
A Correctness Proof of a Cache Coherence Protocol�
Amy Felty and Frank Stomp

Bell Laboratories
700 Mountain Avenue

Murray Hill, NJ 07974, USA

Abstract

SCI – Scalable Coherent Interface – is a new IEEE stan-
dard for specifying communicationbetween multiprocessors
in a shared memory model. In this paper we model part of
SCI by a program written in a UNITY-like programming lan-
guage. This part of SCI is formally specified in Manna and
Pnueli’s Linear Time Temporal Logic (LTL). We prove that
the program satisfies its specification. The proof is carried
out within LTL and uses history variables. Structuring of
the proof is achieved by means of auxiliary predicates.

1. Introduction

In this paper we formalize and verify part of the SCI
(Scalable Coherent Interface) protocol [17]. This protocol
is an IEEE standard for specifying communication between
shared memory multiprocessors. It is called scalable be-
cause the protocol is intended to be performed in a system
which may consist of up to 64,000 processors. The correct-
ness proof we present in the current paper is carried out for
an arbitrary, finite number of processors (and not for some
maximum number of processors).

Our model of the protocol has been extracted from the
informal description of a document from 1990 when the SCI
protocol had been proposed as a IEEE standard. (It became
a standard in 1992.) The SCI protocol is large and com-
plex. For this reason, we consider only the cache coherence
portion of this protocol. In addition, we model only an ab-
straction of this portion. For example, we do not keep track
of processors which want to read only (and not write) and
we consider the problem with one cache line only. (Multi
cache lines require a straightforward extension of the proof.
In essence, we need copies of our current proof.) Also, in
our model of the protocol we assume messages sent from
one process to another process arrive at the latter process in�In Proceedings of the 11th Annual Conference on Computer Assurance,
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the same order as sent. In the standard this is not necessarily
the case. For any proof of this complexity and size, it is
essential for both the verifier and the reader to structure the
proof. We do so by formulating a number of lemmata, each
of which can be proved directly or using previously formu-
lated (and proved) lemmata. Also, we introduce a number
of auxiliary predicates as an abstraction mechanism. In ad-
dition, for rather big lemmata we prove properties under
certain assumptions, which are then later discharged.

Our part of the SCI protocol is formally modeled by a
program written in a guarded command programming lan-
guage similar to UNITY [5]. Its specification is formulated
in Manna and Pnueli’s Linear Time Temporal Logic (LTL)
[29]. We prove within LTL that the program meets its spec-
ification. A history variable is used in order to reason about
the program’s communication behavior. Managing the com-
plexity of the correctness proof is accomplished by means
of auxiliary predicates. In addition to these auxiliary predi-
cates and the history variable, we also use logical variables
in our correctness proof. They are used to freeze the val-
ues of the history and of certain program variables during a
computation when reasoning about the program.

The presence of multiple caches introduces the problem
of coherence. According to [4] a memory scheme is coher-
ent if the value returned on a read is the value given by the
latest store with the same address. Coherence is usually
achieved by snooping. In essence, all processors listen to a
bus, and either invalidate or update their caches when data
is written into memory. This kind of cache coherence proto-
cols relies on a broadcasting mechanism. They do not scale
well because the bus becomes a bottleneck. In non-snooping
cache coherence algorithms it is often the case that memory
keeps track of the caches which may be affected when data
is written into memory. In this case the bottleneck is at
the memory controller. To overcome these bottlenecks the
SCI protocol decentralizes the communication. Broadcast
is replaced by point-to-point communication which requires
more messages per read/write but messages are sent only to
the relevant processes. For bookkeeping, doubly linked lists
of processes are used to keep track of the caches which need



to be updated when data is modified.
An attempt to validate the program verified in the cur-

rent paper has been made by the model checking commu-
nity. Holzmann [14] using SPIN [15], Kurshan [22] using
COSPAN [23], and Long and McMillan [27] using SMV
[30] report to have validated the program for up to five pro-
cesses. The problem that each of the model checkers face
in this case is the state explosion problem.

Other work on the formal specification of the SCI proto-
col has been carried out by Gjessing et al. [9, 10]. Using
stepwise refinement, multiple layers of the protocol are for-
malized at different levels of abstraction and functions are
defined which map one level to the next. The lowest level
of formal description is comparable with the C-code spec-
ification in the SCI document. This formalization work is
part of an ongoing effort to fully verify the SCI cache co-
herence protocol. Stern and Dill [36] describe an ongoing
project of automatically verifying the SCI protocol. They
have discovered several errors in the C-code which defines
that protocol. An overview of the SCI protocol and related
projects can be found in [12].

There is a vast amount of work done on other cache co-
herence algorithms, see, e.g., [1, 34, 35, 16] to name just a
few of them. The algorithm proposed by Afek, Brown, and
Merritt in [1] explores a formalization of Lamport’s notion
of sequential consistency [25]. (Whereas cache coherence
ensures that processors have a consistent view of the cache,
sequential consistency addresses the question in what order
data writes are observed by other processors [32].) This al-
gorithm has recently been the subject of various verification
methods: Brinksma [3] uses queue-like action transducers;
Gerth [8] uses a generalized version of refinement; Graf
[11] uses abstraction and model checking; Janssen, Poel,
and Zwiers [18] apply a compositional approach; Jonsson,
Pnueli, and Rump [19] apply a partial order transducer; Katz
[20] uses ISTL [21]; Ladkin, Lamport, Olivier, and Roegel
[24] apply the temporal logic TLA [26]; Lowe and Davies
[28] use CSP [13]. In each of these proofs the emphasis is
on sequential consistency. Pong and Dubois [33] present a
general technique for verifying cache coherence protocols.
They use a symbolic representation of the system state keep-
ing track of whether the caches have 0, 1, or multiple copies.
We are not convinced that their technique is applicable to
the algorithm analyzed in the current paper, because of the
doubly linked list. Other cache coherence protocols have
been validated in [6] and in [31], using the model checker
SMV.

The rest of this paper is organized as follows: In the
next section we introduce some basic notions and notation.
Both the informal and formal descriptions of the algorithm
analyzed in our paper are given in Section 3. The algorithm’s
formal specification in formulated in Section 4. Section 5
contains a proof that the algorithm satisfies its specification.

We have not employed any form of automation in our proof.
Formalizing the correctness proof using a theorem prover
is left for future research. Finally, Section 6 draws some
conclusions.

2. Preliminaries

The system considered in this paper consists of a processm called memory and a number of processes called proces-
sors to distinguish them fromm. The set of all processors is
denoted by P. The term process denotes either a processor
or memory. Every process has its own identity distinct from
the identities of all other processes.

The cache coherence algorithm is modeled in a guarded
command language similar to UNITY [5]. The program
consists of a state formula and a (finite) set of guarded
actions. The state formula describes the states in which the
program may start its execution.

Our program consists of send- and receive-commands as
well as the more conventional statements such as assign-
ments and conditionals. To be more precise, every processp in the system maintains its own message queue buf [p] to
record messages which have been sent to, but not yet re-
ceived by, p. Sending message M from process p to q is
achieved by p executing the send-command buf [q]!M . This
causes message M to be appended to queue buf [q].

