
Formal Metatheory using Implicit Syntax, andan Application to Data Abstraction forAsynchronous Systems ?Amy P. Felty1, Douglas J. Howe1, and Abhik Roychoudhury21 Bell Labs, Murray Hill, NJ 07974, USA. ffelty,howeg@bell-labs.com2 Dept. of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11790, USA.abhik@cs.sunysb.eduAbstract. Abstraction is a useful tool in veri�cation, often allowingthe proof of correctness of a large and complex system to be reduced toshowing the correctness of a much smaller simpler system. We use theNuprl theorem prover to verify the correctness of a simple but commonlyoccurring abstraction. From the formal proof, we extract a program thatsucceeds when the abstraction method is applicable to the concrete inputspeci�cation and in this case, computes the abstracted system speci�ca-tion. One of the main novelties of our work is our \implicit syntax"approach to formal metatheory of programming languages. Our proofrelies entirely on semantic reasoning, and thus avoids the complicationsthat often arise when formally reasoning about syntax. The semanticreasoning contains an implicit construction of the result using inductivepredicates over semantic domains that express representability in a par-ticular protocol language. This implicit construction is what allows thesynthesis of a program that transforms a concrete speci�cation to anabstract one via recursion on syntax.1 IntroductionTheorem proving and model checking can be usefully combined by using a the-orem prover to verify abstractions of protocols or system speci�cations. In par-ticular, one can often use a model checker to verify some property of a protocolthat has an in�nite or intractably large state space, by �rst transforming theoriginal or concrete protocol into a more abstract version for which model check-ing is feasible [13, 2]. A theorem prover can be used to check, for example, thatthe property (or some transformation of it) holds of the abstract protocol if andonly if it holds of the original protocol. This can be done directly by formalizingthe two versions of the protocol and proving the speci�c property of interest.This approach is taken in [7], for example, using the integration of a BDD basedmodel checker as a decision procedure in PVS [11]. One can also, as in [10], pro-vide general support for doing this kind of reasoning by formalizing a re�nement? In Proceedings of the 16th International Conference on Automated Deduction, July1999, cSpringer-Verlag.

calculus and methodology relating system speci�cations and abstractions; or asin [5], use a model checker with assumption commitment style reasoning on theabstract system and then use a theorem prover to discharge the assumptions inthe concrete system.Typically, when a system speci�cation is represented in a theorem prover, aso called \shallow embedding" is used. In a shallow embedding of a programmingor speci�cation language in a theorem prover, programs and speci�cations aredirectly interpreted in the logic of the theorem prover. Thus, one formalizes onlythe semantics of the language. For example, the commands of an imperativeprogramming language might be encoded as objects of type com = state ! state.In contrast with shallow embedding is \deep embedding", where both thesemantics and syntax of the embedded formalism are explicitly represented inthe theorem prover. Using this approach, one might have a type comsyn con-sisting of abstract syntax trees of commands, and then a meaning functionM 2 comsyn ! com. Deep embeddings are considerably more di�cult to reasonabout in theorem provers. In practice, shallow embeddings are used wheneverpossible, and deep embeddings are done only when one is interested in someproperty that cannot be expressed by referring to semantic objects alone. Acomparison of these two methods is presented in [1], for example.In this paper we show how to exploit the constructivity of the Nuprl theoremprover [4] to synthesize a particular veri�ed-correct abstraction algorithm. Webuild a proof in Nuprl from which we can extract a program that takes a concretespeci�cation as input, tests whether the abstraction method applies to it, and ifso, returns the abstracted system speci�cation.One of the main novelties here is that we do not use a deep embedding. Ourproof reasons only about semantics, yet we are able to synthesize a program thatoperates on syntax. Thus we reason only about the semantic aspects of the ab-straction method, even though we are implicitly constructing the program thatbuilds abstracted programs. The central idea is to de�ne inductive predicatesover semantic domains that express representability in a particular protocol lan-guage. We give a small illustrative example of the approach in Section 2.It is not obvious that this notion of representability is adequate for non-trivialexamples. Many concepts that are natural in reasoning about syntax cannot bedirectly expressed. For example, we cannot directly write down a function whichtakes a command and returns a list of all program variables occurring in it, sincea command is just a function on states that is assumed to be representable, andwe cannot in general determine the list of variables from this function.As evidence for the practicality of our approach, we apply it to a simple butcommon data abstraction method. The correctness of the abstraction, as well asthe representability of the abstract system speci�cation, was proved in Nuprl.We used the program extracted from these proofs to obtain the abstraction of asimple communication protocol.The only other paper we know of that uses the idea of representing syntaximplicitly in type theory via an inductive predicate is [3], where it is proposedas a way of de�ning internal computational complexity measures. Nothing was2

