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1 Introduction

In recent work, we showed how to implement tactic-style theorem proving in Twelf [2]. Tactics
and tacticals are a mechanism used in a variety of theorem provers such as LCF [5], HOL [4],
and Coq [8]. They provide flexible control for goal-directed proof search. Tactics provide the
basic search procedures, while tacticals are used to compose tactics in various ways to form more
complex operations or proof search strategies. Our goal was to add the power of tactic-style
proof search to our proof-carrying code system, which is implemented in Twelf [1].

The Twelf system [7] is an implementation of the Logical Framework (LF) [6] which provides
logic programming capabilities. LF is a dependently-typed language, and our implementation
showed how to use the dependent types to guarantee partial correctness of tactics. Our imple-
mentation in Twelf was adapted from our earlier work implementing tactics and tacticals in the
higher-order logic programming language AProlog [3]. In AProlog, there are no dependent types
and so we did not have the partial correctness guarantee. On the other hand, AProlog provides
programming support such as control primitives and I/O, while Twelf does not, which allowed
us to implement a more flexible theorem prover. The emphasis in Twelf has been on proving
properties of logics rather than building theorem provers for them, and so there are no plans to
provide this kind of support.

Here, we describe how to do interactive theorem proving in Twelf without control or I/0O
primitives, thus allowing us to provide the benefits of both dependent types and interactive proof
in the same setting. The lack of I/O primitives, however, forces a particular style of theorem
proving. This style is similar to the one adopted in HOL. Both of these theorem provers have
the property that the language that is used to implement the tactics and tacticals is the same
as the language used to interact with the system to build proofs. In our case this language is
Twelf, while the programming language for HOL is ML.

2 A Twelf Theorem Prover for First-Order Logic

As an example, we will consider a theorem prover for first-order logic. The implementation of
the logic and the basic tactics and tacticals is exactly the same as in our previous work [2], so
we just summarize here. We show just enough of the code to handle the simple example used
in the next section to illustrate interactive proof. The full code can be found in the appendix.
Figure 1 introduces the Twelf declarations for first-order logic. Only the connectives and
rules for implication and conjunction are shown. The rules given are the introduction and



i : type.

: type.
pf : 0 -> type.
imp :0->0 ->o0. hinfix right 10 imp.
imp_i : (pf A -> pf B) -> pf (A imp B).
imp_e : pf (A imp B) -> pf A -> pf B.
and : o -> o -> o.  %infix right 12 and.
and_ i : pf A -> pf B -> pf (A and B).

and_el : pf (A and B) -> pf A.
and_e2 : pf (A and B) -> pf B.

Figure 1: Example declarations for first-order logic in Twelf.

elimination rules for natural deduction. Dependent types are used so that a term of type (pf
A) represents a proof in natural deduction of formula A.

Figure 2 introduces the data structures for proof goals. Each goal has a list of hypotheses
associated with it. The first 4 declarations in the figure introduce these lists. An infix comma is
used to separate items in the list. An individual hypothesis pairs a formula with its proof using
the by constructor. Dependent types are used to guarantee that the second argument is a proof
of the first argument. The turnstile is used to separate the hypotheses from the conclusion, and
forms the primitive goal of our prover. After the primitive goal declaration, 3 constructors are
introduced for compound goals. Their use is illustrated in the implementation of the 4 tactics
that follow, which implement basic proof steps. A tactic has 3 arguments. The first is the
tactic name, the second is the input goal, and the third is the output goal which contains the
subgoal(s) that still must be solved to complete the proof.

As the first tactic illustrates, the output goal is tt whenever the proof has been completed,
indicating there is nothing more to be done. This tactic completes the proof by finding the con-
clusion among the hypotheses using the memb program. The clauses for list processing predicates
such as memb are straightforward and we do not show them here. The second tactic implements
the implication introduction rule. In the output goal, allp is used to introduce a bound variable
p to represent a proof of A. The third tactic implements the conjunction introduction rule. Note
that the output goal contains the two subgoals that must be completed, separated by the & goal
constructor. The fourth tactic illustrates the implementation of elimination rules as tactics.
Here, nth_item is used to find the Nth hypothesis in Gamma and add two new hypotheses in the
output subgoal. The nth_item program is implemented so that if the first argument is 0, it acts
like memb.

