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Abstract. In today’s society, people have very little control over what
kinds of personal data are collected and stored by various agencies in both
the private and public sectors. We describe an approach to addressing
this problem that allows individuals to specify constraints on the way
their own data is used. Our solution uses formal methods to allow de-
velopers of software that processes personal data to provide assurances
that the software meets the specified privacy constraints. In the domain
of privacy, it is often not sufficient to express properties of interest as a
relation between the input and output of a program as is done for general
program correctness. Here we consider a stronger class of properties that
allows us to express constraints on information flow. In particular, we can
express that an algorithm does not leak any information from particular
“sensitive” values. We describe a general methodology for expressing this
kind of information flow property as Hoare-style program verification
judgments. We begin with the Java Modelling Language (JML), which
is a behavioral interface specification language designed for Java, and we
extend the language to include new concepts and keywords for express-
ing such properties. We use the Krakatoa tool which starts from JML-
annotated Java programs, generates proof obligations in the Coq Proof
Assistant, and helps to automate their proofs. We extend the Krakatoa
tool to understand our extensions to JML and to generate the new form
of required proof obligations. We illustrate our method on several data
mining algorithms implemented in Java.

1 Introduction

Privacy is one of the main concerns expressed about modern computing, espe-
cially in the Internet context. People and groups are concerned by the practice
of gathering information without explicitly informing the individuals that data
about them is being collected. Oftentimes, even when people are aware that their
information is being collected, it is used for purposes other than the ones stated
at collection time. The last concern is further aggravated by the power of modern
database and data mining operations which allow inferring, from combined data
sets, knowledge of which the person is not aware, and would have never con-
sented to generating and disseminating. People have no ownership of their own
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data: it is not easy for someone to exclude themselves from, e.g. direct marketing
campaigns, where the targeted individuals are selected by data mining models.

One of the main concepts that has emerged from research on societal and legal
aspects of privacy is the idea of Use Limitation Principle (ULP). That principle
states that the data should be used only for the explicit purpose for which it
has been collected [15]. Our work addresses this question from the technical
standpoint. We provide tool support for verifying that this principle is indeed
upheld by organizations that perform data mining operations on personal data.

In our setting, users can express individual preferences about what can and
cannot be done with their data. We have not yet addressed the question of how
users express preferences, though our approach allows any data properties that
can be expressed syntactically in formal logic. Certainly, a user-friendly language,
easy to handle by an average person, needs to be designed. It could initially
have the form of a set of options from which an individual would make choices.
We assume that an organization that writes data mining software must provide
guarantees that individuals’ constraints are met, and that these guarantees come
in the form of formal proofs about the source code. Organizations who use the
data mining software are given an executable binary. An independent agency,
whose purpose is to verify that privacy constraints are met, obtains the binary
from the software user, obtains the source code and proof from the software
developer, checks the proof, and verifies that the binary is a compiled version
of the source code. The details of the architecture just described can be found
in another paper [13]. The scenario just described involves using our techniques
to guard against malicious code. Our approach can also apply to a setting in
which trust is not an issue, for example, within a company that wants to insure
that its software release is free of privacy flaws. In this paper, we concentrate on
extending the class of privacy constraints which can be handled, and providing
tool support for proving these properties.

In our previous work [3, 13], we considered privacy properties that could be
expressed as requirements on the input-output relation. Additionally, we showed
how to incorporate constraints on operations that could potentially violate pri-
vacy by overloading the output so that a trace of such operations was evident in
the result. Here we consider a stronger class of properties that allows us to express
constraints on information flow. In particular, we are interested in properties that
express that an algorithm does not leak any information from particular sensi-
tive values, or that a program never writes such sensitive data to a file. Many
such properties can be handled through the framework of non-interference. Non-
interference [7] is a high-level property of programs that guarantees the absence
of illegal information flow at runtime. More precisely, non-interference requires
distinguishing between public input/output and sensitive input/output. A pro-
gram that satisfies non-interference will be such that sensitive inputs of that
program have no influence on public outputs. Thus, with the non-interference
framework, it is straightforward to express the expected properties that an al-
gorithm does not leak any sensitive information or that a value is never written
into a file (considering this value as a sensitive input and the file as a public
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output). The examples we present in this paper include properties constraining
information flow both with and without the use of non-interference.