implemented, and no proofs are given. Furthermore, the paper does not addressthe use of implicit syntax together with extraction to synthesize metaprograms.We are aware of one other e�ort involving program extraction and modelchecking [12], in which the correctness proof of a model checker in the Coqproof checker yields, via extraction, an executable model checker which is thenconsidered as a trusted decision procedure.2 ExampleBefore proceeding to our data-abstraction case study in Nuprl, we illustrateour approach with a simple, rather arti�cial, example involving a trivial imper-ative programming language P where programs are sequences of assignmentsof variables to variables. The example is presented at the level of constructivemathematics, and has not been implemented in Nuprl.We start with a semantic account of the language. We represent variablenames as strings and assume that variables take on integer values; we de�nestate = string ! Z, and de�ne the type of (meanings of) commands to becom = state ! state. Assignment and command sequencing can now be de�nedsemantically:assg : string ! string ! com = �x: �y: �s: s[x s(y)]seq : com ! com ! com = �c1: �c2: �s: c2(c1(s))where s[x l] is the state which maps x to l and all other variables y to s(y).Write x := y for assg (x)(y) and c1; c2 for seq (c1)(c2).Consider the following fact about P : for every command c, if there is avariable x such that c only a�ects the value of x, then c is equivalent to asingle assignment statement. This fact is false in general for members of com ; toformalize it, we need to somehow reason about the syntax of P . We do this byinductively de�ning a representability predicate R : com ! P1 as follows (whereP1 is the type of Nuprl propositions).R(c), 9x; y2string : c = (x := y)_ 9 c1; c22com : R(c1) ^ R(c2) ^ c = (c1; c2)De�ne u(c), for c 2 com, if there exists x 2 string such that for all y 6= x 2 stringand all s 2 state, s(y) = c(s)(y). Our fact may now be formalized as follows.8 c2com: R(c)) u(c)) 9x; y2string : c = (x := y)Unfortunately, the obvious proof attempt, using induction on the de�nition ofR(c), fails, because for the case when c = (c1; c2), we get to a point where weneed to show that u(c) implies u(c1) and u(c2), and this is not necessarily true.If we strengthen the assumption on the representation of c to require that uhold of all subcommands, then this obvious proof will work. We can state thisproperty by modifying the de�nition of representability. In particular, de�ne3

Rq(c), for q a predicate on com, by replacing R(c) by Rq(c) in the de�nition ofR(c) and conjoining the right-hand side of the de�nition with q(c). We can prove8 c2com: Ru(c)) 9x; y2string : c = (x := y)by a straightforward induction on Ru(c). Since we are formalizing in a construc-tive logic, the proof will yield a program that takes a c and evidence for Ru(c)and produces the x; y such that c = (x := y).In order to run this program on a particular c, we need a proof of Ru(c).Since there is no general method in the type theory to go from a member of comto a representation, we assume we are given a proof of R(c). The method forgoing from c to R(c) can be implemented in Nuprl's metalanguage. The problemis now to go from R(c) to Ru(c). This is not always possible, so we choose, asa simple su�cient condition, to do this only for commands whose constituentassignments have a unique variable on the left hand side.To deal with this kind of syntactic su�cient condition, we de�ne a possibilityoperator on propositions, denoted ?. In particular, the formula ?A is de�ned tobe A_True. Clearly, for any A, ?A holds because the right disjunct is provable.When we prove a theorem whose conclusion is ?A, we take care to choose toprove the left disjunct (A) in situations where the su�cient condition is knownto hold. Theorems of this form give a partial correctness result. The programthat Nuprl extracts from the proof will either return a result of type A or theconstant axiom which is the proof of True. The fact that it does not return thetrivial result axiom when the su�cient condition holds is purely a metatheoreticone.Returning to the example, we can prove a theorem 8 c2com : R(c))?Ru(c)by induction on the de�nition of R(c). If we construct the right kind of proof,the extracted program will translate evidence for R(c) into evidence for Ru(c)in the case where c satis�es the su�cient condition given above.3 Protocol Veri�cation in NuprlFor our data-abstraction case study, we use the environment for protocol veri�-cation that was built in the course of verifying the SCI cache coherence proto-col [6]. Here, we briey describe our shallow embedding of a Unity-like guardedcommand language in which protocols are expressed. We illustrate this languagewith our running example presented in Fig. 1. In this language, a speci�cationor program is a list of guarded actions, each having a guard and a body, alongwith an initial condition on values of program variables. In general guards canbe message receives or boolean conditions, and bodies can contain assignments,conditionals, and message sends. The example presents a protocol with three dis-tinct processes|Sender, Channel (or Queue), and Receiver, denoted s, q, andr, respectively. Consider the two actions for the Receiver, marked r1 and r2.In r1 the guard always holds and the body contains a message to the senderrequesting data, where request is the message type. A message can also containarguments as illustrated in r2. Here, the guard indicates that this action can be4

