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ABSTRACT 
Formal verification has become increasingly important because of 
the kinds of guarantees that it can provide for software systems. 
Verification of models of biological and medical systems is a 
promising application of formal verification. Human neural 
networks have recently been emulated and studied as a biological 
system.   Some recent research has been done on modelling some 
crucial neuronal circuits and using model checking techniques to 
verify their temporal properties. In large case studies, model 
checkers often cannot prove the given property at the desired level 
of generality. In this paper, we provide a model using the Coq Proof 
Assistant and prove properties concerning the dynamic behavior of 
some basic neuronal structures. Understanding the behavior of 
these modules is crucial because they constitute the elementary 
building blocks of bigger neuronal circuits. By using a proof 
assistant, we guarantee that the properties are true for any input 
values, any length of input, and any amount of time. With such a 
model, there is the potential to detect inactive regions of the human 
brain and to treat mental disorders. Furthermore, our approach can 
be generalized to the verification of other kinds of networks, such 
as regulatory, metabolic, or environmental networks. 
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1 Introduction 
In this work, we apply formal verification to verify the dynamic 

behavior of biological human neural networks. We focus on 
theorem proving, which can be used to show that a piece of 
software or a system is free of errors with respect to a formal model 
that is provided for it. In formal verification, often a model of the 
system is defined based on a transition graph [1]. Each node in the 
graph represents a state of the system being modelled and each edge 
stands for a transition from a source to a destination state. Model 
checkers or theorem provers are often used to verify that specific 
properties of the system hold at particular states. 

The field of systems biology is a more recent application area 
for formal verification, and such techniques have turned out to be 
very useful so far in this domain [2]. A variety of biological systems 
can be modelled as graphs whose nodes represent the different 
possible configurations of a system and whose edges encode 
meaningful configuration changes. It is then possible to define and 
prove properties concerning the temporal evolution of the 
biological species involved in the system [3, 4]. This often allows 
deep insight into the biological system at issue, in particular 
concerning the biological transitions governing it, and the reactions 
the system will have when confronted with external factors such as 
disease, medicine, and environmental changes [5, 6]. By 
understanding and proving properties of a biological system, there 
is a higher chance of treating diseases and developing medicines 
that will be suited for them. Furthermore, weak points of the system 
can be detected and better prevention against disease and other 
external problems can be proposed. Finally, biological system 
recovery after damage has occurred can be studied and verified. In 
summary, behavior, disease, effects of medicine, external 
problems, environmental change impacts, and system recovery of 
a biological system can all be detected and verified using formal 
verification. 

As far as the modelling of biological systems is concerned, in 
the literature we can find both qualitative and quantitative 
approaches. To express the qualitative nature of dynamics, the most 
used formalisms are Thomas’ discrete models [7], Petri nets [8], π-
calculus [9], bio-ambients [10], and reaction rules [11]. To capture 
the dynamics from a quantitative point of view, ordinary or 
stochastic differential equations are used extensively. More recent 
approaches include hybrid Petri nets [12] and hybrid automata [13], 
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stochastic π-calculus [14], and rule-based languages with 
continuous/stochastic dynamics such as Kappa [15]. Relevant 
properties concerning the obtained models are then often expressed 
using a formalism called temporal logic and verified thanks to 
model checkers such as NuSMV [16] or PRISM [17]. 

In [18], the authors propose the use of modal linear logic as a 
unified framework to encode both biological systems and temporal 
properties of their dynamic behavior. They focus on a model of the 
P53/Mdm2 DNA-damage repair mechanism and they prove some 
desired properties using theorem proving techniques.  In [19], the 
authors advocate the use of higher-order logic to formalize reaction 
kinetics and exploit the HOL Light theorem prover to verify some 
reaction-based models of biological networks. Finally, the Porgy 
system is introduced in [20]. It is a visual environment which 
allows modelling of biochemical systems as rule-based models. 
Rewriting strategies are used to choose the rules to be applied. 

As far as human neural networks are concerned, there is recent 
work that has focused on their formal verification. In [21, 22], the 
authors consider the synchronous paradigm to model and verify 
some specific graphs composed of a few biological neurons. These 
graphs or mini-circuits, characterized by biologically relevant 
structures and behaviors, are referred to as archetypes and 
constitute the fundamental elements of neuronal information 
processing. They can be coupled to create the elementary building 
blocks of bigger neuronal circuits. For this reason, their study has 
become an emerging question in the domain of neurosciences, 
especially for their potential integration with neurocomputational 
techniques [23]. Furthermore, understanding these micro-circuits 
can help in detecting weakly active or inactive zones of the human 
brain, and in identifying neurons whose role is crucial to perform 
some vital activities, such as breathing or moving. 

In the work proposed in [21, 22], some model checkers such as 
Kind2 [24] are employed to automatically verify properties 
concerning the dynamics of six basic archetypes and their coupling. 
However, model checkers prove properties for some given 
parameter intervals, and do not handle inputs of arbitrary length. In 
our work, we use the Coq Proof Assistant [25] to prove four 
important properties of neurons and archetypes. Coq implements a 
highly expressive higher-order logic in which we can directly 
introduce datatypes modelling neurons and archetypes, and express 
properties about them. As a matter of fact, one of the main 
advantages of using Coq is the generality of its proofs. Using such 
a system, we can prove properties about arbitrary values of 
parameters, such as any length of time, any input sequence, or any 
number of neurons. We use Coq’s general facilities for structural 
induction and case analysis, as well as Coq’s standard libraries that 
help in reasoning about rational numbers and functions on them. 
We believe the approach introduced in this paper for reasoning 
about neural networks is very promising, because it can be 
exploited for the verification of other kinds of biological networks, 
such as gene regulatory, metabolic, or environmental networks. 

