
Interative Theorem Proving in TwelfAmy FeltyShool of Information Tehnology and EngineeringUniversity of OttawaCanadaafelty�site.uottawa.a1 IntrodutionIn reent work, we showed how to implement tati-style theorem proving in Twelf [2℄. Tatisand tatials are a mehanism used in a variety of theorem provers suh as LCF [5℄, HOL [4℄,and Coq [8℄. They provide exible ontrol for goal-direted proof searh. Tatis provide thebasi searh proedures, while tatials are used to ompose tatis in various ways to form moreomplex operations or proof searh strategies. Our goal was to add the power of tati-styleproof searh to our proof-arrying ode system, whih is implemented in Twelf [1℄.The Twelf system [7℄ is an implementation of the Logial Framework (LF) [6℄ whih provideslogi programming apabilities. LF is a dependently-typed language, and our implementationshowed how to use the dependent types to guarantee partial orretness of tatis. Our imple-mentation in Twelf was adapted from our earlier work implementing tatis and tatials in thehigher-order logi programming language �Prolog [3℄. In �Prolog, there are no dependent typesand so we did not have the partial orretness guarantee. On the other hand, �Prolog providesprogramming support suh as ontrol primitives and I/O, while Twelf does not, whih allowedus to implement a more exible theorem prover. The emphasis in Twelf has been on provingproperties of logis rather than building theorem provers for them, and so there are no plans toprovide this kind of support.Here, we desribe how to do interative theorem proving in Twelf without ontrol or I/Oprimitives, thus allowing us to provide the bene�ts of both dependent types and interative proofin the same setting. The lak of I/O primitives, however, fores a partiular style of theoremproving. This style is similar to the one adopted in HOL. Both of these theorem provers havethe property that the language that is used to implement the tatis and tatials is the sameas the language used to interat with the system to build proofs. In our ase this language isTwelf, while the programming language for HOL is ML.2 A Twelf Theorem Prover for First-Order LogiAs an example, we will onsider a theorem prover for �rst-order logi. The implementation ofthe logi and the basi tatis and tatials is exatly the same as in our previous work [2℄, sowe just summarize here. We show just enough of the ode to handle the simple example usedin the next setion to illustrate interative proof. The full ode an be found in the appendix.Figure 1 introdues the Twelf delarations for �rst-order logi. Only the onnetives andrules for impliation and onjuntion are shown. The rules given are the introdution and1

i : type.o : type.pf : o -> type.imp : o -> o -> o. %infix right 10 imp.imp_i : (pf A -> pf B) -> pf (A imp B).imp_e : pf (A imp B) -> pf A -> pf B.and : o -> o -> o. %infix right 12 and.and_i : pf A -> pf B -> pf (A and B).and_e1 : pf (A and B) -> pf A.and_e2 : pf (A and B) -> pf B.Figure 1: Example delarations for �rst-order logi in Twelf.elimination rules for natural dedution. Dependent types are used so that a term of type (pfA) represents a proof in natural dedution of formula A.Figure 2 introdues the data strutures for proof goals. Eah goal has a list of hypothesesassoiated with it. The �rst 4 delarations in the �gure introdue these lists. An in�x omma isused to separate items in the list. An individual hypothesis pairs a formula with its proof usingthe by onstrutor. Dependent types are used to guarantee that the seond argument is a proofof the �rst argument. The turnstile is used to separate the hypotheses from the onlusion, andforms the primitive goal of our prover. After the primitive goal delaration, 3 onstrutors areintrodued for ompound goals. Their use is illustrated in the implementation of the 4 tatisthat follow, whih implement basi proof steps. A tati has 3 arguments. The �rst is thetati name, the seond is the input goal, and the third is the output goal whih ontains thesubgoal(s) that still must be solved to omplete the proof.As the �rst tati illustrates, the output goal is tt whenever the proof has been ompleted,indiating there is nothing more to be done. This tati ompletes the proof by �nding the on-lusion among the hypotheses using the memb program. The lauses for list proessing prediatessuh as memb are straightforward and we do not show them here. The seond tati implementsthe impliation introdution rule. In the output goal, allp is used to introdue a bound variablep to represent a proof of A. The third tati implements the onjuntion introdution rule. Notethat the output goal ontains the two subgoals that must be ompleted, separated by the & goalonstrutor. The fourth tati illustrates the implementation of elimination rules as tatis.Here, nth item is used to �nd the Nth hypothesis in Gamma and add two new hypotheses in theoutput subgoal. The nth item program is implemented so that if the �rst argument is 0, it atslike memb.Figure 3 implements some standard tatials. The last 5 delarations are the tatials them-selves, while the remaining ode is the Twelf version of the �Prolog ode whih is needed toimplement tatials in a logi programming language.The goalredue ode simpli�es ompound goals by removing all unneessary ourrenes oftt. The deterministi diretive tells the logi programming engine that all queries involvingthe goalredue and remove tt prediates should sueed at most one. This diretive is not aspowerful as the Prolog ut (!) operator, whih we use in the �Prolog version of this ode, butit is suÆient for this program.The mapta tatial applies tatis to ompound goals, reduing them to basi goals before2

