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Abstract. Theorem proving and model checking are combined to fully
formalize a correctness proof of a broadcasting protocol. The protocol is
executed in a network of processors which constitutes a binary tree of
arbitrary size. We use the theorem prover CoQ and the model checker
SPIN to verify the broadcasting protocol.

Our goals in this work are twofold. The first one is to provide a strat-
egy for carrying out formal, mechanical correctness proofs of distributed
network algorithms. Even though logical specifications of programs im-
plementing such algorithms are often defined precisely enough to allow a
human verifier to prove the program’s correctness, the definition of the
network is often only informal or implicit. Our example illustrates how
an underlying network can be formally defined by means of induction,
and how to reason about network algorithms by structural induction.
Our second goal is to integrate theorem proving and model checking
to increase the class of algorithms for which mechanical verification is
practical. Theorem provers are expressive and powerful, but require so-
phisticated insight and guidance by the user. Model checkers are fully
automatic and effective for verifying finite state automata, but limited to
finite spaces of a certain size. We provide a proof strategy which draws
on the strengths of both techniques.

1 Introduction

In general, distributed network algorithms are designed to function properly for
a specific class of networks, such as rings or complete networks. In most cases
the size of the network is unknown and the algorithms are described in a generic
way. The (topology of the) underlying network is crucial for the correctness of
an algorithm. However, the definition of the network is often left out of the
logical specification of the program implementing the algorithm; it is often in-
formal and only implicitly defined. As a consequence, it is not directly possible
to mechanically check whether a correctness proof (constructed manually) itself
is correct. The current paper addresses this problem, and shows how a com-
bination of model checking and theorem proving can be used to reason about
programs executed in a specific class of networks when the size and exact shape
of the network are unknown.
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Model checking has been used to verify a number of distributed network
algorithms and protocols. It is a powerful verification technique that provides
full automation. However, model checkers cannot handle networks of arbitrary
size. Theorem provers, on the other hand, generally implement very expressive
logics which can handle infinite or arbitrary parameters, such as the number
of processes. But they require sophisticated insight and guidance by the user.
In this paper, we present an integration of theorem proving and model checking
such that structural induction over the network is done within a theorem prover,
whereas the base case and many of the subcases of the induction step are verified
using a model checker.

In our combined approach, we use the CoqQ Proof Development System [6]
and the SPIN Verification System [15]. Coq is an interactive tactic-style theo-
rem prover which implements the Calculus of Inductive Constructions (CIC),
a higher-order type theory that supports inductive types. When a type is de-
fined inductively in CoqQ, a principle of structural induction and an operator for
defining functions recursively over that type are automatically generated. SPIN
is a model checker for establishing temporal properties of systems modeled in a
guarded commands-like language called PROMELA.

The example we consider to demonstrate our techniques is the PIF-protocol,
a broadcasting algorithm developed by Segall [26], executed in a network that
constitutes a binary tree. (“PIF” stands for Propagation of Information with
Feedback.) The size of the tree is left unspecified. The PIF-protocol is important
because it can be identified in many distributed network algorithms, such as
the spanning tree algorithm in [8] and the minimum path algorithms in [26].
Intuitively, the PIF-protocol achieves the following: A value, initially recorded
by the root of the tree, has to be broadcast and eventually every node in the
tree should record this value. Also, the root should eventually be notified that
every node has recorded the value.

We specify the PIF-protocol in Manna and Pnueli’s Linear Time Temporal
Logic (LTL) [19]. The program implementing the PIF-protocol is a pair consist-
ing of a state formula and a finite set of actions formulated as in UNITY [3].
(A state formula is an LTL formula without temporal operators.) The formula
characterizes the states in which the program may start its execution. Our cor-
rectness proof of the PIF-protocol can be decomposed into three parts: (a) a
proof that some state formula continuously holds; (b) a proof that some state
formula is stable (once the formula holds, it continues to hold); and (c) a proof
of a liveness property.

For part (a) we have applied (a variant of) the S_Inv rule of Manna and
Pnueli [19]. This rule states that state formula I is always true if there exists
a state formula Inv such that Inv holds initially; it is preserved under every
action of the program; and it is stronger than I. The technical formulation of
this rule is as follows, where O denotes the always-operator from LTL.

0 — Inv, {Inv}n{Inv},i=1,...,n, Inv—>1T

Prog F OI for Prog = {@,{m1,..., T}

Here O is the initial condition and 74,...,7, are the actions of program Prog.



