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2 Amy Felty and Frank Stompan arbitrary, �nite number of proessors (and not for some maximum number ofproessors).Our model of the protool has been extrated from the informal desriptionin a doument from 1990 when the SCI protool had been proposed as an IEEEstandard. (It beame a standard in 1992.) The SCI protool is large and omplex.For this reason, we onsider only the ahe oherene portion of this protool.In addition, we model only an abstration of this portion. For example, we donot keep trak of proessors whih want to read only (and not write) and weonsider the problem with one ahe line only. (Multiple ahe lines require astraightforward extension of the proof. In essene, we need opies of our urrentproof.) Also, in our model of the protool we assume messages sent from oneproess to another proess arrive at the latter proess in the same order as sent.In the standard this is not neessarily the ase.For any proof of this omplexity and size, it is essential for both the veri�erand the reader to struture the proof. We have done so by formulating a numberof lemmata, eah of whih an be proved diretly or using previously formulated(and proved) lemmata. Also, we have introdued a number of auxiliary prediatesas an abstration mehanism. In addition, for rather big lemmata we have provedproperties under ertain assumptions, whih are then later disharged.Our part of the SCI protool is formally modeled by a program written in aguarded ommand programming language similar to UNITY [CM88℄. Its spei�-ation is formulated in Manna and Pnueli's Linear Time Temporal Logi (LTL)[MP91℄. We have proved within LTL that the program meets its spei�ation. Ahistory variable has been used in order to reason about the program's ommuni-ation behavior. In addition to this variable we have also used logial variables,also alled ghost variables or freeze variables, in our orretness proof. They areused to freeze the values of the history and of ertain program variables duringa omputation when reasoning about the program. As mentioned above the or-retness proof an be found in [FS99℄. The urrent paper presents a sketh ofthat proof.The presene of multiple ahes introdues the problem of oherene. Aord-ing to [CF78℄ a memory sheme is oherent if the value returned on a read isthe value given by the latest store with the same address. Coherene is usuallyahieved by snooping. In essene, all proessors listen to a bus, and either in-validate or update their ahes when data is written into memory. This kind ofahe oherene protool relies on a broadasting mehanism. They do not salewell beause the bus beomes a bottlenek. In non-snooping ahe oherene al-gorithms it is often the ase that memory keeps trak of the ahes whih may bea�eted when data is written into memory. In this ase the bottlenek is at thememory ontroller. To overome these bottleneks the SCI protool deentral-izes the ommuniation. Broadast is replaed by point-to-point ommuniationwhih requires more messages per read/write but messages are sent only to therelevant proesses. For bookkeeping, doubly linked lists of proesses are used tokeep trak of the ahes whih need to be updated when data is modi�ed.An attempt to validate the program veri�ed in the urrent paper has beenmade by the model heking ommunity. Holzmann [Hol95℄ using SPIN [Hol91℄,Kurshan [Kur95℄ using COSPAN [Kur89℄, and Long and MMillan [LM95℄ usingSMV [MM93℄ report to have validated the program for up to �ve proesses. Theproblem that eah of the model hekers fae in this ase is the state explosionproblem.Other work on the formal spei�ation of the SCI protool has been arried



Cahe Cohereny in SCI 3out by Gjessing et al. [GKMK91, GMK91℄. Using stepwise re�nement, multiplelayers of the protool are formalized at di�erent levels of abstration and fun-tions are de�ned whih map one level to the next. The lowest level of formaldesription is omparable with the C-ode spei�ation in the SCI doument.This formalization work is part of an ongoing e�ort to fully verify the SCI aheoherene protool. Stern and Dill [SD95℄ desribe another ongoing projet ofautomatially verifying the SCI protool. They have disovered several errors inthe C-ode whih de�nes that protool. An overview of the SCI protool andrelated projets an be found in [Gus92℄.There is a vast amount of work done on other ahe oherene algorithms,see, e.g., [ABM93, SD87, SS88, IEE92℄ to name just a few of them. The al-gorithm proposed by Afek, Brown, and Merritt in [ABM93℄ explores a formal-ization of Lamport's notion of sequential onsisteny [Lam79℄. (Whereas aheoherene ensures that proessors have a onsistent view of the ahe, sequen-tial onsisteny addresses the question of what order data writes are observedby other proessors [PH96℄.) This algorithm has reently been the subjet ofvarious veri�ation methods: Brinksma [Bri95℄ uses queue-like ation transdu-ers; Gerth [Ger95℄ uses a generalized version of re�nement; Graf [Gra95℄ usesabstration and model heking; Janssen, Poel, and Zwiers [JPZ95℄ apply aompositional approah; Jonsson, Pnueli, and Rump [JPR95℄ apply a partialorder transduer; Katz [Kat95℄ uses ISTL [KP87℄; Ladkin, Lamport, Olivier,and Roegel [LLOR95℄ apply the temporal logi TLA [Lam94℄; Lowe and Davies[LD95℄ use CSP [Hoa85℄. In eah of these proofs the emphasis is on sequentialonsisteny. Pong and Dubois [PD95℄ present a general tehnique for verifyingahe oherene protools. They use a symboli representation of the systemstate keeping trak of whether the ahes have 0, 1, or multiple opies. We arenot onvined that their tehnique is appliable to the algorithm analyzed in theurrent paper, beause of the doubly linked list. Other ahe oherene protoolshave been validated in [CGH+95℄ and in [MS91℄, using the model heker SMV.The rest of this paper is organized as follows: In the next setion we introduesome basi notions and notation. Both the informal and formal desriptions of thealgorithm analyzed in our paper are given in Setion 3. The algorithm's formalspei�ation in formulated in Setion 4. Setion 5 ontains a sketh of our proofthat the algorithm satis�es its spei�ation. Mehanizing the orretness proofusing a theorem prover is urrently being pursued. Finally, Setion 6 draws someonlusions.2. PreliminariesThe system onsidered in this paper onsists of a proess m alled memory anda number of proesses alled proessors to distinguish them from m. The set ofall proessors is denoted by P . The term proess denotes either a proessor ormemory. Every proess has its own identity distint from the identities of allother proesses.The ahe oherene algorithm is modeled in a guarded ommand languagesimilar to UNITY [CM88℄. The program onsists of a state formula and a (�-nite) set of guarded ations. The state formula desribes the states in whih theprogram may start its exeution.Our program onsists of send- and reeive-ommands as well as the more on-ventional statements suh as assignments and onditionals. To be more preise,