hyp: type.hyps: type.nil : hyps., : hyp -> hyps -> hyps. %infix right 4 , .by: {A} pf A -> hyp. %infix none 5 by.goal: type.|- : hyps -> hyp -> goal. %infix none 3 |- .&: goal -> goal -> goal. %infix right 2 &.allp: (pf A -> goal) -> goal.tt: goal.ta: type.initial_ta: ta.imp_r_ta: ta.and_r_ta: ta.and_l_ta: rational -> ta.tati: ta -> goal -> goal -> type.t1: tati initial_ta (Gamma |- A by P) tt <- memb (A by P) Gamma.t2: tati imp_r_ta (Gamma |- (A imp B) by (imp_i P1))(allp [p: pf A℄(A by p , Gamma |- B by (P1 p))).t3: tati and_r_ta (Gamma |- (A and B) by (and_i P1 P2))(Gamma |- A by P1 & Gamma |- B by P2).t4: tati (and_l_ta N) (Gamma |- C by P)((A by (and_e1 Q)) , (B by (and_e2 Q)) , Gamma |- C by P) <-nth_item N ((A and B) by Q) Gamma.Figure 2: Goals and some tatis for �rst-order logi.

3

goalredue: goal -> goal -> type.remove_tt: goal -> goal -> type.%deterministi goalredue.%deterministi remove_tt.gr1: goalredue (G1 & G2) RG <-goalredue G1 RG1 <- goalredue G2 RG2 <- remove_tt (RG1 & RG2) RG.gr2: goalredue (allp G) RG <-({p} goalredue (G p) (RG1 p)) <- remove_tt (allp RG1) RG.gr3: goalredue G G.rt1: remove_tt (G & tt) G.rt2: remove_tt (tt & G) G.rt3: remove_tt (allp [p℄tt) tt.rt4: remove_tt G G.mapta: ta -> goal -> goal -> type.m1: mapta T tt tt.m2: mapta T (InG1 & InG2) (OutG1 & OutG2) <-mapta T InG1 OutG1 <- mapta T InG2 OutG2.m3: mapta T (allp InG) (allp OutG) <- {p} mapta T (InG p) (OutG p).m4: mapta T (Gamma |- A by P) OutG <- tati T (Gamma |- A by P) OutG.idta: ta.then: ta -> ta -> ta. %infix left 2 then.orelse: ta -> ta -> ta. %infix left 2 orelse.repeat: ta -> ta.tatial1: tati idta G G.tatial2: tati (T1 then T2) InG OutG <-tati T1 InG MidG <- mapta T2 MidG OutG.tatial3: tati (T1 orelse T2) InG OutG <- tati T1 InG OutG.tatial4: tati (T1 orelse T2) InG OutG <- tati T2 InG OutG.tatial5: tati (repeat T) InG OutG <-tati ((T then (repeat T)) orelse idta) InG OutG.Figure 3: Tatials in Twelf.
4

