
Tactic Theorem Proving withRe�nement-Tree Proofs and Metavariables?Amy Felty and Douglas HoweAT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, USAAbstract. This paper describes a prototype of a programmable interactivetheorem-proving system. The main new feature of this system is that itsupports the construction and manipulation of tree-structured proofs thatcan contain both metavariables and derived rules that are computed bytactic programs. The proof structure encapsulates the top-down re�nementprocess of proof construction typical of most interactive theorem provers.Our prototype has been implemented in the logic programming language�Prolog, from which we inherit a general kind of higher-order metavariable.Backing up, or undoing, of proof construction steps is supported by solvinguni�cation and matching constraints.1 IntroductionInteractive proof construction typically proceeds top-down, starting with the state-ment of the theorem to be proven, and then successively re�ning goals into subgoals.This pattern is characteristic of most interactive systems, although there are largedi�erences in the kinds of re�nement that can be performed and in the underly-ing ideas of proof and state of the system. Our focus is on re�nement by tactics.Loosely speaking, a tactic is a program that reduces a goal (typically a sequent) toa sequence of subgoals such that the goal can be inferred from the subgoals.The set of re�nements used to construct a proof has a natural tree structure.A system that directly supports this structure can provide a number of useful op-erations for building, manipulating and reading proofs. For example, subproofs ofinterest, or the steps leading up to a particular subgoal, can be quickly locatedvia user-directed navigation of the tree. Bad proof strategies can be corrected bylocating the �rst bad step in the tree, then removing just the part of the argumentthat depended on the step. The inferences in a proof can be replayed when, for ex-ample, a de�nition is changed, allowing one to recover all the portions not a�ectedby the change. Proofs can be cut-and-pasted, and used for reasoning by analogy.[2] contains more examples of such operations.Metavariables are supported in a number of existing systems [8, 3, 13, 10, 9, 4].There are many compelling examples of their usefulness in interactive proofs. Acommon example is \existential introduction". Removing the existential quanti�erin the goal ` 9x: p(x) requires a witness. We can use a metavariable X to standfor the witness term, re�ning the goal to the subgoal ` p(X). We can instantiate? To appear in Proceedings of the 12th International Conference on Automated Deduction.



X to a speci�c term later in the proof, at which time it will be replaced whereverit occurs. The point of postponing choice of the witness is that the details of theproof of p(X) may make it possible to automatically �nd an instantiation of X, orat least make it easier for the user to determine it. For example, p(X) may be anequation that can be manipulated to present an explicit solution X = t for X.There are many similar examples. Metavariables can be used to stand for pro-grams to be synthesized from constructive proofs [11, 13], for induction hypotheses(or program invariants, as in [8]) that can be strengthened as proof progresses,and for \don't care" arguments to functions, such as type arguments or domain-membership evidence for constructive partial functions, that can be automaticallydeduced in a uniform way. Also, various procedures for automating reasoning makeessential use of metavariables, and some of these procedures can be more usefullyintegrated with an interactive system if the system supports metavariables.We have designed and implemented a theorem-proving system for constructingand manipulating re�nement-tree proofs with metavariables. Proofs are trees ofgoals where each node g has associated with it a \justi�cation" which speci�eshow the goal g can be inferred from its children. This justi�cation can be a rule(name), in which case g and the children of g must be the conclusion and premises,respectively, of an instance of the rule, or it can be a representation T of a tactic.A fundamental problem is to explain how T relates to g and its children g1; : : : ; gn.If we ignore metavariables, we can take T to be a program which, when applied tog, produces g1; : : : ; gn. If we allow metavariables, then this explanation no longersu�ces. Suppose that after this tactic re�nement was done, some metavariable in-stantiations were made, resulting in instances g0, g01; : : : ; g0n of g and g1; : : : ; gn.What should be the relationship of T to g0, g01; : : : ; g0n?One possibility is to restrict the tactic language so that we are guaranteedthat the relationship above continues to hold: T applied to g0 produces subgoalsg01; : : : ; g0n. We reject this possibility for two main reasons. First, although a purelogic programming language would preserve this relationship, we want to allow theuse of a more practical programming language for tactic programming in order toenable users to achieve a high degree of automatic support for proof construction.For example, we would like to be able to accommodate the full �Prolog languageincluding its non-logical operators, and also the functional language ML, which hasbeen proven well-suited to tactic programming.Second, this property to be guaranteed is not respected by many commonplaceand useful tactics. For example, suppose that we have a goal X + 0 > 0 ` �(X),where X is a metavariable we intend to instantiate in another part of the proof,and the re�nement step we wish to make is to simplify the goal using a tacticSimplify, say, that repeatedly applies common arithmetic rewrite rules. Assumethe subgoal produced by Simplify is X > 0 ` �(X). If, later during the proof,X gets instantiated to 1 + 0, then the subgoal becomes 1 + 0 > 0 ` �(1 + 0),yet if Simplify were re-executed on the new goal, it would produce the subgoal1 > 0 ` �(1). This example illustrates another problem with using a pure logicprogramming language for tactics: we do not want simpli�cation to instantiate X,but instead to treat it as a constant. In general, we want some tactics to instantiate2