As usual in the description of network algorithms, we
distinguish between different types of messages. A type is
identified with a string of characters. A message of type T
and arguments args is represented by T (args). To allow a
receiving process to determine the identity of the sender of
a message, the first component of args is always the identity
of that message’s sender. (This restriction could be relaxed.
We refrain from doing so because it eases our proof.)

A receive-command is of the form buf [p]?T (args).
Command buf [p]?T (args) can be executed by process p
only if buf [p]’s first message is of type T in the state of its
execution. In this case, we say that the receive-command
is enabled in that state. Its execution causes process p to
receive the first message of the queue, and to delete this
message from the queue.

The guard of an action is either a boolean condition or a
receive-statement. In case of a boolean condition, we say
that guard g is enabled in some state if g evaluates to true in
that state.

In the semantics of programs, we use history variable h
which can take sequences as values. The empty sequence is
denoted by �. Every element in sequence h is of the formhSnd; p;M; qi, to denote that process p has sent messageM to process q, or hRec; p;M; qi, to denote that process q
has received message M from process p. As usual, vari-
able h is updated whenever a send- or receive-command is
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executed. E.g., if buf [q]!M is executed by process p, thenhSnd; p;M; qi is appended to h.
Our program always starts in a state satisfyingh = �. Let

P�hΘ; Ai denote this program, where Θ describes the state
in which the program may start its execution, and whereA describes the program’s set of actions. Let � denote
the idling action [29]. A computation sequence of P is an
infinite sequence s0

a0! s1
a1! s2 � � � of states sn and actionsan 2 A[f�g (n � 0), such that s0 satisfies formula Θ, and

such that for all n � 0 the following is satisfied:� Either some action an 2 A is enabled in state sn, andsn+1 is the state resulting when an is executed in sn;
or no action in state sn is enabled, sn = sn+1, andan = � .� Every action in A which is enabled from some point
onwards in the sequence is eventually taken (weak fair-
ness [7]).

An obvious property which holds continuously during exe-
cution of the program is: The sequence of messages received
by process q from process p is a prefix of the sequence of
messages sent by p to q. Let h#(Rec; p; q) denote the se-
quence of messages in sequence h that have been received
by process q from process p; it is obtained by projection ofh onto elements of the form hRec; p; T (args); qi. Similarly,
let h#(Snd; p; q) denote the sequence of messages in se-
quence h that have been sent by process p to process q. The
property of the program mentioned above is then expressed
by h#(Rec; p; q)�h#(Snd; p; q), where � denotes the usual
prefix operator on sequences.

As discussed, message queue buf [p] takes sequences con-
sisting of elements of the formT (args) as values. Intuitively,
buf [p] is the sequence of messages sent to, but not yet been
received by p. Let buf [p]#q denote the sequence of mes-
sages in buf [p] of the form T (q; args0), i.e., those messages
sent by q to p but not yet received by p. (Recall that the first
component of a message is the identity of a process.)

For sequences h1; h2, let h1 � h2 denote the sequence
obtained by appending h2 to h1; and let h1 	 h2 de-
note the difference between sequences h1 and h2, i.e.,h1 	 h2 = h if h2 � h = h1; it is �, otherwise. The fol-
lowing holds continuously during execution of the program:h#hSnd; p; qi	h#hRec; p; qi = buf [q]#p, i.e., the sequence
of messages sent from p to q not yet received by q can be
found (in the sames order as sent) in q’s buffer. In other
words, if some message is in process p’s buffer, then that
message has been sent to p (hence, recorded in h), and that
message has not yet been received by p. Thus, messages
sent from one process to another process are received in the
same order as sent.

Throughout this paper we use Manna and Pnueli’s Linear
Time Temporal Logic LTL [29]. In particular, we use the

temporal operators2 (always),3 (eventually),O (next), W
(weak-until), and U (strong-until). Note that the3-operator
can be derived from the2-operator; and that theU -operator
can be derived from the W - and the3-operator.

3. Program

We now present the informal and formal descriptions of
the program analyzed in the rest of this paper.

3.1. Informal Description

Memory m maintains its (own) variables cvm, statusm,
and headm. Variable cvm (m’s cache value) records the
cache from m’s point of view. For ease of exposition, we
assume that the value of cvm is always some natural number.
The initial value of cvm is irrelevant.

Variable statusm has initial value Home. This variable
can take the values Home, Fresh, or Gone. Intuitively, these
values correspond to the following from m’s point of view:
no read- or write-queries are in progress, only read-queries
are in progress, or at least one write-query is in progress,
respectively.

The value of variable headm is either nil or a processor’s
identity. Value nil is different from all such identities; it is
the initial value of headm. Intuitively, headm records the
processor to which m has last sent a response to a read-
or write-query and for which a read- or write-query is in
progress. (It is nil if no such process exists.) Roughly, a
read/write query is in progress for a processor after it has
indicated that it wants to read or write until it goes off the
doubly linked list mentioned in Section 1. During this period
a series of messages is exchanged and the processor might
be granted permission to read or write the cache.

Every processor p maintains its (own) variables cvp, csp,
predp, succp, and statusp.

Variable cvp (p’s cache value), whose initial value is
irrelevant, records the cache from processor p’s point of
view. Similarly to memory’s variable cvm, it is assumed
that the value of cvp is always a natural number.

To describe the interpretation of variable csp (p’s cache
status), we introduce the notion of the owner of the cache:
If there are no write-queries in progress, then we say that m
is the owner of the cache; otherwise, the processor to whichm has last sent a response to a read- or write-query and for
which a read- or write-query is in progress is the owner of
the cache. This description is not precise, but suffices for
the informal explanation of the algorithm. The notion of the
owner of the cache will be formally defined in Section 4.

Variable csp’s initial value is invalid. This is also its value
when p has no read- or write- requests in progress. (In this
case, the processor has no interest in the cache value and
might have an incorrect value. The processor must reissue
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a query to get the correct value.) It has value dirty, if for
some processor, possibly different from p, a write-request
is in progress and p is the owner of the cache. It is fresh,
otherwise. As with the notion of the owner of the cache,
the description of the intuition behind variable csp is again
imprecise. The value of csp may be invalid if p has made
a read- or write-query but is not yet part of the shared list
which we introduce below.

The initial value of the variables predp and succp is nil.
This is also the value of these variables when no read- or
write-request is in progress. When processors issue read-
or write-requests (to memory), they will always receive a
response back (from memory). Intuitively, when such a
request is in progress for processor p, succp records the
processor q such that the following is true: Prior to p, m
has most recently sent a response to q, and a read- or write-
request is in progress for q. (It is nil, if no such process
exists.) Analogously, when a read- or a write-request is in
progress for processor p, predp records the next processor
after p that received a response from memory and for which
a read- or write-request is in progress. (It is m, if no such
processor exists.) Thus, in an idealized view, the processors
for which there is a read- or write-request in progress form a
doubly linked list. For processor p, succp identifies the next
element in the list, and predp identifies the previous element
in the list. Following [17] we call this list the shared list.
(The idealized view may be corrupted because the processes
perform their computation concurrently with respect to each
other.)

