess isfully automated. The model heker provides witness omputations for either outome.If no onit is deteted, the witness desribes a non-oniting omputation of thesystem; examining this omputation often reveals assumptions about the system thatneed to be added as axioms. If a onit is deteted, the witness omputation desribesa partiular senario where the features onit. By examining this senario, one andetermine either the proper resolution of the onit, or whether the spei�ations needto be modi�ed. Our spei�ation method inludes a mehanism that makes it easy tospeify dynami priorities (i.e., dependent on system state) between oniting features.Our experiene so far has been that this detetion proess is reasonably eÆient andquite aurate; for the set of features to whih we have applied this method, we havebeen able to detet most of the interations given in the Telordia (Bellore) standards,as well as some new ones.The rest of the paper is strutured as follows. Setion 2 ontains a short bak-ground on temporal logi, !-automata and model heking. We motivate and desribeour spei�ation language in Setion 3. The preise de�nition of feature onit andthe detetion method is desribed in Setion 4. We have applied our tool to severalTelordia feature spei�ations; this is desribed in Setion 5. The paper onludeswith a disussion of related work and onlusions in Setion 6.2



2 BakgroundIn this setion, we provide a short bakground on linear temporal logi, !-automata,and model heking.2.1 Linear Temporal LogiLinear-time temporal logi (usually abbreviated as LTL) was �rst suggested as a proto-ol spei�ation language in [16℄. Formulae in the logi de�ne sets of in�nite sequenes;hene, the logi is partiularly well suited to desribe time dependent properties ofonurrent, reative systems suh as telephony and other network protools. Formally,LTL formulae are parameterized by a set of atomi propositions, AP , and are de�nedby the following syntax:1. Every proposition P in AP is a formula,2. For formulae f and g, (f ^ g) and :(f) are formulae,3. For formulae f and g, X(f) and (f U g) are formulae.The temporal operators are X (read as \next-time") and U (read as \until"). Anin�nite sequene of atomi proposition valuations an be de�ned as a funtion from Nto 2AP . We write �; i j= f to mean that the in�nite sequene � : N! 2AP satis�es theformula f at position i. The language of f , denoted by L(f), is the set f� j �; 0 j= fg.The satisfation relation an be de�ned by indution on the struture of f as follows.1. For a proposition P , �; i j= P i� P 2 �(i),2. �; i j= :(f) i� �; i j= f is false,�; i j= (f ^ g) i� both �; i j= f and �; i j= g are true,3. �; i j= X(f) i� �; i+ 1 j= f ,�; i j= (f U g) i� there exists j, j � i, suh that �; j j= g and for every k, i � k < j,�; k j= f .Other onnetives an be de�ned in terms of these basi onnetives: (f _ g) is:(:f ^ :g); (f ) g) is :f _ g; F(g) (\eventually g") is (true U g); G(f) (\alwaysf") is :F(:f), and (f W g) (\f holds unless g") is (G(f) _ (f U g)).2.2 Automata on in�nite sequenesTemporal properties an also be spei�ed by �nite-state automata that reognize in�niteinput sequenes. Suh automata are known as B�uhi automata [4℄ or as !-automata.A B�uhi automaton A is spei�ed by a tuple (S;�;�; I; F ), where:� S is a �nite set of states,� � is a �nite set known as the alphabet,� � � S � �� S, is the transition relation,� I � S is the set of initial states,� F � S is the set of aepting states. 3



A run of A on an in�nite sequene � : N! � is an in�nite sequene r : N! S ofstates suh that: (i) r(0) 2 I, and (ii) for eah i 2 N, (r(i); �(i); r(i+1)) 2 �. A run ris aepting i� one of the states in F appears in�nitely often along r. The language ofthe automaton, L(A), is the set of in�nite sequenes on whih A has an aepting run.B�uhi automata (with � = 2AP ) are stritly more powerful than linear temporal logiat de�ning sets of sequenes. There is a (worst-ase exponential) translation from LTLformulae to equivalent B�uhi automata; see [18℄ for a survey.2.3 Model ChekingA program generates a set of omputation sequenes. For reative programs wherenon-termination is desirable, suh as operating systems and telephony protools, thesequenes are in�nite, in general; hene, temporal logi or B�uhi automata an beused to desribe properties of the programs. For instane, mutual exlusion maybe written as G(:(Critial 0 ^ Critial1 )), and eventual aess as G(Waiting )(Waiting U Granted)).For programs with �nitely many states, a fully automated proedure known as ModelCheking [5, 17℄ an be used to determine if a