metavariables, and others to treat them as constants.One of the design goals for our system is programmability. We want to sup-port programming of a wide range of procedures and tools for automating proofconstruction. We have therefore designed a simple proof structure with a small setof simple basic operations for constructing proofs. In particular, we have tried toavoid including in a proof information pertaining to the history of its construction,such as a record of metavariable instantiations. Section 2 gives a slightly simpli�edaccount of our approach to proofs. Section 5 gives some implementation details.An important operation in interactive theorem provers is \undoing" parts of aproof attempt. Metavariables cause serious complications for this operation.Without metavariables, subproofs P1 and P2 with no nodes in common are inde-pendent, and can be treated as completely separate tasks. However, metavariablescan introduce dependencies between the subproofs. Suppose that a step in buildingP1 involves the instantiation of a logic variable X that is mentioned in P2. Theinstantiation replaces all occurrences of X in P2, and subsequent steps in buildingP2 may take advantage of this change. If we now decide that P1 was a bad proofattempt, we could just remove it from the main proof and start a new subproof. Butthis would not completely undo the e�ect of the bad subproof P1. We might alsowant to �nd and remove the parts of P2 that depended on X's instantiation, and,in addition, uninstantiate any of the variables instantiated by re�nements withinthese parts.One kind of \undo" is directly inherited from our implementation language�Prolog (see [4] for details). This is \chronological undo", which undoes proof mod-i�cations in the order they were performed. This is a useful form of undo, especiallyfor quick local backups, and is the only form of undo in all other systems withmetavariables except ALF [10]. However, it is unsatisfactory in general since it willoften remove parts of the proof which are independent of the targeted parts.We have designed a number of undo procedures that improve on chronologicalundo and have implemented one of them. These procedures are based on solvingsequences of higher-order matching and uni�cation problems. In section 3 we givean example session with our system that illustrates some of the problems and issuesfor designing undo operations for this kind of proof. Section 4 describes the undoprocedure, and Section 5 gives some details of its implementation.Our prototype has been implemented in the higher-order logic programming lan-guage �Prolog [12], from which we inherit a general kind of higher-order metavari-able, similar to what is found in Isabelle [13]. Our proof structure is inspired byNuprl [2, 1]. The system is generic, in the sense that it can easily accommodatemost logics that can be speci�ed in the general style of LF [7] and Isabelle [13]. Theexact style of encoding of logics in our system is very similar to [4], except that wehave made a commitment to sequent-calculus presentations.Although we have based our prototype on �Prolog, the ideas are applicable totactic systems based on ML such as LCF [6], Nuprl [2] and HOL [5]. Implementingthe ideas for such systems would be straightforward, although it would be muchmore work because ML lacks �Prolog's built-in support for metavariables, boundvariables and uni�cation. 3



The conclusion of the paper has a few additional comparisons with related workand a brief discussion of future work.2 ProofsThis section gives a simpli�ed account of our proof data-structure. Two of the prin-ciple constituents of proofs are goals and tactics. Goals are intended to be sequentsin the logic being implemented (the \object logic"), and tactics are programs fromsome programming language. To make the presentation simple, and to keep the de-scription here close to what has been implemented, we assume that both goals andtactics are represented as terms in the simply-typed �-calculus. In our implemen-tation, object logics are encoded as �-terms and tactics are programs in �Prolog, alanguage whose programs are all �-terms.There are a number of di�erences between the implementation and what isdescribed here, mostly for reasons of e�ciency and ease of tactic programming.Some of the more important di�erences are given at the end of the section.Let � be the set of terms of the typed �-calculus over some set of base typesand some set of constants. We identify ���-equal terms. Thus, when we say thatthere is a substitution � such that �(e) = �(e0), we mean that e and e0 have ahigher-order uni�er. We distinguish a base type and de�ne the set G of goals to bethe set of all terms in � of this type.Metavariables in this setting are simply the free variables of a goal. We will usecapital letters to stand for metavariables. Ordinary variables in our representationare bound by �-abstractions. See the implementation section for details on thisrepresentation.A proof is a tree of goals where each node has associated with it a justi�cation.The justi�cation says how the goal can be inferred from its children. We will specifywhat the justi�cations are below, but for now, assume that for any justi�cation jthere is an associated pair s(j) = (g; g), called a step, where g is a goal and g is asequence g1; : : : ; gn (n � 0) of goals. We place the following restriction on proofs.Let g be a node in the tree, let j be its associated justi�cation, and let g be thesequence of children of g (in left-to-right order). Write s(j) = (g0; g0). We requirethat there be a substitution � such that �(g0) = g and �(g0) = g (using the obviousextension of substitution to sequences of goals).Thus s(j) can be thought of as a rule schema, with premises g0 and conclusion g0,and the valid instances of the schema are obtained by substituting for metavariables.For example, one of the allowed justi�cations in our implementation of �rst-orderlogic is the constant and i (for \and-introduction"), ands(and i) = (H ` A & B; (H ` A; H ` B));which corresponds to the rule schemaH ` A H ` BH ` A & B:4