passing them on to other tatials and tatis. Of the remaining 5 tatials, note in partiularthe then tatial, whih performs the omposition of tatis by �rst applying the �rst tati,and then mapping the appliation of the seond tati (using mapta) so that the seond tatigets applied to eah of the primitive subgoals within the (possibly) ompound goal MidG.3 Building Proofs InterativelyIn �Prolog, we were able to implement a query tati that asked the user to input the nexttati to be applied, and we provided a top loop that repeatedly exeuted this query tati. Thelak of I/O prevents us from implementing a top loop in Twelf. Instead, we show how to buildproofs by \editing" tatis. To do so, the user starts with a simple tati and adds to it at eahstep. To illustrate, we prove the simple theorem ((p1 ^ p2)) (p2 ^ p1)) whih expresses thesymmetry of onjuntion. The following Twelf query applies the impliation introdution rule.%query * 1 tati imp_r_ta(nil |- ((p1 and p2) imp (p2 and p1)) by P) OutG.We use logi variables P and OutG for the proof and the output subgoal ontaining the subgoalsstill to be proved after applying imp r ta, respetively. Twelf responds with the output:---------- Solution 1 ----------OutG = allp ([p4:pf (p1 and p2)℄ p1 and p2 by p4 , nil |- p2 and p1 by X1 p4);P = imp_i ([x:pf (p1 and p2)℄ X1 x).__P ontains the proof onstruted so far, and OutG tells us that there is one subgoal with hypothesis(p1 and p2) and onlusion (p2 and p1), where p4 is a bound variable representing a proofof the hypothesis. From this information, we an onlude that we need to apply either and-introdution or and-elimination. We hoose and-introdution and edit our original query tobeome:%query * 1 tati (imp_r_ta then and_r_ta)(nil |- ((p1 and p2) imp (p2 and p1)) by P) OutG.We now obtain the output:---------- Solution 1 ----------OutG =allp([x:pf (p1 and p2)℄p1 and p2 by x , nil |- p2 by X1 x& p1 and p2 by x , nil |- p1 by X2 x);P = imp_i ([x:pf (p1 and p2)℄ and_i (X1 x) (X2 x)).__This output ontains all of the information that we need to proeed, but it is getting diÆult toread. We an ignore P beause we don't need to read the proof as it is onstruted, but we mustbe able to read OutG in order to hoose a next step. In this ase, OutG ontains two subgoals,both within the sope of an allp onstrutor. Although this example is simple, it is lear thatmore omplex proofs ould result in omplex goal struture with many subgoals hidden inside.5