4 Amy Felty and Frank Stompevery proess p in the system maintains its own message queue buf [p℄ to reordmessages whih have been sent to, but not yet reeived by, p. Sending messageM from proess p to q is ahieved by p exeuting the send-ommand buf [q℄!M .This auses message M to be appended to queue buf [q℄.As usual in the desription of network algorithms, we distinguish betweendi�erent types of messages. A type is identi�ed with a string of haraters. Amessage of type T and arguments args is represented by T (args). To allow areeiving proess to determine the identity of the sender of a message, the �rstomponent of args is always the identity of that message's sender. (This restri-tion ould be relaxed. We refrain from doing so beause it eases our proof.)A reeive-ommand is of the form buf [p℄?T (args). Command buf [p℄?T (args)an be exeuted by proess p only if buf [p℄'s �rst message is of type T in thestate of its exeution. In this ase, we say that the reeive-ommand is enabledin that state. Its exeution auses proess p to reeive the �rst message of thequeue, and to delete this message from the queue.The guard of an ation is either a boolean ondition or a reeive-statement.In ase of a boolean ondition, we say that guard g is enabled in some state if gevaluates to true in that state.In the semantis of programs, we use history variable h whih an take se-quenes as values. The empty sequene is denoted by �. Every element in sequeneh is of the form� hSnd; p;M; qi, to denote that proess p has sent message M to proess q, or� hRe; p;M; qi, to denote that proess q has reeived message M from proessp.As usual, variable h is updated whenever a send- or reeive-ommand is exeuted.E.g., if buf [q℄!M is exeuted by proess p, then hSnd; p;M; qi is appended to h.Our program always starts in a state satisfying h = �. Let P�h�; Ai denotethis program, where � desribes the state in whih the program may start itsexeution, and where A desribes the program's set of ations. Let � denotethe idling ation [MP91℄. A omputation sequene of P is an in�nite sequenes0 a0! s1 a1! s2 � � � of states sn and ations an 2 A [ f�g (n � 0), suh that s0satis�es formula �, and for all n � 0 the following is satis�ed:� Either some ation an 2 A is enabled in state sn, and sn+1 is the stateresulting when an is exeuted in sn; or no ation in state sn is enabled,sn = sn+1, and an = � .� Every ation in A whih is enabled from some point onwards in the sequeneis eventually taken (weak fairness [Fra86℄).An obvious property whih holds ontinuously during exeution of the programis: The sequene of messages reeived by proess q from proess p is a pre�x ofthe sequene of messages sent by p to q. Let h#(Re; p; q) denote the sequeneof messages in sequene h that have been reeived by proess q from proess p;it is obtained by projetion of h onto elements of the form hRe; p; T (args); qi.Similarly, let h#(Snd; p; q) denote the sequene of messages in sequene h thathave been sent by proess p to proess q. The property of the program mentionedabove is then expressed by h#(Re; p; q)�h#(Snd; p; q), where � denotes the usualpre�x operator on sequenes.As disussed, message queue buf [p℄ takes sequenes onsisting of elements ofthe form T (args) as values. Intuitively, buf [p℄ is the sequene of messages sent



Cahe Cohereny in SCI 5to, but not yet been reeived by p. Let buf [p℄#q denote the sequene of messagesin buf [p℄ of the form T (q; args0), i.e., those messages sent by q to p but not yetreeived by p. (Reall that the �rst omponent of a message is the identity of aproess.)For sequenes h1; h2, let h1�h2 denote the sequene obtained by appendingh2 to h1; and let h1	h2 denote the di�erene between sequenes h1 and h2, i.e.,h1 	 h2=h, if h2 � h = h1�, otherwise.The following holds ontinuously during exeution of the program: h#hSnd; p; qi	h#hRe; p; qi = buf [q℄#p, i.e., the sequene of messages sent from p to q not yetreeived by q an be found (in the sames order as sent) in q's bu�er. In otherwords, if some message is in proess p's bu�er, then that message has been sentto p (hene, reorded in h), and that message has not yet been reeived by p.Thus, messages sent from one proess to another proess are reeived in the sameorder as sent.Throughout this paper we use Manna and Pnueli's Linear Time TemporalLogi LTL [MP91℄. In partiular, we use the temporal operators 2 (always), 3(eventually), O (next), W (weak-until), and U (strong-until). Note that the 3-operator an be derived from the 2-operator; and that the U -operator an bederived from the W - and the 3-operators. In orretness proofs of programs oneusually establishes invariants, i.e., properties whih are true throughout om-putation. LTL o�ers proof rules to establish suh properties. As an example,assume that ' is a state property. The proof rule below, f. S INV in [MP91℄shows how to prove 2' for some program P onsisting of state formula � andset A of guarded ations. Here, '0 denotes some state property.�) '0, f'0gaf'0g, for all a 2 A, '0 ) 'P ` 2'Thus, a veri�er has to formulate some state property '0 stronger than ' in orderto apply this rule. The reason is that property ' is, in general, too weak toprove that it is preserved by all ations of the program. Property '0 may haveto haraterize a large number of additional properties in order to establish ',as is the ase for ompliated programs suh as the one analyzed in the urrentpaper.3. ProgramWe now present the informal and formal desriptions of the program studied inthe rest of this paper.3.1. Informal DesriptionMemory m maintains its (own) variables vm, statusm, and headm. Variable vm(m's ahe value) reords the ahe fromm's point of view. For ease of exposition,we assume that the value of vm is always some natural number. The initial valueof vm is irrelevant.Variable statusm has initial value Home. This variable an take the followingvalues, where the informal explanation is given from m's point of view.
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m ....Fig. 1. In an idealized view, memory and proessors whih have indiated to read or write theahe form a doubly liked list.� Home, if no read- or write-queries are in progress,� Fresh, if only read-queries are in progress, or� Gone, if at least one write-query is in progress.The value of variable headm is either nil or a proessor's identity. Value nil isdi�erent from all suh identities; it is the initial value of headm. Intuitively, headmreords the proessor to whih m has last sent a response to a read- or write-query and for whih a read- or write-query is in progress. (It is nil if no suhproessor exists.) Roughly, a read/write query is in progress for a proessor afterit has indiated that it wants to read or write until it goes o� the doubly linkedlist mentioned in Setion 1. During this period a series of messages is exhangedand the proessor might be granted permission to read or write the ahe.Every proessor p maintains its (own) variables vp, sp, predp, sup, andstatusp. Variable vp (p's ahe value), whose initial value is irrelevant, reordsthe ahe from proessor p's point of view. Similarly to memory's variable vm,it is assumed that the value of vp is always a natural number.To desribe the interpretation of variable sp (p's ahe status), we introduethe notion of the owner of the ahe: If there are no write-queries in progress,then we say thatm is the owner of the ahe; otherwise, the proessor to whihmhas last sent a response to a read- or write-query and for whih a read- or write-query is in progress is the owner of the ahe. This desription is not preise, butsuÆes for the informal explanation of the algorithm. The notion of the ownerof the ahe will be formally de�ned in Setion 4.Variable sp's initial value is invalid. This is also its value when p has no read-or write- requests in progress. (In this ase, the proessor has no interest in theahe value and might have an inorret value. The proessor must reissue aquery to get the orret value.) It has value dirty, if for some proessor, possiblydi�erent from p, a write-request is in progress and p is the owner of the ahe.It is fresh, otherwise, e. g., if p indiates that it wants to read and no otherproessor wants to modify the ahe. As with the notion of the owner of theahe, the desription of the intuition behind variable sp is again impreise.E. g., the value of sp may be invalid if p has made a read- or write-query but isnot yet part of the shared list whih we introdue below.The initial value of the variables predp and sup is nil. This is also the valueof these variables when no read- or write-request is in progress. When proessorsissue read- or write-requests (to memory), they will always reeive a responsebak (from memory). Intuitively, when suh a request is in progress for proessorp, sup reords the proessor q suh that the following is true: Prior to p, m hasmost reently sent a response to q, and a read- or write-request is in progress forq. (It is nil, if no suh proessor exists.) Analogously, when a read- or a write-request is in progress for proessor p, predp reords the next proessor after p