Note that proof trees are preserved under instantiation: if � is a substitution, pis a proof, and �(p) is obtained by replacing every goal g in p by �(g) (and keepingthe same associated justi�cations), then �(p) is a proof.There are three kinds of justi�cations. One corresponds to primitive rules of theobject logic and one to tactics. There is also a justi�cation jprem, wheres(jprem) = (G; ()):This corresponds to a trivial \rule" which infers any goal from no premises. Goalsin a proof tree that have jprem as their justi�cation are called premises of the proof.Thus proof trees represent incomplete proofs in the object logic. The root goal of aproof is called its conclusion.An important operation on proofs is re�nement, where a justi�cation is used toextend a proof tree at a premise. In particular, let g be a premise of a proof p, letj be a justi�cation with s(j) = (g0; (g01; : : : ; g0n)), and let � and �0 be substitutionssuch that �(g) = �0(g0).Then the re�nement of p at g using j, � and �0 is obtainedfrom �(p) by giving j to the premise �(g) as a new justi�cation, and adding children�0(g01); : : : ; �0(g0n), each with jprem as its justi�cation. For example, if g is ` � &  ,�0 substitutes � for A and  for B, and � = ;, then re�ning at g using and i, � and�0 adds children ` � and `  to g.Note that the problem of �nding some � and �0, given g and j, can be cast as ahigher-order uni�cation problem. Let � be a substitution that renames metavariablesin g0 such that � (g0) and g have no metavariables in common. Then �; �0 exist ifand only if g and � (g0) are uni�able.Justi�cations corresponding to inference rules of the object logic are representedas a subset R of �. (Typically r 2 R will be a constant.) For each r 2 R there is anassociated step s(r). The justi�cations corresponding to tactics have a number ofcomponents. These will be explained by considering the typical kind of re�nement:extending a proof by applying a tactic to a premise.Tactics are represented as a subset T of �. Applying a tactic e 2 T to a premiseg of a proof p is a single operation for a user of our theorem-prover, but it actuallyconsists of �rst obtaining a justi�cation and substitution from e and g, and thenusing these to perform a re�nement step. More precisely, �rst the tactic e is evalu-ated with argument g, producing as its value a step s0 = (g0; g0) and a substitution� such that �(g) = g0. Then the tactic justi�cation j = (e; g; �; s0) is formed, wheres(j) is de�ned to be s0. g is called the tactic argument of j. Finally, we re�ne p at gusing j, � and ;. Thus, applying e to g produces a substitution to be applied to p,new children g0 for the premise being re�ned, and a justi�cation for the re�nement.For example, if g is ` X = 0 and if e is a tactic that instantiates X with 0, wemight have �(X) = 0, ` 0 = 0 for g0, and (` 0 = 0) for g0. The act of re�ning by jand � will replace X by 0 in the entire proof, and produce a new premise ` 0 = 0as a child of the old premise.Note that occurrences of tactic justi�cations in a proof need not have arisenfrom the process just described, since the constraint on a justi�cation j is only interms of the step s(j) associated with it.There are several reasons for including more information in a tactic justi�cationthan just its step: e and g are informative to a user, since they determine the step; e5