The formula {p}7{q} denotes a Hoare triple interpreted as usual: if state formula
p holds before action 7 is executed, then state formula ¢ holds after. Using Coq
and SPIN, we prove the premises of the S_Inv rule for an arbitrary binary tree.
Formula I expresses that whenever the root has been notified that all nodes have
recorded the value broadcast, all nodes have indeed recorded that value. There
are four parts to the proof:

1. Definitions are given in CoQ to specify programs as well as the syntax and
inference rules for the fragment of LTL needed for our example.

2. The structure of the network is formally specified by defining binary trees
of arbitrary size using the built-in inductive types of Coq.

3. The definition of trees is used to define two functions, one which maps a
binary tree to a set of actions expressing the program for that tree, and one
which maps a binary tree to an LTL formula which expresses the invariant
Inv for that tree.

4. The premises of the S_Inv rule are established by structural induction on
binary trees.

As mentioned, correctness of the PIF-protocol also involves proving a stable
property and a liveness property. The stable property has been established in
the same way as the formula in (a) above by application of a proof rule similar
to rule S_Inv. We have not done the proof of the liveness property. This proof
will be similar to the other two because it again involves reasoning about the
program’s actions.

The premises of the S_Inv rule are proved by three inductive arguments, one
each for the first and last premises, and one for all of the remaining premises.
The first two do not involve reasoning about actions. SPIN is used to handle
some tedious but straightforward propositional reasoning. For the third induc-
tive argument, the base case (for the one-node tree) involves reasoning about a
program containing two actions. SPIN easily verifies that the invariant holds for
each action. In the induction step, we assume that the invariant holds for the
program of a tree ¢, and we must show that a slightly larger invariant holds for
a slightly larger program obtained from tree ¢ with two new nodes attached at
some leaf. We decompose the inductive case into many cases, of which twenty-
six are verified by SPIN. These cases are generally obtained from subgoals of the
form {pAg}7{pAg}, for state formulas p, ¢ and action 7. These cases can be split
into two subgoals {p}T{p} and {g}7{g} such that the former can be proved easily
using the theorem prover, and the latter can be mapped directly to a PROMELA
program and verified using SPIN. The formula g in these cases is quite large and
a direct proof in CoQ involves a lot of detailed repetitive reasoning, which we
avoid because of our use of the model checker.

In related work, CoqQ is used in [1, 14] to verify the Alternating Bit Protocol
and a data link protocol without the aid of a model checker. In both these proofs
the network is fixed. Chou [4] verifies the PIF-protocol for arbitrary connected
graphs in the HOL theorem prover [11] again without the aid of a model checker.
His proof uses abstraction to reduce the concrete version of the problem to



an abstract one. In particular, he defines an abstract version of the concrete
program, shows that the property holds for the abstract program, and shows
that any property that holds for the abstract program also holds for the concrete
one. In contrast to his proof, our proof does not use abstraction; ours is direct
and, in addition, supported by a model checker. It is straightforward to extend
our proof to cope with arbitrary connected graphs.

As mentioned, mechanical assistance in proofs is also offered by model check-
ers [5, 15, 21, 16]. They establish validity of formulae in a model, are fully auto-
mated, and are extremely fast for reasonably sized models. All model checkers
suffer from the state explosion problem, which has been attacked in [10, 20, 24,
28]. Model checkers have been used to verify a number of complex systems, see
for example [21]. Several methods for inductive reasoning about systems consist-
ing of an arbitrary number of (identical or similar) processes have been proposed
in the literature. German and Sistla [9] present a fully automatic method. Their
algorithm is doubly exponential in the size of the system, and therefore inef-
ficient. Induction principles based on equivalences between systems have been
proposed by Browne, Clarke, and Grumberg [2] and by Shtadler and Grumberg
[27]. Pre-orders, rather than equivalences, between systems are used in the meth-
ods of Kurshan and McMillan [18] and of Wolper and Lovinfosse [29]. In contrast
to our use of CoQ’s built-in structural induction, each of the above mentioned
induction principles is tailored to a specific application.