The last variable to be discussed is statusp, for processorp. It can take the values:� Off , if no read- or write-request is in progress for pro-
cessor p.� Pending, if p has issued a read- or a write-request and
it is waiting for a response (from memory).� Inqueue, if p has received the response from memory
to its read- or write-request and p attempts to prepend
to the shared list.� Inlist, if p has succeeded in joining the shared list.� Delright, if p attempts to go off the shared list and
notifies the processor identified by succp of this.� Delleft, ifp attempts to go off the shared list and notifies
the processor identified by predp of this.� Ftod (Fresh to dirty), if p has a read-query in progress
and issues a request to m to modify the cache.� Purging, if p has permission to write and is in the phase
of deleting all other processors from the shared list.

We are now ready to discuss the algorithm. We relate the dis-
cussion to actions in the formal description of the algorithm
given in Section 3.2.

If processor p is in the Off state (statusp = Off holds),
then it can send a message read cache freshQ(p) to memory
indicating that p wants to read the cache; or a message
read cache goneQ(p) indicating that p wants to modify the
cache. Processor p then goes to the Pending state waiting
for a response from memory. (Cf. the actions labeled p1
and p2 in Section 3.2.)

If memory m receives read cache freshQ(p), then it
sends a message read cache freshR as a response to p. This
message carries 4 arguments. The first one is the identity
of m; the second one is the processor which will be p’s
successor in the shared list (this value is nil if the shared list
is empty and p will become the only processor in the shared
list); the third argument is the value of cvm; and the fourth
argument is either gone if m is not the owner of the cache,
or ok otherwise. Memory also updates its variable headm
(fromm’s point of view p is the new head of the shared list).
If p is the first processor on the list from m’s point of view,
then m goes (from the Home state) to the Fresh state. (Cf.
the action labeled m1 in Section 3.2.)

If memory m receives message read cache goneQ(p),
then it sends a message read cache goneR back to p. This
message also carries 4 arguments with the same interpre-
tation as the ones in read cache freshR. As in the case
of message read cache freshQ(p), m updates its variable
headm. Finally, m goes to the Gone state. (There is at least
one write-request in progress.) (Cf. the action labeled m2
in Section 3.2.)

When p receives message
read cache freshR(m; q; cv; arg) it assigns m to predp.
(From p’s point of view it is the processor to which m has
last sent a response to a read- or write-query and for which a
read- or a write-query is in progress.) Now, if q is nil then p
immediately goes to the shared list, and p becomes the only
processor in the list. It records the value of m’s cache and
also records that this is a fresh copy. Otherwise, if q is not
nil, then p attempts to prepend to the shared list by sending
message prependQ(p) to q. If arg = gone holds then csp
remains invalid and the proper value of the cache will be
transferred to p at a later stage in the computation. This
possibility occurs if memory was not the cache owner at the
time it responded to p’s query. In this case p must get its
cache value and cache status from its successor in the shared
list later, and may then become the owner of the cache. Ad-
ditional action is taken only if arg = ok holds. If this is so,
then processor p records the value of m’s cache and records
that it now has a fresh copy of the cache. (Cf. the action la-
beled p3 in Section 3.2.) In the case of a read cache goneR
message, p also records that it has become the owner of the
cache, by assigning value dirty to its variable csp. (Cf. the
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action labeled p4 in Section 3.2.)
Upon receipt of message prependQ(p), a processor q

grants permission to processor p to prepend to the shared
list provided that q is in the Inlist state, by sending message
prependR(q; q; ok; cvq ; csq) back to p. The first argument is,
as for all messages, the identity of the sender; the second ar-
gument is the identity of the head of the shared list; the third
argument indicates permission to prepend to the shared list.
If this permission is granted, then q records that processor p
is q’s new predecessor. (For this purpose, the variable predq
is used.) If q was the owner of the cache, then it passes
ownership on to p. Processor q then records that it is not the
owner of the cache any more (by assigning fresh to its vari-
able csq). It sends message prependR(q; nil; ok; cvq ; csq)
when q is in the phase of notifying its predecessor that it is
going off the shared list, and that the shared list becomes
empty. In this case, p can safely prepend. Processor q sends
message prependR(q; r; retry; cvm; csm) in all other cases
to notify p that p cannot prepend (yet) and that it should
redirect its request to processor r. Argument r is succp if
processor q is going off the shared list. Otherwise processorq does not go off the shared list and r = q holds. (Cf. the
action labeled (p5) in Section 3.2.)

After processor p has received message
prependR(q; r; arg; cv; cs), p retries to prepend to the shared
list if arg = retry holds. It does so by sending message
prependQ(p) to processor r. If, on the other hand, arg = ok
holds, then p gets onto the shared list and becomes the new
head of the list. More precisely, p goes to the Inlist state,
and records that r, which is either the identity of a processor
or nil, is its successor. Processor p also assigns the values
of cv and cs to cvp and csp, respectively, if csp was invalid.
(Cf. the action labeled p6 in Section 3.2.) (The value of csp
is invalid if memory was not the owner of the cache when it
sent its response to p’s read- or write-query.)

In the Inlist state, processor p has several possibilities:

(a) It may attempt to modify the cache when it is the owner
of the cache. This case occurs if csp = dirty holds. As
will be shown in our correctness proof, this occurs
when p is at the head of the shared list. If no other
processors are in the shared list, then p simply modifies
the cache. If other processors are part of the shared list,
then p notifies them to go off the list. Other processors
are in the shared list if succp 6= nil holds. To purge
processors from the list, p sends message purgeQ(p)
to its successor in the list. In order to record that p is
purging processors, p goes to the Purging state. (Cf.
the action labeled p7 in Section 3.2.)

A processor q receiving message purgeQ records that it
is off the shared list by setting both its variables succp
and predp to nil. Processor q also sets its variable csp
to invalid. If q is in the Inlist state, then it simply goes
to the Off state. Otherwise, as we will show, processor

q has issued some query to some other processor, and
waits until it has received a response to that query
before q goes to the Off state. In either case, q sends a
message purgeR(q; r) back to processor p. Argument r
is the processor that follows q in the shared list if such
a processor exists; otherwise, r = nil holds. (Cf. the
action labeled p16 in Section 3.2.)

When p receives message purgeR(q; r), it continues
purging processor r until it has received a message
purgeR(q0; nil), for some processor q0. This means that
the shared list consists only of processor p. In this case,p can safely modify the cache; and p goes back into the
Inlist state. (Cf. the action labeled p17 in Section 3.2.)

(b) Processor p is at the head of the shared list, and may
attempt to modify the cache, even though it is not the
owner of the cache. This happens when p has issued
a read query before, but now decides that it wants to
modify the cache.

From our correctness proof it follows that in this case,
csp = fresh and predp = m holds. Processor p issues a
query (to memory) to transfer ownership of the cache top by sending message modifydataQ(p) tom and going
into the Ftod state to wait for a response. (Cf. the
action labeled p8 in Section 3.2.)

Upon receipt of message modifydataQ(p), memory
grants permission top to modify the cache ifp is also the
head of the shared list fromm’s point of view. It does so
by sending message modifydataR(m; ok) to processorp and going into the Gone state. (Now, there exists at
least one process which attempts to modify the cache.)
If p is not the head of the shared list from m’s point
of view, then m does not grant permission to modify
the cache by sending message modifydataR(m; reject)
to processor p. (Cf. the action labeled m4 in Section
3.2.)

