
Formalizing Inductive Proofs ofNetwork Algorithms?Ramesh Bharadwaj1, Amy Felty2, Frank Stomp21 CRL, McMaster University, 1280 Main St. West, Hamilton, ON, Canada L8S4K12 AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USAAbstract. Theorem proving and model checking are combined to fullyformalize a correctness proof of a broadcasting protocol. The protocol isexecuted in a network of processors which constitutes a binary tree ofarbitrary size. We use the theorem prover Coq and the model checkerSpin to verify the broadcasting protocol.Our goals in this work are twofold. The �rst one is to provide a strat-egy for carrying out formal, mechanical correctness proofs of distributednetwork algorithms. Even though logical speci�cations of programs im-plementing such algorithms are often de�ned precisely enough to allow ahuman veri�er to prove the program's correctness, the de�nition of thenetwork is often only informal or implicit. Our example illustrates howan underlying network can be formally de�ned by means of induction,and how to reason about network algorithms by structural induction.Our second goal is to integrate theorem proving and model checkingto increase the class of algorithms for which mechanical veri�cation ispractical. Theorem provers are expressive and powerful, but require so-phisticated insight and guidance by the user. Model checkers are fullyautomatic and e�ective for verifying �nite state automata, but limited to�nite spaces of a certain size. We provide a proof strategy which drawson the strengths of both techniques.1 IntroductionIn general, distributed network algorithms are designed to function properly fora speci�c class of networks, such as rings or complete networks. In most casesthe size of the network is unknown and the algorithms are described in a genericway. The (topology of the) underlying network is crucial for the correctness ofan algorithm. However, the de�nition of the network is often left out of thelogical speci�cation of the program implementing the algorithm; it is often in-formal and only implicitly de�ned. As a consequence, it is not directly possibleto mechanically check whether a correctness proof (constructed manually) itselfis correct. The current paper addresses this problem, and shows how a com-bination of model checking and theorem proving can be used to reason aboutprograms executed in a speci�c class of networks when the size and exact shapeof the network are unknown.? To appear in Proceedings of the 1995 Asian Computing Conference.



Model checking has been used to verify a number of distributed networkalgorithms and protocols. It is a powerful veri�cation technique that providesfull automation. However, model checkers cannot handle networks of arbitrarysize. Theorem provers, on the other hand, generally implement very expressivelogics which can handle in�nite or arbitrary parameters, such as the numberof processes. But they require sophisticated insight and guidance by the user.In this paper, we present an integration of theorem proving and model checkingsuch that structural induction over the network is done within a theorem prover,whereas the base case and many of the subcases of the induction step are veri�edusing a model checker.In our combined approach, we use the Coq Proof Development System [6]and the Spin Veri�cation System [15]. Coq is an interactive tactic-style theo-rem prover which implements the Calculus of Inductive Constructions (CIC),a higher-order type theory that supports inductive types. When a type is de-�ned inductively in Coq, a principle of structural induction and an operator forde�ning functions recursively over that type are automatically generated. Spinis a model checker for establishing temporal properties of systems modeled in aguarded commands-like language called Promela.The example we consider to demonstrate our techniques is the PIF-protocol,a broadcasting algorithm developed by Segall [26], executed in a network thatconstitutes a binary tree. (\PIF" stands for Propagation of Information withFeedback.) The size of the tree is left unspeci�ed. The PIF-protocol is importantbecause it can be identi�ed in many distributed network algorithms, such asthe spanning tree algorithm in [8] and the minimum path algorithms in [26].Intuitively, the PIF-protocol achieves the following: A value, initially recordedby the root of the tree, has to be broadcast and eventually every node in thetree should record this value. Also, the root should eventually be noti�ed thatevery node has recorded the value.We specify the PIF-protocol in Manna and Pnueli's Linear Time TemporalLogic (LTL) [19]. The program implementing the PIF-protocol is a pair consist-ing of a state formula and a �nite set of actions formulated as in UNITY [3].(A state formula is an LTL formula without temporal operators.) The formulacharacterizes the states in which the program may start its execution. Our cor-rectness proof of the PIF-protocol can be decomposed into three parts: (a) aproof that some state formula continuously holds; (b) a proof that some stateformula is stable (once the formula holds, it continues to hold); and (c) a proofof a liveness property.For part (a) we have applied (a variant of) the S Inv rule of Manna andPnueli [19]. This rule states that state formula I is always true if there existsa state formula Inv such that Inv holds initially; it is preserved under everyaction of the program; and it is stronger than I. The technical formulation ofthis rule is as follows, where 2 denotes the always-operator from LTL.� ! Inv; fInvg�ifInvg; i = 1; : : : ; n; Inv ! I for Prog = h�; f�1; : : : ; �ngiProg ` 2IHere � is the initial condition and �1; : : : ; �n are the actions of program Prog.2