In addition to increasing the class of privacy constraints we can express,
we present a new approach to proving such properties. We start from the
Weka repository of Java code which implements a variety of data mining al-
gorithms [22]. We simplify the code somewhat, both for illustration purposes
and so that we can work within the limitations of current tools that support our
approach. Also, we must modify the code to include checks that the privacy con-
straints that we allow users to specify are met. We then annotate the code with
JML (Java Modeling Language) [11] assertions, which express Hoare-style [9]
preconditions, postconditions, loop invariants, etc. We use the Krakatoa [12]
tool to generate proof obligations in Coq [14] and to partially automate their
proofs. Successful completion of these proof obligations ensures that the Java
code satisfies its JML specifications. The new approach has two advantages over
our old approach [3, 13]. First, we work directly with Java programs. Previously,
we started with Java code, and translated it to the ML-like language used in
Coq. Second, we hope that using tools engineered for program verification will
improve the ability to automate proofs in the privacy domain.

To handle the kinds of information-flow properties we are interested in, we
extend the expressive power of JML. We also extend Krakatoa to generate the
proof obligations required for the extra expressive power, and to help automate
their proofs.

Contents of the paper. In Section 2, we present the tools used in our approach
to building proofs of privacy constraints of data mining algorithms. In Section 3,
we present our first example; it is a simple one which serves to illustrate our
approach using JML and Krakatoa. In Section 4, we discuss a nearest neighbor
classification algorithm, and present JML annotations which guarantee that the
result value of a data-mining program does not reveal any sensitive information
by constraining it to a set of public values. In Section 5, we discuss how non-
interference can be used to handle a larger class of privacy-sensitive properties,
and how we extend JML and Krakatoa to provide support for non-interference.
In Section 6, we apply these results to a Naive Bayes classification algorithm.
Finally, in Section 7, we conclude and discuss future work.

2 Tools

First, we will introduce Weka, a Java library of data-mining algorithms, and
the notion of classifiers; then, the JML assertion language in which privacy
properties are expressed; and finally, the Krakatoa tool, that we use to verify
JML-annotated Java programs.

2.1 Weka and Classifiers

Since we target data mining software, we have decided to apply our approach
to selected classification modules of Weka (Waikato Environment for Knowledge
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Analysis) [22]. Weka is an open-source library of data mining algorithms, written
in Java, providing a rich set of mining functions, data preprocessing operations,
evaluation procedures, and GUIs. Weka has become a tool of choice, commonly
used in the data mining community. Classification is one of the basic data min-
ing tasks, and Weka provides Java implementations of all the main classification
algorithms. In this paper, we illustrate our approach to privacy-sensitive infor-
mation flow with two commonly used classification tools, the so called Nearest
Neighbor and Naive Bayes classifiers.

The classification task can be defined as follows: given a finite training set
T = {〈xi, yi〉|xi ∈ D, yi ∈ C}, where D denotes the data (set of instances), and
C denotes the set of classes, find a function c : D 7→ C such that for each pair
〈x′, y′〉 ∈ T, y′ = c(x′), and furthermore, c will correctly classify unseen examples
(i.e. examples that will only arrive in the future, and as such cannot be included
in the training set T .) c is referred to as a classifier, and the task of finding c is
known as learning c from T , or —alternatively— as the classifier induction task.
Usually, D = A1 × . . .×An, where Ai, i = 1, . . . , n, is an attribute domain. Ai’s
are either sets of discrete (nominal) values, or subsets of R. Each xi ∈ D can
therefore be seen as xi = ai,1, . . . , ai,n, where ai,j ∈ Aj .

2.2 The Java Modeling Language

The Java Modeling Language [11] (JML) is a behavioral interface specification
language designed for Java. It relies on the design by contract approach [16]
to guarantee that a program satisfies its specification during runtime. These
specifications are given as annotations of the Java source file. More precisely, they
are included as special Java comments, either after the symbols //@ or enclosed
between /∗@ and @∗/. For example, the general schema for the annotation of a
method is the following:
/∗@ behavior

@ requ i re s <precondition >;
@ modif iable <modified f i e l d s and var iables >;
@ ensures <postcondit ion i f no exception raised >;
@ s i gna l s (E) <postcondit ion when exception E raised >; @∗/

The underlying model is a an extension of Hoare-Floyd logic [9]: if the precon-
dition holds at the beginning of the method call, then postconditions (with and
without exceptions) will hold after the call.

Preconditions and postconditions express first-order logic statements, with a
syntax following the Java syntax. Thus, they can easily be written by a pro-
grammer. The Java syntax is enriched with special keywords: \result and
\old(<expr>) to denote respectively the return value of a method, and the
value of a given expression before the execution of a method; and \forall,
\exists, ==> to denote respectively universal quantification, existential quan-
tification and logical implication. If the modifiable clause is omitted, it means
by convention that the method is side-effect free.