is needed for \replaying" a proof; and g and � are required for the undo procedure.These last two points are discussed in the section on undo. The step is stored inthe justi�cation for reasons of e�ciency, so that it does not have to be recomputedfrom e and g every time it is needed.Some of the more important di�erences between the implementation and whatis described above are as follows. In the account here, free variables correspondto metavariables, and free variables of the object logic are assumed to be handledby �-abstraction in goals. In the implementation, these abstractions are handledmore conveniently by distributing them throughout proofs, so there is only one�-abstraction introduced whenever a new free variable of the object logic is needed.In the implementation, the logic variables of �Prolog are used for metavariables.This means that when, for example, we form a tactic justi�cation, we cannot sim-ply directly store the tactic argument in the justi�cation, since then subsequentinstantiations of metavariables in the proof might change it. So, when a tactic justi-�cation is created, the components have their logic variables \abstracted out", i.e.bound by �-abstractions, to prevent them from being instantiated by further proofoperations. More is said about this abstraction operation in Section 5.1.Tactics work somewhat di�erently in the implementation. Since we are using alogic-programming language, and logic variables are used to implement metavari-ables, tactics do not need to explicitly return a substitution. To guarantee soundness,tactics produce proofs as results, from which the step is obtained as the conclusionand premises of the proof. These proofs can again contain tactic justi�cations. Thisintroduces a circularity, but this is not hard to deal with (see [1] for one approach).3 An Example SessionThe following session illustrates interaction with our system, including re�nementcommands, navigation within a proof, and undo. We prove a simple formula from�rst-order logic. The tactics used here implement the basic inference rules of asequent calculus. The lines beginning with \!:" indicate user input. All other textis output from the system (we have added some whitespace and renamed a fewvariables). All metavariables are printed as capital letters.We begin the session by entering the following query to �Prolog.prove (exists x\ (exists y\ ( (q x imp q y) and(q x imp (q a or q b)) and (q a imp q b imp q x) and(q a imp exists z\ (q z)) and (q b imp q x)))).This results in a prompt for input. The user supplies the command to run thetactic (repeat intro) which repeatedly applies some of the introduction rules forconnectives occurring in formulas on the right in the sequent, resulting here in �vesubgoals.!: tactic (repeat intro).Address:|- exists x\ (exists y\ ((q x imp q y) and(q x imp q a or q b) and (q a imp q b imp q x) and6



(q a imp exists z\ (q z)) and (q b imp q x)))By tactic repeat introq X |- q Yq X |- q a or q bq b, q a |- q Xq a |- q Zq b |- q XAfter running the tactic, the node of the proof is redisplayed. The output aboveshows the address of the node of the proof being displayed (a list of integers, emptyin this case), followed by the goal at the node, its justi�cation following the wordBy, and the subgoals of the node.The user then solves these subgoals in left-to-right order using the next com-mand to go to the next premise node in the tree.!: next.Address: 1 q X |- q Y By ?!: tactic (hyp 1).Address: 1 q Y |- q Y By tactic hyp 1!: next.Address: 2 q Y |- q a or q b By ?!: tactic (then or i1 tac (hyp 1)).Address: 2 q a |- q a or q b By tactic then or i1 tac (hyp 1)!: next.Address: 3 q b, q a |- q a By ?!: tactic (hyp 2).Address: 3 q b, q a |- q a By tactic hyp 2!: next.Address: 4 q a |- q Z By ?!: tactic (hyp 1).Address: 4 q a |- q a By tactic hyp 1!: next.Address: 5 q b |- q a By ?The hyp tactic completes a proof when the formula on the right uni�es with theformula on the left at the position indicated by an integer argument. In the �rst,second, and fourth subgoals above, this operation causes instantiation of metavari-ables: X to Y, Y to a, and Z to a, respectively. Note that or i1 tac in subgoal 2chooses the �rst disjunct of the conclusion which, when followed by hyp 1, throughthe use of the tactic combinator then, forces the instantiation of Y to a.Now no further progress can be made. Looking at subgoal 5 as it originallyappeared above, the user realizes that X must be instantiated to b if this subgoal isto be provable. By comparing to the 5 subgoals above, we see that it was subgoal2 that forced the instantiation of a. This can be veri�ed by moving through thetree to the second child of the root, and then using the show tactic arg commandto examine the goal which was the original argument to the tactic at that node.Entering the uninst command there undoes the instantiation of the variables inthis sequent and any nodes that depended on them, in this case just Y. We omitthe printing of the root node. 7