property holds of all omputations ofthe program. A �nite state program an be represented by a B�uhi automaton withthe trivial aeptane ondition F = S; hene, model heking beomes the languageontainment question L(Program) � L(Property) [19℄.Model Cheking tools based on language ontainment inlude COSPAN [10℄ and VIS[3℄. If the spei�ation fails to hold of the program, the tool generates a omputationthat is a witness to this failure; i.e., one that is in the set L(Program) \ L(Property).We make use of this apability in our onit detetion method (Setion 4).3 Feature Spei�ationIn this setion, we desribe and de�ne our feature spei�ation language and themethodology we have used to set up the feature onit hek. The details of thishek are presented in the following setion.In order to speify features, we have to begin with some informal understanding ofthe term \feature". In the rest of the paper, we restrit ourselves to telephony features;however, our spei�ation language and the onit detetion algorithm an also beapplied to spei�ations of features in other kinds of systems.A telephony feature, suh as all waiting or all forwarding, typially spei�es thebehavior, over time, of one or more entities in terms of their urrent state and a set ofinput events. The informal spei�ation given earlier for all forwarding is an example:\If entity x has all forwarding enabled and alls to x are to be forwarded to z then,whenever x is busy, any inoming all from y to x is eventually forwarded to z". Inthis spei�ation, we an distinguish several prediates that desribe the state of entityx: all forwarding enabled(x ), forward from to(x ; z ), forwarded all from to(y ; x ; z ),busy(x ), and the prediate inoming all from to(y ; x ) that desribes the ourreneof an event. The rest of the sentene uses boolean operators and temporal operators(i.e., \whenever", \eventually"). Hene, we believe that a partiularly appropriate way4



of speifying a feature is by a olletion of temporal formulae (or automata) that arede�ned over a set of prediates that denote states or events of the system.The spei�ation notation that we have developed is a sugared version of LTL. Eahfeature is spei�ed in a separate �le; for instane, all forwarding is spei�ed in the �le\all forwarding.spe". Eah spei�ation onsists of de�nitions of basi and derivedprediates, and a list of properties. We use the symbols +;&;�;=> to denote theboolean operators _ ; ^ ;:; ) respetively.The properties are de�ned in terms of prediates that indiate relationships betweenentities in the system. There are two pre-de�ned prediates: eq(x ; y), whih denotesequality of the entities x and y and, for eah feature, a prediate disable(x ), whihindiates that the feature spei�ation is to be disabled at entity x. The latter prediatesare used for seletively disabling features in order to resolve onits. The identi�ersx; y et. are variables whih an be instantiated by onstants representing entities inthe system. We allow existential quanti�ation over entities. We use it, for example, tospeify prediates suh as is on hold(x ) = (exists y : has on hold(y ; x )). A restritedform of existential quanti�ation represents quanti�ed variables by \ "; for instane, theabove de�nition may also be written as is on hold(x ) = has on hold( ; x ). The sopeof an existential quanti�er in suh an abbreviated form inludes only the prediateontaining the \ " symbol.The general form of a property spei�ation is shown below. The symbols e0, p0,e1, p1; : : : ; eN , p, r, d are boolean expressions formed out of the basi prediates.The keyword until may be replaed with the keyword unless to de�ne a weakerspei�ation.property <Name>{event: e0 persists: p0event: e1 persists: p1...event: eN-----------------------persists: p until: r disharge: d} The event and persists onditions above the dashed line indiate the preonditionof the property; the persists-until-disharge triple (or a persists-unless-disharge triple)indiates the postondition of the property. Informally, the property states that \when-ever the preondition holds, the postondition holds subsequently".The preondition has the following informal reading: \e0 holds, followed by a periodwhere (p0 ^ :e1) is true, then e1 holds, followed by a period where (p1 ^ :e2) istrue, et., until eN holds." In extended regular expression notation, this an be writtensuintly as e0; (p0 ^ :e1)�; e1; (p1 ^ :e2)�; : : : ; eN . We say that a property isenabled at a point on a omputation i� its preondition is true of a pre�x that ends atthe point.The postondition should hold at every point on a omputation where the property isenabled. The \persists: p until: r disharge: d" notation translates to the LTL formula(p U (r _ d)); with unless in plae of until, it orresponds to the LTL formula(p W (r _ d)). While the disharge ondition may seem tehnially unneessary, it5