Cahe Cohereny in SCI 7that reeived a response from memory and for whih a read- or write-request isin progress. (It is m, if no suh proessor exists.) Thus, in an idealized view, theproessors for whih there is a read- or write-request in progress form a doublylinked list. For proessor p, sup identi�es the next element in the list (theproessor whih prior to p issued a read- or a write-query), and predp identi�esthe previous element (the proessor whih following p issued a read- or a write-query) in the list. Fig. 1 depits the idealized view. This view may be orruptedbeause the proesses perform their omputation onurrently with respet toeah other. Following [IEE90℄ we all this list the shared list.The last variable to be disussed is statusp, for proessor p. It an take thevalues:� O� , if no read- or write-request is in progress for proessor p.� Pending, if p has issued a read- or a write-request and it is waiting for aresponse (from memory).� Inqueue, if p has reeived the response from memory to its read- or write-request and p attempts to prepend to the shared list.� Inlist, if p has sueeded in joining the shared list.� Delright, if p attempts to go o� the shared list and noti�es the proessoridenti�ed by sup of this.� Delleft, if p attempts to go o� the shared list and noti�es the proessoridenti�ed by predp of this.� Ftod (Fresh to dirty), if p has a read-query in progress and issues a requestto m to modify the ahe.� Purging, if p has permission to write and is in the phase of deleting all otherproessors from the shared list.We are now ready to disuss the algorithm. We relate the disussion to ationsin the formal desription of the algorithm given in Setion 3.2.If proessor p is in the O� state (statusp = O� holds), then it an senda message read ahe freshQ(p) to memory indiating that p wants to read theahe; or a message read ahe goneQ(p) indiating that p wants to modify theahe. Proessor p then goes to the Pending state waiting for a response frommemory. (Cf. the ations labeled p1 and p2 in Setion 3.2.)Thus, a less idealized view of Fig. 1 would onsist of the shared list and aset of proessors whih are trying to get onto the shared list. More preisely,ertain proessors would form the shared list whereas other proessors (\loser"to memory in Fig. 1) onstitute a set of proessors attempting to append to theshared list.If memory m reeives message read ahe freshQ(p), then it sends a messageread ahe freshR as a response to p. This message arries four arguments. The�rst one is the identity of m; the seond one is the proessor whih will be p'ssuessor in the shared list (this value is nil if the shared list is empty and p willbeome the only proessor in the shared list); the third argument is the value ofvm; and the fourth argument is either gone if m is not the owner of the ahe,or ok otherwise. Memory also updates its variable headm (from m's point of viewp is the new head of the shared list). If p is the �rst proessor on the list fromm's point of view, then m goes (from the Home state) to the Fresh state. (Cf.the ation labeled m1 in Setion 3.2.)If memory m reeives message read ahe goneQ(p), then it sends a message



