
Fundamenta Informaticae 77 (2007) 1–28 1
IOS Press

Tutorial Examples of the Semantic Approach to Foundational
Proof-Carrying Code

Amy P. Felty

School of Information Technology and Engineering

University of Ottawa, Canada

afelty@site.uottawa.ca∗

Abstract. Proof-carrying code provides a mechanism for insuring that a host, or code consumer, can
safely run code delivered by a code producer. The host specifies a safety policy as a set of axioms
and inference rules. In addition to a compiled program, the code producer delivers a formal proof of
safety expressed in terms of those rules that can be easily checked. Foundational proof-carrying code
(FPCC) provides increased security and greater flexibility in the construction of proofs of safety.
Proofs of safety are constructed from the smallest possible set of axioms and inference rules. For
example, typing rules are not included. In our semantic approach to FPCC, we encode a semantics
of types from first principles and the typing rules are proved as lemmas. In addition, we start from a
semantic definition of machine instructions and safety is defined directly from this semantics. Since
FPCC starts from basic axioms and low-level definitions, it is necessary to build up a library of
lemmas and definitions so that reasoning about particular programs can be carried out at a higher
level, and ideally, also be automated. We describe a high-level organization that involves Hoare-
style reasoning about machine code programs. This organization is presented using two running
examples. The examples, as well as illustrating the above mentioned approach to organizing proofs,
is designed to provide a tutorial introduction to a variety of facets of our FPCC approach. For
example, it illustrates how to prove safety of programs that traverse input data structures as well as
allocate new ones.

1. Introduction

In our first presentation of the semantic approach to foundational proof-carrying code (FPCC) [2], we
encoded a semantics of types and proved typing rules as lemmas from the basic definitions. We also
gave a direct encoding of machine semantics from which we built several layers of definitions so that
∗Address for correspondence: SITE, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada



2 A. P. Felty / Tutorial Examples of FPCC

reasoning about programs was similar to reasoning using Hoare-style program verification rules. This
work extended the original proof-carrying code (PCC) work [17] which stated typing rules as axioms
and generated a safety theorem using a verification condition generator (VCG). Both the axioms and the
VCG were parts of the system that had to be trusted.

In FPCC, much progress has been made in a variety of directions since our original work. Type
systems that are currently handled are more sophisticated and include contravariant recursive types [3]
and mutable references [1]. Also, larger machine instructions sets have been encoded [13]. In addition,
foundational versions of typed assembly languages (TAL) [14] have been developed for use in FPCC
systems (e.g. [7, 20, 21]). An alternative syntactic approach has also been explored [10].

Although we presented an example in our first account [2], it was not large enough to illustrate the
structure of proofs of safety in general, or demonstrate the style of reasoning that is used to build such
proofs. This paper attempts to fill this gap. Although the examples are larger, we keep the semantics
simple. We only require a simple semantics of types and a simple set of machine instructions as in our
first account. Because any FPCC system is built in layers so that reasoning about particular programs
is done at a fairly high level, this example could be carried over fairly directly to current FPCC systems
which use machine instruction sets for real machines and more complex type systems. Like our previous
work, we adopt the semantic approach to FPCC here.

The first example program we present is a program which takes a list of integers as input and extends
it by adding a new element at the head. It is simple, but complex enough to require recursive data types
and the allocation of new memory. In addition, the program uses all of the instructions available in
our simple instruction set except for jumps. We later introduce a second example — a machine language
program to reverse a list of integers. The computation includes traversing the input list as well as building
a new one. The main extension over the first example is the introduction of a loop.

We present four versions of the first example, starting simple, and adding complexity at each step.
In the first two versions, we start with a version of PCC that can be viewed as a modified presentation
of Necula’s original work [17, 18], one which uses Hoare-style program verification rules for machine
instructions instead of an explicit VCG. Using such rules is fairly similar to the use of a VCG, but our
version provides a slightly higher level of security. In original PCC, the safety proof is a proof of the
formula output by the VCG; the VCG program must be trusted. Here, the proof steps which apply the
Hoare-style rules are encoded as part of the safety proof. We must trust these rules because they are a
part of our basic safety policy, but this should be simpler than trusting a VCG program. Roughly, using
the Hoare rules corresponds to recording the primitive steps of the VCG in the proof so that they can be
later checked.

In Section 2, we start with a simple safety policy, simpler than that considered by Necula, and we
prove safety of the example program with respect to the Hoare rules. Section 3 extends the safety policy
to include memory safety, which is essentially the same policy considered by Necula. Presenting the
example in two steps allows us to start simple, separating out the issues arising from considering a
more complex safety policy. In particular, including memory safety involves adding new preconditions
to the Hoare rules for load and store instructions. Although we still have a relatively simple policy,
complications arise, mainly from the fact that proving that the new preconditions hold requires reasoning
about types. We present a set of type rules for this purpose. At this stage, we still do not introduce
foundational aspects, but we do extend Necula’s typing rules. His rules could be used to prove safety
of programs that traversed recursive data structures such as lists, but not programs that allocated new
ones. Our presentation here can be viewed as a non-foundational version of our original presentation [2],



A. P. Felty / Tutorial Examples of FPCC 3

where an allocation predicate expressing which memory locations are allocated is added explicitly to
typing judgments. We conclude this section with a complete proof of memory safety of the example
program, and discuss in detail the aspects of the proof that differ from those in the first proof, mainly due
to the new form of the Hoare rules for the load and store instructions.

In the rest of the paper, we turn to FPCC. As a first step, in Section 4, we give definitions for types
and prove the typing rules of the previous section as lemmas that follow from these definitions. The
foundational versions of the safety proofs for our examples have been fully formalized in Coq [6, 4], so
at this stage, we also begin discussing this formalization.

The second step in presenting the foundational approach is the low-level encoding of machine in-
struction semantics. In Section 5, we first present a version of our encoding for the simple safety policy.
In this and the next section, we follow the approach of Appel and Michael [13]. We start with a direct
encoding of machine instructions as a step relation relating one machine state to another, and we prove
a theorem stating that safety follows from “progress” and “preservation” lemmas. In the formal proof,
we began by adopting and modifying some of the basic definitions in the Coq libraries used in Hamid et.
al.’s syntactic approach to FPCC [10]. We present a proof of safety of our example program in the new
context. We structure the proof and provide enough detail so that we can see a correspondence between
reasoning using Hoare rules and reasoning using the progress and preservation lemmas. For instance,
readers familiar with tools for formal verification of programs, but not necessarily familiar with progress
and preservation lemmas for programming languages, should gain a better understanding of how to build
and apply such tools in the PCC setting. Although most of the formal proof presented here was done
interactively, we attempt to provide some insight into how to automate such proofs.

Section 6 incorporates memory safety into the direct encoding of the machine semantics, and dis-
cusses the resulting changes in the safety proof of the example program. In Section 7, we discuss the
second example program and its safety proof. This example illustrates how conditional jump instructions
are added to the semantics, and how programs with loops are proved safe. Finally, Section 8 discusses
automating proofs of safety and other general issues.

This paper extends an earlier one [8] where we present the example for reversing a list and discuss the
proof in two stages, first using Hoare-style rules and then using progress and preservation lemmas. Here,
we go into more detail by starting with a simpler example and a simpler safety policy, and introduce
increasing complexity in four stages instead of two. When we present the reverse program here, we give
a simpler safety proof than our earlier one and describe only the aspects that are not covered by the first
example program. We also include an extended discussion of a variety of issues.

2. Machine Semantics as Hoare-Style Rules

We introduce the set of machine instructions used in our first example program by presenting a set of
Hoare-style rules for reasoning about them, given in Figure 1. These can be viewed as a modified form
of Necula and Lee’s VCG [17, 19] expressing a simplified version of safety. Note that there is one rule
for each machine instruction and that these rules are axioms. The mov rule is a version of the usual
assignment rule where the precondition is obtained by starting with the postcondition and replacing
occurrences of the destination register rd with constant c. The two rules for addition are similar to the
mov rule. In the first, the destination register is replaced by a constant c added to the contents of a source
register rs, and in the second, there are two source registers whose contents are added together. In the



4 A. P. Felty / Tutorial Examples of FPCC

mov
{I[c/rd]} MOV rd := c {I}

addc
{I[rs + c/rd]} ADDC rd := rs + c {I}

add
{I[rs1

+ rs2
/rd]} ADD rd := rs1

+ rs2
{I}

ld
{I[m(rs + c)/rd]} LD rd := m(rs + c) {I}

st
{I[m[rd + c 7→ rs]/m]} ST m(rd + c) := rs {I}

{A}S1{C} {C}S2{B}
sequence

{A}S1;S2{B}

A ⇒ A′ {A′}S{B′} B′ ⇒ B
Implied

{A}S{B}

Figure 1. Hoare-style Rules for Machine Instructions

ld rule, rs + c is an address, and the value at that address in memory is the value that replaces rd. In
the st rule, it is the entire memory in the postcondition that is replaced by an expression representing a
new memory, to obtain the precondition. This new memory is the same as the old except for an update
at one address (address rd + c). In general, we write m[a1 7→ w1, . . . , an 7→ wn] to represent a memory
such that for i = 1, . . . , n, address ai has value wi, and for all other addresses, the corresponding value
is obtained from m. When we write this expression, we assume a1, . . . , an are distinct.