makes a distintion that is important for the spei�er. The until ondition is thoughtof as speifying the desired outome, while the disharge ondition is thought of asspeifying the exeption onditions that ause the property to be trivially satis�ed.We make use of this distintion in our onit test. Any of the three omponentsof the postondition an be omitted; the hoie between until and unless defaultsto unless, the persists ondition defaults to true, and the unless and dishargeonditions default to false.The easiest way to de�ne the omplete property in LTL is to onsider its negation:the property is false of an in�nite sequene i� there is a point where the preonditionholds but the postondition fails to hold. To illustrate the translation, onsider theproperty below.event:e0 persists:p0 event:e1------------------------------persists:p until:r disharge:dThe LTL property :F(e0 ^ X((p0 ^ :e1) U (e1 ^ :(p U (r _ d))))) is equivalentto this spei�ation. The general ase an be handled in a similar manner, inreasingthe depth of nesting for suessive event-persists pairs. This translation indiates whyit is better to use a sugared notation than to use LTL diretly. We onsider suha formula with free variables x; y; : : : to represent the in�nite family of propositionalLTL formulae de�ned by instantiating the free variables with onstants. We use suhinstantiations in our onit test, but the presene of free variables makes it simple toonsider alternative bindings of onstants to variables.We have shown how features may be represented by formulae in LTL over a set ofprediates. The prediates are, however, not independent { any underlying telephonysystem imposes some onstraints between the prediates. For instane, busy tone(x )and all waiting tone(x ) are mutually exlusive. Constraints suh as these an beonsidered as an axiomatization of the swithing infrastruture of a telephony system. Inthe spei�ation language, onstraints are spei�ed using the same syntax as properties,exept that the form begins with the keyword onstraint instead of property.This approah of asting the entire spei�ation as a olletion of temporal logiformulae di�ers from the ommon method of onstruting state mahine models of theswithing system and the individual entities. State mahine models �x a partiularimplementation { however abstrat { whih an reate feature onits that may beavoided in other implementations. In addition, modifying a state mahine to hangeor add properties is quite diÆult, while with temporal logi this an be done simplyby hanging or adding to the property spei�ation. We believe that this onsiderablysimpli�es the maintainane of the spei�ation. While state mahines an sometimesbe more suint at representing a olletion of losely related properties, the bene�tsof adopting a formula-based approah outweigh this disadvantage.4 Feature Conit DetetionGiven that a feature is spei�ed as a temporal logi formula, how an we de�ne \onit"(i.e., an \undesirable interation")? We motivate our urrent de�nition through an6



analysis of suessively stronger formulations. We then desribe our detetion methodand analyze its strengths and weaknesses. In the following, it should be understood thatwe are referring to spei� instantiations of the features (i.e., binding the free variableswith onstants). This is indiated by using the letters a; b; : : : instead of x; y; : : : in theformulae. We say that a feature is enabled if one of the properties of the feature isenabled.4.1 Formulating \Conit" PreiselyConsider the following de�nition of feature onit: features A and B onit i� theredoes not exist a system where every omputation satis�es both the spei�ations A andB. We an form a simpler, equivalent formulation by applying the following generaltheorem.Theorem 1 For any propositional LTL formulae f and g, there exists a system thatsatis�es f on some omputation and satis�es g on all omputations if and only if theformula f ^ g is satis�able.Proof Sketh. In the left-to-right diretion, onsider the omputation of the witnesssystem that satis�es f . As g is true of all omputations, it must also satisfy g; hene,f ^ g is satis�able. In the other diretion, if f ^ g is satis�able, there exists a pathending in a yle that satis�es both formulae (see [18℄ for details). This path de�nes