8 Amy Felty and Frank Stompread ahe goneR bak to p. This message also arries four arguments with thesame interpretation as the ones in read ahe freshR. As in the ase of messageread ahe freshQ(p), m updates its variable headm. Finally, m goes to the Gonestate. (There is at least one write-request in progress.) (Cf. the ation labeledm2 in Setion 3.2.)When p reeives message read ahe freshR(m; q; v; arg) it assignsm to predp.Now, if q is nil then p immediately goes to the shared list, and p beomes theonly proessor in the list. It reords the value of m's ahe and also reords thatthis is a fresh opy. Otherwise, if q is not nil, then p attempts to prepend to theshared list by sending message prependQ(p) to q. If arg = gone holds then spremains invalid and the proper value of the ahe will be transferred to p at alater stage in the omputation. This possibility ours if memory was not theahe owner at the time it responded to p's query. In this ase p must get itsahe value and ahe status from its suessor in the shared list later, and maythen beome the owner of the ahe. Additional ation is taken only if arg = okholds. If this is so, then proessor p reords the value of m's ahe and reordsthat it now has a fresh opy of the ahe. (Cf. the ation labeled p3 in Setion3.2.) In the ase of a read ahe goneR message, p also reords that it has be-ome the owner of the ahe, by assigning value dirty to its variable sp. (Cf. theation labeled p4 in Setion 3.2.)Upon reeipt of message prependQ(p), a proessor q grants permission toproessor p to prepend to the shared list provided that q is in the Inlist state, bysending message prependR(q; q; ok; vq; sq) bak to p. The �rst argument is, asfor all messages, the identity of the sender; the seond argument is the identity ofthe head of the shared list; the third argument indiates permission to prependto the shared list. If this permission is granted, then q reords that proessorp is q's new predeessor. (For this purpose, the variable predq is used.) If qwas the owner of the ahe, then it passes ownership on to p. Proessor q thenreords that it is not the owner of the ahe any more (by assigning fresh toits variable sq). It sends message prependR(q;nil; ok; vq ; sq) when q is in thephase of notifying its predeessor that it is going o� the shared list, and that theshared list beomes empty. In this ase, p an safely prepend. Proessor q sendsmessage prependR(q; r; retry; vm; sm) in all other ases to notify p that p annotprepend (yet) and that it should rediret its request to proessor r. Argumentr is sup if proessor q is going o� the shared list. Otherwise proessor q is notgoing o� the shared list and r = q holds. (Cf. the ation labeled (p5) in Setion3.2.)After proessor p has reeived message prependR(q; r; arg; v; s), p retries toprepend to the shared list if arg = retry holds. It does so by sending messageprependQ(p) to proessor r. If, on the other hand, arg = ok holds, then p getsonto the shared list and beomes the new head of the list. More preisely, p goesto the Inlist state, and reords that r, whih is either the identity of a proessoror nil, is its suessor. Proessor p also assigns the values of v and s to vp andsp, respetively, if sp was invalid. (Cf. the ation labeled p6 in Setion 3.2.)(The value of sp is invalid if memory was not the owner of the ahe when itsent its response to p's read- or write-query. In this ase q was the owner andhas transferred ownership to p.)In the Inlist state, proessor p has several possibilities:(a) It may attempt to modify the ahe when it is the owner of the ahe. Thisase ours if sp = dirty holds. Our orretness proof shows that this ours
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...... nilm qFig. 2. When a proessor purges its suessor q in the shared list, it updates its suessor.The new suessor will thereafter be purged o� the shared list.when p is at the head of the shared list. If no other proessors are in theshared list, then p simply modi�es the ahe. If other proessors are part ofthe shared list, then p noti�es them to go o� the list. Other proessors arein the shared list if sup 6= nil holds. To purge proessors from the list, psends message purgeQ(p) to its suessor in the list. In order to reord thatp is purging proessors, p goes to the Purging state. (Cf. the ation labeledp7 in Setion 3.2.)A proessor q reeiving message purgeQ reords that it is o� the shared listby setting both its variables suq and predq to nil. Proessor q also sets itsvariable sq to invalid. If q is in the Inlist state, then it simply goes to the O�state. Otherwise, as we will show, proessor q has issued some query, e. g.,a delright-query, to some other proessor, and waits until it has reeived aresponse to that query before q goes to the O� state. In either ase, q sendsa message purgeR(q; r) bak to proessor p. Argument r is the proessor thatfollows q in the shared list if suh a proessor exists; otherwise, r = nil holds.(Cf. the ation labeled p16 in Setion 3.2.) We have illustrated this in Fig.2. Note that this �gure demonstrates one again that the view depited inFig. 1 is too idealized. Of ourse, the idealized view serves as a starting pointfor understanding the ompliated nature of the ahe oherene algorithmstudied in the urrent paper.When p reeives message purgeR(q; r), it ontinues purging proessor r until ithas reeived a message purgeR(q0;nil), for some proessor q0. This means thatthe shared list onsists only of proessor p. In this ase, p an safely modifythe ahe; and p goes bak into the Inlist state. (Cf. the ation labeled p17in Setion 3.2.)(b) Proessor p is at the head of the shared list, and may attempt to modify theahe, even though it is not the owner of the ahe. This happens when phas issued a read query before, but now deides that it wants to modify theahe.From our orretness proof it follows that in this ase, sp = fresh and predp =m holds. Proessor p issues a query (to memory) to transfer ownership of theahe to p by sending message modifydataQ(p) to m and going into the Ftodstate to wait for a response. (Cf. the ation labeled p8 in Setion 3.2.)Upon reeipt of message modifydataQ(p), memory grants permission to p tomodify the ahe if p is also the head of the shared list fromm's point of view.It does so by sending message modifydataR(m; ok) to proessor p and goinginto the Gone state. (Now, there exists at least one proess whih attemptsto modify the ahe.) If p is not the head of the shared list from m's pointof view, then m does not grant permission to modify the ahe by sendingmessage modifydataR(m; rejet) to proessor p. (Cf. the ation labeled m4 inSetion 3.2.)
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m p nil....Fig. 3. When proessor p gets a positive response from its suessor to p's delright query, p'ssuessor updates its own predeessor in the shared list. In this ase m is that predeessor.Thereafter m should update its own variable to point to the head of the shared list.When proessor p reeives response modifydataR from memory, p goes bakinto the Inlist state. If it has been granted permission to modify the ahe,then p reords this by hanging its variable sp from fresh to dirty. (Ownershipof the ahe has been transformed from m to p.) (Cf. the ation labeled p9in Setion 3.2.)() Proessor p attempts to go o� the shared list.In this ase, p has to inform its predeessor and its suessor in the sharedlist (if any) that it is attempting to go o� the list. If p has a suessor in theshared list, then it sends a message delrightQ(p; predp; sp) to its suessorq and goes into the Delright state. This message is to be interpreted as arequest of p to q for p to go o� the list. (Cf. the ation labeled p10 in Setion3.2.)When q has reeived message delrightQ, it grants p's query, provided thatq itself is not waiting for any response due to an outstanding query andprovided that q's predeessor is p indeed. Proessor q does so by sendingmessage delrightR(q; ok) to p and by reording its new predeessor in theshared list. This ase is depited in Fig. 3. If ownership of the ahe has tobe passed from p to q, then q also opies the third argument of the delrightQmessage into its variable sq . The query assoiated with the delrightQ messageis not granted by q if q is waiting for a response to one of its own queries, orif p is not its predeessor in the shared list (from q's point of view.) In thisase, q sends message delrightR(q; rejet) to p. (Cf. the ation labeled p12 inSetion 3.2.)Now if proessor p reeives message delrightR it may be that p was purged o�the list in the meantime. In this ase, its variable sp will have value invalidand it will go diretly to the O� state. If p has not been purged its behavioris as follows: If p reeives a message delrightR(q; rejet), then p simply goesbak into the Inlist state, beause no permission had been granted to p togo o� the list. If p, on the other hand, reeives a message delrightR(q; ok)then p has to inform its predeessor in the shared list that it is going o�the list. Informing the predeessor that p is going o� the shared list is alsoimmediately done if p has no suessors in the list (without going throughthe Delright state). To do so, p sends message delleftQ(q; sup; vp) to theproess (whih might be memory) identi�ed by variable predp, and goes intothe Delleft state. (Cf. the ations labeled p11 and p13 in Setion 3.2.)To desribe the response to message delleftQ, we distinguish two ases:(1) Message delleftQ is reeived by memory.
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m p nil....Fig. 4. This is the situation after memory has updated its variable headm to reord the newhead of the shared list. Thereafter proessor p will go to the O� state.If p is not the head of the shared list from m's point of view, then msends a message delleftR(m; rejet) to proessor p. This message is notto be interpreted as a rejetion to p of m to go o� the list, but rather asinformation that p should retry to send other delleftQ messages laterbeause the shared list is being modi�ed.If p is the head of the list from m's point of view, then m informsp that it an go o� the shared list. Memory m does so, by sendinga message delleftR(m; ok) to p. Memory m then opies the value ofthe third argument of message delleftQ into its variable vm (p ouldhave been the owner of the ahe and modi�ed it). It reords that theproessor identi�ed by the seond argument of the delleftQ message isthe new head of the shared list. Note that there is no suh proessorif this argument is nil. In this ase, memory m goes bak to the Homestate beause no read- or write queries are in progress any more. (Cf.the ation labeled m3 in Setion 3.2.) Fig. 4 shows how the list ofproessors looks like after memory positively responds to the delleft-request.(2) Message delleftQ is reeived by proessor q.First proessor q heks if p is its suessor in the shared list. It thenalso heks if it is either not waiting for a response, is waiting for amodifydataR message, or is waiting for a delrightR message. (Theseresponses do not ause proessor q to hange the shared list.) If so,q sends message delleftR(q; ok) to proessor p to inform p that it ansafely go o� the list. Proessor q also updates its suessor in the sharedlist (by using the seond argument of the delleftQ message it reeived).There is no need for proessor q to update its variable vq beause p isnot at the head of the shared list, hene not the owner of the ahe.In all other ases, q sends message delleftR(q; rejet) to p, to informp to resend the delleftQ message later (f. ase (1) above). (Cf. theation labeled p14 in Setion 3.2.)Upon reeipt of message delleftR, proessor p immediately goes to the O�state, if some proessor has purged him o� the list (i.e., when sp = invalid),or if p has been informed that it is safe to go o� the list (i.e., when arg =ok). (Cf. the ase of delrightR messages.) Otherwise, if p reeives messagedelleftR(q; rejet), then p retries to go o� the list by again sending messagedelleftR to its predeessor (whih may be another proess than when it �rstsent that message). (Cf. the ation labeled p15 in Setion 3.2.)