!: root. !: down 2.Address: 2 q a |- q a or q b By tactic then or i1 tac (hyp 1)!: show tactic arg.q Y |- q a or q b!: uninst.Address: 2 q Y1 |- q a or q b By ?By going back to the root and printing the proof, we see the re�nements at subgoals2 and 3 have been undone, since they both depended on the instantiation of Y to a.The proof of the �rst subgoal which originally uni�ed two logic variables remains,as does the proof of subgoal 4.!: root. !: show proof.Goal: |- exists x\ [: : : ] Justification: By tactic repeat introGoal: q Y1 |- q Y1 Justification: By tactic hyp 1Goal: q Y1 |- q a or q b Justification: By ?Goal: q b, q a |- q Y1 Justification: By ?Goal: q a |- q a Justification: By tactic hyp 1Goal: q b |- q Y1 Justification: By ?The remaining subgoals can be completed by choosing the second disjunct in subgoal2 forcing the instantiation of metavariable Y1 to b.4 Undoing ProofsIn the implemented undo procedure (uninst), we want to back the proof up enoughso that for some node, called the undo node, the goal that appeared at that nodebefore a tactic re�nement was applied becomes the goal at that node in the newproof. The procedure removes any parts of the proof which would force metavari-ables in the undo node to be instantiated. Furthermore, it undoes any instantiationsforced by the removed subproofs.For our undo procedure, we assume that all non-premise nodes in a proof havetactic justi�cations. Below, we will speak of a node's associated tactic, tactic argu-ment, substitution, and step, corresponding to the four components of its justi�-cation. In order to not have to worry about renaming of free variables, we assume(without loss of generality) that justi�cations from di�erent nodes in a proof haveno free variables in common. However, it is not necessary to modify a proof to meetthis criteria in order to run the undo procedure. Instead, at each step, fresh variablescould be introduced to rename the components of a justi�cation.The procedure works by �nding an ordering on the nodes in the proof that corre-sponds to a possible method of building the tree by using alternating instantiationsand tactic-re�nement steps. The ordering is used to track \when" variables becomeinstantiated in order to determine which branches to prune. To reconstruct the newtree, the appropriate branches are pruned from the original tree. Then, the sameprocedure used to �nd the ordering on the original tree is used to construct the newtree. We describe this core procedure and discuss how it is used in each of the twophases of the implemented uninst operation.8



The main operation of the core procedure is a step-by-step reconstruction of theproof. At each step, we have the partially reconstructed tree p with a sequence ofpremises g1; : : : ; gn called the fringe, that collects the premises that must still beexpanded to obtain the complete tree. In addition, we have a mapping from fringeelements to the subproofs p1; : : : ; pn in p rooted at the corresponding locations inthe original proof. It is these subproofs that must be processed in order to com-plete the reconstruction. At any point, if we build a \justi�cation tree" by takingthe associated justi�cations of each node in p; p1; : : : ; pn and attaching those forp1; : : : ; pn at the appropriate nodes, we obtain the same justi�cation tree as fromthe original proof.At each step, we choose for \expansion" an element gi of the fringe that satis�esthe following two requirements. First, the tactic argument at the root node r of pimust be an instance of gi. Let � be the matching substitution. Second, for everyother fringe element g0 mapped to subproof q, the tactic argument at the root ofq must be an instance of �(g0). Let j be the justi�cation at node r and let � bethe substitution component of j. We re�ne p at gi using j, � � � and the emptysubstitution. Thus, � (�(gi)) now replaces gi in the new proof. We then replace gi inthe fringe by the new premises added by the re�nement. The mapping is extendedby mapping these elements to the corresponding subproofs rooted at the childrenof r.A proof p0 is obtained by pruning from p if it results from removing some sub-proofs from p (leaving new premises). p0 is a re-instantiation of p if the two proofshave the same justi�cation tree. Using an inductive argument, it can be shown thatthe set of proofs for which the above reconstruction procedure can be applied isclosed under pruning, instantiation, re-instantiation, and re�nement by tactics. Animportant invariant during reconstruction of any proof built only from these opera-tions is that there will always be some fringe node that meets the two requirementsfor expansion. The ordering of nodes by relative time that they were expanded bytactic re�nement, for example, can be used in reconstruction of the proof, and eachsuccessive node will meet the requirements. There may be other possible orderings,all of which correspond to possible orderings in which the tree could have beenconstructed. We call such an ordering a re�nement ordering.The proof reconstruction procedure is repeated twice in the uninst operation.The �rst time, we keep track of two kinds of information: a set of variables V thatmust remain uninstantiated and a set of addresses A of nodes that roots of subtreesthat must be pruned. Initially, V is the set containing all of the free variables inthe tactic argument of the undo node, and A is empty. At each step, after a fringenode g is chosen for expansion, V is updated. In particular, the match substitution� is checked to see if it maps any of the variables in V to new variables. Thesevariables must also be added to V. After each re�nement step, A is updated. Anynodes containing metavariables in V that get instantiated by this re�nement stepmust be marked for deletion. More precisely, let � be the substitution at the rootnode of the proof that g is mapped to. Let V 0 be the set of all variables X in Vsuch that either � (�(X)) is not a variable or there is a Y in V with X 6= Y and� (�(X)) = � (�(Y )). If V 0 is non-empty, then the address of the node just expanded9