The formula fpg�fqg denotes a Hoare triple interpreted as usual: if state formulap holds before action � is executed, then state formula q holds after. Using Coqand Spin, we prove the premises of the S Inv rule for an arbitrary binary tree.Formula I expresses that whenever the root has been noti�ed that all nodes haverecorded the value broadcast, all nodes have indeed recorded that value. Thereare four parts to the proof:1. De�nitions are given in Coq to specify programs as well as the syntax andinference rules for the fragment of LTL needed for our example.2. The structure of the network is formally speci�ed by de�ning binary treesof arbitrary size using the built-in inductive types of Coq.3. The de�nition of trees is used to de�ne two functions, one which maps abinary tree to a set of actions expressing the program for that tree, and onewhich maps a binary tree to an LTL formula which expresses the invariantInv for that tree.4. The premises of the S Inv rule are established by structural induction onbinary trees.As mentioned, correctness of the PIF-protocol also involves proving a stableproperty and a liveness property. The stable property has been established inthe same way as the formula in (a) above by application of a proof rule similarto rule S Inv. We have not done the proof of the liveness property. This proofwill be similar to the other two because it again involves reasoning about theprogram's actions.The premises of the S Inv rule are proved by three inductive arguments, oneeach for the �rst and last premises, and one for all of the remaining premises.The �rst two do not involve reasoning about actions. Spin is used to handlesome tedious but straightforward propositional reasoning. For the third induc-tive argument, the base case (for the one-node tree) involves reasoning about aprogram containing two actions. Spin easily veri�es that the invariant holds foreach action. In the induction step, we assume that the invariant holds for theprogram of a tree t, and we must show that a slightly larger invariant holds fora slightly larger program obtained from tree t with two new nodes attached atsome leaf. We decompose the inductive case into many cases, of which twenty-six are veri�ed by Spin. These cases are generally obtained from subgoals of theform fp^qg�fp^qg, for state formulas p, q and action � . These cases can be splitinto two subgoals fpg�fpg and fqg�fqg such that the former can be proved easilyusing the theorem prover, and the latter can be mapped directly to a Promelaprogram and veri�ed using Spin. The formula q in these cases is quite large anda direct proof in Coq involves a lot of detailed repetitive reasoning, which weavoid because of our use of the model checker.In related work, Coq is used in [1, 14] to verify the Alternating Bit Protocoland a data link protocol without the aid of a model checker. In both these proofsthe network is �xed. Chou [4] veri�es the PIF-protocol for arbitrary connectedgraphs in the HOL theorem prover [11] again without the aid of a model checker.His proof uses abstraction to reduce the concrete version of the problem to3



an abstract one. In particular, he de�nes an abstract version of the concreteprogram, shows that the property holds for the abstract program, and showsthat any property that holds for the abstract program also holds for the concreteone. In contrast to his proof, our proof does not use abstraction; ours is directand, in addition, supported by a model checker. It is straightforward to extendour proof to cope with arbitrary connected graphs.As mentioned, mechanical assistance in proofs is also o�ered by model check-ers [5, 15, 21, 16]. They establish validity of formulae in a model, are fully auto-mated, and are extremely fast for reasonably sized models. All model checkerssu�er from the state explosion problem, which has been attacked in [10, 20, 24,28]. Model checkers have been used to verify a number of complex systems, seefor example [21]. Several methods for inductive reasoning about systems consist-ing of an arbitrary number of (identical or similar) processes have been proposedin the literature. German and Sistla [9] present a fully automatic method. Theiralgorithm is doubly exponential in the size of the system, and therefore inef-�cient. Induction principles based on equivalences between systems have beenproposed by Browne, Clarke, and Grumberg [2] and by Shtadler and Grumberg[27]. Pre-orders, rather than equivalences, between systems are used in the meth-ods of Kurshan and McMillan [18] and of Wolper and Lovinfosse [29]. In contrastto our use of Coq's built-in structural induction, each of the above mentionedinduction principles is tailored to a speci�c application.Kurshan and Lamport [17] and others have investigated how to integrate the-orem proving and model checking to verify programs when pure model checkingfails. In [17] a 64-bit multiplier is proved correct. Rajan, Shankar, and Srivas [25]and M�uller and Nipkow [22] combine theorem proving and model checking to ver-ify in�nite state systems. In these two papers, the underlying idea is to reducean in�nite state system to a �nite one using abstraction techniques as in [4].Unlike [4], in [25] and [22] the �nite state system is veri�ed by a model checker,whereas the reduction is veri�ed using the theorem prover. In our example pre-sented here, instead of abstraction, we handle the arbitrary parameter (in ourcase the number of nodes) by a direct inductive argument and use model checkingwhenever applicable on the subcases.The rest of this paper is organized as follows: The PIF-protocol is describedin Sect. 2. In Sect. 3, we brie
y present Coq and Spin. In Sect. 4, we outlinehow our correctness proof has been carried out using a combination of these twosystems. Finally, Sect. 5 draws some conclusions.2 The PIF-ProtocolIn this section we specify and implement the PIF-protocol as analyzed in therest of this paper.2.1 Speci�cationConsider a �xed, but arbitrary network constituting a non-empty, �nite, binarytree. Nodes in the tree are identi�ed with processes; edges with communication4