Program P :Initial Condition: sent = �1Actions: [r1; r2; s0; : : : ; sn�1; qm] for some n > 0;m � 0(r1) true �! s!request(r2) buf [r]?rsend(rdata) �! rcvd := rdata(sd) buf [s]?request �! sent := d ; q !qsend(sent ; 0)(qm) buf [q]?qsend(data; i) �!if i = m then r !rsend(data) else q !qsend(data; i + 1) �Property :Data delivery: 8y: G(sent = y) F (rcvd = y))Order preservation: 8y1: 8y2: G((sent = y1 ^ F (sent = y2)))F (rcvd = y1 ^ F (rcvd = y2)))Fig. 1. Running Exampleexecuted if the �rst message in buf [r] (r's message bu�er) has type rsend . Thismessage has one argument, rdata , containing the requested data. The messageis removed from the queue (received) and the body is executed. The Senderand Channel processes both have a single parametrized action (sd and qm re-spectively). Action sd is parametrized by the value of the data transmitted tothe Channel. Action qm is parametrized by the length of the channel. Thus, theabove speci�cation represents a collection of programs where the number of datavalues and the length of the queue are bounded by an arbitrary �nite number.We prove universally quanti�ed linear time temporal logic properties (such asthe data delivery property in Fig. 1) of the example protocol, by performingdata abstraction of the protocol.Nuprl is a goal-directed interactive theorem prover in the style of LCF. Itimplements a constructive type theory with a rich set of constructors. Becauseof the constructivity, programs can be extracted from proofs. Logic is encodedvia the propositions-as-types principle, whereby a proposition is identi�ed withthe type of data that provides evidence for the proposition's truth. The versionof Nuprl we use [8] also supports classical reasoning, which can be used in anypart of a proof that does not a�ect the extracted program. Formal mathematicsin Nuprl is organized in a single library, which is broken into �les simulatinga theory structure. Library objects can be de�nitions, display forms, theorems,comments or objects containing ML code. De�nitions de�ne new operators interms of existing Nuprl terms and previously de�ned operators. Display formsprovide notations for de�ned and primitive operators. Theorems have tree struc-tured proofs, possibly incomplete. Each node has a sequent, and represents an5

inference step. The step is justi�ed either by a primitive rule, or by a tactic.Tactics provide automation to help with goal-directed search.Our embedding of the semantics of state transition systems in Nuprl is fairlystraightforward. We de�ne a state as a pair where the �rst component is theusual mapping from identi�ers to values (integers). The second component isa history variable that records the sequence of messages that have been sentand received during the entire execution. This history variable is important forreasoning about data that passes via messages. Messages have two components.Message types such as rsend are encoded as integers as the �rst component of amessage. The second component is a list of integers that encodes the message'sarguments.Expressions and commands are de�ned as functions on state. De�ne exp to bestate ! Z, and, as in Section 2, de�ne com to be state ! state. The commandsand expressions used in Figure 1 are de�ned as functions over these types, andNuprl's display forms are used to give their applications conventional notations.We use a dot notation for the value of a command or expression in a state, suchas e � s for (es).A program is de�ned as a pair containing a list of commands and an initialcondition which is a predicate on state (of type state ! P1 where P1 is the type ofNuprl propositions). The initial condition must at least require that the historystart out empty. In our model, a command is enabled if it changes the state whenapplied. Thus commands whose guards are true but do not change the state areconsidered disabled. A trace is de�ned in the usual way as a function of typeN ! state. A predicate trace of encodes the restriction that for any n, there isan action such that when applied to state n results in state n + 1. Temporaloperators such as G (always) and F (eventually) are de�ned as predicates ontraces (of type trace ! P1) using a fairly direct encoding of the de�nitions in [9].We then de�ne the notion of a property being valid of a program P in the usualway as P j= i� 8tr : trace :trace of (P; tr)! (tr). In [6], the automation thatwe developed for the veri�cation of protocols in Nuprl was discussed in detail. Inthe present work, we draw mainly on the machinery for rewriting, which drawson a large body of equality theorems for protocols.4 Overview of Data AbstractionIn this section, we give an overview of the form of data abstraction used in ourcase study. Suppose we are given a program P and a property of traces ofthe program, and we want to verify whether P j= , i.e. whether all traces of Psatisfy . Suppose P contains a variable v that can take on an arbitrarily largenumber of data-values. We may be able to perform \data-value abstraction"on v to create an abstract program P 0 and an abstract property 0 such thatP 0 j= 0 , P j= and such that v takes on values from a smaller set duringexecution of P 0. 6