Figure 3 implements some standard tacticals. The last 5 declarations are the tacticals them-
selves, while the remaining code is the Twelf version of the AProlog code which is needed to
implement tacticals in a logic programming language

The goalreduce code simplifies compound goals by removing all unnecessary occurrences of
tt. The deterministic directive tells the logic programming engine that all queries involving
the goalreduce and remove_tt predicates should succeed at most once. This directive is not as
powerful as the Prolog cut (!) operator, which we use in the AProlog version of this code, but
it is sufficient for this program.

The maptac tactical applies tactics to compound goals, reducing them to basic goals before



hyp: type.

hyps: type.

nil : hyps.

, ¢ hyp -> hyps -> hyps. hinfix right 4 ,
by: {A} pf A -> hyp. hinfix none 5 by.
goal: type.

[- : hyps -> hyp -> goal. h»infix none 3 |- .
&: goal -> goal -> goal. hinfix right 2 &.
allp: (pf A -> goal) -> goal.

tt: goal.

tac: type.

initial_tac: tac.
imp_r_tac: tac.

and_r_tac: tac.

and_1_tac: rational -> tac.

tactic: tac -> goal -> goal -> type.
tl: tactic initial_tac (Gamma |- A by P) tt <- memb (A by P) Gamma.
t2: tactic imp_r_tac (Gamma |- (A imp B) by (imp_i P1))

(allp [p: pf AlJ(A by p , Gamma |- B by (P1 p))).
t3: tactic and_r_tac (Gamma |- (A and B) by (and_i P1 P2))

(Gamma |- A by P1 & Gamma |- B by P2).
t4: tactic (and_1l_tac N) (Gamma |- C by P)

((A by (and_el Q)) , (B by (and_e2 Q)) , Gamma |- C by P) <-
nth_item N ((A and B) by Q) Gamma.

Figure 2: Goals and some tactics for first-order logic.



goalreduce: goal -> goal -> type.
remove_tt: goal -> goal —-> type.
hdeterministic goalreduce.
%deterministic remove_tt.

grl:
gra:
gr3:
rtl:
rt2:

rt3:
rté:

goalreduce (G1 & G2) RG <-

goalreduce Gl RGl <- goalreduce G2 RG2 <- remove_tt (RG1l & RG2) RG.
goalreduce (allp G) RG <-

({p} goalreduce (G p) (RG1l p)) <- remove_tt (allp RG1) RG.
goalreduce G G.

remove_tt (G & tt) G.
remove_tt (tt & G) G.
remove_tt (allp [p]ltt) tt.
remove_tt G G.

maptac: tac -> goal -> goal -> type.

ml:
m2:

m3:
m4:

maptac T tt tt.

maptac T (InGl & InG2) (OutGl & OutG2) <-

maptac T InGl OutGl <- maptac T InG2 OutG2.

maptac T (allp InG) (allp OutG) <- {p} maptac T (InG p) (OutG p).
maptac T (Gamma |- A by P) OutG <- tactic T (Gamma |- A by P) OutG.

idtac: tac.

then: tac -> tac -> tac. %infix left 2 then.
orelse: tac —> tac -> tac. %infix left 2 orelse.
repeat: tac -> tac.

tacticall: tactic idtac G G.
tactical2: tactic (T1 then T2) InG OutG <-

tactic T1 InG MidG <- maptac T2 MidG OutG.

tactical3: tactic (T1 orelse T2) InG OutG <- tactic T1 InG OutG.
tacticald: tactic (T1 orelse T2) InG OutG <- tactic T2 InG OutG.
tacticalb: tactic (repeat T) InG OutG <-

tactic ((T then (repeat T)) orelse idtac) InG OutG.