Apart from methods specification, it is also possible to annotate a program
with class invariants (predicates on the fields of a class that hold at any time
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in the class) using the keyword invariant, loop invariants (inside the code of
a method with loops) using the keyword loop_invariant, and assertions (that
must hold at the given point of the program) using the keyword assert.

Finally, when annotating a program, it might be useful to introduce new
variables to keep track of certain aspects or computations. Instead of adding
them to the program itself, thus adding new code, it is possible to define variables
that will only be used for specification. These variables, called ghost variables,
are defined in a JML annotation with the keyword ghost and assigned to a Java
expression with the keyword set.

2.3 Krakatoa

Once a program has been annotated with JML, these annotations can be ver-
ified either during runtime (an exception will be raised if they do not hold) or
statically, with a static checker or a theorem prover, given the semantics of the
program. A wide range of tools can be used to achieve this goal. Among these,
the LOOP Tool [21] will work with the PVS theorem prover, Jack [10] with
Atelier B, or Krakatoa [12], that we chose, with Coq [14].

The Krakatoa tool provides a generic model in Coq of the Java runtime en-
vironment. Annotated Java programs are not translated directly to Coq, but
to the Why [5] input language (an annotated ML-like language), without any
loss of precision. Then, Krakatoa relies on static analysis and weakest precon-
ditions calculus of the stand-alone Why tool to generate Coq proof obligations,
corresponding to requirements the Java program must respect to meet its specifi-
cations. Some of these proof obligations can be discharged automatically through
Coq built-in or Krakatoa provided tactics. The remaining proof obligations have
to be completed manually, through the interactive proof mechanism of Coq.
In some cases, preconditions or loop invariants of the annotated Java program
might not be strong enough to prove the postcondition of a method and need to
be modified. Proof obligations are then regenerated, but completed proofs not
affected by these modifications are kept.

The successful completion of all proof obligations is sufficient to ensure that
a program satisfies its specifications. However, the Why tool can also perform a
final step, called validation, to embed each functional translation of the methods
of Java program with its specification into a Coq term whose type corresponds
to the JML specification of that method. This term can be given as a certificate
of the soundness of the whole process.

3 A First Example: Joining Two Database Tables

This sections presents an example of a JML-annotated Java program. We redo
the example described in [3], where the program was written and proved within
Coq. This example serves to illustrate our new approach as well as compare
it to the old one. The program performs a database join operation. The data
from two sets (Payroll and Employee) is joined into a single set (Combined),
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ignoring the data from individuals that do not want their data to be used in a join
operation. For example, individuals with an exceptionally high salary may not
want their Payroll information in the same record as their address and phone
number. Such detailed records may contain enough information to identify them
or to make them the target of certain kinds of direct-marketing campaigns. In
this example, such individuals can express that they want to opt out of this
operation.

The data structures for this example are standard Java classes. For instance,
the payroll notion is captured by the following class that contains the employee
ID PID it refers to, the salary, and a boolean JoinInd which indicates if the
person who owns the data has given the permission to use the data in a join
operation.
class Payroll {

public int PID;
public int Salary;
public boolean JoinInd;

};

The result of the join is stored in a Combined class, that gathers the data
from the classes Payroll and Employee (which contains, among other fields,
name and EID which records the employee ID). We can notice at this point that
the constructor for the class Combined is annotated with a JML specification. It
prevents the creation of a Combined class for the users that do not allow it (the
field JoinInd has to be true), and ensures that the field JoinInd is unchanged
in the created class.
class Combined {
public Payroll m_payroll;
public Employee m_employee;

/∗@ public normal behavior
@ requ i re s p != nul l && p . JoinInd == true && e .EID == p .PID;
@ ensures m payroll . JoinInd == p . JoinInd ; @∗/

public Combined(Employee e, Payroll p) {
m_employee = e;
m_payroll = p;

} };

Note that the assertion above includes a statement that the employee ID fields
of e and p are the same. We did not need this in the version in [3] since only one
copy of the ID was kept in the new Combined record. This is a minor difference
which has little effect on the proofs.