We �rst discuss how to compute an abstract program from a concrete pro-gram, and then discuss some su�cient conditions, that can be checked statically,under which this abstraction is safe.In our example program in Fig. 1, the data that we are particularly interestedin and whose values we want to abstract is the value that gets assigned to theidenti�er sent. The ow of this value through the program execution is importantfor proving both the data delivery property and the order preservation propertymentioned in the �gure. We formalize this ow as a set of identi�ers that area�ected by the value of sent. We must also consider communication via messagebu�ers. To take this into account, we de�ne a message reference to be a pairhT; ii where T is a message type, and i is natural number denoting a positionin the list of arguments to a message. A data reference of a program is eithera program variable or a message reference. For example, the value of sent getspassed via the message reference hqsend ; 0 i.From now on, we will use d to denote the set of all data references possiblya�ected by the values of the variable(s) being abstracted. In our example, wehave d = fsent; hqsend; 0i; data; hrsend; 0i; rdata; rcvdg:Clearly it is often possible to compute a suitable d, but we have not done thisin our case study and so we do not elaborate on it.Our Nuprl development is parameterized with respect to the abstraction func-tion ', also called a collapsing function, that will map the values taken on bythe data references in d to a small �nite domain.In our running example, in order to verify the data delivery property in Fig. 1we will abstract the data values to a two valued abstract domain. For instance, wecan use the functions 'y , parameterized by the y of our data delivery property,de�ned by 'y(n) := (if n = y then y else �1). Using this function correspondsto tracking the delivery of the data-value y. The value �1 represents all otherconcrete values.The abstraction function 'y is parameterized by y, so we would need togenerate a new abstract program for every y of interest. However, note that inour example, the only processes to assign to sent are the processes sd, and thatthe possible assigned values are f0 : : : n�1g. The protocol is symmetric on thesevalues: if we apply a permutation of theses values to the right-hand-sides of allassignments of constants to sent , then we get the same protocol. Because of thissymmetry, checking the data-delivery property for an arbitrary y in f0 : : : n�1gis the same as checking it for y = 0.We can compute the abstract program P 0, given ', as follows. First computed, and then, for all u 2 d, replace any constraint u = n in the initial conditionof P , where n is a constant, by u = '(n), and replace any assignment u := expr(and any check u = expr) in any action of P by u := '(expr) (u = '(expr)). Ifwe know that data values in d are only passed around and not manipulated (andif we know that the property we want to verify satis�es certain properties) thenwe are guaranteed that our data-value abstraction preserves enough informationto verify property . 7

We make this abstraction method more precise as follows. Suppose that:D = f0 : : : d � 1g, m 2 D, d is a set of data references, ' 2 Z ! D, P and P 0are programs, and is a predicate on traces. We �rst describe how to lift ' (theabstraction function) to states and traces. In particular, we de�ne a functionon states, denoted 'd , where ' is the function to be lifted and d is a set ofdata references. The collapsed state 'd (s) is obtained from state s by mappingthe value of each program variable x in d to '(x � s) where '(x � s) denotesthe value of x in state s, and applying ' to each value t such that there is amessage reference hT; ii in d and t is the ith argument to a message of typeT in the history component of s. We will often just write when ' and dare obvious from context. Traces being in�nite sequences of states, we de�ne('d (tr)):i = 'd (tr:i) where tr:i denotes the ith state in the trace tr, for anynatural number i. Note that we overload 'd . Let trace(P) denote the set of allvalid traces of program P .Conditions for P 0 to be a correct abstraction of P are as follows.1. 8tr :(tr 2 trace(P)), ('d (tr) 2 trace(P 0))2. 8tr: 'd (tr) j= (m), tr j= (m)3. For all permutations f of D, 8tr :(tr 2 trace(P)), (fd(tr) 2 trace(P))4. For all permutations f of D, and for all k 2 D, 8tr: tr j= (k) , fd(tr) j= (f(k))If the above conditions hold true then P 0 j= (m) i� P j= 8 y2D: (y):Our Nuprl proof captures su�cient conditions for (1) and (3) to hold. Theextracted program will check that these conditions hold for a given P (P 0 willbe a function of P). We have not formalized the syntax of temporal logic, so ourprogram does not check any su�cient conditions for . In particular, conditions(2) and (4) are proved by hand on a case-by-case basis.A generic su�cient condition for condition (1) is that the control ow ofprogram P is completely independent of the values of the data references in d.For example, there can be no conditional branching on the value of variablesin d. Additionally, the initial condition of the program and the guards of theprogram actions must be independent of the values of the data references in d.A su�cient condition for (3) is similar to the one for (1), except that weadditionally require that in any action a containing an assignment x := n, wheren 2 D and x is in d, all assignments in a of constants to members of d have nas the right-hand side, and, furthermore, for every other k 2 D, there is anotheraction a0 such that a0 is the result of replacing in a each assignment of the formz := n by z := k.5 De�ning Representability in NuprlIn this section, we de�ne representability of commands which, as mentioned,allows us to reason semantically about data abstraction, while implicitly con-structing a program that operates on syntax. In the interests of compactness, inthis section, as well as later sections, we will usually use a more mathematical8