channels. One node R is identi�ed with the tree's root. Assume that R hasrecorded some value V . The informal speci�cation of the PIF-protocol is:(1) Eventually every process in the network records V .(2) Eventually R is noti�ed that all processes have recorded value V ; and oncethis noti�cation has taken place, all processes continue to record that value.For a given graph (N;E), where N is a set of nodes and E is a set of edges,let Tree(N;E) denote that this graph is a non-empty, �nite, binary tree. LetR 2 N denote the tree's root. Every process n 2 N has its own variable vnfor recording the broadcast value V . Initially vR = V holds, i:e:, process Rhas recorded value V , whereas the initial values of variables vn, for processes ndi�erent from R, are irrelevant. The root also has its own variable doneR usedto record whether all processes in the network have recorded value V . Initially,doneR = 0 holds. (Actually, for nodes n di�erent from R, we have introduceddonen to allow generic descriptions of the processes, but they are never used.)Using the always-operator 2 and the eventual-operator 3 from LTL, it isrequired that the following holds: If R 2 N ^ vR = V ^doneR = 0 holds initially,thenTree(N;E) ! 2(doneR = 1! 8n 2 N:vn = V )^ 2(doneR = 1! 2doneR = 1)^ 3doneR = 1is true. That is, it is always the case that all processes in the network haverecorded value V if doneR = 1 holds; once doneR = 1 holds, it continues to hold(doneR = 1 is stable); and eventually doneR = 1 holds. These three conjunctscorrespond to properties (a), (b), and (c) mentioned in the previous section. Theproof described in the current paper is that of the �rst conjunct, property (a).2.2 ImplementationA program consists of two parts (cf: [3]): a state formula and a (�nite) collectionof guarded actions. The formula characterizes the initial states in which theprogram may start its execution. A guarded action is of the form g ! x1 :=e1; : : : ; xm := em for some natural number m > 0, consisting of guard g and bodyx1 := e1; : : : ; xm := em. Here, xi are distinct variables (to avoid name-clashes)and ei are expressions (i = 1; : : : ;m). Guard g is a boolean expression withoutquanti�ers. An action is enabled in a state if its guard evaluates to true in thatstate. If in some state during execution no action of the program is enabled,then the program is considered terminated as in [19]. Otherwise, an enabledaction g ! x1 := e1; : : : ; xm := em is nondeterministically chosen for execution.Execution of this action means that the assignments x1 := e1; : : : ; xm := em areexecuted atomically and simultaneously.The actions of the program implementing the PIF-protocol are given inFig. 1. There n ranges over the nodes in the tree; par denotes the parent ofn, provided that n has a parent; and l and r denote the left and right childof n, respectively. As described above, each node n maintains variables vn and5



a0 :: ccn = 0 ^ pcn = 1! pcn := 4; donen := 1a2 down :: ccn = 2^ pcn = 1^ pcl = 0^ pcr = 0! pcl := 1; vl := vn; pcr := 1; vr := vna3 down :: ccn = 3^ pcn = 1^ pcl = 0^ pcr = 0! pcl := 1; vl := vn; pcr := 1; vr := vna1 up :: ccn = 1 ^ pcn = 1! pcpar := pcpar + 1; pcn := 4a3 up :: ccn = 3 ^ pcn = 3! pcpar := pcpar + 1; pcn := 4a2 term :: ccn = 2 ^ pcn = 3! pcn := 4; donen := 1Fig. 1. Actions executed by every node in the tree. The collection of these actions, forall nodes in the tree, constitutes the PIF-protocol.donen. In addition, every node maintains a variable pcn, which can be thoughtof as n's program counter. Initially, pcR=1 holds, whereas pcn=0 holds for allnodes n di�erent from R. We have also used variables ccn for nodes n in thetree. Variables ccn cannot be changed by any action and represents the num-ber of n's neighbors in the tree. Thus, for the root of the tree either ccR=0 orccR=2 holds. In the �rst case, R is the only node in the tree; in the secondcase, the tree consists of more than one node. There exists exactly one noden in the tree satisfying ccn=0 or ccn=2. We identify this node with the rootR. For other nodes n in the tree, we have that either ccn=1 (n is a leaf) orccn=3 (n is an internal node) holds. The initial values of the cc variables, the pcvariables, doneR = 0, vR = V , and R 2 N characterize the states in which theexecution of the program may start. Action a0 in Fig. 1 can be executed onlyif the tree consists of one node. In this case, the node sets its variable pcR to 4and its variable doneR to 1 and the program terminates. If the tree consists ofmore than one node, the root initiates the program by passing on value V toits neighbors (action a2 down). After an internal node has received value V , itpasses V on to its children (action a3 down). When a leaf has received value V ,it informs its parent about this (action a1 up). After an internal node has beeninformed that both its children have received the value, the node itself informsits parent (action a3 up). Eventually, when the root gets the information thatits children (hence, all other nodes in the tree) have received value V , it sets itsvariable doneR to 1 and the program terminates (action a2 term).3 Coq and SpinWe brie
y introduce the Coq Proof Development System and the Spin Veri�-cation System.3.1 The Coq Proof Development SystemAs stated, Coq is an implementation of the Calculus of Inductive Constructions(CIC). Familiarity with CIC is not required for understanding the proofs inthe next section. We simply introduce the syntax used there. Let x represent6