12 Amy Felty and Frank StompThis ompletes our informal desription of the algorithm.3.2. Formal DesriptionAs mentioned before, a program onsists of an initial ondition and a �niteolletion of ations. We �rst speify the initial ondition, and thereafter theations.Initially, no ommuniation has taken plae and all the bu�ers are empty;proess m is in the Home state and its variable headm has value nil; and everyproessor is in the O� state, its own ahe-status is invalid, and its forward andbakward pointers have value nil. Thus, the initial ondition is the onjuntionof� h = �,� statusm = Home ^ buf [m℄ = � ^ headm = nil, and� for all p 2 P, statusp = O� ^buf [p℄ = � ^sp = invalid^sup = nil^predp =nil.The olletion of ations is spei�ed below. There, x:=? denotes the randomassignment to model writing an arbitrary value into the ahe.Proessor p(p1) statusp=O� �! buf [m℄!read ahe freshQ(p); statusp:=Pending(p2) statusp=O� �! buf [m℄!read ahe goneQ(p); statusp:=Pending(p3) buf [p℄?read ahe freshR(q; r; v; arg) �! predp:=q;if r=nilthen statusp:=Inlist; vp:=v; sp:=freshelse buf [r℄!prependQ(p); statusp:=Inqueueif arg = ok then vp:=v; sp:=fresh ��(p4) buf [p℄?read ahe goneR(q; r; v; arg) �! predp:=q;if r=nilthen statusp:=Inlist; vp:=v; sp:=dirtyelse buf [r℄!prependQ(p); statusp:=Inqueueif arg = ok then vp:=v; sp:=dirty ��(p5) buf [p℄?prependQ(q) �! if statusp=Inlistthen buf [q℄!prependR(p; p; ok; vp; sp); predp:=qif sp=dirty then sp :=fresh �else if statusp=Delleftthen if sup=nilthen buf [q℄!prependR(p; nil; ok; vp; sp);sp:=invalid; predp:=nilelse buf [q℄!prependR(p; sup; retry; vp; sp);sp:=invalid; predp:=nil; sup:=nil�else buf [q℄!prependR(p; p; retry; vp; sp)��(p6) buf [p℄?prependR(q; r; arg; v; s) �! if arg = okthen statusp:=Inlist; sup:=r;if sp=invalid then vp:=v; sp:=s �else buf [r℄!prependQ(p)�(p7) statusp=Inlist^sp=dirty �! if sup 6=nilthen buf [sup℄!purgeQ(p); statusp:=Purging; sup:=nilelse vp:=?



Cahe Cohereny in SCI 13�(p8) statusp=Inlist^sp=fresh^predp=m �! buf [m℄!modifydataQ(p); statusp:=Ftod(p9) buf [p℄?modifydataR(q; arg) �! statusp:=Inlist; if arg = ok then sp:=dirty �(p10) statusp=Inlist^sup 6=nil �! buf [sup℄!delrightQ(p; predp; sp); statusp:=Delright(p11) statusp=Inlist^sup=nil �! buf [predp℄!delleftQ(p; nil; vp); statusp:=Delleft(p12) buf [p℄?delrightQ(q; r; s) �! if statusp=Inlist ^ predp=qthen buf [q℄!delrightR(p; ok); predp:=r;if s=dirty then sp:=s �else buf [q℄!delrightR(p; rejet)�(p13) buf [p℄?delrightR(q; arg) �! if sp=invalidthen statusp:=O�else if arg = rejetthen statusp:=Inlistelse buf [predp℄!delleftQ(p; sup; vp);statusp:=Delleft��(p14) buf [p℄?delleftQ(q; r; v) �! if sup=q^ (statusp=Inlist _ statusp=Ftod _ statusp=Delright)then buf [q℄!delleftR(p; ok); sup:=relse buf [q℄!delleftR(p; rejet)�(p15) buf [p℄?delleftR(q; arg) �! if sp=invalid_arg = okthen sup:=nil; predp:=nil; sp:=invalid; statusp:=O�else buf [predp℄!delleftQ(p; sup; vp)�(p16) buf [p℄?purgeQ(q) �! sp:=invalid; buf [q℄!purgeR(p; sup); predp:=nil; sup:=nil;if statusp=Inlist then statusp:=O� �(p17) buf [p℄?purgeR(q; r) �! if r=nil then statusp:=Inlist; vp:=? else buf [r℄!purgeQ(p) �Memory m(m1) buf [m℄?read ahe freshQ(p) �! if statusm = Gonethen buf [p℄!read ahe freshR(m; headm; vm; gone);else buf [p℄!read ahe freshR(m; headm; vm; ok)�;headm:=p;if statusm=Home then statusm:=Fresh �(m2) buf [m℄?read ahe goneQ(p) �! if statusm=Gonethen buf [p℄!read ahe goneR(m; headm; vm; gone)else buf [p℄!read ahe goneR(m; headm; vm; ok)�;headm:=p; statusm:=Gone(m3) buf [m℄?delleftQ(p; q; v) �! if headm=pthen vm:=v; buf [p℄!delleftR(m; ok); headm:=q;if q=nil then statusm:=Home �else buf [p℄!delleftR(m; rejet)�(m4) buf [m℄?modifydataQ(p) �! if headm=pthen buf [p℄!modifydataR(m; ok); statusm:=Goneelse buf [p℄!modifydataR(m; rejet)�4. Spei�ationWe now present the formal spei�ation of the program in the previous setion.As remarked, every proess has its own view of the ahe. We stipulatedthat the value of the ahe is the value of the owner of the ahe. This is not



14 Amy Felty and Frank Stompquite true, however, beause it might be that ownership (and hene, the value ofthe ahe) is being transferred from one proess to another proess. Hene theinformal requirement that the proessor p with sp = dirty is the owner of theahe also needs to be re�ned in order to ensure the obviously desired propertythat at any time during omputation exatly one proess is the owner of theahe.First we formally de�ne the notion of the owner of the ahe. The owner ism, if m is in the Home- or Fresh-state. Otherwise, it is either proessor p forwhih sp = dirty holds and whih has not been granted permission to go o�the shared list; or it is the proessor to whih ownership of the ahe is beingtransferred. A proessor with sp = dirty is granted permission to go o� theshared list, if it reeives message delrightR(q; ok) from some proess q, or if ithas no suessor in the shared list and reeives message delleftR(q; ok) from someproess q. (If p is in the Delleft-state and has a suessor, then p has been in theDelright-state before and reeived message delrightR(q; ok) from its suessor q.)Ownership is transferred from one proess to another through a message if thatmessage auses the proess to go into a state with sp = dirty. This an happenwhen one of the following messages is in transit: read ahe goneR(m; r; v; arg)with (r = nil _ arg = ok), prependR(q; r; ok; v; dirty), modifydataR(m; ok). Theformal de�nition of the owner of the ahe is given next. Our orretness proofwe shows that at any time during omputation there exists exatly one owner ofthe ahe. Therefore, if a proessor is the owner then statusm = Gone holds.Hereafter, we often omit types of data in formal de�nitions whenever immate-rial. Also, all free variables in a formula are assumed to be universally quanti�ed.De�nition 4.1.
ahe owner =8>>>>>>>>>>>><>>>>>>>>>>>>:

m; if statusm = Home _ statusm = Freshp; if p 2 P^ 0BBBBBBBB�
sp = dirty ^ statusp 6= Delleft^:9q:delrightR(q; ok) 2 buf [p℄_ sp = dirty ^ statusp = Delleft ^ sup = nil^ :9q:delleftR(q; ok) 2 buf [p℄_ 9r; v; arg: read ahe goneR(m; r; v; arg)2buf [p℄^ (r = nil _ arg = ok)_ 9q; r:prependR(q; r; ok; v; dirty) 2 buf [p℄_ modifydataR(m; ok) 2 buf [p℄