style of presentation instead of giving exactly what would would appear in thetheorem prover. The di�erences in presentation are minor notational ones.To talk about the representability of commands, we also need to de�ne therepresentability of expressions. In both cases, we parameterize by a state invari-ant, since ultimately we will only want a program and its representation to beequivalent on certain states. In our case, we only need to consider states col-lapsed by . We de�ne equality up to invariant I of functions on states (suchas expressions and commands), written as =I , as equality of values on all statessatisfying I .Representability of expressions, denoted RI(e) or R[I](e), is inductively de-�ned below. We omit the types of bound variables when they are clear fromcontext. RI(e) is true i�e =I false _ e =I true _ [9n : Z :e =I n] _ [9x : id:e =I x]_ [9b; e1; e2:(RI (b) ^ RI(e1) ^ RI(e2)) ^ e =I (if b then e1 else e2)]_ [9e1; e2:RI(e1) ^ RI(e2) ^ (e =I (e1 + e2) _ e =I (e1 � e2) _ e =I (e1 = e2)_ e =I (e1 _ e2) _ e =I (e1 ^ e2))]_ [9e0:RI(e0) ^ e =I :e0]We use several abbreviations here. For example, n in the equality e =I n denotes�s:n and x in the equality e =I x denotes �s:(x � s). Note that we overload theoperators in binary expressions. For example ^ also denotes the conjunction ofNuprl.Representability of commands is parameterized by an invariant, as above, andalso by a predicate on commands. Intuitively, RI;Q(c) (also denoted R[I;Q](c))means that c is representable, up to I , in such a way that for each subcommand c0,Q is true and c0 preserves I . The exact right-hand side in Nuprl of the de�nitionof RI;Q(c) (denoted rcom[I,Q] in Nuprl) is the following.(c =[I] skip_ (9x:id. 9e:zexp. rexp[I] e ^| c =[I] x:=e)_ (9c1,c2:com. (rcom[I,Q] c1 ^ rcom[I,Q] c2) ^| c =[I] (c1 ;c2))_ (9b:zexp 9c1,c2:com(rexp[I] b ^ rcom[I,Q] c1 ^ rcom[I,Q] c2)^| c =[I] (if b then c1 else c2))_ (9b:zexp. 9c':com. (rexp[I] b ^ rcom[I,Q] c') ^| c =[I] b --> c')_ (9p:PId 9d:zexp 9M:Z. 9as:zexp List.(rexp[I] d ^ 8(rexp[I];as)) ^| c =[I] d!M(as))_ (9p:PId. 9c':com. 9M:Z. 9as:id List.rcom[I,Q] c' ^| c =[I] p?M(as) --> c'))^| (Q c ^ (8s:state. I s) I (c s)))The occurrence of 8 applied to two arguments has the meaning that the property(the �rst argument) holds of every element of the list (the second argument).The operator ^| is an alternate de�nition of conjunction in Nuprl which roughlymakes the right hand side computationally insigni�cant, so that an extractedprogram producing a witness for the conjunction will only produce witnessinginformation for the left hand side. Using such alternate de�nitions can dramat-ically improve the computational e�ciency of extracted programs.9

For representability of programs, in addition to commands, we must representthe initial condition predicate. We choose to represent it as a command thatonly sets variable values. The initial states are those that result from runningthis command on a state with an empty history. We overload R again and useRI;Q(P) and R[I;Q](P) to denote representability of programs. A program isrepresentable if the initial state command is representable and each of the actionsare representable. We omit its precise de�nition.6 Main Results of the Nuprl FormalizationIn this section, we discuss the culminating theorems of our formal proof devel-opment in Nuprl and illustrate how the program we extract from the formalproofs computes a data-abstracted version of a concrete program as long as theconcrete program satis�es the condition that the control ow is independent ofthe data-values. We �rst give some additional de�nitions.Instead of stating control/data independence explicitly as a requirement onprograms, we will prove the theorems in such a way that the extracted programis a partial function that will succeed if the condition is satis�ed and will failotherwise. To do so, we use the possibility operator de�ned in Section 2.In addition to lifting ' to states and traces as in Section 4, we also lift itto commands and programs. For commands, we have 'd (c) = ('d � c). Thus,applying a collapsed command is the same as applying a command to a state andthen collapsing the state. For a program P � has; Ii (as is the list of commands,I denotes the initial condition), we have'd has; Ii = hmap ('d) as; �s:9s0:(s = 'd (s0) ^ I(s0))iwhere map is the usual mapping function on lists, and the �rst occurrence of 'don the right hand side denotes the collapsing function for commands, while thesecond denotes the collapsing function for states. The function 'd on programsgives us a semantic notion of abstract program, which we call the pseudo-abstractprogram.There are two main theorems. The �rst of these is8drs:dref List. 8phi:(idempotent).8p:prog. 8psi: { f:trace ! P | respects(f;[drs;phi]) }.rprog p) (8e:zexp. rexp e) rexp (phi o e))) ?(rprog[im([drs;phi]),�] ([drs;phi] p)^| (p |= psi () [drs;phi] p |= psi))This theorem says that given a list of data references, an idempotent collapsingfunction on integers, a representable program, and a temporal property satisfyinga certain condition, then possibly the pseudo-abstract program is representable(up to states in the image of the abstraction function) and is equivalent withrespect to the property psi. The idempotence requirement is a technical detail10