The rules in Figure 1 can be proven sound using usual techniques for showing the soundness of
Hoare logic for simple high-level languages. (See [12] for example.) In particular, all of the instructions
considered here can be considered versions of the assignment statement where register names can be
viewed as variable names and memory can be viewed as an array. The formulas in the preconditions and
postconditions are first-order formulas built on a term language that includes arithmetic and array-update
expressions. Thus soundness of these rules is easily established. The remaining rules are the same as
those that appear in high-level languages; thus their soundness is immediate. Proving the implications
in the Implied rule requires reasoning in first-order logic using standard logical rules. In our examples,
it is mainly simple reasoning about integer arithmetic that is required. We have not yet included any
rules for jump instructions, which would clearly complicate the proof of soundness. We do not consider
such issues here, since the Hoare rules are used for illustration purposes only. In particular, we will see
how the information embodied in these rules is used in the formalization of progress and preservation
presented later, providing insight into the correspondence between these two styles of reasoning.

We will assume programs have the form (S1; . . . ;Sn; JMP r) where r is a return address. For now,
statements S1; . . . ;Sn include only instructions for which there are rules in the figure. There is also an
instruction ILLEGAL, which causes a program to loop indefinitely. There is no rule for this instruction,



A. P. Felty / Tutorial Examples of FPCC 5

which means that no program containing this instruction can be proved safe. The predicate safe exit
is introduced to express that it is safe to transfer control to the return address upon completion of exe-
cution. The program’s precondition Pre must include some assumptions about this predicate providing
information to show that whatever value r has at the end of the computation is safe. The omission of
a rule for ILLEGAL and the safe exit condition are all that is required to express our first simple safety
policy. In particular, we define a program to be safe if we can prove {Pre}S1; . . . ;Sn{safe exit(r)},
which we denote as safe(Pre , (S1; . . . ;Sn; JMP r)). We can prove that programs satisfy other properties
beyond safety by including additional postconditions.

A proof of safety can be built by repeated application of the sequence rule with applications of rules
for particular instructions at the leaves of the proof tree. As usual in such proofs, we can start with
postcondition safe exit(r) and apply the rule corresponding to statement Sn to obtain some formula
In. Then In is used as the postcondition of statement Sn−1 to compute In−1, and so on. In the simplest
form of proof, we have leaves of the form {I1}S1{I2}, {I2}S2{I3}, . . . , {In}Sn{safe exit(r)} plus an
application of the Implied rule requiring proof of Pre ⇒ I1.

We abbreviate proofs of this form here by writing

{Pre}{I1}S1{I2}S2{I3} · · · {In}Sn{safe exit(r)}.

In particular, we use a linear form eliminating duplicate copies of formulas which occur as both pre-
and post-conditions. An extra formula appearing before a Hoare triple abbreviates an application of the
Implied rule. Here {Pre}{I1}S1{I2} denotes the subproof

Pre ⇒ I1 {I1}S1{I2} I2 ⇒ I2 Implied
{Pre}S1{I2}

Proofs of the implications in the premises of applications of Implied are left implicit. Our examples will
also include other applications of Implied, usually used to simplify proofs. For example, if we write

{Pre}{I1}S1{I
′

2}{I2}S2{I3} · · · {In}Sn{safe exit(r)}

the addition of {I ′2} indicates an application of Implied in the same form as above with leftmost premise
I ′2 ⇒ I2 and conclusion {I ′2}S2{I3}.

In our sample programs, we assume a representation of integer lists where the empty list uses one
memory location and is just a tag whose value is 0. If the list is non-empty, then three consecutive
memory locations are used. The first contains the tag value 1. The second contains an integer, and the
third contains a pointer to the rest of the list. We assume there are 32 registers, denoted r0 to r31. A
program that extends a list with one element at the head is given in Figure 2. We assume that register
r0 has an input integer value, that register r2 contains an input list of integers, and that register r7

contains a designated return address. We also assume that there is a set of consecutive memory locations
(unbounded) that are unallocated, and the first location in this set is given by the value of an allocation
pointer whose value is stored in r8. The program allocates new memory and increases the value of
the allocation pointer as needed. This program builds a new list by storing values at three consecutive
memory locations starting at address r8, and returning a pointer to the new list in r1. The first line puts
the tag value 1 in register r3 and the second line stores this value in memory at address r8. The ADD

instruction computes the value of the new head of the list by adding 1 to the input value in r0, and the
following line stores this value in the memory location following the tag value. Next, the construction of



6 A. P. Felty / Tutorial Examples of FPCC

MOV r3 := 1 r3 gets value 1

ST m(r8 + 0) := r3 store this value in m(r8)

ADD r3 := r0 + r3 r3 gets value r0 + 1

ST m(r8 + 1) := r3 store this value in m(r8 + 1)

ST m(r8 + 2) := r2 store list r2 in m(r8 + 2)

ADDC r1 := r8 + 0 store r8’s current value in output register r1

ADDC r8 := r8 + 3 update allocation pointer r8 by 3

LD r0 := m(r1 + 1) load head of list r1 into r0

ADDC r6 := r7 + 0 move return address into r6

JMP r6 return

Figure 2. A Program which Extends a List with a New Value at the Head

the new list is completed by putting a pointer to the input list at the address following the new tag and
new list head. Next, in the first ADDC instruction, r1 is set to point to the new list. In the following line,
the allocation pointer is increased by 3. The LD instruction sets the value of r0 to the value of the new
head of the list. Finally, the return address is moved into r6 and control returns there. The program does
some unnecessary computation, but this is done for illustration purposes.

Assuming that the initial designated return address r7 is safe, proofs of safety for this example are
very simple. To complicate things slightly, we add a postcondition r8 = r1 + 3 to show the relation
between the final value of the allocation pointer r8 and the address of the new output list r1. Figure 3
contains a proof in the linear form described earlier, where for each line of code the axiom for the
instruction at that line is applied. We can modify the proof by adding, for example, safe exit(r7) as I ′6
just above I6, introducing the new proof obligation

safe exit(r7) ⇒ (safe exit(r7 + 0) ∧ r8 + 3 = r8 + 0 + 3)

via the Implied rule. Then I1, . . . , I5 become simply safe exit(r7), simplifying the details of the proof
above the new I ′6.

In the PCC setting, we want to automate proof construction as much as possible, so in general we will
not have arbitrary intermediate conditions such as I ′

6. We will, however, have hints, which are formulas
representing preconditions for particular lines of code that are generated automatically by a certifying
compiler [17]. Often, such hints are preconditions of targets of direct jumps and conditional jumps,
which represent loop invariants. In this paper, we add “hints” such as I ′

6 when convenient for illustration
purposes.

3. Memory Safety

We now extend the safety policy to insure that load and store instructions occur only at allowable memory
locations. We present this new safety policy as an extension to the Hoare rules of Figure 1, modifying the
ld and st rules to add conditions stating that loads can only occur at readable memory locations and stores



A. P. Felty / Tutorial Examples of FPCC 7

Pre : {safe exit(r7)}

I1 : {safe exit(r7 + 0) ∧ r8 + 3 = r8 + 0 + 3}

MOV r3 := 1

I2 : {safe exit(r7 + 0) ∧ r8 + 3 = r8 + 0 + 3}

ST m(r8 + 0) := r3

I3 : {safe exit(r7 + 0) ∧ r8 + 3 = r8 + 0 + 3}

ADD r3 := r0 + r3

I4 : {safe exit(r7 + 0) ∧ r8 + 3 = r8 + 0 + 3}

ST m(r8 + 1) := r3

I5 : {safe exit(r7 + 0) ∧ r8 + 3 = r8 + 0 + 3}

ST m(r8 + 2) := r2

I6 : {safe exit(r7 + 0) ∧ r8 + 3 = r8 + 0 + 3}

ADDC r1 := r8 + 0

I7 : {safe exit(r7 + 0) ∧ r8 + 3 = r1 + 3}

ADDC r8 := r8 + 3

I8 : {safe exit(r7 + 0) ∧ r8 = r1 + 3}

LD r0 := m(r1 + 1)

I9 : {safe exit(r7 + 0) ∧ r8 = r1 + 3}

ADDC r6 := r7 + 0

I10 : {safe exit(r6) ∧ r8 = r1 + 3}

Pre ⇒ I1 : safe exit(r7) ⇒ (safe exit(r7 + 0) ∧ r8 + 3 = r8 + 0 + 3)

Figure 3. Safety Proof for Program in Figure 2

ld
{I[m(rs + c)/rd] ∧ readable(rs + c)} LD rd := m(rs + c) {I}

st
{I[m[rd + c 7→ rs]/m] ∧ writable(rd + c)} ST m(rd + c) := rs {I}

Figure 4. Hoare-Style Rules for New Safety Policy



8 A. P. Felty / Tutorial Examples of FPCC

can only occur at writable memory locations. (See Figure 4.) The new preconditions are essentially the
same as those in Necula and Lee’s VCG presentation [17, 19].

To prove programs safe, we need a policy on readable and writable addresses. The allocation pointer
is used to specify this policy. In particular, we will say that all addresses beginning with the initial
value of r8 are writable initially. We only handle non-mutable data, so once a location is written and
the allocation pointer advanced past it, it will no longer be writable. We will allow all addresses starting
at some initial address, denoted start, to be read. In addition, we want to be able to read all memory
locations containing parts of the input data as well as intermediate data that is created during execution
of the program. For example, when the input is a list, we want to read all locations that are part of the
list.

For our examples, we define the following policy, which is included in the program preconditions.

Policy := r8 ≥ start ∧ (∀w.w ≥ r8 ⇒ writable(w)) ∧ (∀w.w ≥ start ⇒ readable(w)).