Figure 3: Tacticals in Twelf.



passing them on to other tacticals and tactics. Of the remaining 5 tacticals, note in particular
the then tactical, which performs the composition of tactics by first applying the first tactic,
and then mapping the application of the second tactic (using maptac) so that the second tactic
gets applied to each of the primitive subgoals within the (possibly) compound goal MidG.

3 Building Proofs Interactively

In AProlog, we were able to implement a query tactic that asked the user to input the next
tactic to be applied, and we provided a top loop that repeatedly executed this query tactic. The
lack of I/O prevents us from implementing a top loop in Twelf. Instead, we show how to build
proofs by “editing” tactics. To do so, the user starts with a simple tactic and adds to it at each
step. To illustrate, we prove the simple theorem ((p; A p2) = (p2 A p1)) which expresses the
symmetry of conjunction. The following Twelf query applies the implication introduction rule.

%hquery * 1 tactic imp_r_tac
(nil |- ((pl and p2) imp (p2 and pl)) by P) OutG.

We use logic variables P and 0utG for the proof and the output subgoal containing the subgoals
still to be proved after applying imp_r_tac, respectively. Twelf responds with the output:

—————————— Solution 1 ---————---
OutG = allp ([p4:pf (pl and p2)] pl and p2 by p4 , nil |- p2 and pl by X1 p4d);
P = imp_i ([x:pf (pl and p2)] X1 x).

P contains the proof constructed so far, and OutG tells us that there is one subgoal with hypothesis
(pl and p2) and conclusion (p2 and pl), where p4 is a bound variable representing a proof
of the hypothesis. From this information, we can conclude that we need to apply either and-
introduction or and-elimination. We choose and-introduction and edit our original query to
become:

hquery * 1 tactic (imp_r_tac then and_r_tac)
(nil |- ((pl and p2) imp (p2 and pl)) by P) OutG.

We now obtain the output:

—————————— Solution 1 -----——---

allp
([x:pf (pl and p2)]
pl and p2 by x , nil |- p2 by X1 x
& pl and p2 by x , nil |- pl by X2 x);
P = imp_i ([x:pf (pl and p2)] and_i (X1 x) (X2 x)).

This output contains all of the information that we need to proceed, but it is getting difficult to
read. We can ignore P because we don’t need to read the proof as it is constructed, but we must
be able to read OutG in order to choose a next step. In this case, OutG contains two subgoals,
both within the scope of an allp constructor. Although this example is simple, it is clear that
more complex proofs could result in complex goal structure with many subgoals hidden inside.



extractgoal : rational -> ratiomnal -> rational -> goal -> goal -> type.
hdeterministic extractgoal.
el: extractgoal N N (N + 1) (Gamma |- A by P) (Gamma |- A by P).
e2: extractgoal N M (M + 1) (Gamma |- A by P) tt.
e3: extractgoal N M M tt tt.
ed: extractgoal N NIn NOut (InGl & InG2) (OutGl & OutG2) <-
extractgoal N NIn NMid InGl OutGl <-
extractgoal N NMid NOut InG2 OutG2.
eb5: extractgoal N NIn NOut (allp InG) (allp OutG) <-
{p} extractgoal N NIn NOut (InG p) (OutG p).

extract_one_goal : rational -> tac.

e7: tactic (extract_one_goal N) InG OutG <-
extractgoal N 1 M InG MidG <-
goalreduce MidG OutG.

Figure 4: A tactic for extracting a single subgoal.

thenc: tac -> tac -> tac. %infix left 2 thenc.
tactical6: tactic (T1 thenc T2) InG OutG <-
tactic T1 InG MidG <- tactic T2 MidG OutG.

step: rational -> tac -> goal -> goal -> type.
stepl : step N T InG OutG <- tactic (T thenc (extract_one_goal N)) InG OutG.