Kurshan and Lamport [17] and others have investigated how to integrate the-
orem proving and model checking to verify programs when pure model checking
fails. In [17] a 64-bit multiplier is proved correct. Rajan, Shankar, and Srivas [25]
and Miiller and Nipkow [22] combine theorem proving and model checking to ver-
ify infinite state systems. In these two papers, the underlying idea is to reduce
an infinite state system to a finite one using abstraction techniques as in [4].
Unlike [4], in [25] and [22] the finite state system is verified by a model checker,
whereas the reduction is verified using the theorem prover. In our example pre-
sented here, instead of abstraction, we handle the arbitrary parameter (in our
case the number of nodes) by a direct inductive argument and use model checking
whenever applicable on the subcases.

The rest of this paper is organized as follows: The PIF-protocol is described
in Sect. 2. In Sect. 3, we briefly present CoqQ and SPIN. In Sect. 4, we outline
how our correctness proof has been carried out using a combination of these two
systems. Finally, Sect. b draws some conclusions.

2 The PIF-Protocol

In this section we specify and implement the PIF-protocol as analyzed in the
rest of this paper.

2.1 Specification

Consider a fixed, but arbitrary network constituting a non-empty, finite, binary
tree. Nodes in the tree are identified with processes; edges with communication



channels. One node R is identified with the tree’s root. Assume that R has
recorded some value V. The informal specification of the PIF-protocol is:

(1) Eventually every process in the network records V.
(2) Eventually R is notified that all processes have recorded value V; and once
this notification has taken place, all processes continue to record that value.

For a given graph (N, E), where N is a set of nodes and E is a set of edges,
let Tree(N, E) denote that this graph is a non-empty, finite, binary tree. Let
R € N denote the tree’s root. Every process n € N has its own variable v,
for recording the broadcast value V. Initially vg = V holds, i.e., process R
has recorded value V, whereas the initial values of variables v,, for processes n
different from R, are irrelevant. The root also has its own variable doneg used
to record whether all processes in the network have recorded value V. Initially,
donegr = 0 holds. (Actually, for nodes n different from R, we have introduced
done,, to allow generic descriptions of the processes, but they are never used.)

Using the always-operator O and the eventual-operator <& from LTL, it is
required that the following holds: If R € N Avg = V Adoner = 0 holds initially,
then
Tree(N,E) — O(doneg =1—>Vné€ Nu, =V)

A O(doneg = 1 — Odoner = 1)
A Odonep =1

is true. That is, it is always the case that all processes in the network have
recorded value V if donegr = 1 holds; once doneg = 1 holds, it continues to hold
(doner = 1 is stable); and eventually doner = 1 holds. These three conjuncts
correspond to properties (a), (b), and (c) mentioned in the previous section. The
proof described in the current paper is that of the first conjunct, property (a).

2.2 Implementation

A program consists of two parts (cf. [3]): a state formula and a (finite) collection
of guarded actions. The formula characterizes the initial states in which the
program may start its execution. A guarded action is of the form g — z; :=

€1, ...y Ly = €n for some natural number m > 0, consisting of guard g and body
L1 := €1,...,Lm 1= €m. Here, z; are distinct variables (to avoid name-clashes)
and e; are expressions (¢ = 1,...,m). Guard g is a boolean expression without

quantifiers. An action is enabled in a state if its guard evaluates to true in that
state. If in some state during execution no action of the program is enabled,
then the program is considered terminated as in [19]. Otherwise, an enabled
actlon g = @1 :=€1,..., &, ‘= €y, is nondeterministically chosen for execution.
Execution of this action means that the assignments z; :=eq,..., 2, := e, are
executed atomically and simultaneously.

The actions of the program implementing the PIF-protocol are given in
Fig. 1. There n ranges over the nodes in the tree; par denotes the parent of
n, provided that n has a parent; and [ and r denote the left and right child
of n, respectively. As described above, each node n maintains variables v, and



a0 ::ccn =0Apcn =1 = pcn, := 4,done, :=1

a2_down ::ccn =2Apcn =1Apci =0Ape, =0 = pey := 1,01 := Un,pCr := 1,0p := v
a3_down ::ccn =3Apcn =1Apct =0Ape, =0 = pey := 1,01 := U, pCr := 1,0p := v
al_up ::ccn =1 Apcn =1 = PCpar := PCpar + 1, pCn := 4

a3_up :: cCn = 3 APpCn = 3 = PCpar ‘= PCpar + 1,pCn := 4

a2_term :: ccn = 2 A pcn = 3 — peyn, = 4,done, := 1

Fig. 1. Actions executed by every node in the tree. The collection of these actions, for
all nodes in the tree, constitutes the PIF-protocol.