When processor p receives response modifydataR from
memory, p goes back into the Inlist state. If it has been
granted permission to modify the cache, then p records
this by changing its variable csp from fresh to dirty.
(Ownership of the cache has been transformed from m
to p.) (Cf. the action labeled p9 in Section 3.2.)

(c) Processor p attempts to go off the shared list.

In this case, p has to inform its predecessor and its
successor in the shared list (if any) that it is attempting
to go off the list. If p has a successor in the shared
list, then it sends a message delrightQ(p; predp; csp) to
its successor q and goes into the Delright state. This
message is to be interpreted as a request of p to q to go
off the list. (Cf. the action labeled p10 in Section 3.2.)
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When q has received message delrightQ, it grants p’s
query, provided that q itself is not waiting for any re-
sponse due to an outstanding query and provided thatq’s predecessor is p indeed. Processor q does so by
sending message delrightR(q; ok) to p and by record-
ing its new predecessor in the shared list. If ownership
of the cache has to be passed from p to q, then q also
copies the third argument of the delrightQ message
into its variable csq. The query associated with the
delrightQ message is not granted by q if q is waiting
for a response to one of its own queries, or if p is not its
predecessor in the shared list (from q’s point of view.)
In this case, q sends message delrightR(q; reject) to p.
(Cf. the action labeled p12 in Section 3.2.)

Now if processor p receives message delrightR it may
be that pwas purged off the list in the meantime. In this
case, its variable csp will have value invalid and it will
go directly to the Off state. If p has not been purged
its behavior is as follows: If p receives a message
delrightR(q; reject), then p simply goes back into the
Inlist state, because no permission had been granted top to go off the list. If p, on the other hand, receives
a message delrightR(q; ok) then p has to inform its
predecessor in the shared list that it is going off the list.
Informing the predecessor that p is going off the shared
list is also immediately done if p has no successors
in the list (without going through the Delright state).
To do so, p sends message delleftQ(q; succp; cvp) to
the process (which might be memory) identified by
variable predp, and goes into the Delleft state. (Cf. the
actions labeled p11 and p13 in Section 3.2.)

To describe the response to message delleftQ, we dis-
tinguish 2 cases:

(c1) Message delleftQ is received by memory.
If p is not the head of the shared list fromm’s point of view, then m sends a message
delleftR(m; reject) to processor p. This message
is not to be interpreted as a rejection to p of m
to go off the list, but rather as information that p
should retry to send other delleftQ messages later
because the shared list is in the process of being
modified.
If p is the head of the list from m’s point of view,
then m informs p that it can go off the shared
list. Memory m does so, by sending a message
delleftR(m; ok) to p. Memory m then copies the
value of the third argument of message delleftQ
into its variable cvm (p could have been the owner
of the cache and modified it). It records that the
processor identified by the second argument of
the delleftQ message is the new head of the shared
list. Note that there is no such processor if this

argument is nil. In this case, memory m goes
back to the Home state because no read- or write
queries are in progress any more. (Cf. the action
labeled m3 in Section 3.2.)

(c2) Message delleftQ is received by processor q.
First processor q checks if p is its successor
in the shared list. It then also checks if it
is either not waiting for a response, is waiting
for a modifydataR message, or is waiting for
a delrightR message. (These responses do not
cause processor q to change the shared list.) If
so, q sends message delleftR(q; ok) to processorp to inform p that it can safely go off the list. Pro-
cessor q also updates its successor in the shared
list (by using the second argument of the delleftQ
message it received). There is no need for pro-
cessor q to update its variable cvq because p is not
at the head of the shared list, hence not the owner
of the cache.
In all other cases, q sends message
delleftR(q; reject) to p, to inform p to resend the
delleftQ message later (cf. case (c1) above). (Cf.
the action labeled p14 in Section 3.2.)

Upon receipt of message delleftR, processor p immedi-
ately goes to the Off state, if some processor has purged
him off the list (i.e., when csp = invalid), or if p has
been informed that it is safe to go off the list (i.e., when
arg = ok). (Cf. the case of delrightR messages.) Oth-
erwise, if p receives message delleftR(q; reject), thenp retries to go off the list by again sending message
delleftR to its predecessor (which may be another pro-
cess than when it first sent that message). (Cf. the
action labeled p15 in Section 3.2.)

This completes our informal description of the algorithm.

3.2. Formal Description

As mentioned before, a program consists of an initial
condition and a finite collection of actions. We first specify
the initial condition, and thereafter the actions.

Initially, no communication has taken place and all the
buffers are empty; process m is in the Home state and its
variable headm has value nil; and every processor is in the
Off state, its own cache-status is invalid, and its forward and
backward pointers have value nil. Thus, the initial condition
is the conjunction of� h = �,� statusm = Home ^ buf [m] = � ^ headm = nil, and� for all p 2 P , statusp = Off ^ buf [p] = � ^^ csp = invalid^ succp = nil ^ predp = nil.
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The collection of actions is specified below. There, x:=?
denotes the random assignment to model writing the cache.

Processor p

(p1) statusp = Off �!
buf [m]!read cache freshQ(p); statusp:=Pending

(p2) statusp = Off �!
buf [m]!read cache goneQ(p); statusp:=Pending

(p3) buf [p]?read cache freshR(q; r; cv; arg) �!
predp:=q;
if r = nil
then statusp:=Inlist; cvp:=cv; csp:=fresh
else buf [r]!prependQ(p); statusp:=Inqueue;

if arg = ok then cvp:=cv; csp:=fresh fi fi
(p4) buf [p]?read cache goneR(q; r; cv; arg) �!

predp:=q;
if r = nil
then statusp:=Inlist; cvp:=cv; csp:=dirty
else buf [r]!prependQ(p); statusp:=Inqueue;

if arg = ok then cvp:=cv; csp:=dirty fi fi
(p5) buf [p]?prependQ(q) �!

if statusp = Inlist
then buf [q]!prependR(p; p; ok; cvp; csp); predp:=q;

if csp = dirty then csp:=fresh fi
else if statusp = Delleft

then if succp = nil
then buf [q]!prependR(p; nil; ok; cvp; csp);

csp:=invalid; predp:=nil
else buf [q]!prependR(p; succp; retry; cvp; csp);

csp:=invalid; predp:=nil; succp:=nil fi
else buf [q]!prependR(p; p; retry; cvp; csp) fi fi

(p6) buf [p]?prependR(q; r; arg; cv; cs) �!
if arg = ok
then statusp:=Inlist; succp:=r;

if csp = invalid then cvp:=cv; csp:=cs fi
else buf [r]!prependQ(p) fi

(p7) statusp = Inlist ^ csp = dirty �!
if succp 6= nil
then buf [succp]!purgeQ(p); statusp:=Purging; succp:=nil
else cvp:=? fi

(p8) statusp = Inlist ^ csp = fresh^ predp = m�!
buf [m]!modifydataQ(p); statusp:=Ftod

(p9) buf [p]?modifydataR(q; arg) �!
statusp:=Inlist; if arg = ok then csp:=dirty fi

(p10) statusp = Inlist ^ succp 6= nil�!
buf [succp]!delrightQ(p; predp; csp); statusp:=Delright

(p11) statusp = Inlist ^ succp = nil�!
buf [predp]!delleftQ(p; nil; cvp); statusp:=Delleft