asystem with the required properties.End Proof.Instantiating the theorem with f as \true" and g as \SpeA and SpeB", we getthat the feature onit de�nition above is equivalent to the following one.De�nition 1 Features A and B onit i� the formula (SpeA ^ SpeB) is unsatis�-able; i.e., in every omputation, some feature property does not hold.This de�nition, however, turns out to be inadequate. Consider the two featuresA and B de�ned by SpeA = G(alls(a; b) ) F(onneted(a; b) _ disonnet(a)))(\Whenever a alls b, eventually a and b are onneted, if a does not disonnet"), andSpeB = G(alls(a; b) ) F(forwards(a; b; ) _ disonnet(a))) (\Whenever a alls b,the all is eventually forwarded to , if a does not disonnet").Informally, these spei�ations are oniting, sine forwarding from b and onnet-ing to b should not both happen for a single all. Yet the onjuntion of the formulae issatis�able: onsider the omputation in whih alls(a; b) is always false! The problemhere is that it is always possible to satisfy a feature spei�ation in a system wherethe feature is always disabled. Hene, we would like to onsider only those systems forwhih there exist omputations where both features an be enabled together. We hooseto onsider only omputations where both features are enabled together in�nitely often{ a omputation where the features are enabled together one, but disabled foreverfrom some point on is, in a sense, arti�ially restrited. Instantiating Theorem 1 withf as \in�nitely often A and B enabled" and g as \SpeA and SpeB", we are led to ourseond formulation. 7



De�nition 2 Features A and B onit i� the two features an be enabled togetherin�nitely often, but in every suh omputation, some feature property does not hold.Even with the strengthened de�nition, the two features in our example are still non-oniting! Consider the omputation in whih whenever alls(a; b) is true, eventuallyonneted(a; b) holds, followed by forwards(a; b; ). The problem here is that we havefailed to aount for the onstraint that prevents the same all being both onnetedand forwarded. This is not a feature property; it should be part of the system axioms.We would like to onstrain the possible implementations further so that they satisfythese axioms along all omputations. Instantiating Theorem 1 with f as \in�nitelyoften A and B enabled" and g as \system axioms and SpeA and SpeB", we are led toour third formulation.De�nition 3 Features A and B onit i� the two features an be enabled togetherin�nitely often under the system axioms, but in every omputation where the featuresare enabled together in�nitely often and the system axioms also hold, some featureproperty does not hold.It is still true that the example features are non-oniting! Consider the omputa-tion in whih after alls(a; b) holds, disonnet(a) is true before either onneted(a; b)or forwards(a; b; ) holds. Both spei�ations are thus satis�ed trivially. It is for suha situation that we make use of the distintion between until/unless and dishargeonditions. We would like to rule out those omputations where disharge events ourwhile the feature is pending, i.e., enabled but not satis�ed. Adding this property to theprevious instantiation of g and applying Theorem 1, we get the following �nal de�nitionof feature onit.De�nition 4 (Feature Conit) Features A and B onit i� A and B an be en-abled together in�nitely often under the system axioms, and for every omputation where1. The system axioms hold, and2. A and B are enabled together in�nitely often, and3. The disharge ondition for a feature does not our while the feature is pending,some feature property does not hold.Conditions 2 and 3 an be expressed with simple formulae of temporal logi. Forinstane, \p holds in�nitely often" is expressed by GXF(p) and \d does not our betweenourrenes of p and q" is expressed by G(p ) (:d W q)).4.2 Automati DetetionEah onit test is performed on a spei� instantiation of the features. The param-eterized form of the feature spei�ation makes it easy to instantiate di�erent on�g-urations { for instane, one where entity a has all-forwarding and entity b has all-waiting. In general, two LTL properties f and g are inonsistent i� L(f) \ L(g) = ;,whih is true i� L(f) � L(g). This is exatly the model heking question with f8