variables and M , N represent terms of CIC. The syntax of terms is as follows.Prop j Set j Type j x j MN j �x :M:N j 8x :M:N j M ! N jM ^N j M _N j 9x :M:N j :M j M = N j Ind x :M fN1j � � � jNng jRec M N j Case x :M of M1 ) N1; : : : ;Mn ) NnProp is the type of logical propositions, whereas Set is the type of data types.Type is the type of both Prop and Set. In CIC, variables and constants are notdistinguished. In Coq, a new constant can be introduced and given with its typeusing the Parameter keyword. It is also possible to introduce new constants viade�nitions. The De�nition keyword is used for this purpose.Application is represented as juxtaposition of terms. Abstraction is rep-resented as usual where the bound variable is typed. The logical operators8;!;^;_;9;:;= are the familiar ones from higher-order logic.The Ind constant is used to build inductive de�nitions where M is the typeof the class of terms being de�ned and N1; : : : ; Nn where n � 0 are the types ofthe constructors. In Coq, inductive de�nitions are introduced with an Inductivedeclaration where each constructor is named and given with its type separatedby vertical bars. Rec and Case are the operators for de�ning recursive andinductive functions, respectively, over inductive types.3.2 The Spin Veri�cation SystemAs stated, Spin [15] is a tool for establishing temporal properties of systems mod-eled in a guarded commands-like language called Promela. Spin has been usedto prove properties of communication protocols and asynchronous hardware. Itcan also be used to prove termination of systems. As we have noted, model check-ing provides complete automation. The algorithms underlying a model checkersuch as Spin su�er from scalability: They are PSPACE hard. Consequently, onequickly runs out space as the size of the model increases.A Promela program consists of a section in which variables are declared andstatements. In essence, statements are built up from assignments, the emptystatement skip, sequential composition, assert statements, conditional state-ments, and loops. (We will not use loops in this paper.) The conditional state-ments we use in this paper are of the form if ::g1 ! S1::� � �::gn ! Sn fi, wheresymbol \::" separates the guarded actions gi ! Si where gi is a guard and Si isa statement (i = 1; : : : ; n). (Conditional statements in Promela are more gen-eral.) If a guard is the constant true then it may be omitted. These conditionalstatements have the same interpretation as, for example, Dijkstra's conditionalstatements with the exception that in Promela the process blocks (and doesnot abort) when none of its guards is enabled. An assert statement is of the formassertfgg, for a guard g. This statement acts like skip when executed in a statesatisfying g; otherwise the execution is aborted.For a �nite set of states, one can generate an arbitrary state by means of aconditional statement. For example, if :: x:=0 :: x:=1 fi; if :: y:=1 :: y:=2 fi7



generates some state in the set characterized by predicate (x = 0 _ x = 1) ^(y = 1 _ y = 2).Partial correctness fpg T fqg of program T w.r.t. precondition p and post-condition q is interpreted as usual (cf: Sect. 1). We have that fpg g ! a fqgholds i� fp^ gg a fqg holds. In our proof, we often need to prove such a partialcorrectness formula, where a always terminates. Consider the �nite set of statescorresponding to the possible combinations of values that the variables may take.Let S be the Promela program that generates an arbitrary state from this setin the manner described above. The partial correctness formula fp ^ gg a fqgcan be shown to be equivalent to termination of the Promela programS; if :: p ^ g ! a; assertfqg :: :(p ^ g)! skip fi.Similarly, validity of the implication p! q can be translated into the questionof whether or not the Promela programS; if :: p! assertfqg :: :p! skip fialways terminates. Validation of such implications and of partial correctnessformulas of single actions are the only two ways in which we use Spin. (In ourexample p and q are generally very large.)4 Correctness Proof of the PIF-ProtocolIn this section we outline our correctness proof of the PIF-protocol executed inan arbitrary binary tree.4.1 Speci�cation of State Formulas and ActionsFirst, we give de�nitions in Coq specifying the syntax of state formulas andactions. State formulas are formed from atomic formulas expressing equalitybetween terms and the logical connectives ^;_;!;:. Terms are formed fromvariables, the constant zero, and the successor function. These are the onlyexpressions needed for our example. Variables, terms, and state formulas arespeci�ed as inductive types in Coq. Processes or nodes in the tree are uniquelyidenti�ed with a natural number using nat, the prede�ned type of natural num-bers in Coq. Variables will take an argument of type nat indicating the processto which it belongs. There are four variables for each process de�ned as follows.Inductive var := pc :nat!var j v :nat!var j cc :nat!var j done :nat!var:The logical operators !;^;_;:;= appear both in CIC expressions and in stateformulas which we want to encode in CIC. To avoid confusion, we superscriptmany of the symbols in the Coq de�nitions of state formulas with a \�". Termsand formulas are de�ned as follows.Inductive tm := 0� : tm j s� : tm! tm j x : var ! tm:Inductive form := False : form j :� : form! formj ^� : form! form! form j _� : form! form! formj !� : form! form! form j =� : tm! tm! form:We adopt the usual convention that the constructor ! associates to the right.For readability, we abbreviate both the variable (pc n) and the term (x (pc n))8