Figure 5: A tactic for interaction.

In order to help with the complexity of too many subgoals, we write a tactic that allows
the user to choose one subgoal to work on at each step and forces the output to show only
that subgoal. This tactic, called extract_one_goal is implemented in Figure 4. It takes a
number argument to indicate which subgoal should be displayed. The auxiliary deterministic
extractgoal program is used to first replace all subgoals other than the chosen one with tt,
and then goalreduce is used to remove these subgoals. If the user chooses a subgoal out of
range, the result is just tt.

We then implement a step tactic (in Figure 5) which applies a specified tactic and then uses
extract_one_goal to extract a specific subgoal. This tactic uses the new thenc tactical, which
is similar to then but allows the second tactic to be applied to a compound subgoal directly
instead of mapping its application to each primitive subgoal.

Using the new tactic, we continue our example, and extract the second subgoal with the
following query.

hquery * 1 tactic (step 2 (imp_r_tac then and_r_tac))

(nil |- ((pl and p2) imp (p2 and pl)) by P) OutG.
—————————— Solution 1 ---————----
OutG = allp ([x:pf (pl and p2)] pl and p2 by x , nil |- pl by X1 x);
P = imp_i ([x:pf (pl and p2)] and_i (X2 x) (X1 x)).



This particular example is simple enough that we can complete the proof by applying and-
elimination in both subgoals at the same time using the following query.

hquery * 1 tactic (step 1 (imp_r_tac then and_r_tac then
(and_1_tac 1) then initial_tac))
(nil |- ((pl and p2) imp (p2 and pl)) by P) OutG.
—————————— Solution 1 --—-——-——-—-
OutG = tt;
P = imp_i ([x:pf (pl and p2)] and_ i (and_e2 x) (and_el x)).

The fact that we there is no subgoal 1 after applying this tactic indicates that there are no
remaining subgoals, and we can see that the proof is a complete proof.

The extract_one_subgoal and step tactics are just two examples of tactics that help provide
interaction in Twelf. A variety of others can and should be implemented in order to have effective
interaction. For instance, unlike our simple example, it will often be desirable to apply different
tactics to different subgoals. We could, for instance, implement a tactic which applies a specified
tactic to one subgoal and leaves the others untouched. We could also implement, as is done in
HOL, a version of then which takes a tactic to apply first and a list of tactics to apply after
that. The list must be the same length as the number of primitive subgoals generated after
applying the first tactic, and the first tactic in the list would be applied to the first primitive
subgoal and so on.

4 Conclusion

We have shown how to implement tactics which help with interactive proof in Twelf, where
control and I/O primitives are limited. Many of the proofs in our proof-carrying code system
were done without the benefit of this prover. Instead the proof P in each case was built by
hand using only constants like those in Figure 1. This prover, especially with its interactive
component, provides quite a bit more flexibility in constructing such proofs.

In our AProlog prover, we did not need as many interactive primitives. Instead, the inter-
active interpreter was implemented as a top loop which asked for an input tactic at each step.
The list version of then, for example, was not needed in the implementation of the interactive
interpreter. Note also that in the Twelf prover, we must re-execute the entire tactic every time
we add a step to it. This re-execution is not necessary in an interactive prover with a top loop.
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A The file logic.elf

% Copyright (C) 1999 Andrew Appel and Amy Felty. All rights reserved.

i : type.
o . type.
pf i o —> type.