(p12) buf [p]?delrightQ(q; r; cs) �!
if statusp = Inlist ^ predp = q
then buf [q]!delrightR(p; ok); predp:=r;

if cs = dirty then csp:=cs fi
else buf [q]!delrightR(p; reject) fi

(p13) buf [p]?delrightR(q; arg) �!
if csp = invalid
then statusp:=Off
else if arg = reject

then statusp:=Inlist

else buf [predp]!delleftQ(p; succp; cvp);
statusp:=Delleft fi fi

(p14) buf [p]?delleftQ(q; r; cv) �!
if succp = q ^ ( statusp = Inlist _ statusp = Ftod_ statusp = Delright)
then buf [q]!delleftR(p; ok); succp:=r
else buf [q]!delleftR(p; reject) fi

(p15) buf [p]?delleftR(q; arg) �!
if csp = invalid _ arg = ok
then succp:=nil; predp:=nil; csp:=invalid; statusp:=Off
else buf [predp]!delleftQ(p; succp; cvp) fi

(p16) buf [p]?purgeQ(q) �!
csp:=invalid; buf [q]!purgeR(p; succp);
predp:=nil; succp:=nil;
if statusp = Inlist then statusp:=Off fi

(p17) buf [p]?purgeR(q; r) �!
if r = nil
then statusp:=Inlist; cvp:=?
else buf [r]!purgeQ(p) fi

Memory m

(m1) buf [m]?read cache freshQ(p) �!
if statusm = Gone
then buf [p]!read cache freshR(m; headm; cvm; gone)
else buf [p]!read cache freshR(m;headm; cvm; ok)
fi; headm:=p;
if statusm = Home then statusm:=Fresh fi

(m2) buf [m]?read cache goneQ(p) �!
if statusm = Gone
then buf [p]!read cache goneR(m; headm; cvm; gone)
else buf [p]!read cache goneR(m; headm; cvm; ok)
fi; headm:=p; statusm:=Gone

(m3) buf [m]?delleftQ(p; q; cv) �!
if headm = p
then cvm:=cv; buf [p]!delleftR(m; ok); headm:=q;

if q = nil then statusm:=Home fi
else buf [p]!delleftR(m; reject) fi

(m4) buf [m]?modifydataQ(p) �!
if headm = p
then buf [p]!modifydataR(m; ok); statusm:=Gone
else buf [p]!modifydataR(m; reject) fi

4. Specification

We now present the formal specification of the program
in the previous section. Our proof that this program satisfies
its specification is given in Section 5.

As remarked, every process has its own view of the cache.
We stipulated that the value of the cache is the value of
the owner of the cache. This is not quite true, however,
because it might be that ownership (and hence, the value of
the cache) is being transferred from one process to another
process. Hence the informal requirement that the processorp with csp = dirty is the owner of the cache also needs to
be refined in order to ensure the obviously desired property
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that at any time during computation at most one process is
the owner of the cache.

First we formally define the notion of the owner of the
cache. The owner is m, if m is in the Home- or Fresh-state.
Otherwise, it is either processor p for which csp = dirty
holds and which has not been granted permission to go
off the shared list; or it is the processor to which owner-
ship of the cache is being transferred. A processor with
csp = dirty is granted permission to go off the shared list,
if it receives message delrightR(q; ok) from some processq, or if it has no successor in the shared list and receives
message delleftR(q; ok) from some process q. (If p is in
the Delleft-state and has a successor, then p has been in the
Delright-state before and received message delrightR(q; ok)
from its successor q.) Ownership is transferred from one
process to another through a message if that message causes
the process to go into a state with csp = dirty. This can
happen when one of the following messages is in transit:
read cache goneR(m; r; cv; arg) with (r = nil_arg = ok),
prependR(q; r; ok; cv; dirty), modifydataR(m; ok). The for-
mal definition of the owner of the cache is given next. In
our correctness proof we will show that at any time during
computation there exists exactly one owner of the cache.
Therefore, if a processor is the owner then statusm = Gone
holds.

Hereafter, we often omit types of data in formal defi-
nitions whenever immaterial. Also, all free variables in a
formula are assumed to be universally quantified.

Definition 4.1

(a) cache-owner = m,
if statusm = Home _ statusm = Fresh holds.

(b) cache-owner = p, for some p 2 P, if(csp = dirty ^ statusp 6= Delleft ^^ :9q:delrightR(q; ok) 2 buf [p]),(csp = dirty ^ statusp = Delleft ^^ succp = nil ^ :9q:delleftR(q; ok) 2 buf [p]),9r; cv; arg.
read cache goneR(m; r; cv; arg) 2 buf [p]^ (r = nil _ arg = ok),9q; r:prependR(q; r; ok; cv; dirty) 2 buf [p], or

modifydataR(m; ok) 2 buf [p] holds.

The value of the cache is the value of the cache owner’s copy
of the cache if the owner’s cache status has value dirty. If
ownership is being transferred to a process by means of a
message, then that message carries the value of the cache as
an argument, except for message modifydataR(m; ok). The
latter case is the only time that a processor pwith csp = fresh
is granted permission to modify the cache, and we define the
value of the cache by csp. It will be shown in Section 5 that
before the cache value is modified, cvp is the same as cvm
(m is the previous owner of the cache).

Definition 4.2

(a) cache value = cvm, if cache-owner = m holds.

(b) cache value = cvp, if p 2 P and either
(csp = dirty ^ statusp 6= Delleft ^^:9q.delrightR(q; ok)2 buf [p]),
(csp = dirty ^ statusp = Delleft ^ succp = nil^ :9q.delleftR(q; ok)2buf [p]), or
modifydataR(m; ok)2buf [p] holds.

(c) cache value = cv, if there exist p; q; r, such that
read cache goneR(m; r; cv; arg)2buf [p] ^ (r = nil _
arg = ok) or
prependR(q; r; ok; cv; dirty)2buf [p] holds.

We say that a processor is idle, if it is either in the Off state
or if it has sent a read- or write-query that has not yet been
received by memory; a processor is entering if memory has
received the read- or write-query and the processor is in the
Pending- or the Inqueue-state; a processor is leaving, if it is
about to go off the list, more precisely, if the processor is in
the Delleft- or Delright-state and it has either been purged
by another processor or a message delleftR(q; ok) has been
sent to that processor; finally, a processor which is not idle,
not entering, and not leaving, is called visiting. A processor
is called staying if it is visiting and it is has not been granted
any permission to go off the list.

Definition 4.3 For processors p 2 P, define

(a) idle(p), if statusp = Off ,
read cache freshQ(p)2buf [m], or
read cache goneQ(p)2buf [m].

(b) entering(p), if :idle(p) and either
statusp = Pending or statusp = Inqueue.

(c) leaving(p), if (statusp = Delleft _ statusp = Delright)
and (csp = invalid _ 9q:delleftR(q; ok) 2buf [p]).

(d) visiting(p), if :idle(p), :entering(p), and:leaving(p).
(e) staying(p), if visiting(p), statusp 6= Delleft, and:9q:delrightR(q; ok) 2 buf [p].