is added to A. In addition, the address of any fringe node that contains a variablein V0 is also added to A. Note that no addresses will get added to A until the pointin reconstruction after the undo node is expanded.After the reconstruction is complete, the subproofs indicated by A are pruned,resulting in a new proof q. Now, the reconstruction procedure is repeated on q.This time V and A are ignored. The tree produced by this phase is a minimallyinstantiated version of the justi�cation tree. It is this proof that is returned fromthe uninst operation.A very slight modi�cation of this procedure gives us an operation that allows theuser to point at speci�c variables in one or more tactic arguments and ask that theyremain uninstantiated in the remaining tree. This can be achieved by initializingV to be the selected variables only. Multiple variables from di�erent nodes can beprocessed simultaneously by including them all in V.A slightly more complicated operation is to request that all of the variables in-stantiated by a particular tactic re�nement are backed up along with all branchesthat saw these instantiations. Here the substitution at the justi�cation of the undonode is used. Any variables that are mapped to anything other than themselvesshould be put into V. This operation can be extended to include all variables in-stantiated in a particular subproof. Here, in addition to any variable from the substi-tution at the undo node, any variable from the substitution at any of its descendantsthat is mapped to something other than itself must be included in V.The operations discussed so far prune any branches that depend on instantiationof the selected variables. Another option is to attempt to replay them using thetactics in justi�cations. Such replay can be accommodated by introducing a newbad justi�cation. Then instead of pruning, a tactic justi�cation is changed to a badone which retains the tactic and the structure of the tree below it. A �nal phaseof the procedure would then attempt to replay as much of the bad proof by re-executing the tactics, only pruning when execution fails. Alternatively, the \bad"subproofs could be left to the user.All of these undo operations work on proofs closed under tactic re�nement,pruning, instantiation, and re-instantiation. We can extend the proof reconstructionprocedure to handle a larger class of proofs including those pieced together throughuni�cation. However, the notion of tracking \when" a variable is instantiated nolonger works in the same way. In particular there is not necessarily a re�nementordering because any two proofs pieced together may have been constructed in-dependently. We de�ne a heuristic for determining an order. This procedure is asimple modi�cation of the above procedure. In the case when no node in the fringemeets the two requirements for expansion, we �nd a node g in the fringe maximiz-ing a particular measure. Let g0 be the conclusion of the step at the root r of thesubproof that g is mapped to and let � be a substitution such that �(g) = �(g0).That is, instead of matching with the tactic argument, we require uni�cation withthe step conclusion. This uni�cation problem is in fact solvable for all nodes in thefringe. We now need a measure to determine when one ordering of nodes is betterthan another. We can use a measure that favors instantiations that are done viatactic re�nement over those done simply to match up the goal of a node with the10



corresponding premise of a step in the parent node. The measure should have theproperty that any re�nement ordering maximizes it. In the worst case, this heuris-tic reduces to reconstructing the tree by repeatedly solving uni�cation problems inarbitrary order. In the best case, it �nds an ordering corresponding to the order inwhich the proof could have been constructed for those trees where such an orderingexists.5 ImplementationThis section describes the implementation of our system. It starts with a briefaccount of the implementation language.5.1 �Prolog�Prolog is a partial implementation of higher-order hereditary Harrop (hohh) for-mulas [12] which extend positive Horn clauses in essentially two ways. First, theyallow implication and universal quanti�cation in the bodies of clauses, in addition toconjunctions, disjunctions, and existentially quanti�ed formulas. In this paper, weonly consider the extension to universal quanti�cation. Second, they replace �rst-order terms with the more expressive simply typed �-terms and allow quanti�cationover predicate and function symbols. The application of �-terms is handled by �-conversion, while the uni�cation of �-terms is handled by higher-order uni�cation.The terms of the language are the terms of � where the set of base types includesat least the type symbol o, which denotes the type of logic programming proposi-tions. In this section, we adopt the syntax of �Prolog. Free variables are representedby tokens with an upper case initial letter and constants are represented by tokenswith a lower case initial letter. Bound variables can begin with either an upper orlower case letter. �-abstraction is represented using backslash as an in�x symbol.Logical connectives and quanti�ers are introduced into �-terms by introducingsuitable constants with their types. In particular, we introduce constants for con-junction (,), disjunctions (;), and (reverse) implication (:-) having type o -> o-> o. The constant for universal quanti�cation (pi) is given type (A -> o) -> ofor each type replacing the \type variable" A. A function symbol whose target typeis o, other than a logical constant, will be considered a predicate. A �-term of typeo such that the head of its ��-long form is not a logical constant will be called anatomic formula. A goal is a formula that does not contain implication. A clause isa formula of the form (pi x1\ : : : (pi xn\(A:- G))) where G is a goal formula andA is an atomic formula with a constant as its head. In presenting clauses, we leaveo� outermost universal quanti�ers, and write (A:- G).Search in �Prolog is similar to that in Prolog. Universal quanti�cation in goals(pi x\G) is implemented by introducing a new parameter c and trying to prove[c=x]G. Uni�cation is restricted so that if G contains logic variables, the new con-stant c will not appear in the terms eventually instantiated for those logic variables.Several non-logical features of �Prolog are used in our implementation. We usethe cut (!) operator to eliminate backtracking points. In addition, we have im-plemented a new primitive make abs which takes any term and replaces all logic11