%use inequality/rationals.

const : rational -> i.

imp : 0 ->0 ->o0. Jinfix right 10 imp.
imp_i : (pf A -> pf B) -> pf (A imp B).
imp_e : pf (A imp B) -> pf A -> pf B.

and : o => 0o -> o.  %infix right 12 and.
and_i : pf A -> pf B -> pf (A and B).

and_el : pf (A and B) -> pf A.
and_e2 : pf (A and B) -> pf B.

or : o > o —> o. %infix right 11 or.

or_il1 : pf A -> pf (A or B).

or_i2 : pf B -> pf (A or B).

or_e : pf (Aor B) -> (pf A -> pf C) -> (pf B -> pf C) -> pf C.

forall : (i -> o) -> o.
forall i : ({X:i} pf (A X)) -> pf (forall A).
forall_e : pf(forall A) -> {X:i} pf (A X).

exists : (1 -> o) -> o.
exists_i : {X:i}pf (A X) -> pf(exists A).
exists_e : pf (exists A) -> ({X:i} pf (A X) -> pf B) -> pf B.

false: o.
false_e : pf false -> pf A.

not : o => o = [A] A imp false.
not_i : (pf A -> pf false) -> pf (not A) = imp_i.
not_e : pf (not A) -> pf A -> pf false = imp_e.

true : o = not false.
true_i: pf (true) = not_i [P] P.

B The file prover.elf

% Copyright (C) 2002 Andrew Appel and Amy Felty. All rights reserved.

T 1ot to oo ToTo o to oo ToTato o o oo ToToFo o o

% goals of the interpreter

goal: type.
&: goal -> goal -> goal. Y%infix right 2 &.
allp: (pf A -> goal) -> goal.



alltm: (i -> goal) -> goal.
tt: goal.

tac: type.
tactic: tac -> goal -> goal -> type.

llolololotototototototototolololo o Toto oo oo o o o Totate

% basic definitions and utilities

hyp: type.
hyps: type.

by: {A} pf A -> hyp. %infix none 5 by.

nil : hyps.

, : hyp -> hyps -> hyps. ’%infix right 4 ,

|- : hyps -> hyp -> goal. %infix none 3 |- .

memb: hyp -> hyps -> type.
membl: memb H (H , Gamma).
membN: memb H1 (H2 , Gamma) <- memb H1 Gamma.

memb_and_rest: hyp -> hyps -> hyps -> type.

memb_and_restl: memb_and_rest H1 (H1 , Gamma) Gamma.

memb_and_restN: memb_and_rest H1 (H2 , Gamma) (H2 , Rest) <-
memb_and_rest H1 Gamma Rest.

nth_item: rational -> hyp -> hyps -> type.

nth_iteml: nth_item O H Gamma <- memb H Gamma.

nth_iteml: nth_item 1 H1 (H1 , Gamma).

nth_itemN: nth_item N H1 (H2 , Gamma) <- nth_item (N - 1) H1 Gamma.

nth_and_rest: rational -> hyp -> hyps -> hyps -> type.
nth_and_restl: nth_and_rest O H Gamma Rest <-
memb_and_rest H Gamma Rest.
nth_and_restl: nth_and_rest 1 H1 (H1 , Gamma) Gamma.
nth_and_restN: nth_and_rest N H1 (H2 , Gamma) (H2 , Rest) <-
nth_and_rest (N - 1) H1 Gamma Rest.

T 1ot toto o ToToToto oo ToToto o o oo ToToFo o o o o Jo oo

% Tactics implementing inference rules

initial_tac: tac.
initial_tacN: rational -> tac.
and_r_tac: tac.

imp_r_tac: tac.

or_rl_tac: tac.

or_r2_tac: tac.

neg_r_tac: tac.

forall_r_tac: tac.
exists_r_tac: tac.

and_1l_tac: rational -> tac.

10



and_1l_tacR: rational -> tac.
imp_1_tac: rational -> tac.
imp_l_tacR: rational -> tac.
or_l_tac: rational -> tac.
or_l_tacR: rational -> tac.
neg_l_tac: rational -> tac.
neg_l_tacR: rational -> tac.
forall_1l_tac: rational -> tac.
forall_1l_tacR: rational -> tac.
exists_l_tac: rational -> tac.
exists_l_tacR: rational -> tac.

true_r_tac: tac.
imp_r_initial_tac: tac.
true_imp_tac: tac.
false_imp_tac: tac.

tla: tactic initial_tac (Gamma

|- A by P) tt <- memb (A by P) Gamma.