as pcn, and similarly for the other three kinds of variables. It will always be clearfrom context which is meant. In addition we use in�x notation for the binaryconnectives �̂;_�;!�;=� . For example, the state formula pcn = 0 is representedby the term (=� (x (pc n)) 0�) of type form, which we write as (pcn =� 0�). Weintroduce a parameter V for the value passed through the network. By makingit a parameter, our theorems will hold for any instantiation of V . We also de�ne1� for convenience later. The terms 2�; 3�; 4� are de�ned similarly.Parameter V : tm:De�nition 1� := (s� 0�):We do not include any temporal operators here since they are not neededto prove the premises of the S Inv rule, which contain only state formulas. Weexpress provability of state formulas via an inductive de�nition of a predicateprov of type form! Prop. We do not give its de�nition here. It speci�es a naturaldeduction inference system for the fraction of �rst-order classical logic that weneed and is similar to speci�cations given in [23, 13, 7]. From this de�nition, wecan prove for example:Lemma provable and i : 8A;B : form:((prov A)^(prov B))! (prov (A ^�B)):Actions consist of a guard and a list of assignment statements. The formulasthat can occur in guards are the same as state formulas de�ned by the typeform. Assignment statements and actions are de�ned below. The latter uses thebuilt-in list type of Coq.Inductive Assign : Set := assign : var! tm! Assign:Inductive Action : Set := action : form! (list Assign) ! Action:We specify substitution on terms as a set of equations at the object-level.The Coq term (subst A y t) encodes [t=y]A, i:e:, the formula obtained from Aby replacing every free occurrence of y in A by t. Using the de�nition of subst,we de�ne a function ht of type form ! Action ! form ! form which maps aHoare triple fpgg ! x1 := t1; : : : ; xn := tnfqg to the equivalent state formula(p ^ g) ! [�t=�x]q. Here, [�t=�x]q denotes the simultaneous replacement of all freeoccurrences of xi in q by ti, 1 � i � n. (We omit the details.)4.2 Coq Speci�cation of the NetworkBinary trees of processors are de�ned by the following inductive de�nition.Inductive BinTree := root : nat! BinTreej children : BinTree! nat! nat! nat! BinTree:Here, (root n) is a tree containing only processor n, and (children t n1 n2 n) isthe tree obtained by adding two new children n1 and n2 to leaf n in t. We choosethis de�nition of binary trees over the more standard one in which a tree is eithera leaf or a node with two subtrees, because it simpli�es our proofs by structuralinduction over trees. Of course, for our de�nition, we need additional predicatesto ensure that a tree is well-formed. For example, in (children t n1 n2 n), n mustoccur as a leaf in t, and n1 and n2 must be distinct and not already occur in t.For this purpose, we de�ne the sets and predicates below. Instead of giving their9



formal de�nitions, we give a short explanation. They are all de�ned recursivelyover the type BinTree. The set theory library of Coq is used in these de�nitions.{ (troot t) evaluates to the root of tree t.{ (pids t) gives the set of natural numbers (processes) in t.{ (parents t) evaluates to the set of nodes in t that occur as parents.{ (distinct nodes t) holds if all of the process identi�ers that occur at the nodesin t are distinct from one another. For a one-node tree, this predicate alwaysholds. The proposition (distinct nodes (children t n1 n2 n)) is equivalent to:(n1 2 (pids t)) ^ :(n2 2 (pids t)) ^:(n1 = n2) ^ (distinct nodes t).{ (correct parents t) holds if every time two children are added at a node n, noccurs in t and does not already have children. This predicate always holdsfor one-node trees, and (correct parents (children t n1 n2 n)) is equivalent to(n 2 (pids t)) ^ :(n 2 (parents t)) ^ (correct parents t).The predicate tree which holds only for well-formed trees is de�ned as follows.De�nition tree := �t : BinTree:(distinct nodes t) ^ (correct parents t):In Coq, each time an inductive de�nition is given, a structural inductionprinciple is automatically generated and proved. The induction principle fortrees, which plays an essential role in the proofs here, is the following.8P : BinTree! Prop:(8n : nat:(P (root n))) !(8t : BinTree:(P t) ! 8n1; n2; n : nat:(P (children t n1 n2 n))) !8t : BinTree:(P t):Using this principle, the following theorem, for example, can be proved easily.Lemma tree subtree : 8t : BinTree:8n1; n2; n : nat:(tree (children t n1 n2 n))! (tree t):4.3 Basic De�nitions for the PIF-ProtocolAs stated, we de�ne a function which maps a tree to a set of actions implementingthe PIF-protocol and another function which maps a tree to an invariant usedin proving properties of this implementation. To de�ne the former, we encodeeach action as a function from natural numbers (nodes) to actions. For examplethe a1 up action is encoded as follows (where brackets are used to denote listsin Coq and commas are used to separate list items).De�nition a1 up := �n; par : nat:(action ((ccn=�1�)^�(pcn=�1�)) [(assign pcpar (s� pcpar)); (assign pcn 4�)]):We then de�ne a function actions of type BinTree ! (set Action) that takes atree and returns a set containing a0, a2 down, and a2 term for the root, a3 downand a3 up for each internal node, and a1 up for each leaf.The invariant used in our proofs is de�ned as a conjunction of state formulaswhere each conjunct is one of the formulas below instantiated for a particularnode. In these formulas, n refers to an arbitrary node, l refers to n's left child,r refers to n's right child, and par refers to n's parent.10