A process p is said to have a consistent view of the cache
if cvp = cache value holds. We require that during com-
putation there always exists a unique owner of the cache,
that staying processors always have a consistent view of the
cache, and that only the owner of the cache can modify the
cache. We also require that the owner of the cache will
eventually have a proper copy of the cache, and that a pro-
cessor which is in the Purging-state will eventually be able
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to modify the cache. The latter occurs if a process receives a
message purgeR and it goes into the Inlist-state. We cannot
prove that processors which have indicated that they want to
modify the cache will eventually do so,because this property
is not true. (Such processors may be purged off the list when
another processor has become the owner.) Also, processors
that indicated that they want to read only might later get
permission to write. This can be avoided by maintaining an
additional variable for every processor indicating whether it
issued a read- or a write query. We have abstracted away
from this in the model of our paper. The discussion above
leads to the following formal specification of the program:

Definition 4.4 The following is required to hold continu-
ously during computation of the program:

(a) 9!p.(p 2 P [ fmg ^ cache-owner = p).
(There exists always exactly one owner of the cache.)

(b) 8p 2 P:(staying(p) ) cvp = cache value).
(Staying processors have a consistent view of the
cache.)

(c) cache value 6= O(cache value)) cache-owner 2 P^ cvcache-owner = cache value^ cache-owner = O(cache-owner)^ O(cvcache-owner) = O(cache value).
(Only a processor which is the owner can modify the
cache value.)

(d) (cache-owner = p) U (cache-owner = p^ cvp = cache value).
(The owner of the cache eventually has a proper copy
of the cache.)

(e) [(p 2P ^ cache-owner = p ^ statusp = Purging)U
( cache-owner = p ^ statusp = Purging ^^ 9q:first(buf [p]) = purgeR(q; nil))]^ (first(buf [p]) = purgeR(q0; nil))U (statusp = Inlist ^ cache-owner = p).

(A processor in the Purging-state eventually receives
a purge response and goes into the Inlist-state from
which it can modify the cache. See the program text.)

5. Correctness Proof

We prove that the program in Section 3.2 satisfies the
specification formulated in Definition 4.4.

5.1. Invariants

In this subsection we list a number of properties which
continuously hold during execution of the program. Some
of these properties deal with types; some other properties
are formulated in order to show that there are no unspecified
receipts. (For every process, if it can receive a message
then it can execute at least one action that deals with that
message.) The invariants are also used to establish that
the program satisfies its specification. The proofs that the
temporal properties which we formulate do hold for the
program are omitted from this paper, because of the space
limitations. They can be established by techniques described
in [29].

We will use the notation msgQ to denote messages, such
as purgeQ, which are associated with a query. In the de-
scription we will refer to a message such as purgeQ as a
purge-query. The same conventions apply to the notation
msgR, associated with a response.

It is easy to formulate and prove that queries are only sent
by processors (and never by memory); that read-, write-,
and modifydata responses are only sent by memory and
to processors; and that prepend responses are only sent by
processors to processors. By looking at the program text it
follows that every processor can deal with every message
it receives during execution. In other words, there are no
unspecified receipts for processors.

Prepend- and delright queries are sent only to processors
(and never to memory); purge queries and purge responses
are sent by processors to processors; and delleft responses
are always sent to processors (never sent to memory). Con-
sequently, there are no unspecified receipts form. In partic-
ular, m will never receive a message of the form msgR(arg),
i.e., one associated with a response.

Lemma 5.1 The following continuously holds during exe-
cution of the program: statusm = Home , headm = nil.

An occurrence of message msgQ is outstanding for processorp, if p has sent msgQ to some process and not received
message msgR thereafter.

Definition 5.1

(a) Out(msgQ; p; i) is defined as
0 < i � jhj^9q2P[fmg.9arg:h[i] = hSnd; p;msgQ(arg); qi^ 8q0 2P [ fmg:8arg0:8j:(i<j�jhj) h[j] 6=hRec; q0;msgR(arg0); pi).

(b) outstanding(msgQ; p) � 9i. Out(msgQ; p; i).
9



We say that there exists at most one outstanding query
for processor p if :outstanding(msgQ; p) _ 9!msg:9!i.
Out(msgQ; p; i).

Hereafter, the operator5 denotes the “exclusive-or” op-
erator, i.e., A 5 B holds iff either A or B, but not both,
holds. We now arrive at the first key invariant:

Lemma 5.2 The following continuously holds during exe-
cution of the program:

(a) Every processor has at most one outstanding query.

(b) For every processor p,
statusp=Off ) p has no outstanding queries.
statusp=Pending ) p has an outstanding read- or
write query.
statusp=Inqueue ) p has an outstanding prepend
query.
statusp=Inlist ) p has no outstanding queries.
statusp=Delleft ) p has an outstanding delleft query.
statusp=Delright ) p has an outstanding delright
query.
statusp=Purging) p has an outstanding purge query.
statusp=Ftod ) p has an outstanding modifydata
query.

(c) h[i] = hSnd; p;msgR(arg); qi 2 h) 9j:9arg0:
(1�j<i ^ h[j] = hRec; q;msgQ(arg0); pi2h^8k:8arg00:(j<k<i)h[k] 6= hSnd; p;msgR(arg00); qi)):

(If p responds to process q, then there has been a request
of q to p, and p has not responded to that request
before.)

(d) Out(msgQ; p; i),9q 2P [ fmg: ( 9arg:msgQ(p; arg) 2 buf [q]59j:9arg0: ( i < j � jhj^ h[j] = hSnd; q;msgR(arg0); pi^ msgR(arg0) 2 buf [p])).
(A process has an outstanding query iff either that query
is in transit or p’s buffer contains a response to that
query.)

Lemma 5.3 For every processor p, the following continu-
ously holds during execution of the program:

(a) (statusp = Delright ^ csp 6= invalid ^ predp = z)W( (statusp = Delright ^ csp = invalid)_ ([statusp = Inlist _ statusp = Delleft]^ csp 6= invalid ^ predp = z)).

(b) (statusp = Delright ^ csp = cs^ cs 6= invalid ^ delrightR(q; ok) 2 buf [p])W
((statusp = Delright ^ csp = invalid)_ (statusp = Delleft ^ csp = cs)).

(c) (statusp = Delright ^ csp = invalid)W
statusp = Off .

(d) (statusp = Delleft ^ predp = z1 ^ succp = z2)W
(csp = invalid^ (statusp = Delleft _ statusp = Off )).

(e) (statusp = Delleft ^ delleftR(q; ok) 2 buf [p]) W
statusp = Off .

(f) (statusp = Delleft ^ csp = invalid)W statusp = Off .

Recall that we have introduced the notionsof a process being
idle, entering, and visiting (see Definition 4.3). We have:

Lemma 5.4 For every processor p, the following continu-
ously holds during execution of the program:

(a) idle(p) W entering(p).
(b) visiting(p) W (leaving(p) _ statusp = Off ).
(c) leaving(p) W statusp = Off .