In order to show that all memory locations that the program reads from are indeed readable, we
need to include information about the types of the input data in the precondition of the program. Typing
judgments depend on the contents of memory and the set of currently allocated locations; in the case of
lists, all memory locations used to represent a list must be allocated. An allocation predicate is used to
specify a particular set of allocated addresses. A typing judgment stating that w has type τ in memory
m with allocation set A is written w :m,A τ . In our example, the set of addresses assumed to be allocated
before execution starts is defined as A(w) := (start ≤ w < r8). We add the necessary typing judgments
to the program precondition, obtaining:

Pre := safe exit(r7) ∧ (r0 :m,A int) ∧ (r2 :m,A intlist) ∧ Policy. (1)

Proving safety now requires showing that various type constraints are met. We present here the
typing rules we use in our example. First, we define a valid type to be any type τ for which typing is
preserved when unallocated memory locations are modified and also when the set of allocated memory
locations is increased. More formally:

Definition 1. A type τ is valid if for any word w, memory m, and allocation predicate A, whenever
w :m,A τ holds, then:

1. for any words u and v, if ¬A(v) holds, then w :m[v 7→u],A τ holds; and

2. for any allocation predicate A′ such that ∀x.A(x) ⇒ A′(x) holds, then w :m,A′ τ holds.

Rules expressing this definition, as well as all remaining typing rules we use in proving safety of the
example program are given in Figure 5. Those for lists are stated in terms of lists of arbitrary type τ . In
addition, integers and integer lists are assumed to be valid types. These rules can be proven sound with
respect to a particular definition of types [2], which we omit for now. We return to this issue when we
discuss the formalization of these rules in Section 4.

Figure 6 contains a new safety proof of our example program. This proof is of safety only; we have
removed the additional postcondition used in the previous section. In this proof, we have added hint I ′

8.
Note that the instruction at line 8 loads the head of the output list r1. The fact that r1 is a non-empty list
of integers is used to prove that memory location r1 + 1 is indeed readable. Note that we obtain I7 from



A. P. Felty / Tutorial Examples of FPCC 9

w :m,A τ valid(τ) ¬A(v)
valid mem update

w :m[v 7→u],A τ

w :m,A τ valid(τ) ∀x.A(x) ⇒ A′(x)
valid allocset

w :m,A′ τ

w :m,A int
int succ

w + 1 :m,A int
w :m,A list(τ) valid(τ)

list readable
readable(w)

w :m,A list(τ) valid(τ) m(w) 6= 0
list readable1

readable(w + 1)

w :m,A list(τ) valid(τ) m(w) 6= 0
list readable2

readable(w + 2)

w :m,A list(τ) valid(τ) m(w) 6= 0
list field1

m(w + 1) :m,A τ

w :m,A list(τ) valid(τ) m(w) 6= 0
list field2

m(w + 2) :m,A list(τ)

valid(τ) m(w) = 0 A(w) readable(w)
empty list

m(w) :m,A list(τ)

m(w + 1) :m,A τ
m(w + 2) :m,A list(τ)

m(w) = 1
valid(τ)

A(w)
A(w + 1)
A(w + 2)

readable(w)
readable(w + 1)
readable(w + 2)

non empty list
m(w) :m,A list(τ)

Figure 5. Typing Rules for Integers and Lists



10 A. P. Felty / Tutorial Examples of FPCC

Pre : safe exit(r7) ∧ (r0 :m,A int) ∧ (r2 :m,A intlist) ∧ Policy

I1 : {safe exit(r7) ∧ (r8 + 0 :m[r8+07→1,r8+17→r0+1,r8+27→r2],A′ intlist) ∧

m[r8 + 0 7→ 1, r8 + 1 7→ r0 + 1, r8 + 2 7→ r2](r8 + 0) 6= 0 ∧

writable(r8 + 2) ∧ writable(r8 + 1) ∧ writable(r8 + 0)}

MOV r3 := 1

I2 : {safe exit(r7) ∧ (r8 + 0 :m[r8+07→r3,r8+17→r0+r3,r8+27→r2],A′ intlist) ∧

m[r8 + 0 7→ r3, r8 + 1 7→ r0 + r3, r8 + 2 7→ r2](r8 + 0) 6= 0 ∧

writable(r8 + 2) ∧ writable(r8 + 1) ∧ writable(r8 + 0)}

ST m(r8 + 0) := r3

I3 : {safe exit(r7) ∧ (r8 + 0 :m[r8+17→r0+r3,r8+27→r2],A′ intlist) ∧

m[r8 + 1 7→ r0 + r3, r8 + 2 7→ r2](r8 + 0) 6= 0 ∧

writable(r8 + 2) ∧ writable(r8 + 1)}

ADD r3 := r0 + r3

I4 : {safe exit(r7) ∧ (r8 + 0 :m[r8+17→r3,r8+27→r2],A′ intlist) ∧

m[r8 + 1 7→ r3, r8 + 2 7→ r2](r8 + 0) 6= 0 ∧

writable(r8 + 2) ∧ writable(r8 + 1)}

ST m(r8 + 1) := r3

I5 : {safe exit(r7) ∧ (r8 + 0 :m[r8+27→r2],A′ intlist) ∧ m[r8 + 2 7→ r2](r8 + 0) 6= 0 ∧

writable(r8 + 2)}

ST m(r8 + 2) := r2

I6 : {safe exit(r7) ∧ (r8 + 0 :m,A′ intlist) ∧ m(r8 + 0) 6= 0}

ADDC r1 := r8 + 0

I7 : {safe exit(r7) ∧ (r1 :m,A′ intlist) ∧ m(r1) 6= 0}

ADDC r8 := r8 + 3

I ′8 : {safe exit(r7) ∧ (r1 :m,A intlist) ∧ m(r1) 6= 0}

I8 : {safe exit(r7 + 0) ∧ readable(r1 + 1)}

LD r0 := m(r1 + 1)

I9 : {safe exit(r7 + 0)}

ADDC r6 := r7 + 0

I10 : {safe exit(r6)}

Proof Obligations from the Implied rule: Pre ⇒ I1 I ′8 ⇒ I8

Figure 6. Safety Proof for Program in Figure 2 under Extended Safety Policy



A. P. Felty / Tutorial Examples of FPCC 11

I ′8 by replacing all occurrences of r8 by r8 + 3, which changes the definition of the allocation set. We
abbreviate the new set as A′ where A′(w) := (start ≤ w < r8 + 3). We can see that although the same
set of rules are applied as in the proof that used the simpler safety policy, the formulas are considerably
more complex.

The last line of the figure shows the remaining two proof obligations. Their proofs, which we con-
sider now, will complete the safety proof. First consider Pre ⇒ I1, which expands to:

[safe exit(r7) ∧ (r0 :m,A int) ∧ (r2 :m,A intlist) ∧ r8 ≥ start ∧

(∀w.w ≥ r8 ⇒ writable(w)) ∧ (∀w.w ≥ start ⇒ readable(w))] ⇒

[safe exit(r7) ∧ (r8 + 0 :m[r8+07→1,r8+17→r0+1,r8+27→r2],A′ intlist) ∧

m[r8 + 0 7→ 1, r8 + 1 7→ r0 + 1, r8 + 2 7→ r2](r8 + 0) 6= 0 ∧

writable(r8 + 2) ∧ writable(r8 + 1) ∧ writable(r8 + 0)].

The writable subformulas clearly follow from the policy on writable addresses. The subformula above
the writable subformulas reduces to 1 6= 0. The typing judgment is the only remaining non-trivial
subformula. Note that r8, r8 + 1, and r8 + 2 are not allocated according to the allocation predicate A,
but are allocated according to A′. From (r2 :m,A intlist), we can apply valid mem update three times
to obtain: (r2 :m[r8+07→1,r8+17→r0+1,r8+27→r2],A intlist). Now, applying valid allocset, we conclude:

(r2 :m[r8+07→1,r8+17→r0+1,r8+27→r2],A′ intlist). (2)

Let m′ denote the memory m[r8 + 0 7→ 1, r8 + 1 7→ r0 + 1, r8 + 2 7→ r2]. Formula (2) is equivalent to:

(m′(r8 + 2) :m′,A′ intlist). (3)

By similar reasoning, we can conclude (r0 :m[r8+07→1,r8+17→r0+1,r8+27→r2],A′ int), and then by int succ,
we get (r0 + 1 :m[r8+07→1,r8+17→r0+1,r8+27→r2],A′ int), which is equivalent to:

(m′(r8 + 1) :m′,A′ int). (4)

By definition of memory update, we know that

m′(r8 + 0) = 1 (5)

Using (3), (4), and (5) we can now apply non empty list. As already noted the addresses r8, r8 + 1,
and r8 + 2 are in the allocated set A′, so the three allocation premises of this rule hold. The readable
premises are provable from the safety policy.

The remaining proof obligation in Figure 6, I ′

8 ⇒ I8, expands to:

[safe exit(r7) ∧ (r1 :m,A intlist) ∧ m(r1) 6= 0] ⇒ [safe exit(r7 + 0) ∧ readable(r1 + 1)].

The proof is simple. The readable subgoal follows directly from an application of list readable1. This
completes the safety proof.