as the program and :g as the property. Hene, a model heker an be used todetet feature onits. For features A and B, system axioms C, and auxiliary au-tomata D that speify onditions 2 and 3 of De�nition 4, the inonsisteny hekan be written as L(A) \ L(B) \ L(C) \ L(D) = ;, whih is equivalent toL(C) \ L(D) � L(A) [ L(B). This is the form used in our implementation.We have developed a tool alled FIX (for Feature Interation eXtrator) that usesthe model heker COSPAN [10℄ for the onit hek. In COSPAN, both properties andonstraints are represented by !-automata. FIX translates the onstraints C and thefeature spei�ations A;B into COSPAN automata that aept the spei�ed languages.Eah feature is translated to a parameterized automaton whih is instantiated as neededfor eah partiular test. Sine the automata representing onditions 2 and 3 of thede�nition are independent of the partiular features, they are obtained from a libraryand instantiated on eah use with the enabling ondition of the partiular features.The model heker delares failure if the set inlusion above is false; i.e., if theproperties do not onit. The non-onit may be due to weak system axioms, or(rarely) beause the instantiation de�nes a system without enough entities to exhibita onit. Sine the model heker delares failure, it produes a witness omputationfor whih the axioms and both features hold. Inspetion of this witness omputationoften reveals onstraints that need to be inluded in the system axioms. Even if thisis not the ase, a \no onit" report should be, in general, onsidered inonlusive,as the hek is performed for a partiular system on�guration (i.e., a �xed number ofentities).On the other hand, a \onit" result is onlusive; but, as the model hekerdelares suess, no witness is produed for the onit. To produe a witness, weperform another hek: L(C) \ L(D) \ L(A) � L(B). As there is a onit, thishek must fail, so the model heker produes a omputation that satis�es C;D and Abut does not satisfy B. This omputation desribes a senario in whih both featuresare enabled together in�nitely often and A holds, but B does not hold.5 Case StudyWe have applied our tool to a olletion of feature spei�ations derived from theTelordia standards. We report on the results for ten of these features, eah hekedagainst the nine others. One of the features we onsider is Anonymous Call Rejetion(ACR). Calls to a subsriber having this feature will not go through when the allerprevents her number from being displayed on the subsriber's aller ID devie. Thefollowing property is one example from the 6 properties whih speify this feature.property ACR_Normal_Operation_3{ event: ACR(x) & all_req(x,y) & ~DN_allowed(y) & resoures_for_ACR_ann(x)-----------------------persists: all_req(x,y)until: ACR_ann(y,x)disharge: onhook(y)} 9



Informally, it states that if x subsribes to ACR and if there is a all request to xfrom y, and if furthermore the presentation of y's number is restrited and resouresfor the ACR denial announement are available, this should ause y to reeive theACR announement, unless y gives up and goes bak on hook �rst. Note that all reqours both as an event and a persisting ondition. In our model, events are nota primitive onept; they are points in time in whih a formula beomes true. Forexample, all req(x ; y) beomes true at some point after ompletion of dialing andontinues to hold until there is some resolution of the all suh as a onnetion or anannounement.A seond feature that we onsider is Call Forwarding Busy Line (CFBL), where thesubsriber gives a number to whih all alls will be forwarded when the subsriber'sline is busy. The following is one of 3 properties speifying this feature.property CFBL_Normal_Operation_1{ event: CFBL(x) & ~idle(x) & ~forwarding(x,_,z) &same_swith(x,z) & le_five_forwards(y) & all_req(x,y)-----------------------persists: all_req(x,y)until: forwarding(x,y,z)disharge: onhook(y)}This property states that if (1) x subsribes to CFBL, (2) x is not idle, (3) all previouslyforwarded alls from x to z have terminated, (4) x and z are on the same swith, (5) theinoming all from y has been forwarded at most 5 times and (6) there is an inomingall from y, then the inoming all from y to x will be forwarded to z, unless y goesbak on hook in the meantime.These two properties provide one example of the kind of onit that may arise.Consider the ase when x and y in the ACR property are instantiated with a andb, respetively and x, y, z of the CFBL property are instantiated with a, b, and ,respetively. Furthermore, suppose that all of the prediates in both events hold si-multaneously. Thus a subsribes to both ACR and CFBL and has an inoming allfrom b. The two features require that the inoming all be resolved in di�erent ways:ACR requires that b reeive the ACR denial announement, while CFBL requires thatthe all be forwarded to . The information required from the system axioms in orderfor this onit to be deteted by our tool is that (1) a all request is distint from aall resolution and (2) that the two resolutions annot our at the same time. Theseproperties are expressed by the following onstraints.onstraint all_req_not_resolution{event: true---------------persists: ~(all_req(x,y) & (ACR_ann(y,x) + forwarding(x,y,_)))}onstraint distint_resolutions{event: true 10