variables with �-bindings at the top-level. It has type A -> abs A -> list mvar-> o where abs is a type constructor introduced for this purpose and the third ar-gument is a list containing all of the logic variables in the order they occurred in theterm. We use this operation to \freeze" the degree of instantiation of a term as wellas to implement a match procedure. In order to correctly freeze a term, this oper-ation must also freeze a record of any uni�cation constraints on the logic variablesoccurring in the term. The current implementation does not do so. However, wehave veri�ed that our implementation does not generate constraints. We make therestriction that any programmer de�ned tactics also cannot generate constraints.�Prolog allows type constructors for building types. In addition to abs, we usepair and list in our implementation.5.2 Proofs and TacticsBelow are the basic types and operations for our implementation of proofs.goal type.agoal (A -> goal) -> goal.step type.step goal -> list goal -> step.prule_name type.prule_def prule_name -> seq -> list seq -> o.proof type.just type.prem_just just -> o.prule_just prule_name -> just -> o.tactic_to_just (goal -> proof -> o) -> goal -> proof -> just -> o.one_step_proof step -> just -> proof -> o.compose_proofs proof -> list proof -> proof -> o.aproof (A -> proof) -> proof.These are intended to form abstract data types for justi�cations and proofs. Wehave omitted several destructors for these types. All of our operations for buildingand modifying proofs do so via the above operations.The type goal is the type of goals. Goals are essentially sequents. They also havesome additional structure which we plan to exploit in future work. We representhypothesis lists of sequents using function composition (as is done in Isabelle) sothat higher-order uni�cation can be used to deal with metavariables standing forsubsequences of hypothesis lists. �-abstracted sequents are also goals: the construc-tor agoal converts a term x\(G x) into a goal. The type step and the constructorstep implement the steps of Section 2.The object logic is assumed to be speci�ed by a type prule name whose membersare the primitive rule names, and a predicate prule def that associates a (sequentversion of a) step with each rule name. For example, the following clauses specifythe rules for and-introduction and all-introduction.prule def and i (|- H (A and B)) ((|- H A)::(|- H B)::nil).prule def forall i (|- H (forall A)) ((aseq (x\ (|- H (A x))))::nil).12



Here |- is the constructor for basic sequents, and aseq constructs abstracted se-quents.There are three ways of building proofs. One is to use aproof to turn an ab-stracted proof into a proof. In a proof (aproof x\(P x)), the bound variable xrepresents a new object level variable whose scope is the proof (P x). The secondway to build proofs is to construct a one-step proof from a step and a justi�cation.(one step proof S J P) computes the step corresponding to the justi�cation J,checks that it matches the step S=(step G Gs), then produces a proof whose roothas goal G and justi�cation J, and whose children are premises with goals from thelist Gs. The premises may use the aproof constructor. This would be the case if,for example, J were the justi�cation for the rule forall i.The �nal way to construct proofs is with compose proofs which attaches themembers of a list of proofs at the premises of another proof. This is used in theimplementation of then, a combinator for sequencing tactics. Tactics are predicatesof type goal -> proof -> o. Some care was taken with the composition operationin order to make tactics e�cient. In particular, it produces a variant representationof a proof that delays actual computation of the composition. Usually the actualcomposition never needs to be performed, and when it does, it will usually be in thecontext of other delayed compositions, and grouped compositions can be handledmuch more e�ciently.The type just is an abstract type of justi�cations. prule just constructs prim-itive rule justi�cations. Tactic justi�cations have four parts made up of two \ab-stracted" pairs with types (abs (pair (goal -> proof -> o) goal)) and (abs(pair (list mvar) step)), respectively. The four parts of this datatype imple-ment the four parts of the tactic justi�cation: the tactic, tactic argument, sub-stitution, and step. Since metavariables are implemented directly using the logicvariables of �Prolog, and since we do not want variables in any of these componentsto be further instantiated, we use the the make abs operation described earlier to\freeze" them. When a copy is needed, it is made by applying these abstractionsto new logic variables. Instead of a set of variable/instance pairs, the substitutionis represented as a list of terms such that the length of this list is the same as thelength of the binder of the �rst pair. A substitution is applied by taking the list ofnew variables used to make a copy of the �rst abstraction and matching it againstthis stored list.tactic to just takes a tactic T , runs it on a goal, returning the tactic's proofand the corresponding justi�cation. Below is the main clause of its implementation.(The test that the last argument is a variable to ensure one-way behaviour is omittedhere). tactic to just T G P (trule AbsTacAp AbsSigmaStep):- make abs (p T G) AbsTacAp Subs,T G P,concl P NewG,prems P Gs,make abs (p Subs (step NewG Gs)) AbsSigmaStep Bazola.trule is the hidden constructor for tactic justi�cations, p is a pairing constructor,13