Let us call a processor active if it is either enteringor visiting.
By active(p) we denote that processor p is active. We next
assign ranks to active processors according to the order in
which read and write queries are received by m. First we
define an auxiliary function:

Definition 5.2 For processors p and natural numbers n de-
fine, Last activated(p) = n, if active(p) and the following
holds:� Either h[n] = hRec; p; read cache freshQ(p);mi orh[n] = hRec; p; read cache goneQ(p);mi.� For all i with n < i � jhj,

either h[i] 6= hRec; p; read cache freshQ(p);mi orh[i] 6= hRec; p; read cache goneQ(p);mi.
Definition 5.3 For processors p such that active(p) holds,� rank(p) = 0, if for some natural number n,

Last activated(p) = n, and for all natural numbersm and for all processors q, (q 6= p ^ active(q) ^
Last activated(q) = m) ) m > n.
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� rank(p) = n + 1, if for some processor q, active(q),
rank(q) = n,
Last activated(q)<Last activated(p), and for no
processor r with active(r), Last activated(q) <
Last activated(r) < Last activated(p).

We then have the following properties:

Lemma 5.5 For every processor p; q, the following contin-
uously holds during execution of the program:

(a) active(p) ) 9n:Last activated(p) = n.

(b) (p 6= q^active(p)^active(q)) )rank(p) 6= rank(q).
(c) (active(p) ^ rank(p) = n)W (:active(p)_rank(p) < n).

(d) (active(p) ^ rank(p) = n)) 8m < n.9p02P.(active(p0) ^ rank(p0) = m).
The next two lemmata are critical for our correctness proof.
They show various properties including how messages sent
from one processor to another relate to the ranks of those
processors. In both these lemmata we formulate invariants
of the program which hold under certain assumptions. This
is done to reduce the size of the lemmata. (Without these
assumptions, the invariants cannot be proved.) The assump-
tions will be discharged later.

Lemma 5.6 Let � be some computation sequence of the
program. Assume that, for all processors p, q, and r,

(1) (statusp = Purging _ statusp = Ftod)) (staying(q) ) succq 6= p) ^ purgeQ(q) 62 buf [p]^ purgeR(q; p) 62 buf [r]
holds in some state in �. Then the conjunction of (a), : : :,
(q) is preserved by every action of the program.

(a) (statusp = Off _statusp = Pending))csp = invalid.
statusp = Inlist ) csp 6= invalid.
statusp = Purging ) (csp = dirty ^ succp = nil).
statusp = Ftod ) (csp = fresh ^ predp = m).
statusp = Inqueue ) (predp = m ^ succp = nil).
delrightQ(q; r; cs)2buf [p])(r 6=nil^cs6=invalid).(visiting(p) ^ statusq 6= Delleft^delrightQ(p; r; cs) 2 buf [q]))succp = q.(visiting(p)^delrightR(q; ok)2buf [p]))succp = q.

(b) (statusp 6= Inqueue ^ csp = invalid))(predp = nil^succp = nil).
csp 6= invalid) predp 6= nil.

(c) headm = nil ) 8p 2 P:(idle(p) _ leaving(p)).

(d) (headm = p ^ p 6= nil)) p is maximal ranked active processor.

(e) ( idle(p) _ entering(p) _ leaving(p)_ p is maximal ranked visiting processor)) ( staying(q))succq 6= p) ^ purgeQ(q)62buf [p]^ purgeR(q; p) 62 buf [r].
(f) ( read cache freshR(m; q; cv; arg) 2 buf [p]_ read cache goneR(m; q; cv; arg) 2 buf [p])) (( q = nil ^ rank(p) = 0^8q0 2 P::visiting(q0))_ (q2P^ [entering(q) _ q is maximal ranked

visiting processor]^ rank(p) = rank(q)+1))^ cvm = cv.

(g) (visiting(p)^statusp 6= Purging^succp = nil)) rank(p) = 0.

(h) (visiting(p)^succp = q^q 6= nil)) (visiting(q) ^ rank(p) = rank(q) + 1).
(i) prependQ(q) 2 buf [p]) rank(q) = rank(p) + 1^ ( entering(p)_ p is maximal ranked visiting processor).
(j) (delleftQ(q; r; cv) 2 buf [p] ^ visiting(q))) (succq = r ^ predq = p).
(k) prependR(q; q; ok; cv; cs)2 buf [p]) q is maximal ranked visiting processor^ cs 6= invalid^predq = p^rank(p) = rank(q)+1^ (staying(p0) ) predp0 6= m).
(l) prependR(q; nil; ok; cv; cs)2 buf [p]) 8p0 2 P ::visiting(p0)^ rank(p) = 0 ^ cs 6= invalid.

(m) prependR(q; r; retry; cv; cs)2 buf [p]) (entering(r) _ r is maximal ranked visiting
processor)^ rank(p) = rank(r) + 1^ [(visiting(r) ^ q 6= r) _ q = r].

(n) purgeQ(q)2buf [p]) (visiting(p) ^ rank(q) = rank(p) + 1).
(o) purgeR(q; r)2 buf [p]) :visiting(q)^ (r = nil ^ rank(p) = 0)_ (r 6= nil ^ rank(p) = rank(r) + 1^ visiting(r))
(p) (predp = m ^ staying(p))) p is maximal ranked staying processor.
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p is maximal ranked staying processor) (predp = m59q:prependR(p; p; ok; cv; cs)2buf [q]).
delrightQ(q;m; cs)2buf [p]) q is maximal ranked staying processor.

(q) csp 6= invalid) predp = m_ 9q 2 P. predp = q^ ( csq = invalid5 q is the smallest ranked entering
or staying processor with
rank(q)>rank(p)).(visiting(q) ^ delrightQ(q; r; cs)2buf [p])) r = m_ (r 2 P ^ csr = invalid)_ (r 2 P ^ csr 6= invalid^ r is the smallest ranked entering

or staying processor with
rank(r)>rank(q)).

Lemma 5.7 Consider an arbitrary computation sequence� of the program. Assume that the conjunction of (1), (a),: : :, (q) as defined in Lemma 5.6 holds in some state in �.
Then the conjunction of (i), : : :, (vii) below is preserved by
every action of the program.

(i) statusm = Home) (csp = invalid _ 9q0.delleftR(q0; ok)2buf [p])^ read cache freshR(m; r; cv; arg)62buf [p]^ read cache goneR(m; r; cv; arg)62buf [p]^ prependQ(q) 62buf [p]^ prependR(q; r; arg; cv; cs)62buf [p]^ modifydataQ(p)62buf [m]^ modifydataR(m; arg)62buf [p]^ purgeQ(q)62buf [p]^ purgeR(q; r)62buf [p].
(ii) statusm = Fresh) (statusp = Inqueue _ visiting(p))) (csp = fresh ^ cvm = cvp)^ read cache freshR(m; r; cv; arg)2buf [p]) (arg = ok ^ cv = cvm)^ read cache goneR(m; r; cv; arg)62 buf [p]^ modifydataR(m; ok)62 buf [p]^ purgeQ(q)62 buf [p] ^ purgeR(q; r)62 buf [p]^ prependR(q; r; arg; cv; cs)2buf [p]) (cs = fresh ^ cv = cvm)^ (visiting(p) ^ delrightQ(q; r; cs)2buf [p])) cs = fresh.

(iii) 9p 2 P:cache-owner = p) statusm = Gone.