(I1) ccn = 0 ! (vn = V ^ ((pcn = 1 ^ donen = 0) _ (pcn = 4 ^ donen = 1)))(I2) ccn = 1 ! ((pcn = 0 _ pcn = 1 _ pcn = 4) ^ (:pcn = 0! vn = V ))(I3) ccn = 2! (vn = V ^ (((pcn = 1 _ pcn = 2 _ pcn = 3) ^ donen = 0)_(pcn = 4 ^ donen = 1)))(I4) ccn = 3! ((pcn = 0 _ pcn = 1 _ pcn = 2_ pcn = 3 _ pcn = 4)^ (:pcn = 0! vn = V ))(I5) (ccn = 3^ pcn = 0) ! (pcl = 0 ^ pcr = 0)(I6) ((ccn = 1 _ ccn = 3) ^ pcn = 0) ! (pcpar = 0 _ pcpar = 1)(I7) ((ccn = 2 _ ccn = 3) ^ pcn = 1)! ((pcl = 0 ^ pcr = 0)_((pcl = 1 _ pcl = 2 _ pcl = 3)^(pcr = 1 _ pcr = 2 _ pcr = 3)))(I8) ((ccn = 1 _ ccn = 3) ^ pcn = 1) ! (pcpar = 1 _ pcpar = 2)(I9) ((ccn = 2 _ ccn = 3) ^ pcn = 2)! ((pcl=4 ^ (pcr=1 _ pcr=2 _ pcr=3))_(pcr=4 ^ (pcl=1 _ pcl=2 _ pcl=3)))(I10) (ccn = 3 ^ pcn = 2)! (pcpar = 1 _ pcpar = 2)(I11) ((ccn = 2 _ ccn = 3) ^ pcn = 3) ! (pcl = 4 ^ pcr = 4)(I12) (ccn = 3 ^ pcn = 3)! (pcpar = 1 _ pcpar = 2)(I13) ((ccn = 2 _ ccn = 3) ^ pcn = 4) ! (pcl = 4 ^ pcr = 4)(I14) ((ccn = 1 _ ccn = 3) ^ pcn = 4) ! (pcpar = 2 _ pcpar = 3 _ pcpar = 4)Each of these formulas is easy to understand. For example, conjunct (I9) statesthat for an internal node or root n of a tree consisting of more than one node,the following is true: If pcn=2 then the pc variable of one of n's children equals4, and the pc variable of the other child is in the range from 1 to 3. Each of theseformulas is encoded in Coq as a function from natural numbers (nodes) to typeform in the obvious way. For example, the encoding of (I9) is:De�nition I9 := �n; l; r : nat:((ccn =� 2� _�ccn =� 3�) ^�pcn =� 2�)!�((pcl =� 4� ^�(pcr =� 1� _�pcr =� 2� _�pcr =� 3�)) _�(pcr =� 4� ^�(pcl =� 1� _�pcl =� 2� _�pcl =� 3�))):Using these de�nitions, we de�ne a function Inv of type BinTree ! form thattakes a tree as its argument, and returns a formula that is a large conjunctionof each of the fourteen formulas of the invariant included for each internal nodein the tree, each of the formulas except those that relate a node to its childrenfor each leaf of the tree, and each of the conjuncts except those that relate anode to its parent for the root. We omit the precise de�nition here. It uses anauxiliary de�nition inv triple, where (inv triple n n1 n2) characterizes that partof the invariant that relates the variables of nodes n; n1; n2 to each other. Usingthis de�nition, the formula (Inv (children t n1 n2 n)) is equivalent to (Inv t) ^(inv triple n n1 n2).The initial condition and the safety property of the PIF-protocol that wewant to prove are de�ned in Coq as follows.11