A general advantage of the PCC approach to software safety is that the trusted computing base (TCB)
is small. In a PCC system that implements the safety policy and set of rules discussed so far, we must
trust the set of inference rules for basic logic, the rules of Figure 1 which describe the machine semantics,



12 A. P. Felty / Tutorial Examples of FPCC

and the rules of Figure 5 for types. If the implementation uses a logical framework such as LF [11] as
many PCC systems do, including the early ones [17, 2], then we must trust the encoding of such rules
in the framework. Finally, we must trust the implementation of the proof checker for the logic or logical
framework. When we turn to FPCC in the next sections, we will simplify the TCB first by replacing
typing rules with formally proved typing lemmas, and second by replacing the Hoare rules with a lower-
level encoding of machine semantics.

4. Typing Definitions and Lemmas

We now turn to FPCC, and in this section, we begin by giving a foundational approach to typing, which
means that we give definitions for types and formally prove the typing rules of Figure 5 as lemmas. At the
same time, we describe our formalization of FPCC in Coq. We use a modified Coq syntax in presenting
the definitions. In the rest of the paper, when we discuss formal proofs of safety of example programs,
these proofs will use the formal versions of the typing lemmas discussed here.

We use a direct Coq formalization where we give Coq types to represent data such as words and
memories, and we use Coq’s logic to represent logical expressions such as allocation predicates, precon-
ditions, postconditions, and invariants. Word is defined to be the set of natural numbers. For simplicity,
we do not build in fixed-size words, though this can and has been done in various PCC systems (for
example [13]). We write Mem to represent the function type (Word → Word ). In particular, memory
is modeled as a function from machine addresses to machine values, usually written with uppercase M .
An allocation predicate, usually denoted A, is any Coq predicate of type Word → Prop . (Coq’s Prop

denotes the type of logical formulas.)
The definitions and lemmas from which the rules in Figure 5 follow were mostly presented in [2].

We repeat the definitions in Figure 7 to highlight the fact that all types are defined objects. A type
is defined to be a predicate of three arguments: an allocation predicate, a memory, and a value. The
second definition illustrates that while (w :M,A τ) is the typing abbreviation, τ is the predicate, and the
other three parameters (A, M , and w) to the typing judgment are in fact arguments to τ . The int type
contains all machine integers, which includes all elements of Word . The definitions starting with con

and ending with record 3 all define type constructors providing various ways to build new types from
existing types. Generalizing from record 1, record 2, and record 3, it is easy to see how to build records
of any size. Next, subtyping is defined using logical implication, followed by the definition of the rec

operator. Using this operator, recursive types are defined to be all types (rec F ) for which the least fixed-
point of the argument F is (rec F ), i.e., all types with the property that for all machine states (A,M,w),
(rec F )(A,M,w) ⇔ (F (rec F ))(A,M,w). The last two definitions illustrate its use in defining the
list type constructor.

The typing rules in Figure 5 are proven fairly directly from these definitions. We omit the proofs here.
More specifically, we prove a series of lemmas about each of the type constructors in Figure 7. For each
property expressed and proved for all of the type constructors, we can use the resulting set of lemmas
directly to prove automatically that the corresponding property holds of any type built up from these
constructors. For example, the types library includes a set of lemmas stating that the type constructors
preserve validity. For instance, if types τ1 and τ2 are valid, then (record 2 τ1 τ2) is valid. These lemmas
can be used to prove that any type built from the type constructors is valid. The class of types that can be
built from these constructors includes a large class of covariant recursive types.



A. P. Felty / Tutorial Examples of FPCC 13

Ty := (Word → Prop) → Mem → Word → Prop

w :M,A τ := τ(A,M,w)

int(A,M,w) := True

(con c)(A,M,w) := c = w

(ref τ)(A,M,w) := readable(w) ∧ A(w) ∧ τ(A,M,M(w))

(offset n τ)(A,M,w) := τ(A,M,w + n)

(τ ∪ τ ′)(A,M,w) := τ(A,M,w) ∨ τ ′(A,M,w)

(τ ∩ τ ′)(A,M,w) := τ(A,M,w) ∧ τ ′(A,M,w)

(field i τ)(A,M,w) := (offset i (ref τ))(A,M,w)

(record 1 τ)(A,M,w) := (field 0 τ)(A,M,w)

(record 2 τ0 τ1)(A,M,w) := ((field 0 τ0) ∩ (field 1 τ1))(A,M,w)

(record 3 τ0 τ1 τ2)(A,M,w) := ((field 0 τ0) ∩ (field 1 τ1) ∩ (field 2 τ2))(A,M,w)

(τ v τ ′) := ∀A,M,w.τ(A,M,w) ⇒ τ ′(A,M,w)

(rec F )(A,M,w) := ∀τ.valid(τ) ⇒ (F (τ) v τ) ⇒ τ(A,M,w)

(listcon τ) τ ′ := (record 1 (con 0)) ∪ (record 3 (con 1) τ τ ′)

(list(τ))(A,M,w) := rec (listcon τ)(A,M,w)

Figure 7. Definitions for Basic Types and Type Constructors

5. Encoding Machine Semantics Directly

We now return to the example program in Figure 2 and discuss its safety proof in the FPCC setting. We
again proceed in two steps, starting with the simple safety policy in this section, and adding memory
safety in the next section. As a first step, in this section we provide a more foundational specification
of machine semantics by starting with a low-level machine model. At the same time, we continue de-
scribing our formalization of FPCC in Coq. At a high level, this and the next section can be viewed as
a formalization of the Hoare logic in Sections 2 and 3, though we are not formalizing the rules directly.
We start at a more primitive level, formalizing the notion of state, which in Hoare logic is left implicit.
(State is of course important, however, when proving properties of Hoare logic such as its soundness.)
In addition, in this version we include jump instructions.

We define the type Reg to be the type of the set of 32 registers r0 to r31. We define machine
instructions as an inductive type Instr ; instructions and their types are given in Figure 8. The figure
includes a jump instruction, jmp , and two conditional branch instructions, bgt and beq , that we have not
yet seen.

Register banks are represented as functions from registers to values; RegFile denotes the type
(Reg → Word ). We define a machine state to be a triple of the form (R,M, pc) where R is a reg-
ister bank, M is a memory, and pc is a Word representing the program counter. In particular State

denotes the type RegFile ×Mem ×Word . We define a step relation that relates two machine states, one
before execution and one after execution of a particular instruction. We write (R,M, pc 7→ R ′,M ′, pc′)
to denote this relation, and (R,M, pc 7→∗ R′,M ′, pc′) to denote its reflexive transitive closure.



14 A. P. Felty / Tutorial Examples of FPCC

mov : Reg → Word → Instr

addc : Reg → Reg → Word → Instr

add : Reg → Reg → Reg → Instr

ld : Reg → Reg → Word → Instr

st : Reg → Word → Reg → Instr

jmp : Reg → Instr

bgt : Reg → Reg → Word → Instr

beq : Reg → Reg → Word → Instr

ill : Instr

Figure 8. Constants Representing Machine Instructions and their Types

Machine instructions are encoded as 32-bit machine integers. These integers are decoded into ma-
chine instructions by extracting information from specific bits. The step relation is defined by extracting
the instruction at line pc in M , decoding it, and changing the machine state according to the semantics
of the particular instruction. The decode operation is written Dc and has type Word → Instr . We omit
the details of its definition. We also define two update operations, one on registers and one on memory.
In particular, we write R[d 7→ v], where R is a register bank, d is a register, and v is a word, to repre-
sent the function which maps d to v and all other registers r to (R r). We often write Ri to abbreviate
register bank application (R ri). Similarly, we write M [a 7→ v], where M is a memory, a is a word
representing an address, and v is a word, to denote a new function which is the same as M except that
the new function maps address a to value v. These update relations and the step relation are defined in
Figure 9. Their definitions are essentially the same as those found in our earlier work [2] and in the Coq
formalization of syntactic FPCC [10]. Note that the update relations are Coq functions, while the step
relation is a Coq predicate, i.e., (R,M, pc 7→ R′,M ′, pc′) has Coq type Prop . Note that the ILLEGAL

instruction maps to the false proposition. Thus, any machine state where the program counter points to
an ILLEGAL instruction will not be related to any other state by the step relation.

Following Michael and Appel [13], we define safe, Progress, and Preservation predicates as
in Figure 10, and prove the safety rule, also in the figure. The safe predicate expresses the fact that
execution of a safe program doesn’t get stuck. With the simple safety policy, the only way to get stuck is
by executing an ILLEGAL instruction. Note that safe is a predicate on a machine state (R,M, pc). The
code is in M and pc points to the first instruction. In the definitions of Progress and Preservation,
Inv is another predicate which takes a machine state as an argument. Our formalization also includes a
definition for safe exit.