extratgoal : rational -> rational -> rational -> goal -> goal -> type.%deterministi extratgoal.e1: extratgoal N N (N + 1) (Gamma |- A by P) (Gamma |- A by P).e2: extratgoal N M (M + 1) (Gamma |- A by P) tt.e3: extratgoal N M M tt tt.e4: extratgoal N NIn NOut (InG1 & InG2) (OutG1 & OutG2) <-extratgoal N NIn NMid InG1 OutG1 <-extratgoal N NMid NOut InG2 OutG2.e5: extratgoal N NIn NOut (allp InG) (allp OutG) <-{p} extratgoal N NIn NOut (InG p) (OutG p).extrat_one_goal : rational -> ta.e7: tati (extrat_one_goal N) InG OutG <-extratgoal N 1 M InG MidG <-goalredue MidG OutG.Figure 4: A tati for extrating a single subgoal.then: ta -> ta -> ta. %infix left 2 then.tatial6: tati (T1 then T2) InG OutG <-tati T1 InG MidG <- tati T2 MidG OutG.step: rational -> ta -> goal -> goal -> type.step1 : step N T InG OutG <- tati (T then (extrat_one_goal N)) InG OutG.Figure 5: A tati for interation.In order to help with the omplexity of too many subgoals, we write a tati that allowsthe user to hoose one subgoal to work on at eah step and fores the output to show onlythat subgoal. This tati, alled extrat one goal is implemented in Figure 4. It takes anumber argument to indiate whih subgoal should be displayed. The auxiliary deterministiextratgoal program is used to �rst replae all subgoals other than the hosen one with tt,and then goalredue is used to remove these subgoals. If the user hooses a subgoal out ofrange, the result is just tt.We then implement a step tati (in Figure 5) whih applies a spei�ed tati and then usesextrat one goal to extrat a spei� subgoal. This tati uses the new then tatial, whihis similar to then but allows the seond tati to be applied to a ompound subgoal diretlyinstead of mapping its appliation to eah primitive subgoal.Using the new tati, we ontinue our example, and extrat the seond subgoal with thefollowing query.%query * 1 tati (step 2 (imp_r_ta then and_r_ta))(nil |- ((p1 and p2) imp (p2 and p1)) by P) OutG.---------- Solution 1 ----------OutG = allp ([x:pf (p1 and p2)℄ p1 and p2 by x , nil |- p1 by X1 x);P = imp_i ([x:pf (p1 and p2)℄ and_i (X2 x) (X1 x)).__6

This partiular example is simple enough that we an omplete the proof by applying and-elimination in both subgoals at the same time using the following query.%query * 1 tati (step 1 (imp_r_ta then and_r_ta then(and_l_ta 1) then initial_ta))(nil |- ((p1 and p2) imp (p2 and p1)) by P) OutG.---------- Solution 1 ----------OutG = tt;P = imp_i ([x:pf (p1 and p2)℄ and_i (and_e2 x) (and_e1 x)).__The fat that we there is no subgoal 1 after applying this tati indiates that there are noremaining subgoals, and we an see that the proof is a omplete proof.The extrat one subgoal and step tatis are just two examples of tatis that help provideinteration in Twelf. A variety of others an and should be implemented in order to have e�etiveinteration. For instane, unlike our simple example, it will often be desirable to apply di�erenttatis to di�erent subgoals. We ould, for instane, implement a tati whih applies a spei�edtati to one subgoal and leaves the others untouhed. We ould also implement, as is done inHOL, a version of then whih takes a tati to apply �rst and a list of tatis to apply afterthat. The list must be the same length as the number of primitive subgoals generated afterapplying the �rst tati, and the �rst tati in the list would be applied to the �rst primitivesubgoal and so on.4 ConlusionWe have shown how to implement tatis whih help with interative proof in Twelf, whereontrol and I/O primitives are limited. Many of the proofs in our proof-arrying ode systemwere done without the bene�t of this prover. Instead the proof P in eah ase was built byhand using only onstants like those in Figure 1. This prover, espeially with its interativeomponent, provides quite a bit more exibility in onstruting suh proofs.In our �Prolog prover, we did not need as many interative primitives. Instead, the inter-ative interpreter was implemented as a top loop whih asked for an input tati at eah step.The list version of then, for example, was not needed in the implementation of the interativeinterpreter. Note also that in the Twelf prover, we must re-exeute the entire tati every timewe add a step to it. This re-exeution is not neessary in an interative prover with a top loop.Referenes[1℄ Andrew W. Appel and Amy P. Felty. A semanti model of types and mahine instrutions forproof-arrying ode. In The 27th Annual ACM SIGPLAN-SIGACT Symposium on Priniplesof Programming Languages, pages 243{253, 2000.[2℄ Andrew W. Appel and Amy P. Felty. Dependent types ensure partial orretness of theoremprovers. Journal of Funtional Programming, 2002. To appear.[3℄ Amy Felty. Implementing tatis and tatials in a higher-order logi programming language.Journal of Automated Reasoning, 11(1):43{81, August 1993.[4℄ M. J. C. Gordon and T. F. Melham. Introdution to HOL|A Theorem Proving Environmentfor Higher Order Logi. Cambridge University Press, 1993.7