The algorithm that iterates though a set of Payroll records to perform a
join operation is given below:
/∗@ public normal behavior

@ requ i re s Ps != nul l && Es != nul l ;
@ ensures (\ f o r a l l int i ; 0 <= i && i < \ r e su l t . length ; \ r e su l t != nul l &&
@ (\ r e su l t [ i ] != nul l ==> \ r e su l t [ i ] . m payroll . JoinInd == true ) ) ; @∗/

public Combined[] join(Payroll[] Ps, Employee[] Es) {
Combined tab[] = new Combined[Ps.length];

/∗@ loop invar iant
@ 0 <= i && i <= Ps . length &&
@ (\ f o r a l l int j ; 0 <= j && j < i && j < tab . length ;
@ ( tab [ j ] != nul l ==> tab [ j ] . m payroll . JoinInd == true ) ) ;
@ decreases Ps . length−i ; @∗/
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for (int i=0; i < Ps.length; i++)
if (Ps[i] != null)
tab[i] = checkJoinIndAndfindEmployee(Ps[i], Es);

else
tab[i] = null;

return tab;
}

The specification of this algorithm expresses the same property as in [3], but
here it is expressed in JML, which uses Java-like syntax and refers directly to
variables occurring in the program. The particular property that is expressed
is that all data that took part in the join was in fact permitted to do so by
the owners of the data. In [3], this property was expressed directly as a formula
in Coq. Here, the requirements on individual methods taken together express
this property. The method checkJoinIndAndfindEmployee, whose code is not
given here, takes a single Payroll record Ps[i] and the entire list of Employee
records Es as arguments. If (1) a record is found such that Ps[i].EID matches
the employee ID value in one of the records in Es, and (2) Ps[i].JoinInd has
value true, then a new Combined record is created and returned. Otherwise
null is returned.

Note that the loop inside the join method had to be anno-
tated, like any loop in the Hoare-logic formalism. Also, the method
checkJoinIndAndfindEmployee had to be annotated with precondition, post-
condition, and loop invariant since it is called by join and extends the results
of the call to the constructor of the class Combined.

After going through Krakatoa, most of the generated proof obligations are
automatically solved by Coq. In the JML annotations from the code above,
we have omitted some dynamic type information (such as Ps is an instance
of Payroll[]) that was needed to complete the proof. The fact that we had
to manually insert this information is due to current limitations of Krakatoa
that will be fixed in the near future. Around 100 lines of proof were entered to
discharge the remaining proof obligations, which is slightly less than the length
of the proofs in [3]. Although the difference is not really significant due to the
limited size of the example, we believe that this approach leads to smaller proofs
and to an increased confidence in the whole engineering process.

4 A Simple Data Privacy Preserving Classifier

In this section, we will describe how to enforce the value of a data-mining algo-
rithm not to reveal any sensitive information, by constraining the output to a
set of public values.

The following algorithm, the nearest neighbor classifier algorithm, has been
extracted from the Weka library but, to keep proofs simpler, unwanted features
for the purpose of this example have been removed (such as method calls related
to the Weka graphic interface, or checks for an incorrect or incomplete data set)
and data are accessed directly, not through objects. For this particular classifier,
the returned value of the class attribute (in a data-mining context, the attribute
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that the classifier aims at determining) for the given instance instance, is the
value of the class attribute for the instance from the training set m_Train de-
termined as the nearest of the given instance. The corresponding distance is
calculated from the non-class attributes of both.

The specifications for this algorithm constrain the result value to be one of
the class attributes (in the row classIndex of instances), thus preventing leaks
of any other value of the dataset. This kind of specification can be used for
other classifiers on a finite set of class attributes and that return an element of
this set. It would be possible to also prevent a particular instance to be used
in the algorithm based on the owner requirements, as done in Section 3, but
it is supposed in this example that sensitive information resides in non-class
attributes and that the class attribute can be public.
/∗@ public normal behavior

@ requ i re s instance != nul l && m Train != nul l && numInstances > 0 &&
@ instance . length == numAttributes && m Train . length == numInstances &&
@ (\ f o r a l l int i ; 0 <= i && i < numInstances ;
@ m Train [ i ] != nul l && m Train [ i ] . length == numAttributes ) ;
@ ensures (\ ex i s t s int i ; 0 <= i && i < m Train . length ;
@ \ r e su l t == m Train [ i ] [ c lassIndex ] ) ; @∗/

public double classifyInstance(double [] instance) throws Exception {
double dist, minDistance, classValue = 0.0;
boolean first = true;

buildClassifier();
updateMinMax(instance);

/∗@ loop invar iant
@ 0 <= i && i <= numInstances &&
@ ( ( f i r s t == true && i == 0) | |
@ (\ ex i s t s int j ; 0 <= j && j < i ; c lassValue == m Train [ j ] [ c lassIndex ] ) ) ;
@ decreases numInstances − i ; @∗/

for (int i = 0; i < numInstances; i++) {
dist = distance(instance, m_Train[i]);
if (first || dist < minDistance) {
minDistance = dist;
classValue = m_Train[i][classIndex];
first = false;

}
}

return classValue;
}

Proof obligations for this algorithm do not lead to particular problems, they just
follow the structure of the code and the annotations. A total of 180 lines of man-
ually entered proof scripts is needed for buildClassifier, classifyInstance
and the auxiliary functions involved such as updateMinMax and distance.