De�nition Init := �t : BinTree:8n : nat:(n 2 (pids t)) !(prov (((ccn =� 0�) _�(ccn =� 2�)) !�((pcn =� 1�) ^�(vn =� V ) ^�(donen =� 0�))) ^�(((ccn =� 1�) _�(ccn =� 3�))!�(pcn =� 0�))):De�nition I := �t : BinTree:(prov (done(troot t) =� 1�)) !8n : nat:(n 2 (pids t)) ! (prov (vn =� V )):4.4 Discussion of our Correctness ProofWe next discuss our correctness proof of the PIF-protocol. We concentrate onapplication of the S Inv rule to establish the invariance of property (I t) forarbitrary tree t.As preparation we derive the values that each variable may take. For example,the values of every pc variable are 0, 1, 2, 3, or 4. (Of course, we derive theseproperties by means of theorem proving.) We need these properties, becausemodel checkers can deal only with variables whose values are in a certain (�nite)range.The following theorems correspond to the �rst and last premises of the S Invrule. They are proved by induction, using Spin for some propositional reasoning.Theorem init imp inv : 8t : BinTree:(tree t) ! (Init t) ! (prov (Inv t)):Theorem inv imp I : 8t : BinTree:(tree t) ! (prov (Inv t)) ! (I t):The next theorem is the most complex, establishing the premises of the S Invrule that deal with the actions of the program.Theorem invariant actions : 8t : BinTree:(tree t) ! 8a : Action:(a 2 (actions t)) ! (provable (ht (Inv t) a (Inv t))):The proof is by induction on t. For the basis of induction we have two cases,one for action a0 and one for action a2 term. Each of this cases is easily modelchecked. For the induction step, when tree t is of the form (children t0 n1 n2 n),we have to show that (Inv (children t0 n1 n2 n)) is preserved by every actionthat can be executed by nodes in t. By theorem proving we deduce that thisholds if (1) and (2) below both hold.(1) (Inv (children t0 n1 n2 n)) is preserved by each of the six \new" actionswhose execution involves one of the nodes n1; n2 (and n).(2) (Inv (children t0 n1 n2 n)) is preserved by \old" actions whose executioninvolves only nodes in t0.For both (1) and (2), we decompose the reasoning by some simple Hoarerules, which we have proved using Coq. For ease of exposition, we consider onekind of subcase that arises when proving (1) in which t is of the form shown inFig. 2. This kind of subcase results from another inductive argument.(We omit the details of this subinduction.) Thus, node n and at least oneof the nodes n1; n2 are involved in the execution of action a. Let t0 be thesubtree of t consisting of tree y, as in Fig. 2, and the nodes n; n3. We then useCoq to show that (Inv (children t0 n1 n2 n)) is equivalent to the conjunction of(inv triple n n1 n2), (inv triple par n3 n), and some formula J , where J does12



n1

y

n2

nn3

parFig. 2. Binary tree to illustrate our proof strategy.not refer to variables of the nodes n; n1; n2. Using the theorem prover we showthat J is preserved by action a, because J does not refer to variables thatcan be modi�ed by a. Then we prove property fPgafPg, for P de�ned as theconjunction of (inv triple n n1 n2) and (inv triple par n3 n). This is done byshowing that for action a � g ! bd the Promela programS; if :: P ^ g ! bd; assertfPg :: :(P ^ g) ! skip fialways terminates (cf: Sect. 2.2). As before, S is a program that generates pos-sible values of the variables. Application of Hoare rules then completes thissubcase.In total, (1) and (2) consist of about �fteen problems. Intuitively, we haveused Coq to decompose {without much e�ort, because theorem provers do thiswell{ each of the problems into subproblems so that each of these subproblemsis solved by a model checker. We have identi�ed twenty-six cases which could bemodel checked. The amount of time taken by Spin to validate the subproblemsranges from a few seconds to about one hour; the amount of states enumeratedneeded to do so ranged from about 200 to 200,000,000. We could only applymodel checking to problems in which the predicates and actions were \concrete".We have also veri�ed the PIF-protocol by theorem proving techniques only,and found that the use of a model checker signi�cantly simpli�es the size of theproof as well as the e�ort that we, as human veri�ers, have to invest. Even thoughsome of the problems required about an hour to be model checked, constructinga proof requires a lot more e�ort.5 ConclusionModel checking and theorem proving have been combined to show that inductivereasoning about network algorithms can be carried out to mechanically verifynetwork algorithms. As an example we proved correctness of the PIF-protocolwhen the underlying network constitutes a binary tree. The proof is by structuralinduction on the binary tree. Induction is handled by the theorem prover, andthe base case as well as many subcases in the induction step are handled by themodel checker. Although we have used the model checker Spin and the theoremprover Coq, our results would not be a�ected by another choice of model checkeror higher-order tactic-style theorem prover.13