[5℄ Mihael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF:A Mehanised Logi of Computation, volume 78 of Leture Notes in Computer Siene.Springer-Verlag, 1979.[6℄ Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logis. Journalof the ACM, 40(1):143{184, January 1993.[7℄ Frank Pfenning and Carsten Sh�urmann. System desription: Twelf | a meta-logial frame-work for dedutive systems. In Sixteenth International Conferene on Automated Dedution,volume 1632 of Leture Notes in Arti�ial Intelligene, pages 202{206. Springer-Verlag, 1999.[8℄ The Coq Development Team. The Coq Proof Assistant referene manual: Version 7.3.Tehnial report, INRIA, 2002.

8

A The �le logi.elf% Copyright (C) 1999 Andrew Appel and Amy Felty. All rights reserved.i : type.o : type.pf : o -> type.%use inequality/rationals.onst : rational -> i.imp : o -> o -> o. %infix right 10 imp.imp_i : (pf A -> pf B) -> pf (A imp B).imp_e : pf (A imp B) -> pf A -> pf B.and : o -> o -> o. %infix right 12 and.and_i : pf A -> pf B -> pf (A and B).and_e1 : pf (A and B) -> pf A.and_e2 : pf (A and B) -> pf B.or : o -> o -> o. %infix right 11 or.or_i1 : pf A -> pf (A or B).or_i2 : pf B -> pf (A or B).or_e : pf (A or B) -> (pf A -> pf C) -> (pf B -> pf C) -> pf C.forall : (i -> o) -> o.forall_i : ({X:i} pf (A X)) -> pf (forall A).forall_e : pf(forall A) -> {X:i} pf (A X).exists : (i -> o) -> o.exists_i : {X:i}pf (A X) -> pf(exists A).exists_e : pf (exists A) -> ({X:i} pf (A X) -> pf B) -> pf B.false: o.false_e : pf false -> pf A.not : o -> o = [A℄ A imp false.not_i : (pf A -> pf false) -> pf (not A) = imp_i.not_e : pf (not A) -> pf A -> pf false = imp_e.true : o = not false.true_i: pf (true) = not_i [P℄ P.B The �le prover.elf% Copyright (C) 2002 Andrew Appel and Amy Felty. All rights reserved.%%%%%%%%%%%%%%%%%%%%%%%%%% goals of the interpretergoal: type.&: goal -> goal -> goal. %infix right 2 &.allp: (pf A -> goal) -> goal. 9

alltm: (i -> goal) -> goal.tt: goal.ta: type.tati: ta -> goal -> goal -> type.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% basi definitions and utilitieshyp: type.hyps: type.by: {A} pf A -> hyp. %infix none 5 by.nil : hyps., : hyp -> hyps -> hyps. %infix right 4 , .|- : hyps -> hyp -> goal. %infix none 3 |- .memb: hyp -> hyps -> type.memb1: memb H (H , Gamma).membN: memb H1 (H2 , Gamma) <- memb H1 Gamma.memb_and_rest: hyp -> hyps -> hyps -> type.memb_and_rest1: memb_and_rest H1 (H1 , Gamma) Gamma.memb_and_restN: memb_and_rest H1 (H2 , Gamma) (H2 , Rest) <-memb_and_rest H1 Gamma Rest.nth_item: rational -> hyp -> hyps -> type.nth_item1: nth_item 0 H Gamma <- memb H Gamma.nth_item1: nth_item 1 H1 (H1 , Gamma).nth_itemN: nth_item N H1 (H2 , Gamma) <- nth_item (N - 1) H1 Gamma.nth_and_rest: rational -> hyp -> hyps -> hyps -> type.nth_and_rest1: nth_and_rest 0 H Gamma Rest <-memb_and_rest H Gamma Rest.nth_and_rest1: nth_and_rest 1 H1 (H1 , Gamma) Gamma.nth_and_restN: nth_and_rest N H1 (H2 , Gamma) (H2 , Rest) <-nth_and_rest (N - 1) H1 Gamma Rest.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tatis implementing inferene rulesinitial_ta: ta.initial_taN: rational -> ta.and_r_ta: ta.imp_r_ta: ta.or_r1_ta: ta.or_r2_ta: ta.neg_r_ta: ta.forall_r_ta: ta.exists_r_ta: ta.and_l_ta: rational -> ta. 10