This approach leads to simple specifications and proofs for which the result
is constrained to a known set. However, in cases where the set result is infinite,
a stronger framework is needed, such as the one provided by non-interference.

5 Privacy Through Non-Interference

As explained in the introduction, non-interference distinguishes public inputs
(resp. outputs) and sensitive inputs (resp. outputs) and prevents leaks from
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sensitive inputs to public outputs. For example, if we consider the input/output
variables x as public and y as sensitive, the program x = y*2 is interferent (direct
flow from y to x), whereas the program x = y; x = 0 is not (it is impossible for
an attacker to guess the value of y by observing x at the end of the execution). It
is also possible to get interference through indirect information flow, for instance
the following program is interferent (it is possible to guess the nullity of y):

if (y != 0) then x = 1; else x = 2;

Finally, interference can be observable through termination of programs
(termination-sensitive) or timing leaks. For the sake of this paper, we will not
consider these possibilities.

5.1 The General Framework

Non-interference can be enforced through type systems [20, 1]. However, in prac-
tice these type systems turn out to be laborious to use and they can reject
obvious non-interferent programs. Instead, we prefer to follow the approach de-
scribed in [2] that proceeds by self-composition of the program and that can be
described using the Hoare-style logic of JML (and then integrated in the tools
we have used so far to study privacy).

Self-composition proceeds by duplicating the code of a program, with two sets
of inputs. Thus imperative pointer-free program P (x, y) with public input/out-
put variables x and sensitive input/output y will be non-interferent if forall x1,
x2, y1, y2 we have the following Hoare formula:

{x1 = x2} P (x1, y1); P (x2, y2) {x1 = x2}

where ; is usual sequential composition. This formula expresses the fact that
the output values of the public variables are independent from the values of the
sensitive variables.

More generally, dependencies between the parameters of the program, before
and after the execution, are characterized by a relation called L-equivalence. In
the above Hoare formula, this relation is simple equality. By allowing more gen-
eral L-equivalence relations between public and sensitive variables, it becomes
possible to capture the notion of declassification [4, 18] within the same frame-
work. Declassification allows leaks, in a controlled way, of sensitive global in-
formation to public variables. Indeed declassification would allow a data-mining
algorithm to compute over sensitive variables and yield public results that do not
give any specific information about any of these sensitive variables. An example
of such a use is given in the example of Section 6 in the context of data-mining.

5.2 Extension of Krakatoa

In order to be able to handle non-interference with Krakatoa following the previ-
ous framework, some modifications have to be made to both JML and Krakatoa.
First, we wish to distinguish pre and post-conditions related to the normal exe-
cution of the program and those related to non-interference. For this purpose, we
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have introduced two optional keywords for method specifications: requires_ni
and ensures_ni. Then, to define L-equivalence relations in the pre and post-
conditions of the self-composed program, we need to distinguish variables for
each of the two runs of the program. Therefore, we have introduced two key-
words \ni1(<var>) and \ni2(<var>). Finally, annotations inside the code are
also required to exist in three variants, one for normal execution and one for each
run of the program for non-interference (these annotations are not necessarily
the same for each run). For example, the keywords loop_invariant_ni1 and
loop_invariant_ni2 are available to distinguish loop invariants to be used for
each run of the program.

Krakatoa is modified to recognize these new keywords. When a method is
annotated with non-interference specifications, it generates the code for the
self-composed method with the corresponding specifications and the appropri-
ate variable names. A particular case appears for method invocations inside a
method body. Indeed, the non-interference results from the invoked method will
only be available in the second copy of the self-composed code (the two runs
must have occurred). In addition, it is necessary to modify the program, with
ghost variables, to keep track of the invoked method parameters and result val-
ues of the first run (they can be modified later on by assignment and thus would
not be available anymore). These values will be used as values of the variables of
the first run, in the non-interference results of the invoked method of the second
run.