Returning to the example program, we encode it in Coq using a predicate listextend(M) stating
which addresses in memory M contain the instructions, and what instructions are in these memory
locations. For simplicity, we assume that the 10-line program in Figure 2 is in addresses 1–10 of memory,
where address 10 contains the jump to the return location. In particular, the definition of listextend(M)



A. P. Felty / Tutorial Examples of FPCC 15

(R[d 7→ v] r) := if r = d then v else (R r)

(M [a 7→ v] w) := if w = a then v else (M w)

(R,M, pc 7→ R′,M ′, pc′) := match (Dc (M pc)) with

(mov rd w) ⇒ R′ = R[rd 7→ w] ∧ M ′ = M ∧ pc′ = pc + 1

(addc rd rs w) ⇒ R′ = R[rd 7→ Rs + w] ∧ M ′ = M ∧ pc′ = pc + 1

(add rd rs1
rs2

) ⇒ R′ = R[rd 7→ Rs1
+ Rs2

] ∧ M ′ = M ∧ pc′ = pc + 1

(ld rd rs w) ⇒ R′ = R[rd 7→ (M(Rs + w))] ∧ M ′ = M ∧ pc′ = pc + 1

(st rd w rs) ⇒ R′ = R ∧ M ′ = M [Rd + w 7→ Rs] ∧ pc′ = pc + 1

(jmp r) ⇒ R′ = R ∧ M ′ = M ∧ pc′ = (R r)

(bgt rs1
rs2

w) ⇒ R′ = R ∧ M ′ = M ∧ pc′ = (if Rs1
> Rs2

then w else pc + 1)

(beq rs1
rs2

w) ⇒ R′ = R ∧ M ′ = M ∧ pc′ = (if Rs1
= Rs2

then w else pc + 1)

ill ⇒ False

Figure 9. The Step Relation

safe(R,M, pc) := ∀R′,M ′, pc′.[(R,M, pc 7→∗ R′,M ′, pc′) ⇒

∃R′′,M ′′, pc′′.(R′,M ′, pc′ 7→ R′′,M ′′, pc′′)]

Progress(Inv) := ∀R,M, pc.[Inv(R,M, pc) ⇒

∃R′,M ′, pc′.(R,M, pc 7→ R′,M ′, pc′)]

Preservation(Inv) := ∀R,M, pc,R′,M ′, pc′.Inv(R,M, pc) ⇒

(R,M, pc 7→ R′,M ′, pc′) ⇒ Inv(R′,M ′, pc′)

Inv(R,M, pc) Progress(Inv) Preservation(Inv)
safety

safe(R,M, pc)

safe exit(w) := ∀R,M, pc.(pc = w ⇒ safe(R,M, pc))

Figure 10. Definitions and Lemmas for Proving Safety



16 A. P. Felty / Tutorial Examples of FPCC

has the form:
listextend(M) := (Dc (M 1)) = (mov r3 1) ∧

(Dc (M 2)) = (st r8 0 r3) ∧
...

(Dc (M 9)) = (addc r6 r7 0) ∧

(Dc (M 10)) = (jmp r6).

Since we model memory as a single function which does not differentiate between code and data lo-
cations, we have the additional proof obligation of showing that our program does not include self-
modifying code. If there was overlap between the code and data parts of memory, we would likely not be
able to prove safety. In the Hoare rules of Section 2, there is an implicit separation of code from data in
memory because there is no connection between the statement part of judgments and the memory. In the
Coq formalization, we add a parameter start and a hypothesis that states that start is greater than the
address where the last line of the program occurs. The formalization is valid for any value of start that
satisfies this assumption. The safety proof requires showing that all store instructions executed by the
program will occur at addresses greater than or equal to start. In particular, the precondition assumes
the initial value of allocation pointer r8 is not smaller than start, and we show that this condition is an
invariant of the program.

We started in this section with a fairly low-level encoding of the machine semantics and built up to
with the high-level derived rule safety. Reasoning using this rule corresponds closely to reasoning using
the Hoare-style rules of Section 2. In the new setting, we prove a formula of the form

∀R∀M∀pc (Pre(R,M, pc) ⇒ safe(R,M, pc))

where Pre is now a predicate over a state. For our example program, this predicate will include the
precondition used in the proof in Section 2, but also includes the initial value of the program counter, the
starting assumption about r8, as well as the formula stating where the program lies in memory:

Pre(R,M, pc) := safe exit(R7) ∧ pc = 1 ∧ R8 ≥ start ∧ listextend(M).

To use the safety rule, we need a predicate Inv which expresses a program invariant. Inv will have
one clause for every line of the program stating what is true at the point when that line is executed. For
our example program, we obtain these formulas fairly directly from the Hoare proof in Figure 3. Here,
for line 6 we will use I ′6 in the simplified proof discussed in Section 2 instead of I6 in the figure, as
well as the simpler versions of I1, . . . , I5. Here, these formulas become predicates over a state. In this
example, we only need the register bank argument from the state, so we omit the others. We also add the
invariant R8 ≥ start. These formulas are shown in Figure 11. The full predicate Inv has the following
form:1

Inv(R,M, pc) := [listextend(M) ∧

((pc = 1 ∧ I1(R)) ∨ · · · ∨ (pc = 10 ∧ I10(R)))] ∨

safe(R,M, pc)

1We have added the condition R8 ≥ start to each clause of the invariant, but note that we could have instead put it outside the
disjunction.



A. P. Felty / Tutorial Examples of FPCC 17

I1(R) = · · · = I6(R) := safe exit(R7) ∧ R8 ≥ start

I7(R) := safe exit(R7 + 0) ∧ R8 + 3 = R1 + 3 ∧ R8 ≥ start

I8(R) = I9(R) := safe exit(R7 + 0) ∧ R8 = R1 + 3 ∧ R8 ≥ start

I10(R) := safe exit(R6) ∧ R8 = R1 + 3 ∧ R8 ≥ start

Figure 11. Clauses of the Invariant for Safety Proof of the Program in Figure 2

As we will see shortly, the second clause of Inv’s top-level disjunction, safe(R,M, pc), is used for the
case when the program counter has the value of the return address.

Although we must provide Inv in full in order to apply the safety rule, most of it can be computed
automatically. In this example, we can view I ′

6 and the postcondition from Section 2 as the input used
to compute all the formulas in Figure 11. I6 and I10, respectively, are taken from these inputs. The
remaining clauses in Figure 11 are computed directly using the Hoare rules of Figure 1, even though
these rules are not part of the new encoding. We can view this as using a kind of a VCG, but one that
does not have to be trusted, because if the preconditions are computed incorrectly, we will not be able to
prove the premises of the safety rule. We do, however, treat the new clause R8 ≥ start specially. It is an
invariant that remains unchanged even as the value stored in r8 changes. In particular, in this example,
when computing I7(R) from I8(R) using the addc rule, notice that R8 in the second conjunct of I8(R)
is replaced by R8 +3 in I7(R) as the rule says it should, but R8 in the third conjunct remains unchanged.

We now have all the ingredients we need to prove the three premises of the safety rule. Proving the
first premise involves showing that the invariant holds in the initial state, i.e., the invariant follows from
the precondition where pc = 1. The proof is simple, since from the precondition, it follows immediately
that listextend(M) and that pc = 1 ∧ I1(R).

Both the progress and preservation proofs have the invariant as a hypothesis, which is used to break
the proofs into cases. In the case when the second disjunct holds, safe(R,M, pc), both progress
and preservation follow directly from the definition of safe. When the first disjunct holds, we know
listextend(M), and the proof proceeds by cases on the inner disjuncts, which give a specific value for
the program counter and an assumption corresponding to the precondition of the corresponding line of
code. For progress, we must show that no matter which line we are at in the program, there is a next step.
This is immediate for all programs that do not use the ILLEGAL instruction.

Proving Preservation(Inv) is where Hoare-style reasoning takes place. We have a case for each
line of the program; for pc = 10, it is straightforward to prove safe(R ′,M ′, pc′) from the hypothesis
safe exit(R6); for pc = 1, . . . , 9, under the assumption that Ipc(R) and (R,M, pc 7→ R′,M ′, pc′)
hold, we show that Ipc′(R

′) holds. For the cases where we calculated Ipc from Ipc′ by a straightforward
application of one of the Hoare-style axioms, the proof is immediate. The step relation encodes the same
information as the corresponding Hoare rule, so all the work was done when we applied the rule by hand
to determine the right Ipc to include in Inv. In addition, we must show that each step does not modify
the code. This is only relevant for store instructions, since they are the only ones that change the contents
of memory. For example, consider the following subgoal of the preservation proof:

(R,M, pc 7→ R′,M ′, pc′), listextend(M), pc = 4, I4(R) ` Inv(R′,M ′, pc′).

From the step relation and the clause for line 4 in the definition of listextend(M), which contains a



18 A. P. Felty / Tutorial Examples of FPCC

store instruction, we can deduce: R′ = R, M ′ = M [R8 + 1 7→ R3], and pc′ = 5. Thus, we must show
Inv(R,M [R8+1 7→ R3], 5). By definition of Inv, this reduces to showing that listextend(M [R8+1 7→
R3]) and that I5(R) holds. Since I4(R) and I5(R) are the same formula, the latter is immediate. For
the former, note that the new memory has a new value at a location greater than R8, which is greater or
equal to start. From this fact, it follows fairly directly that the code is not modified.

Consider another example subgoal:

(R,M, pc 7→ R′,M ′, pc′), listextend(M), pc = 9, I9(R) ` Inv(R′,M ′, pc′).

Line 9 is an ADDC instruction, which gives R′ = R[r6 7→ R7 + 0], M ′ = M , and pc′ = 10. In this case,
we must show I10(R[r6 7→ R7 + 0]) from I9(R). Expanding definitions, we must show:

safe exit(R7 + 0) ∧ R8 = R1 + 3 ∧ R8 ≥ start `

safe exit(R[r6 7→ R7 + 0] r6) ∧ (R[r6 7→ R7 + 0] r8) = (R[r6 7→ R7 + 0] r1) + 3 ∧

(R[r6 7→ R7 + 0] r8) ≥ start.

This follows directly from the definition of register update since (R[r6 7→ R7 + 0] r6) is R7 + 0,
(R[r6 7→ R7 + 0] r1) is R1, and (R[r6 7→ R7 + 0] r8) is R8.

More reasoning is needed for the cases when Ipc comes from a hint, and this reasoning corresponds
to what is needed to prove the corresponding Implied rule in the Hoare version of the proof. Consider
the subgoal:

(R,M, pc 7→ R′,M ′, pc′), listextend(M), pc = 6, I6(R) ` Inv(R′,M ′, pc′).