doney,. In addition, every node maintains a variable pc,, which can be thought
of as n’s program counter. Initially, pcrg=1 holds, whereas pc,=0 holds for all
nodes n different from R. We have also used variables cc, for nodes n in the
tree. Variables cc, cannot be changed by any action and represents the num-
ber of n’s neighbors in the tree. Thus, for the root of the tree either ccp=0 or
ccr=2 holds. In the first case, R is the only node in the tree; in the second
case, the tree consists of more than one node. There exists exactly one node
n in the tree satisfying cc, =0 or cc,=2. We identify this node with the root
R. For other nodes n in the tree, we have that either cc,=1 (n is a leaf) or
ccp,=3 (n is an internal node) holds. The initial values of the cc variables, the pc
variables, donegp = 0, vg = V, and R € N characterize the states in which the
execution of the program may start. Action a0 in Fig. 1 can be executed only
if the tree consists of one node. In this case, the node sets its variable pcg to 4
and its variable doneg to 1 and the program terminates. If the tree consists of
more than one node, the root initiates the program by passing on value V to
its neighbors (action a2_down). After an internal node has received value V, it
passes V on to its children (action a3_down). When a leaf has received value V,
it informs its parent about this (action al_up). After an internal node has been
informed that both its children have received the value, the node itself informs
its parent (action a3_up). Eventually, when the root gets the information that
its children (hence, all other nodes in the tree) have received value V, it sets its
variable doneg to 1 and the program terminates (action a2_term).

3 CoqQ and SPIN

We briefly introduce the CoQ Proof Development System and the SPIN Verifi-
cation System.

3.1 The CoqQ Proof Development System

As stated, CoqQ is an implementation of the Calculus of Inductive Constructions
(CIC). Familiarity with CIC is not required for understanding the proofs in
the next section. We simply introduce the syntax used there. Let z represent



variables and M, N represent terms of CIC. The syntax of terms is as follows.

Prop | Set | Type | ¢ | MN | dz2: M.N | Ve: M.N | M > N |
MAN | MVN | 32: M.N | -M | M=N | Indz: M {Ny|---|Np.} |
Rec M N | Casez: M of My = Ny,..., M, => N,

Prop is the type of logical propositions, whereas Set is the type of data types.
Type 1s the type of both Prop and Set. In CIC, variables and constants are not
distinguished. In CoQ, a new constant can be introduced and given with its type
using the Parameter keyword. It is also possible to introduce new constants via
definitions. The Definition keyword is used for this purpose.

Application is represented as juxtaposition of terms. Abstraction is rep-
resented as usual where the bound variable is typed. The logical operators
Y,—, A, V, 3, -, = are the familiar ones from higher-order logic.

The Ind constant is used to build inductive definitions where M is the type
of the class of terms being defined and Ny, ..., N, where n > 0 are the types of
the constructors. In CoQ, inductive definitions are introduced with an Inductive
declaration where each constructor is named and given with its type separated
by vertical bars. Rec and Case are the operators for defining recursive and
inductive functions, respectively, over inductive types.

3.2 The SPIN Verification System

As stated, SPIN [15] is a tool for establishing temporal properties of systems mod-
eled in a guarded commands-like language called PROMELA. SPIN has been used
to prove properties of communication protocols and asynchronous hardware. It
can also be used to prove termination of systems. As we have noted, model check-
ing provides complete automation. The algorithms underlying a model checker
such as SPIN suffer from scalability: They are PSPACE hard. Consequently, one
quickly runs out space as the size of the model increases.

A PROMELA program consists of a section in which variables are declared and
statements. In essence, statements are built up from assignments, the empty
statement skip, sequential composition, assert statements, conditional state-
ments, and loops. (We will not use loops in this paper.) The conditional state-
ments we use in this paper are of the form if ::g7 — Sy::- - i:gn — Sn fi, where
symbol “::” separates the guarded actions g; — S; where g; is a guard and §; is
a statement (4 = 1,...,n). (Conditional statements in PROMELA are more gen-
eral.) If a guard is the constant true then it may be omitted. These conditional
statements have the same interpretation as, for example, Dijkstra’s conditional
statements with the exception that in PROMELA the process blocks (and does
not abort) when none of its guards is enabled. An assert statement is of the form
assert{g}, for a guard g. This statement acts like skip when executed in a state
satisfying g; otherwise the execution is aborted.