6 Non-Interference for the Naive Bayes Classifier

In this section, we will illustrate how the idea of non-interference can be ap-
plied on a data-mining algorithm, the naive Bayes classifier, to express a privacy
property.

The Naive Bayes classifier predicts the class of an instance x = a1, . . . , an

(mTrain[i] in the code below) as

c(x) = argmaxcj∈CP (cj)
∏

P (ai|cj)

i.e. the class of x is obtained by estimating the probabilities of all classes for
given attribute values of x. These estimates, known as priors, are known from
the training set. Probability estimates are approximated by counting frequencies
of different classes for given attribute values. The training data needs therefore
to be summarized in a table (the variable probs in the code below), which keeps
the count of the number of instances with specific attribute values for each class.

From a data privacy point of view, we will assume that some people do
not want their data (more precisely the corresponding instances in the training
set T ) to be used by the classifier for this particular class. Having one’s data
used by a classifier means that this particular individual stands out in T , and
can be targeted (by the use of so called data drilling operations) in marketing
campaigns, sampling routines, etc. It might be reasonable to object to this.
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Thus, the output class value of the algorithm, that is a public result, should not
depend on these sensitive data. The entire set of training instances can not be
considered as fully sensitive data since some information has to be gained from
it to classify the instance; it can not be considered as public data either due
to the restrictions given above. Rather, the training set should be considered as
sensitive data with part of these data (instances that are allowed by their owner
to be used in a classifier algorithm) being declassified for non-interference. Then,
the L-equivalence relation for this algorithm will expect:

– from the input m_Train, the training set of instances, an array of
m_NumInstances instances, to be such that the corresponding duplicated
variables for self-composition \ni1(m_Train) and \ni2(m_Train) agree on
the values that can be used in the classifier algorithm;

– from the public inputs instance, the instance to classify, to be such that
the duplicated variables are equal;

– from the public input m_inst_Allow, an array of m_NumInstances booleans
that express for a given index whether the instance at the corresponding
index in m_Train can be used in the classifier, to be such that the duplicated
variables are equal;

– from the public output \result, an array of m_NumClassValues probabili-
ties, to be such that the duplicated variables are equal.

More formally, the JML specification for the naive Bayes algorithm is:
/∗@ public normal behavior

@ requ i r e s n i (\ f o r a l l int i ; i <= 0 && i < m NumInstances ;
@ ((\ ni1 ( m inst Allow ) [ i ] == true) ==>
@ (\ f o r a l l int j ; j <= 0 && j < m numAttributes ;
@ \ni1 (m Train ) [ i ] [ j ] == \ni2 (m Train ) [ i ] [ j ]))) &&
@ (\ ni1 ( instance ) [ i ] == \ni2 ( instance ) [ i ]) &&
@ (\ ni1 ( m inst Allow ) [ i ] == \ni2 ( m inst Allow ) [ i ] ) ;
@ ensures ni (\ f o r a l l int i ; 0 <= i && i < m NumClassValues ;
@ \ni1 (\ r e su l t [ i ]) == \ni2 (\ r e su l t [ i ] ) ) ; @∗/

The structure of the code for this classifier relies on two main methods:
buildClassifier that initializes the classifier with the training set data, and
distributionForInstance that uses the previously built classifier to classify
a given instance. The buildClassifier method must ensure that two train-
ing sets that verify the conditions given above will generate equal probability
estimators:
/∗@ public normal behavior

@ requ i r e s n i (\ f o r a l l int i ; i <= 0 && i < m NumInstances ;
@ (\ ni1 ( m inst Allow ) [ i ] == \ni2 ( m inst Allow ) [ i ]) &&
@ ((\ ni1 ( m inst Allow ) [ i ] == true) ==>
@ (\ f o r a l l int j ; j <= 0 && j < m numAttributes ;
@ \ni1 (m Train ) [ i ] [ j ] == \ni2 (m Train ) [ i ] [ j ] ) ) ) ;
@ ensures ni instance != nul l && instance . length == m NumAttributes &&
@ (\ f o r a l l int i ; 0 <= i && i < m NumClassValues ;
@ \ni1 ( m ClassDistribution ) . getProbabi l i ty ( i ) ==
@ \ni2 ( m ClassDistribution ) . getProbabi l i ty ( i )) &&
@ (\ f o r a l l int attIndex ; 0 <= attIndex && attIndex < m NumAttributes ;
@ (\ f o r a l l int i ; 0 <= i && i < m NumClassValues ;
@ (\ f o r a l l int j ; 0 <= j && j < m NumValues [ attIndex ] ;
@ \ni1 ( m Distributions ) [ attIndex ] [ i ] . getProbabi l i ty ( j ) ==
@ \ni2 ( m Distributions ) [ attIndex ] [ i ] . getProbabi l i ty ( j ) ) ) ) ; @∗/
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public void buildClassifier() {
m_ClassDistribution = new DiscreteEstimator(m_NumClassValues, true);

for (int attIndex = 0; attIndex < m_NumAttributes; attIndex++)
for (int j = 0; j < m_NumClassValues; j++) {
m_Distributions[attIndex][j] =
new DiscreteEstimator(m_NumValues[attIndex], true);