Line 6 is another ADDC instruction, which gives R′ = R[r1 7→ R8 + 0], M ′ = M , and pc′ = 7. In this
case, we must show I7(R[r1 7→ R8 + 0]) from I6(R). Expanding definitions, we must show:

safe exit(R7) ∧ R8 ≥ start `

safe exit((R[r1 7→ R8 + 0] r7) + 0) ∧ (R[r1 7→ R8 + 0] r8) + 3 = (R[r1 7→ R8 + 0] r1) + 3 ∧

(R[r1 7→ R8 + 0] r8) ≥ start.

Expanding the register update definitions, this reduces to showing:

safe exit(R7) ∧ R8 ≥ start ` safe exit(R7 + 0) ∧ R8 + 3 = R8 + 0 + 3 ∧ R8 ≥ start.

The proof requires a few more steps than the others, though it is still simple because of the simple
safety policy. We will see in the next section that extending the safety policy complicates such proofs
considerably.

Finally, we consider the subgoal:

(R,M, pc 7→ R′,M ′, pc′), listextend(M), pc = 7, I7(R) ` Inv(R′,M ′, pc′).

In this case, we must show I8(R[r8 7→ R8 + 3]) from I7(R). Line 7 modifies the value of allocation
pointer r8, but when applying the Hoare rule for ADDC to obtain I7(R) from I8(R), we did not modify R8



A. P. Felty / Tutorial Examples of FPCC 19

(R,M, pc 7→ R′,M ′, pc′) := match (Dc (M pc)) with
...
(ld rd rs w) ⇒ readable(Rs + w) ∧ R′ = R[rd 7→ (M(Rs + w))] ∧ M ′ = M ∧ pc′ = pc + 1

(st rd w rs) ⇒ writable(Rd + w) ∧ R′ = R ∧ M ′ = M [Rd + w 7→ Rs] ∧ pc′ = pc + 1
...

Figure 12. Building Memory Safety into the Step Relation

in the subformula R8 ≥ start, although we did modify it in the rest of formula. Expanding definitions
in the above goal, we must show:

safe exit(R7 + 0) ∧ R8 + 3 = R1 + 3 ∧ R8 ≥ start `

safe exit((R[r8 7→ R8 + 3] r7) + 0) ∧ (R[r8 7→ R8 + 3] r8) = (R[r8 7→ R8 + 3] r1) + 3 ∧

([r8 7→ R8 + 3] r8) ≥ start.

Expanding the register update definitions, this reduces to showing:

safe exit(R7 + 0) ∧ R8 + 3 = R1 + 3 ∧ R8 ≥ start `

safe exit(R7 + 0) ∧ R8 + 3 = R1 + 3 ∧ R8 + 3 ≥ start.

The third conjunct is provable using some simple reasoning about arithmetic. In general, all such sub-
goals will be provable as long as the allocation pointer is only increased and never decreased.

6. Integrating Memory Safety into Proofs of Progress and Preservation

Continuing the discussion of FPCC, we now take the second step, adding memory safety to our safety
policy. This requires, first of all, integrating memory safety into the machine model. In addition, recall
that type information was important in proving safety of the example in Section 3. The proofs here will
use the formalization discussed in Section 4. Again, we continue in the context of our Coq formalization.

To integrate memory safety into our low-level machine model, we build the constraints on memory
accesses directly into the step relation. At this stage, readable and writable are introduced into the
formalization with no definitions. Their meaning is given later when specifying the read/write policy for
a particular program. Only the clauses for the LD and ST instructions change. Their new definitions are
shown in Figure 12. Note that the presence of the ILLEGAL instruction is no longer the only way for
computation to get stuck. Any machine state such that the program counter points to a LD instruction
which attempts to read from an unreadable location, or a ST instruction which attempts to write to an
unwritable location, will not be related to any other state by the step relation.

The definitions of safe, safe exit, Progress, and Preservation as well as the statements and
proof of the safety rule in Section 5 are not affected by the new safety policy. When proving safety for
individual programs, the new proof obligations to show that LD and ST instructions use only readable or
writable locations appear as part of the proof of the Progress premise of the safety rule.



20 A. P. Felty / Tutorial Examples of FPCC

We now formalize the proof in Figure 6. In the new setting, the precondition of the example program
must include the clauses capturing the typing judgments and safety policy expressed in the precondition
of the Hoare proof in Section 3. It must now also include the assumptions about the initial value of the
program counter and the location and contents of the code in memory, needed for showing that the code
is never modified during program execution. We write the definition of the initial allocation predicate
as AR(w) := (start ≤ w < R8) where argument R is written as a subscript to A, showing explicitly
its dependence on the contents of the register bank. Using this definition, the precondition, which in the
previous proof is given as formula (1) is now defined formally below.

Pre(R,M, pc) := safe exit(R7) ∧ (R0 :M,AR
int) ∧ (R2 :M,AR

intlist) ∧ R8 ≥ start ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ ∀w.(w ≥ start ⇒ readable(w)) ∧

pc = 1 ∧ listextend(M).

Note that this formal version of the read/write policy shows its dependence on argument R (because of
the value R8).

As before, we compute the clauses of Inv, this time starting with hint I ′

8 and postcondition I10 in
Figure 6 which give us clauses I8(R,M) and I10(R,M) in Figure 13. Now, these clauses depend both
on the register bank and memory. As before, we add R8 ≥ start. Also, as before, we use the Hoare-style
rules to obtain the remaining clauses of Inv. Figure 13 contains the complete set of clauses. In these
clauses, we write A′

R for the allocation predicate defined as A′

R(w) := (start ≤ w < R8 + 3). We
again treat R8 ≥ start specially, leaving it unchanged in all invariant clauses, even though r8 changes.
Note that line 7 is the only line that modifies r8’s value. Thus in computing I7(R,M) from I8(R,M),
we leave the subformula R8 ≥ start unchanged, though we do replace R8 with R8 + 3 in the rest of the
formula. (In particular, this replacement only occurs in one place — when AR becomes A′

R.) Although
much of the information in this figure is the same as in Figure 6, we repeat it here because this is the
version of the proof that has been formalized in Coq.

The full predicate Inv has the same form as in the proof discussed in Section 5:

Inv(R,M, pc) := [listextend(M) ∧

((pc = 1 ∧ I1(R,M)) ∨ · · · ∨ (pc = 10 ∧ I10(R,M)))] ∨

safe(R,M, pc).

The proof also is similar to proofs that have already been presented. In particular, in Section 3, we
showed the Hoare-style proof for this program under the extended safety policy, and in Section 5, we
discussed how the preservation theorem corresponds to Hoare-style reasoning. Here, we show two sub-
goals, illustrating the readable and writable subgoals, which illustrate that with the new policy, some
of the Hoare-style reasoning is now carried out within the progress subproof. Line 5 contains one of the
ST instructions. For this case, we have the following subgoal in the progress subproof:

listextend(M), pc = 5, I5(R,M) ` ∃R′,M ′, pc′.(R,M, 5 7→ R′,M ′, pc′).

Expanding definitions, we must show:

listextend(M), pc = 5, safe exit(R7) ∧ R8 ≥ start ∧ (R8 + 0 :M [R8+2 7→R2],A′

R
intlist) ∧

M [R8 + 2 7→ R2](R8 + 0) 6= 0 ∧ writable(R8 + 2) `

∃R′,M ′, pc′.(writable(R8 + 2) ∧ R′ = R ∧ M ′ = M [R8 + 2 7→ R2] ∧ pc′ = 6).



A. P. Felty / Tutorial Examples of FPCC 21

I1(R,M) := safe exit(R7) ∧ R8 ≥ start ∧

(R8 + 0 :M [R8+07→1,R8+17→R0+1,R8+27→R2],A′

R
intlist) ∧

M [R8 + 0 7→ 1, R8 + 1 7→ R0 + 1, R8 + 2 7→ R2](R8 + 0) 6= 0 ∧

writable(R8 + 2) ∧ writable(R8 + 1) ∧ writable(R8 + 0)

I2(R,M) := safe exit(R7) ∧ R8 ≥ start ∧

(R8 + 0 :M [R8+07→R3,R8+17→R0+R3,R8+27→R2],A′

R
intlist) ∧

M [R8 + 0 7→ R3, R8 + 1 7→ R0 + R3, R8 + 2 7→ R2](R8 + 0) 6= 0 ∧

writable(R8 + 2) ∧ writable(R8 + 1) ∧ writable(R8 + 0)

I3(R,M) := safe exit(R7) ∧ R8 ≥ start ∧

(R8 + 0 :M [R8+17→R0+R3,R8+27→R2],A′

R
intlist) ∧

M [R8 + 1 7→ R0 + R3, R8 + 2 7→ R2](R8 + 0) 6= 0 ∧

writable(R8 + 2) ∧ writable(R8 + 1)

I4(R,M) := safe exit(R7) ∧ R8 ≥ start ∧

(R8 + 0 :M [R8+17→R3,R8+27→R2],A′

R
intlist) ∧

M [R8 + 1 7→ R3, R8 + 2 7→ R2](R8 + 0) 6= 0 ∧

writable(R8 + 2) ∧ writable(R8 + 1)

I5(R,M) := safe exit(R7) ∧ R8 ≥ start ∧ (R8 + 0 :M [R8+27→R2],A′

R
intlist) ∧

M [R8 + 2 7→ R2](R8 + 0) 6= 0 ∧ writable(R8 + 2)