and concl and prems compute the conclusion and premises of a proof.Although it is unlikely, it is possible for a user of our system to build objects oftype proof that are not proofs. For maximum security, we would need to includesome further run-time checks. In a language like ML, such security could be obtainedthrough the type system.5.3 Undo: the uninst CommandThe implementation of uninst follows the description in Section 4 with a few op-timizations. One such optimization comes from using �Prolog's built-in uni�cationfor our match procedure. When checking the �rst requirement of a fringe elementand determining the match substitution �, for example, the match procedure candirectly apply the result of the match to the metavariables of the goal, automaticallypropagating � to the new proof.At the re�nement step of proof reconstruction, the application of a substitutionis also propagated in the new proof by logic variable instantiation. Note that, inthe re�nement step, instead of using the substitution in the justi�cation, we couldsimply match the goal to be re�ned with the conclusion of the step. In fact, weneed not record substitutions at all in tactic justi�cations. However, they serveas an optimization, allowing the propagation of the exact substitution that wasoriginally done by executing the tactic. In addition, because matching uses �Prologuni�cation, by avoiding matching we also avoid generating uni�cation constraints.6 DiscussionIsabelle [13] and Coq [3] have metavariables and support tactic-style theorem-proving,but re�nement trees are implicit. Operations on these trees are limited, and, in par-ticular, undo is chronological. This also applies to KIV [8], even though it explicitlysupports a form of re�nement trees. In contrast to ALF [10] and Coq, our systemonly supports simple types for metavariables. If the object logic has a richer typesystem, then types must be represented explicitly, for example as predicates in theobject logic. ALF supports dependency-directed undo, but proofs are �-terms, notre�nement trees.Plans for future work include: improving the way types are handled; designingand implementing further undo operations that handle arbitrary proofs, e.g. proofsthat are pieced together using uni�cation; adapting Nuprl's scheme for compactstorage of proofs in �les; and implementing our ideas for Nuprl.References1. S. F. Allen, R. L. Constable, D. J. Howe, and W. B. Aitken. The semantics of reectedproof. In Proceedings of the Fifth Annual Symposium on Logic and Computer Science,pages 95{107. IEEE Computer Society, June 1990.2. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof DevelopmentSystem. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.14



3. G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin-Mohring, and B. Werner. Thecoq proof assistant user's guide. Technical Report 134, INRIA, December 1991.4. A. Felty. Implementing tactics and tacticals in a higher-order logic programminglanguage. Journal of Automated Reasoning, 11(1):43{81, August 1993.5. M. Gordon. A proof generating system for higher-order logic. In Proceedings of theHardware Veri�cation Workshop, 1989.6. M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanized Logicof Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag,1979.7. R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. In The SecondAnnual Symposium on Logic in Computer Science. IEEE, 1987.8. M. Heisel, W. Reif, and W. Stephan. Tactical theorem proving in program veri�ca-tion. In M. Stickel, editor, Tenth Conference on Automated Deduction, volume 449 ofLecture Notes in Computer Science, pages 117{131. Springer-Verlag, 1990.9. C. Horn. The Oyster Proof Development System. University of Edinburgh, 1988.10. L. Magnussan. Re�nement and local undo in the interactive proof editor ALF. InInformal Proceedings of the 1993 Workshop on Types for Proofs and Programs, 1993.11. Z. Manna and R. Waldinger. A deductive approach to program synthesis. Transac-tions on Programming Languages and Systems, 2:90{121, 1980.12. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundationfor logic programming. Annals of Pure and Applied Logic, 51:125{157, 1991.13. L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic andComputer Science, pages 361{385. Academic Press, 1990.

15