}
for (int i = 0; i < m_NumInstances; i++) {

if (m_inst_Allow[i] == true) {
for (int attIndex = 0; attIndex < m_NumAttributes; attIndex++) {
int distr_idx = m_Train[i][m_ClassIndex];
m_Distributions[attIndex][distr_idx].

addValue(m_Train[i][attIndex]);
}

m_ClassDistribution.addValue(inst[m_ClassIndex]);
}

}

The distributionForInstance method will now compute the probability
distribution probs (an array of m_NumClassValues values), such that probs[i]
is equal to the probability for the instance instance to be classified as the ith

class value. Based on the post-conditions of the previous method, the following
specifications will ensure for non-interference that two equal probability distri-
butions will be generated at the end of self-composition.
/∗@ public normal behavior

@ requ i r e s n i (\ f o r a l l int i ; i <= 0 && i < m NumInstances ;
@ (\ ni1 ( instance ) [ i ] == \ni2 ( instance ) [ i ])) &&
@ <ensures ni of bu i ldC la s s i f i e r >;
@ ensures ni (\ f o r a l l int i ; 0 <= i && i < m NumClassValues ;
@ \ni1 (\ r e su l t [ i ]) == \ni2 (\ r e su l t [ i ] ) ) ; @∗/

public void distributionForInstance(double[] instance) {

/∗@ loop invar iant n i1
@ 0 <= \ni1 ( j ) && \ni1 ( j ) <= \ni1 (m NumClassValues) &&
@ (\ f o r a l l int i ; 0 <= i && i < \ni1 ( j ) ;
@ \ni1 ( probs [ i ]) == \ni1 ( m ClassDistribution ) . getProbabi l i ty ( i ) &&
@ \ni1 ( probs save [ 0 ] [ i ]) == \ni1 ( probs [ i ] ) ) ;
@ decreases \ ni1 (m NumClassValues) − \ni1 ( j ) ;
@ loop invar iant n i2
@ 0 <= \ni2 ( j ) && \ni2 ( j ) <= \ni2 (m NumClassValues) &&
@ (\ f o r a l l int i ; 0 <= i && i < \ni2 ( j ) ;
@ \ni2 ( probs [ i ]) == \ni1 ( probs save [ 0 ] [ i ]) &&
@ \ni2 ( probs save [ 0 ] [ i ]) == \ni1 ( probs save [ 0 ] [ i ] ) ) ;
@ decreases \ ni2 (m NumClassValues) − \ni2 ( j ) ; @∗/

for (int j = 0; j < m_NumClassValues; j++) {
probs[j] = m_ClassDistribution.getProbability(j);
//@ set prob save [ 0 ] [ j ] = probs [ j ] ;

}

/∗@ loop invar iant n i1 < . . . > ;
@ loop invar iant n i2 < . . . > ; @∗/

for (int attIndex = 0; attIndex < m_NumAttributes; attIndex++) {

/∗@ loop invar iant n i1
@ 0 <= \ni1 ( j ) && \ni1 ( j ) <= \ni1 (m NumClassValues) &&
@ (\ f o r a l l int i ; 0 <= i && i < \ni1 ( j ) ;
@ \ni1 ( probs [ i ]) == \ni1 ( probs save [ attIndex ] [ i ] ) ∗
@ \ni1 ( m Distributions ) [ 0 ] [ i ] . getProbabi l i ty (\ ni1 ( instance [ attIndex ])) &&
@ \ni1 ( probs save [ attIndex +1][ i ]) == \ni1 ( probs [ i ])) &&
@ (\ f o r a l l int i ; \ ni1 ( j ) <= i && i < \ni1 (m NumClassValues ) ;
@ \ni1 ( probs [ i ]) == \ni1 ( probs save [ attIndex ] [ i ] ) ) ;
@ loop invar iant n i2
@ 0 <= \ni2 ( j ) && \ni2 ( j ) <= \ni2 (m NumClassValues) &&
@ (\ f o r a l l int i ; 0 <= i && i < \ni2 ( j ) ;
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@ \ni2 ( probs [ i ]) == \ni1 ( probs [ i ]) &&
@ \ni2 ( probs save [ attIndex +1][ i ]) == \ni1 ( probs save [ attIndex +1][ i ])) &&
@ (\ f o r a l l int i ; \ ni2 ( j ) <= i && i < \ni2 (m NumClassValues ) ;
@ \ni2 ( probs [ i ]) == \ni1 ( probs save [ attIndex ] [ i ] ) ) ; @∗/