For a finite set of states, one can generate an arbitrary state by means of a
conditional statement. For example, ¢f :: 2:=0 :: &:=1 f; if = y:=1 = y:=2 fi



generates some state in the set characterized by predicate (z = 0V z = 1) A
(y=1vy=2).

Partial correctness {p} T {g} of program T w.r.t. precondition p and post-
condition ¢ is interpreted as usual (cf. Sect. 1). We have that {p} ¢ — a {q}
holds iff {p A g} a {¢} holds. In our proof, we often need to prove such a partial
correctness formula, where a always terminates. Consider the finite set of states
corresponding to the possible combinations of values that the variables may take.
Let S be the PROMELA program that generates an arbitrary state from this set
in the manner described above. The partial correctness formula {p A g} a {q}
can be shown to be equivalent to termination of the PROMELA program

S;if i pAg — a; assert{q} :: (pAg) — skip fi.

Similarly, validity of the implication p — ¢ can be translated into the question
of whether or not the PROMELA program

S; if :: p— assert{q} :: —p — skip fi
always terminates. Validation of such implications and of partial correctness
formulas of single actions are the only two ways in which we use SPIN. (In our
example p and ¢ are generally very large.)

4 Correctness Proof of the PIF-Protocol

In this section we outline our correctness proof of the PIF-protocol executed in
an arbitrary binary tree.

4.1 Specification of State Formulas and Actions

First, we give definitions in CoqQ specifying the syntax of state formulas and
actions. State formulas are formed from atomic formulas expressing equality
between terms and the logical connectives A,V,—,—. Terms are formed from
variables, the constant zero, and the successor function. These are the only
expressions needed for our example. Variables, terms, and state formulas are
specified as inductive types in CoQ. Processes or nodes in the tree are uniquely
identified with a natural number using nat, the predefined type of natural num-
bers in CoqQ. Variables will take an argument of type nat indicating the process
to which it belongs. There are four variables for each process defined as follows.

Inductive var := pc:nat —var | v:nat —var | cc:nat—var | done: nat — var.

The logical operators —, A, V, -, = appear both in CIC expressions and in state
formulas which we want to encode in CIC. To avoid confusion, we superscript
many of the symbols in the CoqQ definitions of state formulas with a “x”. Terms
and formulas are defined as follows.

Inductive tm := 0*:tm | s*:¢tm —>tm | z:var — tm.
Inductive form := False: form | — : form — form
| A* : form — form — form | V*: form — form — form
| —=*: form — form — form | =* :itm — tm — form.

We adopt the usual convention that the constructor — associates to the right.
For readability, we abbreviate both the variable (pc n) and the term (z (pc n))



as pcy, and similarly for the other three kinds of variables. It will always be clear
from context which is meant. In addition we use infix notation for the binary
connectives A", V¥, »*, =* . For example, the state formula pc, = 0 is represented
by the term (=* (z (pc n)) 0*) of type form, which we write as (pc, =* 0*). We
introduce a parameter V for the value passed through the network. By making
it a parameter, our theorems will hold for any instantiation of V. We also define
1* for convenience later. The terms 2*, 3*,4* are defined similarly.

Parameter V : tm.

Definition 1* := (s* 0*).

We do not include any temporal operators here since they are not needed
to prove the premises of the S_Inv rule, which contain only state formulas. We
express provability of state formulas via an inductive definition of a predicate
provof type form — Prop. We do not give its definition here. It specifies a natural
deduction inference system for the fraction of first-order classical logic that we
need and is similar to specifications given in [23, 13, 7]. From this definition, we
can prove for example:

Lemma provable_and_i: VA, B: form.((prov A)A(prov B))— (prov (A A*B)).

Actions consist of a guard and a list of assignment statements. The formulas
that can occur in guards are the same as state formulas defined by the type
form. Assignment statements and actions are defined below. The latter uses the
built-in list type of CoqQ.

Inductive Assign: Set := assign : var — tm — Assign.

Inductive Action : Set := action : form — (list Assign) — Action.