I6(R,M) := safe exit(R7) ∧ R8 ≥ start ∧ (R8 + 0 :M,A′

R
intlist) ∧ M(R8 + 0) 6= 0

I7(R,M) := safe exit(R7) ∧ R8 ≥ start ∧ (R1 :M,A′

R
intlist) ∧ M(R1) 6= 0

I8(R,M) := safe exit(R7) ∧ R8 ≥ start ∧ (R1 :M,AR
intlist) ∧ M(R1) 6= 0

I9(R,M) := safe exit(R7 + 0) ∧ R8 ≥ start

I10(R,M) := safe exit(R6) ∧ R8 ≥ start

Figure 13. Clauses of the Invariant for Program in Figure 2 under Extended Safety Policy



22 A. P. Felty / Tutorial Examples of FPCC

99 MOV r0 := 0 store 0 in r0

100 ST m(r8 + 0) := r0 store 0 at m(r8)

101 ADDC r2 := r8 + 0 store r8’s value in r2

102 ADDC r8 := r8 + 1 increase r8 by 1

103 LD r5 := m(r1 + 0) load tag of list r1 into r5

104 BEQ (r5 = r0) 114 jump to point after loop end
105 LD r3 := m(r1 + 1) load head of list r1 into r3

106 LD r1 := m(r1 + 2) load tail of list r1 into r1

107 ADDC r4 := (r0 + 1) r4 gets value 1

108 ST m(r8 + 0) := r4 store this value in m(r8)

109 ST m(r8 + 1) := r3 store head in m(r8 + 1)

110 ST m(r8 + 2) := r2 store r2 (new tail) in m(r8 + 2)

111 ADDC r2 := r8 + 0 store r8’s current value in r2

112 ADDC r8 := r8 + 3 update allocation pointer r8 by 3

113 JMP r6 jump back to loop start
114 ADDC r1 := (r2 + 0) r1 gets value of r2

115 JMP r7 return

Figure 14. A Program for Reversing a List

It is easy to instantiate R′, M ′, and pc′ so that the equalities in this subgoal are provable. The writable
conjunct is directly provable from the hypotheses.

Line 8 contains the only LD instruction. The subgoal for this line in the progress lemma is:

listextend(M), pc = 8, I8(R,M) ` ∃R′,M ′, pc′.(R,M, 8 7→ R′,M ′, pc′).

Again, we expand definitions to obtain:

listextend(M), pc = 8, safe exit(R7) ∧ R8 ≥ start ∧ (R1 :M,A intlist) ∧ M(R1) 6= 0 `

∃R′,M ′, pc′.(readable(R1 + 1) ∧ R′ = R[r0 7→ M(R1 + 1)] ∧ M ′ = M ∧ pc′ = 9)

Again, we instantiate R′, M ′, and pc′ to prove the equalities. As in the proof in Section 3, the readable
subgoal is proven using the list readable1 rule.

7. Loop Invariants in Safety Proofs

Figure 14 contains a second example program, which takes a list of integers as input in r1 and returns
the list in reverse order in the same register. Here, we give line numbers, which will be used in the
formal proof. As before r8 is the allocation pointer. We make the same assumptions about it as before,
and we use the same policy for readable and writable addresses. The first four lines of the program



A. P. Felty / Tutorial Examples of FPCC 23

Pre(R,M, pc) := safe exit(R7) ∧ R6 = 103 ∧ (R1 :M,AR
intlist) ∧ R8 ≥ start ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ ∀w.(w ≥ start ⇒ readable(w)) ∧

pc = 99 ∧ listrev(M)

I103(R,M) := safe exit(R7) ∧ R6 = 103 ∧ (R1 :M,AR
intlist) ∧ R0 = 0 ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start

I115(R,M) := safe exit(R7) ∧ R8 ≥ start

Figure 15. Precondition and Predefined Clauses of the Invariant

perform the initialization steps; value 0 representing an empty list is stored in r0, and this empty list is
stored at the memory location pointed to by the allocation pointer. Register r2 stores the reversed list
as it is built, and is initialized to point to the new empty list. Lines 103–113 contain the main loop of
the program. First, the tag of the next location in the input list is loaded into r5 and checked. If it is 0,
then the program jumps to the point after the loop (line 114), puts the result in r1, and jumps to some
designated return point stored in r7. Otherwise the body of the loop is executed. In this case, the next
three memory locations starting at the allocation pointer are used to store the new list. The tail of the
new list is assigned to the value of r2, which is a pointer to the reversed list as constructed so far, and r2

is updated to point to the new beginning of the reversed list. Finally, the allocation pointer is increased
by 3, and control returns to the beginning of the loop. Here, we assume that r6 contains the value of the
loop start, in this case 103.

To prove safety, we must provide a loop invariant as a precondition to the first line of the loop. We
assume, as usual, that this invariant is provided as a hint by a certifying compiler. Also, as usual we must
provide a precondition of the program as a whole and a postcondition for safe exit. For the safety proof
using the simple safety policy, we can use the following formula for all these conditions as well as for
the invariant clause of every line of code: safe exit(R7) ∧ R6 = 103 ∧ R8 ≥ start.

Safety under the policy which includes memory safety is of course more complicated. Figure 15
contains the precondition of the program, the loop invariant, and postcondition that we use in the proof.
The precondition and the loop invariant contain clauses for values that never change, in this case the
values of r6 and r7. As before, the precondition includes a clause stating where in memory the code is
and what the exact instructions are; in this case denoted by listrev(M). The precondition also contains
the type information for the input r1. This typing subformula also appears in the loop invariant, though
the value of r1 does change each time through the loop because it gets reset to point to the tail of the
list. Also, to handle allocation correctly, we need to add the policy for writable addresses to the loop
invariant: ∀w.(w ≥ R8 ⇒ writable(w)). In particular, we need to show that this statement is invariant
as the value of r8 in R changes each time through the loop. This extra invariant was not needed in a
straight-line program since the the value of r8 only increased as execution proceeded through the list
of instructions. This extra information is required whenever there is the possibility for control to jump
back to an earlier instruction. This formula is also used to prove that the store instructions inside the
loop are to writable locations. The postcondition is the same as for the previous example, stating only
that the return address is safe and that the allocation pointer invariant continues to hold. In the program
precondition and the loop invariant, we use AR as we did in Section 6. In this section, we also use two



24 A. P. Felty / Tutorial Examples of FPCC

I99(R,M) := safe exit(R7) ∧ R6 = 103 ∧ (R1 :M [R8+07→0],A1

R

intlist) ∧ 0 = 0 ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start ∧ writable(R8 + 0)

I100(R,M) := safe exit(R7) ∧ R6 = 103 ∧ (R1 :M [R8+07→R0],A1

R

intlist) ∧ R0 = 0 ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start ∧ writable(R8 + 0)

I101(R,M) := I102(R,M)

I102(R,M) := safe exit(R7) ∧ R6 = 103 ∧ (R1 :M,A1

R

intlist) ∧ R0 = 0 ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start

I104(R,M) := (R5 = R0 ⇒ I114(R,M)) ∧ (R5 6= R0 ⇒ I105(R,M))

I105(R,M) := safe exit(R7) ∧ R6 = 103 ∧

(M(R1 + 2) :M [R8+07→R0+1,R8+17→M(R1+1),R8+27→R2],A3

R

intlist) ∧

R0 = 0 ∧ ∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start ∧

writable({R8 + 2, R8 + 1, R8 + 0}) ∧ readable({R1 + 2, R1 + 1}
...

I110(R,M) := safe exit(R7) ∧ R6 = 103 ∧ (R1 :M [R8+27→R2],A3

R

intlist) ∧ R0 = 0 ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start ∧ writable(R8 + 2)

I111(R,M) := I112(R,M)

I112(R,M) := safe exit(R7) ∧ R6 = 103 ∧ (R1 :M,A3

R

intlist) ∧ R0 = 0 ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start

I113(R,M) := safe exit(R7) ∧ R6 = 103 ∧ (R1 :M,AR
intlist) ∧ R0 = 0 ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start

I114(R,M) := safe exit(R7) ∧ R8 ≥ start

Figure 16. More Clauses of the Invariant

other abbreviations:
AR(w) := (start ≤ w < R8)

A1
R(w) := (start ≤ w < R8 + 1)

A3
R(w) := (start ≤ w < R8 + 3)

As in the previous example, the Hoare rules for instructions are used to compute the remaining
clauses of Inv. Here, we treat both the subformula R8 ≥ start and the new subformula ∀w.(w ≥
R8 ⇒ writable(w)) specially; that is, they are left unchanged even in the case when applying a Hoare
rule would change them. Some of these remaining clauses are given in Figure 16. Here, we write
readable({w1, . . . , wn}) to abbreviate readable(w1)∧· · ·∧ readable(wn), and similarly for writable.
Note that line 113 of the program is a jump to line 103 (back to the beginning of the loop). We define the
precondition of the jump, I113(R,M) to be the same as the precondition for the jump target I103(R,M).
Line 104 is a conditional jump and I104(R,M) is defined using 2 conjuncts, one for each possible next



A. P. Felty / Tutorial Examples of FPCC 25

value of the program counter.
Once the invariant is in place, the proof proceeds as in the previous example. We again consider

some subgoals from the preservation proof, this time showing subgoals that involve the new aspects of
this example such as reasoning from the loop invariant and handling conditional branch instructions.
Although these aspects are new, the kind of reasoning and the level of difficulty is no different from the
previous example. First, we consider line 103, whose precondition is the loop invariant:

(R,M, pc 7→ R′,M ′, pc′), listrev(M), pc = 103, I103(R,M) ` Inv(R′,M ′, pc′).