and_l_taR: rational -> ta.imp_l_ta: rational -> ta.imp_l_taR: rational -> ta.or_l_ta: rational -> ta.or_l_taR: rational -> ta.neg_l_ta: rational -> ta.neg_l_taR: rational -> ta.forall_l_ta: rational -> ta.forall_l_taR: rational -> ta.exists_l_ta: rational -> ta.exists_l_taR: rational -> ta.true_r_ta: ta.imp_r_initial_ta: ta.true_imp_ta: ta.false_imp_ta: ta.t1a: tati initial_ta (Gamma |- A by P) tt <- memb (A by P) Gamma.t1b: tati (initial_taN N) (Gamma |- A by P) tt <- nth_item N (A by P) Gamma.t2: tati and_r_ta (Gamma |- (A and B) by (and_i P1 P2))(Gamma |- A by P1 & Gamma |- B by P2).t3: tati imp_r_ta (Gamma |- (A imp B) by (imp_i P1))(allp [p2: pf A℄(A by p2 , Gamma |- B by (P1 p2))).t4: tati or_r1_ta (Gamma |- A or B by (or_i1 P)) (Gamma |- A by P).t5: tati or_r2_ta (Gamma |- A or B by (or_i2 P)) (Gamma |- B by P).t6: tati neg_r_ta (Gamma |- (not A) by (not_i P1))(allp [p2: pf A℄(A by p2 , Gamma |- false by (P p2))).t7: tati forall_r_ta (Gamma |- (forall A) by (forall_i P))(alltm [t: i℄(Gamma |- (A t) by (P t))).t8: tati exists_r_ta (Gamma |- (exists A) by (exists_i X P))(Gamma |- (A X) by P).t9: tati (and_l_ta N)(Gamma |- C by P)((A by (and_e1 Q)) , (B by (and_e2 Q)) , Gamma |- C by P) <-nth_item N ((A and B) by Q) Gamma.t10: tati (and_l_taR N)(Gamma1 |- C by P)((A by (and_e1 Q)) , (B by (and_e2 Q)) , Gamma2 |- C by P) <-nth_and_rest N ((A and B) by Q) Gamma1 Gamma2.t11: tati (imp_l_ta N)(Gamma |- C by P)((Gamma |- A by P2) &((B by (imp_e P1 P2)) , Gamma |- C by P)) <-nth_item N ((A imp B) by P1) Gamma.11