tlb: tactic (initial_tacN N) (Gamma |- A by P) tt <- nth_item N (A by P) Gamma.

t2: tactic and_r_tac (Gamma |-
(Gamma |-

t3: tactic imp_r_tac (Gamma |-
(allp [p2:

t4: tactic or_ri_tac (Gamma |-
t5: tactic or_r2_tac (Gamma |-

t6: tactic neg_r_tac (Gamma |-
(allp [p2:

t7: tactic forall_r_tac (Gamma
(alltm

t8: tactic exists_r_tac (Gamma
(Gamma

t9: tactic (and_1_tac N)
(Gamma |- C by P)

(A and B) by (and_i P1 P2))
A by P1 & Gamma |- B by P2).

(A imp B) by (imp_i P1))
pf Al(A by p2 , Gamma |- B by (P1 p2))).

A or B by (or_il P)) (Gamma |- A by P).
A or B by (or_i2 P)) (Gamma |- B by P).

(not A) by (nmot_i P1))
pf AI(A by p2 , Gamma |- false by (P p2))).

|- (forall A) by (forall_i P))
[t: i] (Gamma |- (A t) by (P t))).

[- (exists A) by (exists_i X P))
I- (A X) by P).

((A by (and_e1 Q)) , (B by (and_e2 Q)) , Gamma |- C by P) <-

nth_item N ((A and B)

t10: tactic (and_1_tacR N)
(Gammal |- C by P)

by Q) Gamma.

((A by (and_el1 Q)) , (B by (and_e2 Q)) , Gamma2 |- C by P) <-
nth_and_rest N ((A and B) by Q) Gammal Gamma2.

t1ll: tactic (imp_l_tac N)
(Gamma |- C by P)
((Gamma |- A by P2) &

((B by (imp_e P1 P2)) ,

Gamma |- C by P)) <-

nth_item N ((A imp B) by P1) Gamma.

11



t12:

t13:

t14:

t15:

t16:

t17:

t18:

t19:

t20:

t21:

tactic (imp_l_tacR N)
(Gammal |- C by P)
((Gamma2 |- A by P2) &
((B by (imp_e P1 P2)) , Gamma2 |- C by P)) <-
nth_and_rest N ((A imp B) by P1) Gammal Gamma2.

tactic (or_1l_tac N)
(Gamma |- C by (or_e P P1 P2))
((allp [pl: pf AI(A by pl , Gamma |- C by (P1 pl))) &
(allp [p2: pf Bl1(B by p2 , Gamma |- C by (P2 p2)))) <-
nth_item N ((A or B) by P) Gamma.

tactic (or_l_tacR N)
(Gammal |- C by (or_e P P1 P2))
((allp [p1l: pf AI(A by pl , Gamma2 |- C by (P1 p1))) &
(allp [p2: pf BI(B by p2 , Gamma2 |- C by (P2 p2)))) <-
nth_and_rest N ((A or B) by P) Gammal Gamma2.

tactic (neg_l_tac N)
(Gamma |- C by P)
((Gamma |- A by P2) &
((false by (not_e P1 P2)) , Gamma |- C by P)) <-
nth_item N ((not A) by P1) Gamma.

tactic (neg_l_tacR N)
(Gammal |- C by P)
((Gamma2 |- A by P2) &
((false by (not_e P1 P2)) , Gamma2 |- C by P)) <-
nth_and_rest N ((not A) by P1) Gammal Gamma2.

tactic (forall_l_tac N)
(Gamma |- C by P)
(((A X) by (forall_e Q X)) , Gamma |- C by P) <-
nth_item N ((forall A) by Q) Gamma.

tactic (forall_l_tacR N)
(Gammal |- C by P)
(((A X) by (forall_e Q X)) , Gamma2 |- C by P) <-
nth_and_rest N ((forall A) by Q) Gammal Gamma2.

tactic (exists_l_tac N)
(Gamma |- C by (exists_e P1 P2))
(alltm [t: i] allp [p: pf (A t)] (A t) by p ,
Gamma |- C by (P2 t p)) <-
nth_item N ((exists A) by P1) Gamma.

tactic (exists_l_tacR N)
(Gammal |- C by (exists_e P1 P2))
(alltm [t:i] allp [p: pf (A t)] (A t) by p ,
Gamma2 |- C by (P2 t p)) <-
nth_and_rest N ((exists A) by P1) Gammal Gamma?2.

tactic true_r_tac (Gamma |- true by true_i) tt.