We specify substitution on terms as a set of equations at the object-level.
The Coq term (subst A y t) encodes [t/y]A, i.e., the formula obtained from A
by replacing every free occurrence of y in A by t. Using the definition of subst,
we define a function ht of type form — Action — form — form which maps a
Hoare triple {p}g — 21 := 1,...,Zn := to{q} to the equivalent state formula
(p A g) — [t/Z]g. Here, [t/Z]g denotes the simultaneous replacement of all free
occurrences of z; in ¢ by t;, 1 < ¢ < n. (We omit the details.)

4.2 Coq Specification of the Network

Binary trees of processors are defined by the following inductive definition.

Inductive BinTree := root: nat — BinTree
| children : BinTree — nat — nat — nat — BinTree.

Here, (rootn) is a tree containing only processor n, and (childrent ny na n) is
the tree obtained by adding two new children n; and ns to leaf n in t. We choose
this definition of binary trees over the more standard one in which a tree is either
a leaf or a node with two subtrees, because it simplifies our proofs by structural
induction over trees. Of course, for our definition, we need additional predicates
to ensure that a tree is well-formed. For example, in (children t ny na n), n must
occur as a leaf in ¢, and n; and ns must be distinct and not already occur in ¢.
For this purpose, we define the sets and predicates below. Instead of giving their



formal definitions, we give a short explanation. They are all defined recursively
over the type BinTree. The set theory library of Coq is used in these definitions.

(troott) evaluates to the root of tree ¢.

— (pids t) gives the set of natural numbers (processes) in ¢.
(
(

parents t) evaluates to the set of nodes in ¢ that occur as parents.

distinct_nodes t) holds if all of the process identifiers that occur at the nodes
in t are distinct from one another. For a one-node tree, this predicate always
holds. The proposition (distinct_nodes (childrent ny na n)) is equivalent to
—(nq € (pids t)) A =(n2 € (pids t)) A =(n1 = na) A (distinct_nodes t).
(correct_parents t) holds if every time two children are added at a node n, n
occurs in t and does not already have children. This predicate always holds
for one-node trees, and (correct_parents (childrent ny na n)) is equivalent to
(n € (pidst)) A =(n € (parents t)) A (correct_parents t).

The predicate tree which holds only for well-formed trees is defined as follows.
Definition tree := At : BinTree.(distinct_nodes t) A (correct_parentst).

In Coq, each time an inductive definition is given, a structural induction
principle is automatically generated and proved. The induction principle for
trees, which plays an essential role in the proofs here, is the following.

VP : BinTree — Prop.
(Vn : nat.(P (root n))) —
(V¢ : BinTree.(P t) — Yny,ng, n: nat.(P (childrent nqy ny n))) —
Vt : BinTree.(P t).

Using this principle, the following theorem, for example, can be proved easily.

Lemma tree_subtree : VYt : BinTree.¥n1, ng, n : nat.
(tree (childrent ny ny n)) — (tree t).

4.3 Basic Definitions for the PIF-Protocol

As stated, we define a function which maps a tree to a set of actions implementing
the PIF-protocol and another function which maps a tree to an invariant used
in proving properties of this implementation. To define the former, we encode
each action as a function from natural numbers (nodes) to actions. For example
the al_up action is encoded as follows (where brackets are used to denote lists
in CoQ and commas are used to separate list items).

Definition al_up := An, par : nat.

(action ((cen="1*)A*(pcn="1%)) [(assign pcpar (s* PCpar)), (assign pc, 4*)]).
We then define a function actions of type BinTree — (set Action) that takes a
tree and returns a set containing a0, a2_down, and a2 _term for the root, a3_down
and a3_up for each internal node, and al_up for each leaf.

The invariant used in our proofs is defined as a conjunction of state formulas
where each conjunct is one of the formulas below instantiated for a particular
node. In these formulas, n refers to an arbitrary node, [ refers to n’s left child,
r refers to n’s right child, and par refers to n’s parent.