1CCCCCCCCA
The value of the ahe is the value of the ahe owner's opy of the ahe ifthe owner's ahe status has value dirty. If ownership is being transferred to aproess by means of a message, then that message arries the value of the aheas an argument, exept for message modifydataR(m; ok). The latter ase is theonly time that a proessor p with sp = fresh is granted permission to modifythe ahe, and we de�ne the value of the ahe by sp. The orretness proofshows that before the ahe value is modi�ed, vp is the same as vm (m is theprevious owner of the ahe).De�nition 4.2.
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ahe value = 8>>>>>>>>>><>>>>>>>>>>:

vm; if ahe owner = mvp; if p 2 P ^ sp = dirty ^ statusp 6= Delleft^ :9q:delrightR(q; ok) 2 buf [p℄vp; if p 2 P ^ sp = dirty ^ statusp = Delleft ^ sup = nil^ :9q:delleftR(q; ok) 2 buf [p℄v; if 9p; q; r: read ahe goneR(m; r; v; arg) 2 buf [p℄^ (r = nil _ arg = ok)_ prependR(q; r; ok; v; dirty) 2 buf [p℄vp; if p 2 P ^modifydataR(m; ok) 2 buf [p℄We say that a proessor is idle, if it is either in the O� state or if it has sent aread- or write-query that has not yet been reeived by memory; a proessor isentering if memory has reeived the read- or write-query and the proessor is inthe Pending- or the Inqueue-state; a proessor is leaving, if it is about to go o�the list, more preisely, if the proessor is in the Delleft- or Delright-state andit has either been purged by another proessor or a message delleftR(q; ok) hasbeen sent to that proessor; �nally, a proessor whih is not idle, not entering,and not leaving, is alled visiting. A proessor is alled staying if it is visiting andit is has not been granted any permission to go o� the list.De�nition 4.3. For proessors p 2 P, de�ne(a) idle(p), if statusp=O� _ read ahe freshQ(p)2buf [m℄_ read ahe goneQ(p)2buf [m℄.entering(p), if :idle(p) ^ (statusp=Pending _ statusp=Inqueue).leaving(p), if (statusp=Delleft _ statusp=Delright)^ (sp=invalid _ 9q:delleftR(q; ok) 2buf [p℄).visiting(p), otherwise.(b) staying(p) � visiting(p) ^ statusp 6=Delleft ^ :9q:delrightR(q; ok) 2 buf [p℄.A proess p is said to have a onsistent view of the ahe if vp = ahe valueholds. We require that during omputation there always exists a unique ownerof the ahe, that staying proessors always have a onsistent view of the ahe,and that only the owner of the ahe an modify the ahe. We also require thatthe owner of the ahe will eventually have a proper opy of the ahe, and thata proessor whih is in the Purging-state will eventually be able to modify theahe. The latter ours if a proess reeives a message purgeR and it goes intothe Inlist-state. We annot prove that proessors whih have indiated that theywant to modify the ahe will eventually do so, beause this property is not true.(Suh proessors may be purged o� the list when another proessor has beomethe owner.) Also, proessors that indiated that they want to read only mightlater get permission to write. This an be avoided by maintaining an additionalvariable for every proessor indiating whether it issued a read- or a write query.We have abstrated away from this in the model of our paper. The disussionabove leads to the following formal spei�ation of the program:De�nition 4.4. The following is required to hold ontinuously during ompu-tation of the program:



16 Amy Felty and Frank Stomp(a) 9!p.(p 2 P [ fmg ^ ahe-owner = p).(There exists always exatly one owner of the ahe.)(b) 8p 2 P :(staying(p) ) vp = ahe value).(Staying proessors have a onsistent view of the ahe.)() ahe value 6= O(ahe value)) ahe owner 2 P ^ vahe owner = ahe value^ ahe owner = O(ahe owner )^ O(vahe owner) = O(ahe value).(Only a proessor whih is the owner an modify the ahe value.)(d) (ahe-owner = p) U (ahe-owner = p ^ vp = ahe value).(The owner of the ahe eventually has a proper opy of the ahe.)(e) [(p 2P ^ ahe owner=p ^ statusp=Purging)U(ahe owner=p ^ statusp=Purging ^ 9q:�rst(buf [p℄)=purgeR(q; nil))℄^ (�rst(buf [p℄)=purgeR(q0; nil)) U (statusp = Inlist ^ ahe-owner = p).(A proessor in the Purging-state eventually reeives a purge response andgoes into the Inlist-state from whih it an modify the ahe. See the pro-gram text.)5. Corretness ProofWe now desribe how we have shown that the program in Setion 3.2 satis�esthe spei�ation formulated in De�nition 4.4. A detailed proof is presented in[FS99℄.5.1. InvariantsIn this subsetion we list a number of properties whih ontinuously hold duringexeution of the program. Some of these properties deal with types; some otherproperties are formulated in order to show that there are no unspei�ed reeipts.(For every proess, if it an reeive a message then it an exeute at least oneation whih deals with that message.) The invariants are also used to establishthat the program satis�es its spei�ation.Every message always arries the identity of the sender, a proess, as the �rstomponent of the message's argument:Lemma 5.1. The following properties ontinuously hold during exeution ofthe program:(a) (hSnd; p; T (p0; arg); qi 2 h _ hRe; p; T (p0; arg); qi 2 h) ) ( p 2 P [ fmg^ p = p0).(b) T (p; arg) 2 buf [q℄ ) p 2 P [ fmg.The proofs of this property and of some properties formulated hereafter de-pend on general properties of the semantis, suh as msg(p; arg) 2 buf [q℄ )msg(q; arg) 2h#hSnd; p; qi	h#hRe; p; qi (see Setion 2). We omit most proofsin this paper; they an all be established using the tehniques desribed in [MP91℄We have that queries are only sent by proessors (and never by memory):



Cahe Cohereny in SCI 17Lemma 5.2. For all message types msgQ, the following ontinuously holds dur-ing exeution of the program: (hSnd; p;msgQ(p; arg); qi 2 h_ hRe; p;msgQ(p; arg); qi 2 h_ msgQ(p; arg) 2 buf [q℄) !) p 2 P :Read-, write-, and modifydata-queries are only sent to memory:Lemma 5.3. The following ontinuously holds during exeution of the program:0BBBBBBBBBB�
hSnd; p; read ahe freshQ(p); qi 2 h_ hSnd; p; read ahe goneQ(p); qi 2 h_ hSnd; p;modifydataQ(p); qi 2 h_ hRe; p; read ahe freshQ(p); qi 2 h_ hRe; p; read ahe goneQ(p); qi 2 h_ hRe; p;modifydataQ(p); qi 2 h_ read ahe freshQ(p) 2 buf [q℄_ read ahe goneQ(p) 2 buf [q℄_ modifydataQ(p) 2 buf [q℄

1CCCCCCCCCCA) q = m:
This lemma implies that there are no unspei�ed reeipts for proessors.Read-, write-, and modifydata-responses are only sent by memory and toproessors. This property as well as a number of other ones, whih are neededto establish it, are formulated in the next lemma.Lemma 5.4. The following ontinuously holds during exeution of the pro-gram:(a) 0BBBBB� hSnd; p; read ahe freshR(p; r; v; arg); qi 2 h_ hSnd; p; read ahe goneR(p; r; v; arg); qi 2 h_ hRe; p; read ahe freshR(p; r; v; arg); qi 2 h_ hRe; p; read ahe goneR(p; r; v; arg); qi 2 h_ read ahe freshR(p; r; v; arg) 2 buf [q℄_ read ahe goneR(p; r; v; arg) 2 buf [q℄