that is explained later. We have de�ned specialized display forms for some op-erators in Nuprl, so, for example, rprog[I,Q] displays as just rprog in the casethat both I and Q are �x. True.The second theorem is8drs:dref List. 8d:N. 8p:prog.rprog p) (8psi: { f:Z ! trace ! P | perm_inv(d;drs;f) }?(#(8y0:Nd. (8y:Nd. p |= psi y) () p |= psi y0)))This theorem says that if psi is a function from integers to temporal propertiessatisfying a certain permutation invariance property, then possibly for all y0 inthe set f0; : : : ; d� 1g, the program satis�es psi at all y i� it satis�es it at y0.We apply our abstraction method to a particular program P (which we as-sume has been entered into Nuprl as a member of type prog) and to a particularfunction from integers to temporal properties, by doing the following.1. Prove a theorem that P is representable.2. Prove that satis�es the condition in the second theorem above, and that (0) satis�es the condition in the �rst theorem.3. Run the extraction of the second theorem with arguments d, some naturalnumber d, P and the extracted program from the representability theorem.If the result is of the form inl(:), then the property under the ? holds andso it su�ces to check the program satis�es (0); otherwise halt.4. Run the extract from the �rst theorem on appropriate inputs. If the resultis of the form inl(x), then x will encode a representation of the abstractedprogram.Part (1) has been automated. Part (2) is manual and corresponds to parts (2)and (4) of Section 4. In part (3), the list d must be entered manually. It would bestraightforward to write an ML function to compute such a list given P , but wehave not done this. We have implemented a procedure that takes the encodingproduced by step (4) and makes it readable. We have proven theorems whichcondense some of the steps above in minor ways, but we believe the above accountis clearer. We have not bothered implementing uninteresting procedures to takeascii representations of protocols to Nuprl representations, nor to completelyglue together the steps above.We have applied our method to an instance of the program in Fig. 1. LetP0 be the instance with the 3 data values f0; 1; 2g and a queue of length 8.We choose the function '0, take d = 3, and take (y) to be G(sent = y)F (rcvd = y)). We also use the six-element set given earlier as as the set dof data references. Applying the steps above succeeds, and yields the resultbelow. We use the following abbreviation where e is any expression: F (e) :=(if e = 0 then 0 else �1). The term s0:2 denotes the history component of the11

state.Initial Condition:�s:9s 0[(s 0:2 = nil) ^ s = (sent := �1 ; sent := F (sent);data := F (data); rdata := F (rdata); rcvd := F (rcvd); skip)(s 0)](r1) true �! s!request(r2) buf [r]?rsend(rdata) �! rcvd := (F (rdata)(s2) buf [s]?request �! sent := F (2); q !qsend(F (sent); 0)(s1) buf [s]?request �! sent := F (1); q !qsend(F (sent); 0)(s0) buf [s]?request �! sent := F (0); q !qsend(F (sent); 0)(q8) buf [q]?qsend(data; i) �!if i = 8 then r !rsend(F (data)) else i := i + 1 ; q !qsend(F (data); i) �Because the steps succeeded, it is guaranteed that checking 8 y2f0 : : :2g: (y)holds for P0 is equivalent to checking that (0) holds for the above program. Notethat some trivial simpli�cations are possible, for example reducing or eliminatingsome applications of F , and collapsing the identical actions s1 and s2. Thesesimpli�cations would be straightforward to implement, but we have not done soyet.We wrote a small Nuprl program, given below, to glue together the com-putational parts for this example. The evaluator for Nuprl programs is a basiccall-by-need interpreter, and so is quite slow. We implemented a simple-mindedgeneral program optimizer before running the example program. The exampleterminated in about 5 seconds (on a 400MhZ PC).Below is a closed Nuprl term whose evaluation produces the representationof the abstracted program.let phi = phi_eg(0) in let psi = �y.psi_eg1(y) inlet p = sqr_inst1 in let p_rep = ext{sqr1_rep} inlet drs = sqr_drs1 in let phi_rep = ext{phi_eg_rep} 0 in let d = 3 inif isl(ext{poss_data_indep} drs d p p_rep psi)then let res = ext{abs_thm_2} drs phi p (psi 0) p_rep phi_rep inif isl(res) then outl(res) else "No" fielse "No" fiThe expressions ext{abs_thm_2} and ext{poss_data_indep} name the respec-tive programs extracted from the two theorems discussed above. Recall that bothof these programs produce a value in a disjoint union. The program above �rstuses poss data indep to test if the example program (bound to p, with represen-tation bound to p rep) satis�es the permutation invariance property expressedin the second theorem. If so (i.e. if the result is in the left part of the disjointunion), then it runs abs thm 2, testing the result for success using isl. In theunsuccessful cases, "No" is returned.The output of this program is an explicit piece of data that completely spec-i�es the required abstract program. However, it is rather hard to read, involvingnumerous injections into disjoint sums, and also junk such as parts of the pro-gram's semantics. To help with readability, we implemented a conventional kindof recursive data type in the type theory for representing terms and expressions,12