t12: tati (imp_l_taR N)(Gamma1 |- C by P)((Gamma2 |- A by P2) &((B by (imp_e P1 P2)) , Gamma2 |- C by P)) <-nth_and_rest N ((A imp B) by P1) Gamma1 Gamma2.t13: tati (or_l_ta N)(Gamma |- C by (or_e P P1 P2))((allp [p1: pf A℄(A by p1 , Gamma |- C by (P1 p1))) &(allp [p2: pf B℄(B by p2 , Gamma |- C by (P2 p2)))) <-nth_item N ((A or B) by P) Gamma.t14: tati (or_l_taR N)(Gamma1 |- C by (or_e P P1 P2))((allp [p1: pf A℄(A by p1 , Gamma2 |- C by (P1 p1))) &(allp [p2: pf B℄(B by p2 , Gamma2 |- C by (P2 p2)))) <-nth_and_rest N ((A or B) by P) Gamma1 Gamma2.t15: tati (neg_l_ta N)(Gamma |- C by P)((Gamma |- A by P2) &((false by (not_e P1 P2)) , Gamma |- C by P)) <-nth_item N ((not A) by P1) Gamma.t16: tati (neg_l_taR N)(Gamma1 |- C by P)((Gamma2 |- A by P2) &((false by (not_e P1 P2)) , Gamma2 |- C by P)) <-nth_and_rest N ((not A) by P1) Gamma1 Gamma2.t17: tati (forall_l_ta N)(Gamma |- C by P)(((A X) by (forall_e Q X)) , Gamma |- C by P) <-nth_item N ((forall A) by Q) Gamma.t18: tati (forall_l_taR N)(Gamma1 |- C by P)(((A X) by (forall_e Q X)) , Gamma2 |- C by P) <-nth_and_rest N ((forall A) by Q) Gamma1 Gamma2.t19: tati (exists_l_ta N)(Gamma |- C by (exists_e P1 P2))(alltm [t: i℄ allp [p: pf (A t)℄ (A t) by p ,Gamma |- C by (P2 t p)) <-nth_item N ((exists A) by P1) Gamma.t20: tati (exists_l_taR N)(Gamma1 |- C by (exists_e P1 P2))(alltm [t:i℄ allp [p: pf (A t)℄ (A t) by p ,Gamma2 |- C by (P2 t p)) <-nth_and_rest N ((exists A) by P1) Gamma1 Gamma2.t21: tati true_r_ta (Gamma |- true by true_i) tt.12

t22: tati imp_r_initial_ta (Gamma |- (A imp A) by (imp_i [p℄ p)) tt.t23: tati true_imp_ta (Gamma |- true imp A by (imp_i [p℄ Q))(Gamma |- A by Q).t24: tati false_imp_ta (Gamma |- false imp A by (imp_i false_e)) tt.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% goal redutiongoalredue: goal -> goal -> type.remove_tt: goal -> goal -> type.%deterministi goalredue.%deterministi remove_tt.gr1: goalredue (G1 & G2) RG <-goalredue G1 RG1 <- goalredue G2 RG2 <- remove_tt (RG1 & RG2) RG.gr2: goalredue (allp G) RG <-({p} goalredue (G p) (RG1 p)) <- remove_tt (allp RG1) RG.gr3: goalredue (alltm G) RG <-({t} goalredue (G t) (RG1 t)) <- remove_tt (alltm RG1) RG.gr4: goalredue G G.rt1: remove_tt (G & tt) G.rt2: remove_tt (tt & G) G.rt3: remove_tt (allp [p℄tt) tt.rt4: remove_tt (alltm [t℄tt) tt.rt5: remove_tt G G.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% the tatials (an interpreter for tatis)mapta: ta -> goal -> goal -> type.m1: mapta T tt tt.m2: mapta T (InG1 & InG2) (OutG1 & OutG2) <-mapta T InG1 OutG1 <- mapta T InG2 OutG2.m3: mapta T (allp InG) (allp OutG) <- {p} mapta T (InG p) (OutG p).m4: mapta T (alltm InG) (alltm OutG) <- {t} mapta T (InG t) (OutG t).m5: mapta T (Gamma |- A by P) OutG <- tati T (Gamma |- A by P) OutG.idta: ta.then: ta -> ta -> ta. %infix left 2 then.then: ta -> ta -> ta. %infix left 2 then.orelse: ta -> ta -> ta. %infix left 2 orelse.repeat: ta -> ta.try: ta -> ta.omplete: ta -> ta.tatial1: tati idta G G.tatial2: tati (T1 then T2) InG OutG <-tati T1 InG MidG <- mapta T2 MidG OutG.13