1CCCCCA) (p = m ^ q 2 P ^ (r = nil _ r 2 P) ^ (arg = ok _ arg = gone)).(b)  hSnd; p;modifydataR(p; arg); qi 2 h_ hRe; p;modifydataR(p; arg); qi 2 h_ modifydataR(p; arg) 2 buf [q℄ !) (p = m ^ q 2 P ^ (arg = ok _ arg = rejet)).() headm=nil _ headm2 P.(d) For all p 2 P , sup=nil _ sup2 P.(e)  hSnd; p; prependR(p; r; arg; v; s); qi 2 h_ hRe; p; prependR(p; r; arg; v; s); qi 2 h_ prependR(p; r; arg; v; s) 2 buf [q℄ !)  p 2 P ^ q 2 P^ (( arg = ok ^ (p = r _ r = nil))_ (arg = retry ^ r 2 P)): !(f)  hSnd; p; delleftQ(p; r; v); qi 2 h_ hRe; p; delleftQ(p; r; v); qi 2 h_ delleftQ(p; r; v) 2 buf [q℄ !) (r = nil _ r 2 P):



18 Amy Felty and Frank StompIt follows that, for all proessors p 2 P, sup 6=m holds.We next show the values that some of the other variables an take:Lemma 5.5. The following ontinuously holds during exeution of the pro-gram:(a) statusm=Home _ statusm=Fresh _ statusm=Gone.(b) statusm=Home , headm=nil.() For all proessors p, statusp=O� _ statusp=Pending _ statusp=Inqueue_ statusp=Inlist _ statusp=Delleft _ statusp=Delright _ statusp=Ftod _statusp=Purging.Prepend- and delright-queries are sent only to proessors (and never to memory);and the value of predp, for proessors p, is either nil or in set P[fmg:Lemma 5.6. The following ontinuously holds during exeution of the pro-gram:(a)  hSnd; p; prependQ(p); qi 2 h_ hRe; p; prependQ(p); qi 2 h_ prependQ(p) 2 buf [q℄ !) q 2 P :(b)  hSnd; p; delrightQ(p; r; v); qi 2 h_ hRe; p; delrightQ(p; r; v); qi 2 h_ delrightQ(p; r; v) 2 buf [q℄ ! ) q 2 P ^ (r = nil _ r 2 P [fmg):() predp=nil _ predp2 P [ fmg.Purge-queries and purge-responses are sent by proessors to proessors:Lemma 5.7. The following ontinuously holds during exeution of the pro-gram:(a)  hSnd; p; purgeQ(p); qi 2 h_ hRe; p; purgeQ(p); qi 2 h_ purgeQ(p) 2 buf [q℄ !) q 2 P:(b)  hSnd; p; purgeR(p; r); qi 2 h_ hRe; p; purgeR(p; r); qi 2 h_ purgeR(p; r) 2 buf [q℄ !) p 2 P ^ q 2 P ^ (r = nil _ r 2 P):Delleft-responses are always sent to proessors (never to memory); the seondargument of the response is either ok or rejet:Lemma 5.8. The following ontinuously holds during exeution of the program: hSnd; p; delleftR(p; arg); qi 2 h_ hRe; p; delleftR(p; arg); qi 2 h_ delleftR(p; arg) 2 buf [q℄ !) q 2 P ^ (arg = ok _ arg = rejet):



Cahe Cohereny in SCI 19It follows from the Lemmata 5.4, 5.6, 5.7, and 5.8 that there are no unspei-�ed reeipts for m. In partiular, m will never reeive a message of the formmsgR(arg), i.e., one assoiated with a response.An ourrene of message msgQ is outstanding for proessor p, if p has sentmsgQ to some proess and not reeived message msgR thereafter.De�nition 5.1.(a) Out(msgQ; p; i) �0 < i � jhj^ 9q2P[fmg.9arg:h[i℄ = hSnd; p;msgQ(arg); qi^ 8q0 2P [ fmg:8arg0:8j: (i<j�jhj) h[j℄ 6=hRe; q0;msgR(arg0); pi).(b) outstanding(msgQ; p) � 9i. Out(msgQ; p; i).If :outstanding(msgQ; p) _ 9!msg:9!i. Out(msgQ; p; i) holds, we say that thereexists at most one outstanding query for proessor p.Hereafter, the operator 5 denotes the \exlusive-or" operator, i.e., A 5 Bholds i� either A or B, but not both, holds. We now arrive at the �rst keyinvariant:Lemma 5.9. The following ontinuously holds during exeution of the pro-gram:(a) Every proessor has at most one outstanding query.(b) For every proessor p,statusp=O� ) p has no outstanding queries.statusp=Pending ) p has an outstanding read- or write query.statusp=Inqueue ) p has an outstanding prepend query.statusp=Inlist ) p has no outstanding queries.statusp=Delleft ) p has an outstanding delleft query.statusp=Delright ) p has an outstanding delright query.statusp=Purging ) p has an outstanding purge query.statusp=Ftod ) p has an outstanding modifydata query.() h[i℄ =hSnd; p;msgR(arg); qi) 9j:9arg0:( 1 �j<i ^ h[j℄ = hRe; q;msgQ(arg0); pi^ 8k:8arg00:(j<k<i )h[k℄ 6= hSnd; p;msgR(arg00); qi)):(If p responds to proess q, then there has been a request of q to p, and phas not responded to that request before.)(d) Out(msgQ; p; i) , 9q 2P [ fmg: ( 9arg:msgQ(p; arg) 2 buf [q℄59j:9arg0: ( i < j � jhj^ h[j℄ = hSnd; q;msgR(arg0); pi^ msgR(arg0) 2 buf [p℄)).(A proess has an outstanding query i� either that query is in transit orp's bu�er ontains a response to that query.)Lemma 5.10. For every proessor p, the following ontinuously holds duringexeution of the program:(a) (statusp = Delright ^ sp 6= invalid ^ predp = z)W( (statusp = Delright ^ sp = invalid)_ ([statusp = Inlist _ statusp = Delleft℄ ^ sp 6= invalid ^ predp = z)).