12



t22:

t23:

t24:

tactic imp_r_initial_tac (Gamma |- (A imp A) by (imp_i [p] p)) tt.

tactic true_imp_tac (Gamma |- true imp A by (imp_i [p] Q))
(Gamma |- A by Q).

tactic false_imp_tac (Gamma |- false imp A by (imp_i false_e)) tt.

T 1ot toto o ToToto o o ToToto o o oo ToFoFo o o o o To fo o

% goal reduction

goalreduce: goal -> goal -> type.
remove_tt: goal -> goal -> type.
%deterministic goalreduce.
hdeterministic remove_tt.

gril:
gr2:
gr3:
gr4:
rtl:
rt2:
rt3:

rt4:
rtb:

goalreduce (G1 & G2) RG <-

goalreduce G1 RG1 <- goalreduce G2 RG2 <- remove_tt (RGLl & RG2) RG.
goalreduce (allp G) RG <-

({p} goalreduce (G p) (RGLl p)) <- remove_tt (allp RG1l) RG.
goalreduce (alltm G) RG <-

({t} goalreduce (G t) (RGLl t)) <- remove_tt (alltm RG1) RG.
goalreduce G G.

remove_tt (G & tt) G.
remove_tt (tt & G) G.
remove_tt (allp [pltt) tt.
remove_tt (alltm [t]tt) tt.
remove_tt G G.

T 1ot toto o ToToto o o ToToto o o oo ToFoFo o o o o Yo Fo o

% the tacticals (an interpreter for tactics)

maptac: tac -> goal -> goal -> type.

ml:
m2:

m3:
m4:
mb5:

maptac T tt tt.

maptac T (InGl & InG2) (OutGl & OutG2) <-

maptac T InGl OutGl <- maptac T InG2 OutG2.

maptac T (allp InG) (allp OutG) <- {p} maptac T (InG p) (OutG p).
maptac T (alltm InG) (alltm OutG) <- {t} maptac T (InG t) (OutG t).
maptac T (Gamma |- A by P) OutG <- tactic T (Gamma |- A by P) OutG.

idtac: tac.

then: tac -> tac -> tac. %infix left 2 then.
thenc: tac -> tac -> tac. %infix left 2 thenc.
orelse: tac —-> tac -> tac. %infix left 2 orelse.
repeat: tac -> tac.

try:

tac -> tac.

complete: tac -> tac.

tacticall: tactic idtac G G.
tactical2: tactic (T1 then T2) InG OutG <-

tactic T1 InG MidG <- maptac T2 MidG OutG.

13



tactical3: tactic (T1 orelse T2) InG OutG <- tactic T1 InG OutG.
tactical4: tactic (T1 orelse T2) InG OutG <- tactic T2 InG OutG.
tacticalb: tactic (repeat T) InG OutG <-

tactic ((T then (repeat T)) orelse idtac) InG OutG.
tactical6: tactic (try T) InG OutG <- tactic (T orelse idtac) InG OutG.
tactical7: tactic (complete T) InG tt <-

tactic T InG OutG <- goalreduce OutG tt.
tactical8: tactic (T1 thenc T2) InG OutG <-

tactic T1 InG MidG <- tactic T2 MidG OutG.