Line 103 is a LD instruction, which gives R′ = R[r5 7→ M(R1 + 0)], M ′ = M , and pc′ = 104. In this
case, we must show I104(R[r5 7→ M(R1 + 0)],M) from I103(R,M). Expanding definitions, we must
show:

safe exit(R7) ∧ R6 = 103 ∧ (R1 :M,AR
intlist) ∧ R0 = 0 ∧

∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start `

(M(R1 + 0) = R0 ⇒ safe exit(R7) ∧ R8 ≥ start) ∧

(M(R1 + 0) 6= R0 ⇒

safe exit(R7) ∧ R6 = 103 ∧

(M(R1 + 2) :M [R8+07→R0+1,R8+17→M(R1+1),R8+27→R2],A3

R

intlist) ∧

R0 = 0 ∧ ∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start ∧

writable({R8 + 2, R8 + 1, R8 + 0}) ∧ readable({R1 + 2, R1 + 1}))

The reasoning required here is mainly reasoning from the typing rules, which we do not describe in
detail. In the progress proof for this line of code, we must prove readable(R1 + 0). This follows from
(R1 :M,AR

intlist) by the list readable rule.
Next consider line 104, which contains the branching instruction.

(R,M, pc 7→ R′,M ′, pc′), listrev(M), pc = 104, I104(R,M) ` Inv(R′,M ′, pc′).

Expanding I104(R,M), we get:

(R5 = R0 ⇒ I114(R,M)), (R5 6= R0 ⇒ I105(R,M)) ` Inv(R′,M ′, pc′).

The proof proceeds by cases on the branch test, reducing to two trivial subproofs:

R5 = R0, (R5 = R0 ⇒ I114(R,M)) ` I114(R,M)

R5 6= R0, (R5 6= R0 ⇒ I105(R,M)) ` I105(R,M)

As a last example, consider line 112, which is one of the lines that modifies r8. After several steps,
most subgoals are easily solved. The only interesting subformulas are those that contain R8:

∀w.(w ≥ R8 ⇒ writable(w)) ∧ R8 ≥ start ` ∀w.(w ≥ R8 + 3 ⇒ writable(w)) ∧ R8 + 3 ≥ start.

This subgoal is easily provable by simple arithmetic.



26 A. P. Felty / Tutorial Examples of FPCC

8. Discussion

The complete proof for the first example program and the simple safety policy is approximately 2000
lines of Coq script. Roughly 350 lines is the part that is specific to proving safety of the program, and
the rest is the foundational part. Moving to the more complex memory safety policy required about
900 additional lines. Most of those, about 750, included the foundational encoding of types. The rest
was due to the extra proof obligations required to show safety of the program under the extended safety
policy. As discussed along the way, various parts of the proof are amenable to automation, particularly
proofs of safety for specific programs, since they follow a specific pattern. For example, given a set of
hints representing preconditions for particular lines of code, the remaining clauses of the invariant can be
automatically generated, and most cases of the progress and preservation lemmas are simple. In addition,
the library of lemmas built for the type constructors in Section 4 allow automatic proof of a variety of
properties of any type built up from the type constructors.

In fact, our first prototype system gave us some experience with fully automating proofs. In this
system, we used the typing rules in Section 4 and the Hoare-style rules in Section 2 as axioms. Thus
the system was not yet foundational, but instead concentrated on handling allocation of data structures
correctly. This prototype was implemented in λProlog [15, 16], and proofs of safety of a variety of exam-
ples, including the list reverse program presented here, were constructed fully automatically. Since the
typing rules have since been derived, and since reasoning using the safety rule corresponds to reasoning
using the Hoare-style rules, the proof we generated automatically is similar to the proof done by hand in
Coq. In fact, our motivation for doing the Coq proof was to study the similarities and differences in the
two styles of reasoning to gain an understanding of how to automate proofs using only the foundational
rules. Most of the non-trivial proof search involves determining which typing rules to apply and fairly
straightforward reasoning about arithmetic equalities and inequalities, which can easily be handled by
a system with simple but efficient rewriting capabilities. Proving that listextend(M) and listrev(M)
are invariants (i.e., the code is not modified by execution of the program) was not part of our original
automated proof, but also follows by simple reasoning and arithmetic.

As we discussed, our approach allows the integration of proofs of other properties into safety proofs.
(For example, the proof in Figure 3 includes an additional postcondition.) In the short version of this
paper [8], in addition to safety of the reverse program, we proved that the output register r1 containing
the reversed list does indeed have type intlist. To prove this property, we also needed to include the
type of integer list r2 as a postcondition.

Another approach to structuring safety proofs, which would lead to more modular reasoning, would
be to derive the Hoare rules of Section 2 from the direct step-relation encoding. Hamid and Shao [9],
in fact, derive a version of Hoare-style rules in the context of reasoning using TAL in a syntactic FPCC
system. Perhaps their approach could be carried over to our setting. Such rules are more complex than
those presented here, so it is not a matter of simply stating and proving such rules. For example, when
starting with the step-relation encoding various aspects of the state become explicit in such rules.

Chang et. al. [5] argue that because there exist a variety of code verification strategies, it is best to use
a verifier that is best suited to the code verification strategy. Most examples of safety policies, including
the ones considered here, have been simple. The setting described here is general and flexible and may
be a good starting point for handling a variety of strategies. This is a subject of future work.



A. P. Felty / Tutorial Examples of FPCC 27

Acknowledgments

The author acknowledges the support of the Natural Sciences and Engineering Research Council of
Canada.

References

[1] Ahmed, A. J., Appel, A. W., Virga, R.: A Stratified Semantics of General References Embeddable in Higher-
Order Logic, Proc. Seventeenth Annual IEEE Symposium on Logic in Computer Science, IEEE Computer
Society, 2002.

[2] Appel, A. W., Felty, A. P.: A Semantic Model of Types and Machine Instructions for Proof-Carrying Code,
Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM Press,
2000.

[3] Appel, A. W., McAllester, D.: An Indexed Model of Recursive Types for Foundational Proof-Carrying Code,
ACM Transactions on Programming Languages and Systems, 13(5), September 2001, 657–683.

[4] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of
Inductive Constructions, Springer, 2004.

[5] Chang, B.-Y. E., Chlipala, A., Necula, G. C., Schneck, R. R.: The Open Verifier Framework for Foundational
Verifiers, Proc. ACM SIGPLAN International Workshop on Types in Language Design and Implementation,
ACM Press, 2005.

[6] Coq Development Team, LogiCal Project: The Coq Proof Assistant Reference Manual: Version 8.0, Techni-
cal report, INRIA, 2006.

[7] Crary, K.: Toward a Foundational Typed Assembly Language, Proc. 30th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, ACM Press, 2003.

[8] Felty, A. P.: A Tutorial Example of the Semantic Approach to Foundational Proof-Carrying Code, Proc.
Sixteenth International Conference on Rewriting Techniques and Applications, Lecture Notes in Computer
Science 3465, Springer-Verlag, 2005.

[9] Hamid, N. A., Shao, Z.: Interfacing Hoare Logic and Type Systems for Foundational Proof-Carrying Code,
Proc. Seventeenth International Conference on Theorem Proving in Higher Order Logics, Lecture Notes in
Computer Science 3223, Springer-Verlag, 2004.

[10] Hamid, N. A., Shao, Z., Trifonov, V., Monnier, S., Ni, Z.: A Syntactic Approach to Foundational Proof-
Carrying Code, Journal of Automated Reasoning, 31(3–4), November 2003, 191–229.

[11] Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics, Journal of the ACM, 40(1), January
1993, 143–184.

[12] Huth, M. R. A., Ryan, M. D.: Logic in Computer Science: Modelling and Reasoning about Systems, Second
edition, Cambridge University Press, 2004.

[13] Michael, N. G., Appel, A. W.: Machine Instruction Syntax and Semantics in Higher Order Logic, Proc.
Seventeenth International Conference on Automated Deduction, Lecture Notes in Computer Science 1831,
Springer-Verlag, 2000.

[14] Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to Typed Assembly Language, ACM Trans-
actions on Programming Languages and Systems, 21(3), May 1999, 527–568.



28 A. P. Felty / Tutorial Examples of FPCC

[15] Nadathur, G., Miller, D.: An Overview of λProlog, Proc. Fifth International Conference and Symposium on
Logic Programming, MIT Press, 1988.

[16] Nadathur, G., Mitchell, D. J.: System Description: Teyjus — A Compiler and Abstract Machine Based
Implementation of λProlog, Proc. Sixteenth International Conference on Automated Deduction, Lecture
Notes in Computer Science 1632, Springer-Verlag, 1999.

[17] Necula, G.: Proof-carrying Code, Proc. 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, ACM Press, 1997.

[18] Necula, G. C.: Compiling with Proofs, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1998.

[19] Necula, G. C., Lee, P.: Proof-Carrying Code, Technical Report CMU-CS-96-165, Carnegie Mellon Univer-
sity, November 1996.

[20] Swadi, K. N.: Typed Machine Language, Ph.D. Thesis, Princeton University, Princeton, NJ, 2003.

[21] Tan, G., Appel, A. W., Swadi, K. N., Wu, D.: Construction of a Semantic Model for a Typed Assembly
Language, Proc. Fifth International Conference on Verification, Model Checking and Abstract Interpretation,
Lecture Notes in Computer Science 2937, Springer-Verlag, 2004.