(iv) statusm = Gone)9!p: (p 2 P^cache-owner = p)^ 8q 2 P : (active(q)^rank(q)<rank(p))

) csq = invalid_(csq=fresh^cvq=cache value)^ 8q 2 P :( active(q) ^ rank(q)>rank(p))) :staying(q)^8q2P.8r,cv,arg.
(read cache freshR(m; r; cv; arg)2buf [q]^(arg = ok_r = nil))) rank(q) < rank(p)^8q2P.8r,cv.
(read cache freshR(m; r; cv; gone)2buf [q]_read cache goneR(m; r; cv; gone)2buf [q])) (r 6= nil ^ rank(q) > rank(p))^8q2P.8q0,r,cv.

prependR(q0; r; ok; cv; fresh)2buf [p]) (rank(q) < rank(p) ^ cv = cache value).
(v) For all processors p 2 P,

( read cache freshR(m; r; cv; arg)2buf [p]^(r = nil _ arg = ok))) cv = cache value^ ( read cache goneR(m; r; cv; arg)2buf [p]^(r = nil _ arg = ok))) cv = cache value^ modifydataR(m; ok) 2 buf [p]) cvm = cache value^ ( delleftQ(p; nil; cv)2buf [m]^ p is maximal ranked visiting processor)) cv = cache value.

(vi) csp = dirty ) predp = m.

(vii) delleftQ(p; r; dirty)2buf [q]) csp = dirty.

We next combine the two previous invariants into one, at the
same time discarding the assumptions under which these
invariants were derived. To do so, we apply the following
(sound) proof rule:fA ^BgsfBg; fB ^ CgsfCg; (B ^ C)) AfA ^B ^ CgsfA ^B ^ Cg ,

for every action s.

This rule allows us to conclude:

Lemma 5.8 The conjunction of (1), (a), : : :, (q) as defined
in Lemma 5.6, and (i), : : :, (vii) as defined in Lemma 5.7
continuously holds during execution of the program.

A tedious but straightforward proof allows us to conclude:

Theorem 5.1 The program satisfies its specification.

12



Proof (sketch): We have to show that every computation se-
quence satisfies the temporal properties formulated in Def-
inition 4.4. Note that Lemma 5.8 shows that each of the
conjuncts formulated in the Lemmata 5.6 and 5.7 holds dur-
ing the program’s execution. We concentrate on two cases,
corresponding to the clauses (a) and (b) in Definition 4.4:

(a) At any point during computation, there exists exactly
one owner of the cache.
If statusm = Home or statusm = Fresh, them m is the
owner. To complete the proof for this case, it remains to
show that no processor can be the owner. This follows
from (a1) and (a2) below and Definition 4.1.

(a1) For no processor p, csp = dirty, and the disjunc-
tion of statusp 6= Delleft ^:9q:delleftR(q; ok)2buf [p] and
statusp = Delleft ^ succp = nil ^:9q:delleftR(q; ok)2buf [p] holds.
Suppose, to obtain a contradiction, that for some
processor p0, csp0 = dirty, and the disjunction of
statusp0 6= Delleft ^:9q:delleftR(q; ok)2buf [p0] and
csp0 = dirty ^ statusp0 = Delleft ^ succp0 = nil^ :9q:delleftR(q; ok)2buf [p0] holds.
If statusm = Home then we immediately obtain
a contradiction because Lemma 5.7(i) expresses
that for all processors p, csp = invalid or9q:delleftR(q; ok)2buf [p] holds.
If statusm = Fresh then Lemma 5.7(ii) im-
plies that for processor p0, whose existence
was assumed above, statusp0 6= Inqueue and:visiting(p0) hold. From Definition 4.3 we ob-
tain that statusp0 = Off , statusp0 = Pending,
or leaving(p0) holds. The first two possibilities
lead to an immediate contradiction, because each
of them implies that csp0 = invalid (see Lemma
5.6(a)); the third possibility also leads to a con-
tradiction, because it implies that csp0 = invalid
or 9q:delleftR(q; ok)2buf [p].
We conclude that (a1) holds.

(a2) For no processor p, mes-
sage read cache goneR(m; r; cv; arg) with (r =
nil _ arg = ok), prependR(q; r; ok; cv; dirty), or
modifydataR(m; ok) is in p’s buffer.
This is a consequence of Lemma 5.7(i, ii).

If on the other hand statusm = Gone holds in some
state, then Lemma 5.7(iv) implies that there exists ex-
actly one processor that is the owner of the cache. (Note
that, by definition, m is not the owner.)

(b) Staying processors always have a consistent view of the
cache.

Note that for every staying processor p, csp 6=
invalid holds. This is so, because by Definition 4.3,
staying(p) implies visiting(p) ^ statusp 6= Delleft ^:9q:delrightR(q; ok) 2 buf [p]. The latter implies(statusp = Inlist _ (statusp = Delright ^ csp 6=
invalid) _ statusp = Ftod _ statusp = Purging). The
claim then follows from Lemma 5.6(a).

Now, if statusm = Home then there exist no staying
processors (using Lemma 5.1 and Lemma 5.6(c)), and
we are done.

If statusm = Fresh, then (b) follows from Lemma
5.7(ii) and the observation that m is the owner of the
cache.

If statusm = Gone, then, by Lemma 5.7(iv), there
exists exactly one processor which is the owner of the
cache. The same lemma also implies that every staying
processor p has a lower rank than the owner of the
cache, and that p has a consistent view of the cache.

6. Conclusions

The SCI protocol is a new standard for specifying com-
munication between multiprocessors in a shared memory
model. In this paper we have considered the cache coher-
ence portion of this protocol. We have modeled and verified
an abstraction of this portion. For example, we have not
kept track of processors which want to read only (and not
write) and we have considered the problem with one cache
line only. (Multi cache lines require a straightforward ex-
tension of the proof.) Also, we have used only three values
for the cache status of a process, whereas in the full protocol
more values are employed. We have presented a specifi-
cation of our model and shown that the model meets this
specification. The correctness proof has been carried out
within Linear Time Temporal Logic.

Our proof has been carried out by pen and paper. We
realize that handwritten proofs may contain errors. For this
reason we are now in the process of formalizing our whole
proof. This work is done jointly with Doug Howe using
the theorem prover Nuprl. Another reason to advocate the
use of mechanical tools to support human reasoning became
evident when doing the correctness proof. Lemma 5.6, for
example, is rather tedious to prove. The correctness of a
clause depends on several clauses which are defined later
in the lemma. When one of the clauses turns out to be in-
valid (as has happened quite frequently when formulating
the lemma), all previously verified clauses need to be re-
proved because they might depend on the modified one. A
tool which could keep track of such dependencies or which
could redo the proof would be of great help. We are con-
vinced that such tools are even essential if such proofs are
carried out on a regular basis.

13



We have used assumptions in lemmata in order to struc-
ture the correctness proof. These assumptions have been
discharged at a later stage in the proof. In contrast to com-
positional appoaches, our assumptions may refer to global
properties. We believe that our approach is worth further
research, since it allows more transparent formulations of
properties and structuring their proofs. This may have an
impact on reducing complexity of automated proofs.

In previous work [2], with Ramesh Bharadwaj, we have
investigated how to combine model checking and theorem
proving to verify a broadcasting protocol. The work re-
ported in the current paper serves as a foundation for a case
study to push the limits of formal verification by means of
tools to really large programs. In the future we will try to
mechanically verify even larger programs.
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