20 Amy Felty and Frank Stomp(b) (statusp = Delright ^ sp = s ^ s 6= invalid ^ delrightR(q; ok) 2 buf [p℄)W((statusp = Delright ^ sp = invalid) _ (statusp = Delleft ^ sp = s)).() (statusp = Delright ^ sp = invalid) W statusp = O� .(d) (statusp = Delleft ^ predp = z1 ^ sup = z2)W(sp = invalid ^ (statusp = Delleft _ statusp = O� )).(e) (statusp = Delleft ^ delleftR(q; ok) 2 buf [p℄) W statusp = O� .(f) (statusp = Delleft ^ sp = invalid) W statusp = O� .Reall that we have introdued the notions of a proess being idle, entering, andvisiting (see De�nition 4.3). We have:Lemma 5.11. For every proessor p, the following ontinuously holds duringexeution of the program:(a) idle(p) W entering(p).(b) visiting(p) W (leaving(p) _ statusp = O� ).() leaving(p) W statusp = O� .Let us all a proessor ative if it is either entering or visiting. By ative(p)we denote that proessor p is ative. We next assign ranks to ative proessorsaording to the order in whih read and write queries are reeived by m. Firstwe de�ne an auxiliary funtion:De�nition 5.2. For proessors p and natural numbers n de�ne,Last ativated(p) = n,if ative(p)^ ( h[n℄ = hRe; p; read ahe freshQ(p);mi_ h[n℄ = hRe; p; read ahe goneQ(p);mi)^ 8i.n < i � jhj.( h[i℄ 6=hRe; p; read ahe freshQ(p);mi_ h[i℄ 6=hRe; p; read ahe goneQ(p);mi).De�nition 5.3. For proessors p suh that ative(p) holds, de�nerank(p) = 0, if 9n.Last ativated(p) = n^8m.8q 2 P.(q 6= p ^ ative(q) ^ Last ativated(q)=m)) m>n.rank(p) = n+ 1, if 9q 2 P ative(q) ^ rank(q) = n^ Last ativated(q)<Last ativated(p)^ :r 2 P . ative(r)^ Last ativated(q) < Last ativated(r)^ Last ativated(r) < Last ativated(p).We then have the following properties:Lemma 5.12. For every proessor p; q, the following ontinuously holds duringexeution of the program:(a) ative(p)) 9n:Last ativated(p) = n.(b) (p 6= q^ative(p)^ative(q)))rank(p) 6= rank(q).() (ative(p) ^ rank(p) = n)W (:ative(p) _ rank(p) < n).



Cahe Cohereny in SCI 21(d) (ative(p) ^ rank(p) = n) ) 8m < n.9p02P .(ative(p0) ^ rank(p0) = m).There are two lemmata whih are ritial for our orretness proof. They showvarious properties inluding how messages sent from one proessor to anotherrelate to the ranks of those proessors. In both these lemmata we have formu-lated invariants of the program whih hold under ertain assumptions. This hasbeen done to redue the size of the lemmata. (Without these assumptions, theinvariants annot be proved.) The assumptions are disharged later. The lem-mata depend on the property that ommuniation is reliable and that the orderof messages sent by one proess to another is preserved. (There an be two mes-sages from one proess in some other proess's bu�er.) The two key lemmatademonstrate the phenomenon explained at the end of Setion 2: In order to es-tablish some invariant of the program, we have to prove a stronger property ofthat program. We have tried to break up these lemmata into smaller ones, buthave not sueeded in doing so. One of the lemma onsists of 17 lauses; theother one onsists of 7 lauses. We believe that all the lauses in the lemmataare mutually dependent and that none of these lauses an be omitted. Thisobservation is further supported by our mehanial veri�ation e�ort of this or-retness proof. The theorem prover Nuprl [C+86℄ is now being employed in anongoing projet to mehanize the proof reported in the urrent paper. So far, wehave not disovered any independent lauses whih ould have then be removedfrom the lemmata. We mention our work using the theorem prover in Setion 6.In essene, some of the lauses in the lemmata are onerned with hara-terizing the the struture of nodes when they are on the shared list. The idea isthat the head of shared list an be reahed through pointer headm. Proessorson the shared list an be reahed by following the su pointers. The notion ofrank is employed to prove that the shared list will never ontain any yles. Theinvariant expressing these properties is not immediately provable, but requiresestablishing a stronger invariant as noted in Setion 1. Thus, we have added ad-ditional lauses to do so, suh as one lause to ope with the situation that someproessor may beome part of the shared list. This approah also demonstratesthe aumulative proess for �nding provable properties, beause the additionof one lause may generate the additions of other lauses to ensure that all theadded lauses are provable.After having proved the two lemmata mentioned above, we have a lemmawhih ombines the invariants proved under ertain assumptions into anotherinvariant. At this stage during the proof we also disharge the assumptions underwhih these invariants were derived. Thereafter, we are ready to show that theprogram is orret w.r.t. its spei�ation:Theorem 5.1. The program satis�es its spei�ation.6. ConlusionThe SCI protool is an IEEE standard for speifying ommuniation betweenmultiproessors in a shared memory model. In this paper we have onsideredthe ahe oherene portion of this protool. We have modeled and skethedorretness of an abstration of this portion. For example, we have not kept trakof proessors whih want to read only (and not write) and we have onsidered theproblem with one ahe line only. (Multiple ahe lines require a straightforward



22 Amy Felty and Frank Stompextension of the proof.) Also, we have used only three values for the ahe statusof a proess, whereas in the full protool more values are employed. We havepresented a spei�ation of our model and a proof sketh that the model meetsthis spei�ation. The orretness proof has been arried out within Linear TimeTemporal Logi and an be found in [FS99℄.Our proof has been arried out by pen and paper. We realize that hand-written proofs may ontain errors. For this reason we are now in the proess ofmehanizing our whole proof. This work is done jointly with Doug Howe usingthe theorem prover Nuprl. Another reason to advoate the use of mehanialtools to support human reasoning beame evident when doing the orretnessproof. Two lemmata are rather tedious to prove. Both these lemmata onsists ofa large number of lauses of whih it has to be shown that eah of them is aninvariant. The orretness of a lause depends on several lauses whih are de-�ned later in the lemma. When one of the lauses turns out to be invalid (as hashappened quite frequently when formulating the lemma), all previously veri�edlauses need to be reproved beause they might depend on the modi�ed one. Atool whih ould keep trak of suh dependenies or whih ould redo the proofwould be of great help. We are onvined that suh tools are even essential ifsuh proofs are arried out on a regular basis.We have used assumptions in lemmata in order to struture the orretnessproof. These assumptions have been disharged at a later stage in the proof.In ontrast to ompositional appoahes, our assumptions may refer to globalproperties. We believe that our approah is worth further researh, sine it allowsmore transparent formulations of properties and struturing their proofs. Thismay have an impat on reduing omplexity of automated proofs.With Doug Howe we are urrently mehanizing the orretness proof reportedon in the urrent paper. This is an ongoing projet and results about our meha-nization, employing the theorem prover Nuprl [C+86℄, an be found in [FHS98℄.In previous work [BFS95℄, with Ramesh Bharadwaj, we have investigatedhow to ombine model heking and theorem proving to verify a broadastingprotool. The work reported in the urrent paper serves as a foundation for a asestudy to push the limits of formal veri�ation by means of tools to really largeprograms, in partiular programs whih annot be validated by model hekingtehniques (only). In the future we will try to mehanially verify even largerprograms.AknowledgementsThanks are due to David Long for disussing the model in Setion 3. His originalmodel has served as a basis for both our model as well for the models studiedby Holzmann, Kurshan, and MMillan. We also thank Thor Jeremiassen andMihael Merritt for suggestions on improving the presentation.Referenes[ABM93℄ Yehuda Afek, Geo�rey Brown, and Mihael Merritt. Lazy ahing. ACM Trans-ations on Programming Languages and Systems, 15(1):182{205, January 1993.[BFS95℄ Ramesh Bharadwaj, Amy Felty, and Frank Stomp. Formalizing indutive proofsof network algorithms. In Proeedings of the 1995 Asian Computing SieneConferene (Leture Notes in Computer Siene 1023), Deember 1995.
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