Model checkers are attractive because they provide complete automation.On their own, they cannot verify the PIF-protocol, because the state space is ofarbitrary, although �nite size. Theorem provers are attractive because of theirgenerality, and can be used to prove correctness of the PIF-protocol. Yet suchproofs require sophisticated insight and guidance by the user. Combining bothtechniques as we have o�ers the advantages of each of them, while overcomingtheir drawbacks. We have identi�ed those subproblems where model checkingapplies. The theorem prover has been used only to tackle those subproblemsthat are out of reach of model checkers, or to bring a subproblem into a formthat is within the reach of a model checker.We plan to formulate more general induction principles and to show thatour approach scales up by proving correctness of larger algorithms. We alsoplan to analyze algorithms whose correctness proofs can be structured so thatmodel checking is not only applied to single-step programs, as in the currentpaper, but to more complicated ones in order to take fuller advantage of modelchecking techniques. An example of a proof rule that allows such structuring isthe rule in [12] for proving strongly-fair termination of programs, because therule must be applied recursively to smaller programs. One of the premises ofthe rule requires proving strongly-fair termination of a smaller program, whichcan be model checked if feasible. Otherwise, the theorem prover must be usedto repeatedly apply the rule to decompose the problem into subproblems untila program is obtained that is small enough to be model checked.References1. Marc Bezem and Jan Friso Groote. A formal veri�cation of the alternating bitprotocol in the calculus of constructions. Technical Report Logic Group ReprintSeries No. 88, Utrecht University, 1993.2. M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks withmany identical processes. In Proceedings of the 5th Symposium on Principles ofDistributed Computing, 1986.3. K. M. Chandy and J. Misra. Parallel Program Design|A Foundation. Addison-Wesley, 1988.4. Ching-Tsun Chou. Mechanical veri�cation of distributed algorithms in higher-order logic. The Computer Journal, 1995. To appear.5. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite-state concurrent systems using temporal logic speci�cations. ACM Transactionson Programming Languages and Systems, 8(2):244{263, 1986.6. Cristina Cornes, Judica�el Courant, Jean-Christophe Filliâtre, G�erard Huet, Pas-cal Manoury, Christine Paulin-Mohring, C�esar Mu~noz, Chetan Murthy, CatherineParent, Amokrane Sa��bi, and Benjamin Werner. The Coq Proof Assistant referencemanual. Technical report, INRIA, 1995.7. Amy Felty. Implementing tactics and tacticals in a higher-order logic programminglanguage. Journal of Automated Reasoning, 11(1):43{81, August 1993.8. R. T. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm forminimum-weight spanning trees. ACM Transactions on Programming Languagesand Systems, 5(1):66{77, 1983. 14



9. S. M. German and A. P. Sistla. Reasoning about systems with many processes.Journal of the Association for Computing Machinery, 39(3):675{735, 1992.10. Patrice Godefroid. Using partial orders to improve automatic veri�cation meth-ods (extended abstract). In Proceedings of the 2nd International Workshop onComputer-Aided Veri�cation, pages 176{185. Springer Verlag Lecture Notes inComputer Science 513, 1990.11. M. J. C. Gordon and T. F. Melham. Introduction to HOL|A Theorem ProvingEnvironment for Higher Order Logic. Cambridge University Press, 1993.12. O. Grumberg, N. Francez, J. A. Makowsky, and W. P. de Roever. A proof rule forfair termination of guarded commands. Information and Control, 66(1/2):83{102,July/August 1985.13. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ninglogics. Journal of the ACM, 40(1):143{184, January 1993.14. L. Helmink, M. P. A. Sellink, and F. W. Vaandrager. Proof-checking a data linkprotocol. In Proceedings of the ESPRIT BRA Workshop on Types for Proofs andPrograms, 1994.15. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-HallSoftware Series, 1991.16. R. P. Kurshan. Analysis of discrete event coordination. In Stepwise Re�nementof Distributed Systems: Models, Formalisms, Correctness (REX Workshop), pages414{453. Springer Verlag Lecture Notes in Computer Science 430, 1989.17. R. P. Kurshan and Leslie Lamport. Veri�cation of a multiplier: 64 bits and beyond.In Proceedings of the 5th International Workshop on Computer-Aided Veri�cation,pages 166{179. Springer Verlag Lecture Notes in Computer Science 697, 1993.18. R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes.Information and Computation, 117:1{11, 1995.19. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.Springer Verlag, 1991.20. K. L. McMillan. Using unfoldings to avoid the state explosion problem in the veri-�cation of asynchronous circuits. In Proceedings of the 4th International Workshopon Computer-Aided Veri�cation, pages 164{177. Springer Verlag Lecture Notes inComputer Science 663, 1992.21. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.22. Olaf M�uller and Tobias Nipkow. Combining model checking and deduction forI/O-automata. In Proceedings of the First Workshop on Tools and Algorithms forthe Construction and Analysis of Systems, pages 1{12. Technical Report NS-95-2,BRICS Notes Series, Aarhus, 1995.23. Lawrence C. Paulson. The foundation of a generic theorem prover. Journal ofAutomated Reasoning, 5(3):363{397, 1989.24. Doron Peled. Combining partial order reductions with on-the-
y model-checking.In Proceedings of the 6th International Workshop on Computer-Aided Veri�cation.Springer Verlag Lecture Notes in Computer Science 801, 1994.25. S. Rajan, N. Shankar, and M. K. Srivas. An integration of model-checking withautomated proof checking. In Proceedings of the 7th International Workshop onComputer-Aided Veri�cation. Springer Verlag Lecture Notes in Computer Science,1995.26. A. Segall. Distributed network protocols. IEEE Trans. on Inf. Theory, IT29(1),1983.27. Z. Shtadler and O. Grumberg. Network grammars, communication behavior, andautomatic veri�cation. In Proceedings of the Workshop on Automatic Veri�cation15



Methods for Finite State Systems, pages 151{165. Springer Verlag Lecture Notesin Computer Science, 1989.28. Antti Valmari. A stubborn attack on state explosion (abridged version). In Pro-ceedings of the 2nd International Workshop on Computer-Aided Veri�cation, pages156{165. Springer Verlag Lecture Notes in Computer Science 513, 1990.29. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes withnetwork invariants. In Proceedings of the Workshop on Automatic Veri�cationMethods for Finite State Systems, pages 68{80. Springer Verlag Lecture Notes inComputer Science, 1989.

16