10



(I1) ccn =0 = (vp, = V A((pen, = 1 Adone, = 0) V (pcn, = 4 A done, = 1)))
(I2) ccn =1 = ((pen =0V pen, =1V pe, =4) A (mpen =0 = vy, = V)
(I8) cen =2 = (v =V A (((pen = 1V pen, = 2V pep, = 3) Adone, = 0)
V(pen, = 4 A done, = 1))
(I14) ccn =3 = ((pen =0V pen = 1V pen, =2V pen = 3V pe, = 4)
A(—pen, =0— vy, =V))
(I5) (ccn =3Apen =0) = (per = 0 A pe, =0)
(I6) ((ccn =1Veen =3) Apen =0) = (pepar = 0V pepar = 1)
(I7) ((cen =2V een =3) Apen = 1) = ((per = 0 A pe, = 0)
V((pet =1V peg =2V pe =3)
Aper =1V pe, =2V pe, = 3)))
(I8) ((ccn =1Veen =3) Apen = 1) = (pepar = 1V pepar = 2)
(I9) ((ccn =2Veen =3) Apen, = 2) = ((pa=4 A (pe,=1V pe, =2V pc,=3))
V(per=4 A (par=1V pai=2 V pc;=3)))

(I10) (cen =3 Apen = 2) = (Pepar = 1V PCpar = 2)

(I11) ((ccn =2Veen, =3)Apen, =3) = (pa =4 Ape, = 4)

(I12) (cen =3 Apen = 3) = (Pepar = 1V PCpar = 2)

(I13) ((ccn =2Veen, =3)Apen, =4) = (pa =4 Ape, = 4)

(I14) ((ccn = 1Veen =3) Apen = 4) = (PCpar =2V Pepar = 3V PCpar = 4)

Each of these formulas is easy to understand. For example, conjunct (I9) states
that for an internal node or root n of a tree consisting of more than one node,
the following is true: If pc, =2 then the pc variable of one of n’s children equals
4, and the pc variable of the other child is in the range from 1 to 3. Each of these
formulas is encoded in CoQ as a function from natural numbers (nodes) to type
form in the obvious way. For example, the encoding of (I9) is:

Definition I9 := An, i, : nat.((cc, =* 2* V*ce, =* 3*) A*pe, =* 2%) —*
((per =* 4* A*(per =* 1* V¥*pe, =* 2* V*pe, =* 3*)) V*
(per =* 4* A*(pep =* 1* V¥*pep =* 2* V*per =* 3%))).

Using these definitions, we define a function Inv of type BinTree — form that
takes a tree as its argument, and returns a formula that is a large conjunction
of each of the fourteen formulas of the invariant included for each internal node
in the tree, each of the formulas except those that relate a node to its children
for each leaf of the tree, and each of the conjuncts except those that relate a
node to its parent for the root. We omit the precise definition here. It uses an
auxiliary definition nv_triple, where (inv_triple n ny ny) characterizes that part
of the invariant that relates the variables of nodes n, n;, ns to each other. Using
this definition, the formula (Inv (children t ni ny n)) is equivalent to (Inv t) A
(inv_triple n ny ny).

The initial condition and the safety property of the PIF-protocol that we
want to prove are defined in CoQ as follows.
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Definition Init := At : BinTree.Vn : nat.(n € (pids t)) —
(prov (((ccn = 0*) V*(cen =* 2%)) —*
((pen, =* 1*) A*(vp, =* V) A*(done, =* 0%))) A*
(((cen =* 19) V" (ccn =* 3%)) *(pea = 0°))).
Definition I := At : BinTree.(prov (done(troot ) =* 1*)) —
Vn : nat.(n € (pids t)) — (prov (v, =* V)).

4.4 Discussion of our Correctness Proof

We next discuss our correctness proof of the PIF-protocol. We concentrate on
application of the S_Inv rule to establish the invariance of property (I¢) for
arbitrary tree t.

As preparation we derive the values that each variable may take. For example,
the values of every pc variable are 0, 1, 2, 3, or 4. (Of course, we derive these
properties by means of theorem proving.) We need these properties, because
model checkers can deal only with variables whose values are in a certain (finite)
range.

The following theorems correspond to the first and last premises of the S_Inv
rule. They are proved by induction, using SPIN for some propositional reasoning.

Theorem init_tmp_inv : Vt : BinTree.(tree t) — (Init t) — (prov (Inv t)).
Theorem inv_imp_I : V¢ : BinTree.(tree t) — (prov (Inv t)) — (I t).

The next theorem is the most complex, establishing the premises of the S_Inv
rule that deal with the actions of the program.

Theorem invariant_actions : Vt : BinTree.(tree t) — Va : Action.
(a € (actions t)) — (provable (ht (Inv t) a (Inv t))).