extractgoal : rational -> rational -> rational -> goal -> goal -> type.
hdeterministic extractgoal.
el: extractgoal N N (N + 1) (Gamma |- A by P) (Gamma |- A by P).
e2: extractgoal N M (M + 1) (Gamma |- A by P) tt.
e3: extractgoal N M M tt tt.
ed: extractgoal N NIn NOut (InGl & InG2) (OutGl & OutG2) <-
extractgoal N NIn NMid InGl OutGl <-
extractgoal N NMid NOut InG2 OutG2.
eb: extractgoal N NIn NOut (allp InG) (allp OutG) <-
{p} extractgoal N NIn NOut (InG p) (OutG p).
e6: extractgoal N NIn NOut (alltm InG) (alltm OutG) <-
{t} extractgoal N NIn NOut (InG t) (OutG t).

extract_one_goal : rational -> tac.

e7: tactic (extract_one_goal N) InG OutG <-
extractgoal N 1 M InG MidG <-
goalreduce MidG OutG.

step: rational -> tac —-> tac.
stepl : tactic (step N T) InG OutG <-
tactic (T thenc (extract_one_goal N)) InG OutG.

T 1ot toto o ToToto o o ToTo oo o o ToFo oo o o o Yo Fo o

% example compound tactics

repeatall: tac =
(repeat (initial_tac orelse true_r_tac orelse and_r_tac orelse imp_r_tac
orelse or_rl_tac orelse or_r2_tac orelse imp_r_initial_tac
orelse true_imp_tac orelse false_imp_tac)).

fo_auto: tac =
(repeat (initial_tac orelse (and_l_tacR 0) orelse imp_r_tac orelse
(exists_1_tacR 0) orelse forall_r_tac orelse
(or_l_tacR 0) orelse and_r_tac orelse (imp_l_tacR 0) orelse
neg_r_tac orelse or_rl_tac orelse or_r2_tac orelse
(neg_l_tacR 0) orelse exists_r_tac orelse
(forall_1_tacR 0))).

T 1ot toto o ToToToto o ToTo o o o o ToTo oo o o o Jo Fo o

% example queries

pl: o.
p2: o.
p3: o.
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% Example 1

hquery * 1 tactic imp_r_tac
(nil |- ((pl and p2) imp (p2 and pl)) by P) OutG.

%query * 1 tactic (imp_r_tac then and_r_tac)
(nil |- ((pl and p2) imp (p2 and pl)) by P) OutG.

%query * 1 tactic (step 2 (imp_r_tac then and_r_tac))
(nil |- ((pl and p2) imp (p2 and pl)) by P) OutG.

%query * 1 tactic (imp_r_tac then and_r_tac then (and_1_tac 1) then
initial_tac)

(nil |- ((pl and p2) imp (p2 and pl)) by P) OutG.

%query * 1 tactic fo_auto
(nil |- ((pl and p2) imp (p2 and pl)) by P) OutG.

% Example 2

%query * 1 tactic (repeat and_r_tac) (nil |- (pl and p2 and p3) by P) OutG.
hquery * 1 tactic repeatall (nil |- (pl and p2 and p3) by P) OutG.

%query * 1 tactic fo_auto (nil |- (pl and p2 and p3) by P) ODutG.

hquery * 1 tactic (extract_one_goal 3)
(nil |- pl by X1 & nil |- p2 by X2 & nil |- p3 by X3) G.

%query * 1 tactic (step 3 (repeat and_r_tac))
(nil |- (pl and p2 and p3) by P) G.

q: 1 -> o.
a: 1i.

b: 1.

% Example 3

%query * 1 tactic imp_r_tac
(nil |- (((q a) or (q b)) imp (exists [x](q x))) by P) G.

%query * 1 tactic (step 1 (imp_r_tac then (or_l_tacR 0) then
exists_r_tac then initial_tac))

(nil |- (((q a) or (q b)) imp (exists [x](q x))) by P) G.

%query * 1 tactic fo_auto
(nil |- (((q @) or (q b)) imp (exists [x]1(q x))) by P) OutG.
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