Table 1: Features, Number of Properties used in Spei�ation, and DesriptionsACR AnonymousCallRejetion 6 Allows subsriber to rejet alls from parties whohave a privay feature that prevents the delivery oftheir alling number to the alled party. When a-tive, the all is routed to a denial announement andterminated.CFBL CallForwardingBusy Line 3 A telephone-ompany-ativated feature that forwardsinoming alls to a subsriber to another line whenthe subsriber is busy.CFDA CallForwardingDon't Answer 4 Inoming alls to the subsriber are forwarded whenthe subsriber doesn't answer after a spei�ed timeinterval.CFMB CallForwardingMake Busy 1 Allows subsriber to press a key to put phone into abusy state so that all alls will be forwarded.CFV CallForwardingVariable 7 Allows subsriber to speify a number to whih allalls will be forwarded.CW Call Waiting 16 Informs a busy subsriber that another all is waitingby playing a tone. The subsriber may ash, plaingthe original all on hold and answer the new all, ormay go on-hook, in whih ase the subsriber is rungand onneted to the new all upon answer.DOS DeniedOriginatingServie 2 Provides the apability to deny a subsriber frommaking alls.DTS DeniedTerminatingServie 2 Provides the apability to deny terminating alls to asubsriber.PKUP Call Pikup 2 Allows one station to answer a all direted to anotherstation within a business group.RDA ResidentialDistintiveAlerting 2 Allows the subsriber to designate speial telephonenumbers that may be identi�ed using distintivealerting treatment.---------------persists: ~(forwarding(x,y,_) & ACR_ann(y,x))}The �rst property states that at any point in time when x has an outstanding allrequest to y, y is neither reeiving the ACR denial announement from x nor havingits all to x forwarded. The seond property states that a all to x from y is notbeing forwarded at the same time that y is reeiving the ACR denial announement.Without these onstraints there would be no onit. For example, without the seondonstraint, nothing prevents the all from being forwarded at the same time that thealler is given an announement. The onit in this ase should be resolved by givingpreedene to the ACR feature; the CFBL property should only be required to holdwhen the subsriber does not also subsribe to ACR.Table 1 desribes the 10 features we onsider here. Their names, desriptions, andnumber of properties in eah of their spei�ations are given in the table. Table 211



Table 2: Number of Coniting Property Pairs for eah Pair of Feature Spei�ationsCFBL CFDA CFMB CFV CW DOS DTS PKUP RDAACR 8 5 4 3 8 2 4 4 0CFBL | 0 2 2 4 1 0 2 0CFDA | | 2 4 0 0 2 0 0CFMB | | | 3 0 1 1 0 0CFV | | | | 2 1 2 1 0CW | | | | | 0 2 1 0DOS | | | | | | 0 3 0DTS | | | | | | | 1 0PKUP | | | | | | | | 0shows the results of heking the ten features for onits. The features are onsideredin pairs, and eah property of one of the features in a pair is heked against everyproperty of the other feature. The heks are arried out using a database of about 45system axioms expressed as onstraints like those above. (In fat, the above onstraintsare speial ases of onstraints in the database involving all possible resolutions of aall.) In the table, the numbers indiate the number of pairs of properties that resultedin a onit when heking the pair of features against eah other. Some entries areblank to avoid dupliation. In some ases when more than one onit is reportedfor a pair of features, the onits are for similar reasons but involve di�erent pairsof properties. For example, the property CFBL_Normal_Operation_1 mentioned abovestates the onditions under whih a all must be forwarded. This property onitswith two CFV properties, one that prohibits a all from being forwarded when CFV isdeativated by the subsriber, and one that prohibits a all from being forwarded whenthe all has already been forwarded before (e.g., beause of a forwarding loop).The tool has a variety of options; the results reported on here were done using thedefault settings. In the default ase, for any pair of properties, the x ourring in the�rst property is onsidered to be the same as the x in the seond property, and