The proof is by induction on ¢. For the basis of induction we have two cases,
one for action a0 and one for action a2_term. Each of this cases is easily model
checked. For the induction step, when tree ¢ is of the form (children t' n1 na n),
we have to show that (Inv (children t' ny ny n)) is preserved by every action
that can be executed by nodes in ¢. By theorem proving we deduce that this
holds if (1) and (2) below both hold.

(1) (Inv (children t' ny ny n)) is preserved by each of the six “new” actions
whose execution involves one of the nodes nq, ny (and n).

(2) (Inv (children t' ny ny n)) is preserved by “old” actions whose execution
involves only nodes in #'.

For both (1) and (2), we decompose the reasoning by some simple Hoare
rules, which we have proved using CoqQ. For ease of exposition, we consider one
kind of subcase that arises when proving (1) in which ¢ is of the form shown in
Fig. 2. This kind of subcase results from another inductive argument.

(We omit the details of this subinduction.) Thus, node n and at least one
of the nodes nl,n2 are involved in the execution of action a. Let t' be the
subtree of ¢ consisting of tree y, as in Fig. 2, and the nodes n,n3. We then use
Coq to show that (Inv (children t' n1 ny n)) is equivalent to the conjunction of
(inv_triple n nq na), (snv_triple par ng n), and some formula J, where J does
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Fig. 2. Binary tree to illustrate our proof strategy.

not refer to variables of the nodes n, ni, ng. Using the theorem prover we show
that J is preserved by action a, because J does not refer to variables that
can be modified by a. Then we prove property {P}a{P}, for P defined as the
conjunction of (inv_triple n ny ny) and (inv_triple par nz n). This is done by
showing that for action a = ¢ — bd the PROMELA program

S;if =t PAg — bd; assert{P} :: =(P A g) — skip fi
always terminates (cf. Sect. 2.2). As before, S is a program that generates pos-
sible values of the variables. Application of Hoare rules then completes this
subcase.

In total, (1) and (2) consist of about fifteen problems. Intuitively, we have
used CoQ to decompose —without much effort, because theorem provers do this
well- each of the problems into subproblems so that each of these subproblems
is solved by a model checker. We have identified twenty-six cases which could be
model checked. The amount of time taken by SPIN to validate the subproblems
ranges from a few seconds to about one hour; the amount of states enumerated
needed to do so ranged from about 200 to 200,000,000. We could only apply
model checking to problems in which the predicates and actions were “concrete”.

We have also verified the PIF-protocol by theorem proving techniques only,
and found that the use of a model checker significantly simplifies the size of the
proof as well as the effort that we, as human verifiers, have to invest. Even though
some of the problems required about an hour to be model checked, constructing
a proof requires a lot more effort.

5 Conclusion

Model checking and theorem proving have been combined to show that inductive
reasoning about network algorithms can be carried out to mechanically verify
network algorithms. As an example we proved correctness of the PIF-protocol
when the underlying network constitutes a binary tree. The proof is by structural
induction on the binary tree. Induction is handled by the theorem prover, and
the base case as well as many subcases in the induction step are handled by the
model checker. Although we have used the model checker SPIN and the theorem
prover CoQ, our results would not be affected by another choice of model checker
or higher-order tactic-style theorem prover.
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Model checkers are attractive because they provide complete automation.
On their own, they cannot verify the PIF-protocol, because the state space is of
arbitrary, although finite size. Theorem provers are attractive because of their
generality, and can be used to prove correctness of the PIF-protocol. Yet such
proofs require sophisticated insight and guidance by the user. Combining both
techniques as we have offers the advantages of each of them, while overcoming
their drawbacks. We have identified those subproblems where model checking
applies. The theorem prover has been used only to tackle those subproblems
that are out of reach of model checkers, or to bring a subproblem into a form
that is within the reach of a model checker.

We plan to formulate more general induction principles and to show that
our approach scales up by proving correctness of larger algorithms. We also
plan to analyze algorithms whose correctness proofs can be structured so that
model checking is not only applied to single-step programs, as in the current
paper, but to more complicated ones in order to take fuller advantage of model
checking techniques. An example of a proof rule that allows such structuring is
the rule in [12] for proving strongly-fair termination of programs, because the
rule must be applied recursively to smaller programs. One of the premises of
the rule requires proving strongly-fair termination of a smaller program, which
can be model checked if feasible. Otherwise, the theorem prover must be used
to repeatedly apply the rule to decompose the problem into subproblems until
a program is obtained that is small enough to be model checked.
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