tatial3: tati (T1 orelse T2) InG OutG <- tati T1 InG OutG.tatial4: tati (T1 orelse T2) InG OutG <- tati T2 InG OutG.tatial5: tati (repeat T) InG OutG <-tati ((T then (repeat T)) orelse idta) InG OutG.tatial6: tati (try T) InG OutG <- tati (T orelse idta) InG OutG.tatial7: tati (omplete T) InG tt <-tati T InG OutG <- goalredue OutG tt.tatial8: tati (T1 then T2) InG OutG <-tati T1 InG MidG <- tati T2 MidG OutG.extratgoal : rational -> rational -> rational -> goal -> goal -> type.%deterministi extratgoal.e1: extratgoal N N (N + 1) (Gamma |- A by P) (Gamma |- A by P).e2: extratgoal N M (M + 1) (Gamma |- A by P) tt.e3: extratgoal N M M tt tt.e4: extratgoal N NIn NOut (InG1 & InG2) (OutG1 & OutG2) <-extratgoal N NIn NMid InG1 OutG1 <-extratgoal N NMid NOut InG2 OutG2.e5: extratgoal N NIn NOut (allp InG) (allp OutG) <-{p} extratgoal N NIn NOut (InG p) (OutG p).e6: extratgoal N NIn NOut (alltm InG) (alltm OutG) <-{t} extratgoal N NIn NOut (InG t) (OutG t).extrat_one_goal : rational -> ta.e7: tati (extrat_one_goal N) InG OutG <-extratgoal N 1 M InG MidG <-goalredue MidG OutG.step: rational -> ta -> ta.step1 : tati (step N T) InG OutG <-tati (T then (extrat_one_goal N)) InG OutG.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% example ompound tatisrepeatall: ta =(repeat (initial_ta orelse true_r_ta orelse and_r_ta orelse imp_r_taorelse or_r1_ta orelse or_r2_ta orelse imp_r_initial_taorelse true_imp_ta orelse false_imp_ta)).fo_auto: ta =(repeat (initial_ta orelse (and_l_taR 0) orelse imp_r_ta orelse(exists_l_taR 0) orelse forall_r_ta orelse(or_l_taR 0) orelse and_r_ta orelse (imp_l_taR 0) orelseneg_r_ta orelse or_r1_ta orelse or_r2_ta orelse(neg_l_taR 0) orelse exists_r_ta orelse(forall_l_taR 0))).%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% example queriesp1: o.p2: o.p3: o. 14

% Example 1%query * 1 tati imp_r_ta(nil |- ((p1 and p2) imp (p2 and p1)) by P) OutG.%query * 1 tati (imp_r_ta then and_r_ta)(nil |- ((p1 and p2) imp (p2 and p1)) by P) OutG.%query * 1 tati (step 2 (imp_r_ta then and_r_ta))(nil |- ((p1 and p2) imp (p2 and p1)) by P) OutG.%query * 1 tati (imp_r_ta then and_r_ta then (and_l_ta 1) theninitial_ta) (nil |- ((p1 and p2) imp (p2 and p1)) by P) OutG.%query * 1 tati fo_auto(nil |- ((p1 and p2) imp (p2 and p1)) by P) OutG.% Example 2%query * 1 tati (repeat and_r_ta) (nil |- (p1 and p2 and p3) by P) OutG.%query * 1 tati repeatall (nil |- (p1 and p2 and p3) by P) OutG.%query * 1 tati fo_auto (nil |- (p1 and p2 and p3) by P) OutG.%query * 1 tati (extrat_one_goal 3)(nil |- p1 by X1 & nil |- p2 by X2 & nil |- p3 by X3) G.%query * 1 tati (step 3 (repeat and_r_ta))(nil |- (p1 and p2 and p3) by P) G.q: i -> o.a: i.b: i.% Example 3%query * 1 tati imp_r_ta(nil |- (((q a) or (q b)) imp (exists [x℄(q x))) by P) G.%query * 1 tati (step 1 (imp_r_ta then (or_l_taR 0) thenexists_r_ta then initial_ta))(nil |- (((q a) or (q b)) imp (exists [x℄(q x))) by P) G.%query * 1 tati fo_auto(nil |- (((q a) or (q b)) imp (exists [x℄(q x))) by P) OutG.
15