for (int j = 0; j < m_NumClassValues; j++) {
probs[j] *= m_Distributions[attIndex][j].getProbability(instance[attIndex]);
//@ set prob save [ attIndex +1][ j ] = probs [ j ] ;

}
}
return(probs);

}

Non-interference specifications have been given for all methods involved in
this example (including the three methods from the class DiscreteEstimator

devoted to representing probability estimators). Note however that the specifi-
cations given above are not complete due to the lack space in the sense that
some loop invariants are not shown (they are similar to the ones given) and that
Krakatoa requires some additional information, also not shown, about bound
limits for arrays, types and non-nullity of objects, loop variants (the index used
in the loop) and modified objects.

The resolution of generated proof obligations proceeds by matching values
of the second run to the corresponding values of the first run. To do so, it is
necessary to keep track of the successive values assigned, which is the role in
the specifications of extra variables (for example the array probs_save to keep
track of values of the variable probs inside the loop), that can be declared as
JML ghost variables. Proofs are not yet completed due to the presence of method
invocations involving arrays. Although we are able to use non-interference results
in those cases, we are currently working on automatically generating assertions
related to the extra ghost variables (arrays) needed to store parameters and
result values of the invoked method. The if condition inside one loop does not
cause any particular problems. The specifications just require the use of logical
implication to reason about the value of the test, as was done in Section 3.

Although statements of generated proof obligations can be very long
due to the various loops involved (one statement of a proof obligation is
over 700 lines long), individual subgoal statements are very concise and
the required total length of proof script that had to be given manually
for the distributionForInstance method and methods from the class
DiscreteEstimator is about 200 lines.

7 Conclusion

We have presented several ways to enforce privacy-sensitive information flow with
JML, which we have illustrated on data-mining algorithms. We first extended
results from a previous paper to integrate them into the JML framework. We
then proposed a way to prevent leaks from sensitive variables when the set of
possible results is finite. Finally, we applied the framework of non-interference to
provide a stronger means to express and enforce privacy properties. To do so, we
extended JML specifications with new specific keywords, but we kept the under-
lying Hoare-Floyd style verification mechanism. We have completed all proofs



14 G. Dufay, A. Felty, S. Matwin

in Coq of the generated proof obligations for the first two examples. For the
more complex example which uses non-interference, we provided specifications
for all methods, but proof obligations for one method could not be completed
due to current limitations of the tools. However, we completed proofs for all
others methods, thus providing a proof of concept of our methodology.

Related work. One of the most comprehensive tools related to information flow
for Java is JFlow [17]. This tool acts as a compiler to statically and dynamically
check programs. It relies on a concept of security levels for variables, which is
not sufficient for our purpose, i.e. to catch the kind of declassification we are
dealing with. Concerning non-interference, although research in this domain is
very active (see [19] for a survey), most of the work done remains theoretical. On
the practical side, applications of non-interferent programs are currently limited
to security issues in smart cards. [6] is one of the more advanced contributions
in this area, using JFlow and Esc/Java. [8] is another example of work exploiting
JFlow information-flow policy to address privacy. Although this work does not
address data mining in particular, it may be possible to integrate this kind of
approach with ours, when dealing with simpler declassification properties, to
improve the scope of privacy concerns that can be enforced. Our use of non-
interference for JML to express privacy of data-mining algorithms is a novel,
promising application area.

Further work. Future development of our work will aim at first to address the
limitations explained in Section 6 concerning the inclusion of non-interference
results from called methods inside the proofs, and scaling the approach to more
complex Java features and algorithms of the Weka library. Another interesting
development would be to automatically generate loop invariants, which can be
tedious to write, but are needed for proofs of non-interference. Indeed, the in-
variant for the two copies of the code of a self-composed program follow the
same pattern, and it can be determined statically which variable of the second
run corresponds to which variable of the first.
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