similarlyfor y and z. The system axioms are, however, instantiated in all possible ways. Anaverage size hek, for example heking ACR against CFBL whih inludes 18 pairwiseheks, takes 20 minutes on a SGI Challenge mahine.Under the default settings, the tool will �rst hek that the two input propertiesan be enabled together. If not, there is no onit. Otherwise the onit hekis ompleted. Options provided in the tool inlude enhanements for greater eÆienyand for more omplete overage in �nding onits. One option for more omprehensiveheks is the apability to provide alternative variable bindings. For example, x in aproperty of one feature an be bound to y in another.It is possible to inrease the e�etiveness of the onit heks by adding new pred-iates and new arguments to existing prediates so that properties an be expressedmore preisely. For example, we write busy(x ) for x hearing a busy signal, but writingbusy(x ; y) to mean that x hears a busy signal in response to an attempt to all y wouldbe more preise. There is, however, a tradeo�: making the set of prediates more om-pliated inreases the exeution time required for model heking. We have attempted12



to keep the set of prediates simple and inrease the preision arefully as needed.6 Related Work and ConlusionsA variety of approahes to solving the feature interation problem start by speifyinga basi implementation in the form of an automaton or �nite state mahine, or evena proedural desription that an be easily translated to a �nite state mahine repre-sentation. Various kinds of analyses are performed on these representations to detetinterations and hek for other properties of features.In several approahes that use �nite state mahines or other proedural spei�-ations, feature requirements are expressed as properties in a temporal logi. Modelheking or other state exploration tehniques are used to hek that these propertieshold of the spei�ation. Interations are deteted when ertain properties are notsatis�ed, or when \bad" states are found to be reahable. Examples of this approahinlude [2, 6, 7, 8, 11, 14, 15℄. For a more omplete survey of this and related approahes,see [12℄.Temporal logi is sometimes used to speify transitions of a state mahine diretly [2,9℄. In this approah, the same logi is used for both speifying the system and expressingproperties of it. Maintainability of this kind of desription is likely to be easier thanfor more expliit state transition representations; however, the logis used in this workare limited to next-state desriptions, so no liveness properties an be expressed.Another approah (f. [1, 13℄) to deteting interations between features A and B,whih are spei�ed as state mahines, is to form the omposed systems A==Swith andA==B==Swith, and hek if the behavior (i.e., the sequenes of events) of A di�ers inthe two systems; if this is so, the behavior of A has been a�eted by the presene of B.In our work, we have desribed a method for deteting feature onits where fea-tures are spei�ed as a olletion of temporal logi formulae or !-automata, and inter-ations are disovered by �nding pairs of spei�ation formulae that are ontraditorywith respet to axioms about system behavior. We show how existing model hekersan be used to perform this test. As disussed earlier, the advantages of this approahare that it simpli�es the maintenane of spei�ations and avoids any ommitment toa partiular implementation, allowing the detetion of onits that have wider appli-ability. We have implemented this method, and applied it to the analysis of formalspei�ations derived from the Telordia standards. Our experiene so far has beenthat this detetion proess is reasonably eÆient and quite aurate; for the set of fea-tures to whih we have applied this method, we have been able to detet most of theinterations given in the Telordia standards, as well as some new ones.An important omponent of future work will be to handle more features. Note thatadding feature spei�ations does not inrease the omplexity of eah onit hek,but does multiply the number of pairwise heks that must be arried out if we wantto hek eah new feature against all existing features. In order to address the problemof saling up, we will address the tradeo� of eÆieny vs. power in FIX. By power, wemean not only allowing a greater number of onit heks, but also ahieving moreauray in deteting onits. Along these lines, we plan to investigate the extensionsdisussed in Setion 3: alternative variable bindings and building more preision into13
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