and extracted a function that translates to this second representation. Fromthis latter representation, we obtained by inspection the form of the abstractedprogram given above.7 Some Details of the Nuprl ProofsMost of the work in the proof is related to conditions (1) and (3) of Section 4and is independent of the kind of temporal properties being checked. We givedetails only on the parts related to condition (1). Most of the work related tocondition (3) is similar. The work related to condition (1) is divided into threemain theorems. These theorems form the bulk of the proof of the �rst \top-level" theorem given Section 6. We discuss each theorem below, and describea few example steps of their proofs. In what follows, we are taking the P 0 incondition (1) to be the pseudo-abstract program 'd (P).For all three theorems, we assume that P is some program, d a set of datareferences, and ' an idempotent function on integers. The idempotence require-ment is necessary to show that certain commands satisfy the homomorphismproperty discussed below. In discussing the theorems, we omit the subscript andsuperscript on occurrences of 'd .The �rst theorem says that condition (1) holds assuming that for all com-mands c in P , (�c) = (�(c�)). We call this latter property the homomorphismproperty on commands, and denote it as hom(c). The reason that we considerthis property is that it is a simple semantic su�cient condition for the controlow of P to be independent of the data references in d.Let be a temporal property, i.e. a predicate on traces. De�ne respects(; F)to be the proposition 8tr: (tr), (F (tr)). Our �rst theorem is the following.Theorem 1. Suppose R[True; hom](P) holds, and let be a temporal propertysuch that respects(;). Then P j= , (P) j= .The second theorem embodies a check of a syntactic su�cient condition forthe condition R[True; hom](P) of Theorem 1.Theorem 2. If R[True; T rue](P) then ?R[True; hom](P).We prove this theorem by induction on representability, considering a case?R[True; hom](c) for each type of command c, and then proving the prop-erty R[True; hom](c) for the commands where it can be seen to hold accordingto our su�cient condition. If we were using an explicit approach to syntax, thisinductive argument would correspond to a proof by induction over syntax treesthat (possibly) the homomorphism property holds of the meaning of a tree andall of its subtrees.One of the base cases of the induction is when c = (x := e). In this case,we do a case analysis on x 2 d. In the case x 62 d, we use a lemma whoseconclusion is ?(e = (e �)), which says that possibly e's value is independent of. The lemma is proved by induction on the representability of e. In the casex 2 d, we do a case analysis on the representation of e. In the cases where e13

is a constant or a variable, we know that R[True; hom](x := e). In the othercases, we prove ?R[True; hom](x := e) the trivial way, by introducing the rightdisjunct of the de�nition of ?. The hardest part of the proof of Theorem 2 is thecases for the commands for sending and receiving messages, where we have tomake a correspondence between message data references and the argument listof the command.To obtain a program that computes abstracted speci�cations, we must showthat the pseudo-abstract program (P) is representable. This involves showingthat its initial condition can be expressed as a property on states, and that eachof the commands (�c) of (P) can be represented as a command in the guardedcommand language. The program representing (P) need only be equivalent to(P) on collapsed states, that is, states in the image of the function . Weexpress this notion formally via a predicate on states, denoted im , de�ned byim(s) i� 9s0 : state: s = (s0). We need the additional condition on ' that forany expression that is representable, (' � e) is also representable.Theorem 3. Suppose that � has the additional property that for any expressione, R[True; T rue](e) implies R[True; T rue](' � e). If R[True; hom](P), thenR[im ; T rue]((P)).The proof is by induction on R[True; hom](P). For the case c = (x := e), ifx 2 d, then we use the fact that (� c) = (� (c �)) to show that (� (x := e))is equivalent to x := (' � e). Because of the assumption on ', we know thatx := (' � e) is representable.8 ConclusionUsing the example of data-value abstraction, we have veri�ed the correctness ofan abstraction method for speci�cations satisfying a particular su�cient condi-tion on their syntax. We have exploited the constructivity of Nuprl to extracta program which can compute the abstract speci�cation corresponding to anyconcrete speci�cation satisfying the su�cient condition. We were able to do sousing only semantic reasoning.It is unlikely that the approach of dealing with syntax implicitly will alwaysbe preferable. This is not a problem, since it can easily coexist with the explicitapproach. For example, we could de�ne a conventional recursive type of abstractsyntax trees, write a meaning function, and prove that for every representableprogram there is a tree whose meaning is the program.Our work was complicated somewhat by our choice of protocol languageand its formalization. In particular, since commands are functions on states,instead of relations, non-deterministic commands cannot be represented. Withnon-determinism, one can include a command that non-deterministically choosesone from an indexed set of commands | this would have been a more naturalchoice for the actions sd, and would have obviated the need, in the su�cientcondition for symmetry, for �nding actions that are similar up to constantson right-hand sides of assignments. Another complication due to the protocol14

language is its lack of types. This language was developed inside Nuprl to supportreasoning about particular protocols, and not for metareasoning about programs.The precise form of inductive de�nition mechanism implemented in standardNuprl [4] is not valid in the classical extension [8] used here. It is not too di�cultto adapt it, but we have not done so yet and hence have simply axiomatized thetwo inductive de�nitions we needed.We believe that our results can be extended to deal with temporal propertiesin the same way as programs. One di�culty is dealing with binding expressionssuch as universal quanti�cation. It might be possible to deal with universalquanti�cation by using a program variable in place of the quanti�ed variable. Weshould also be able to extend the results to data-path abstraction, for instanceby collapsing the queue in our example.It should be possible to use our techniques in other theorem provers basedon constructive type theory. Classical theorem provers could also formalize thesame notion of representability, but it would likely be much less useful, sincerepresentability would not encode syntax, and theorems whose conclusion is anapplication of the possibility operator would be vacuous.Acknowledgements. The authors would like to thank Bob Kurshan for sug-gesting the example data-abstraction problem and for useful discussions. Thethird author would also like to thank Bell Labs for providing the opportunity towork on this problem through a summer internship.References1. R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tassel. Ex-perience with embedding hardware description languages in HOL. In InternationalConference on Theorem Provers in Circuit Design, pages 129{156. North-Holland,1992.2. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. InProc. 19th Ann. ACM Symp. on Principles of Prog. Lang., Jan. 1992.3. R. L. Constable. A note on complexity measures for inductive classes in construc-tive type theory. Information and Computation, 143(2):137{153, 1998.4. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-ment System. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.5. J. Dingel and T. Filkorn. Model checking for in�nite state systems using dataabstraction, assumption-commitment style reasoning and theorem proving. InSeventh International Conference on Computer Aided Veri�cation, pages 54{69.Springer-Verlag Lecture Notes in Computer Science, 1995.6. A. P. Felty, D. J. Howe, and F. A. Stomp. Protocol veri�cation in Nuprl. InTenth International Conference on Computer Aided Veri�cation, pages 428{439.Springer-Verlag Lecture Notes in Computer Science, June 1998.7. K. Havelund and N. Shankar. Experiments in theorem proving and model checkingfor protocol veri�cation. In Formal Methods Europe, pages 662{681. Springer-Verlag Lecture Notes in Computer Science, 1996.8. D. J. Howe. Semantics foundations for embedding HOL in Nuprl. In Alge-braic Methodology and Software Technology, pages 85{101. Springer-Verlag LectureNotes in Computer Science, 1996. 15

9. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.Springer Verlag, 1991.10. O. M�uller. A Veri�cation Environment for I/O Automata Based on FormalizedMeta-Theory. PhD thesis, Technische Universit�at M�unchen, 1998.11. S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking with au-tomated proof checking. In Seventh International Conference on Computer AidedVeri�cation, pages 84{97. Springer-Verlag Lecture Notes in Computer Science,1995.12. C. Sprenger. A veri�ed model checker for the modal �-calculus in Coq. In Inter-national Conference on Tools and Algorithms for the Construction and Analysisof Systems, pages 167{182. Springer-Verlag Lecture Notes in Computer Science,1998.13. P. Wolper. Expressing interesting properties of programs in propositional temporallogic. In Proc. 13th Ann. ACM Symp. on Principles of Prog. Lang., Jan. 1986.

16