The paper is organized as follows. In Section 2, we introduce 
the state of the art relative to neural network modelling and the 
application of formal methods in this domain. In Section 3, we 
describe the computational model we have chosen, the Leaky 

Integrate and Fire model (LI&F), and we briefly introduce some 
basic archetypes. In Section 4, we introduce the Coq Proof 
Assistant. In Section 5, we present our model of neural networks in 
Coq, which includes definitions of neurons, operations on them, 
and combining them into archetypes.  In Section 6, we present and 
discuss four important properties, starting with properties of single 
neurons and the relation between the input and output, and moving 
toward more complex properties that express their interactions and 
behaviors as a system.  We provide a full proof of the first property; 
the remaining proofs are found in the appendix at the end of this 
paper.  Finally, in Section 7, we conclude and discuss future work.  
The accompanying Coq code can be found at: 
http://www.site.uottawa.ca/~afelty/csbio18/.  

2 Background 
Neurons are the smallest unit of a neural network [26]. They are 

basically just a single cell. We can consider them simply as a 
function with one or more inputs and a single output.  A human 
neuron receives its inputs via its dendrites. Dendrites are short 
extensions connected to the neuron body, which is called a soma. 
Inputs are provided in the form of electrical pulses (spikes). For 
each neuron there is another extension, called the axon, which plays 
the role of output. This extension is also connected to the cell body, 
but it is longer than the dendrites. Each neuron has its own 
activation threshold which is coded somehow inside the soma. 
When the sum of the spikes received by a neuron through its 
dendrites passes its threshold, the neuron fires a spike in the axon. 
Neurons can be connected to other neurons. Connections happen 
between the axon of a neuron and a dendrite of another neuron. 
Theses connections are called synaptic connections and the location 
of the connection is called a synapse. They are responsible for 
transmitting signals between neurons. 

In this paper, we consider third generation models of neural 
networks.  They are known as spiking neural networks [27] and 
have been proposed in the literature with different complexities and 
capabilities. In this work we focus on the Leaky Integrate and Fire 
(LI&F) model originally proposed in [28]. It is a computationally 
eǑcient approximation of a single-compartment model [29] and is 
abstract enough to be able to apply formal verification techniques. 
In such a model, neurons integrate present and past inputs in order 
to update their membrane potential values. Whenever the potential 
exceeds a given threshold, an output signal is fired. 

As far as spiking neural networks are concerned, in the literature 
there are a few attempts at giving formal models for them. In [30], 
a mapping of spiking neural P systems into timed automata is 
proposed. In that work, the dynamics of neurons are expressed in 
terms of evolution rules and durations are given in terms of the 
number of rules applied. Timed automata are also exploited in [31] 
to model LI&F networks. This modelling is substantially different 
from the one proposed in [30] because an explicit notion of duration 
of activities is given. Such a model is formally validated against 
some crucial properties defined as temporal logic formulas and is 
then exploited to find an assignment for the synaptic weights of 
neural networks so that they can reproduce a given behavior. 
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Another recent application of formal methods in computer 
science to neuro-sciences is given in [21, 22], where the authors 
model LI&F neurons and some basic small circuits using the 
synchronous language Lustre. Such a language is dedicated to the 
modelling of reactive systems, i.e., systems which constantly 
interact with the environment and which may have an infinite 
duration.  It relies on the notion of logical time: time is considered 
as a sequence of discrete instants, and an instant is a point in time 
where external input events can be observed, computations can be 
done, and outputs can be emitted. Lustre is used not only to encode 
neurons and some basic archetypes (simple series, parallel 
composition, etc.), but also some properties concerning their 
dynamic evolution. Some model checkers are then employed to 
automatically prove these properties for some given parameter 
intervals. 

LI&F networks extended with probabilities are formalized as 
discrete-time Markov chains in [32]. The proposed framework is 
then exploited to propose an algorithm which reduces the number 
of neurons and synaptic connections of input networks while 
preserving their dynamics. 

3 Leaky Integrate and Fire Model and Neuron 
Modules 
Leaky Integrate and Fire (LI&F) networks [33]	can be seen as 

directed weighted graphs whose nodes stand for neurons and whose 
edges represent synaptic connections. The signals propagating over 
synapses are trains of impulses and they are referred to as spikes. 
Synapses may modulate these signals according to their weight: 
excitatory if positive, or inhibitory if negative. 

The dynamic behavior of neurons is guided by their membrane 
potential (or, simply, potential), which represents the difference of 
electrical potential across the cell membrane. The membrane 
potential of each neuron depends on the spikes received over its 
input synapses. Both current and past spikes are taken into account, 
but the contribution of old spikes is less important. In particular, 
the leak factor is introduced to weaken the signals received in the 
past. The neuron outcome depends on the difference between its 
membrane potential and its firing threshold: it is enabled to fire 
(i.e., emit a spike over all its outgoing synapses) only whenever 
such a difference is positive. Immediately after each spike 
emission, the neuron membrane potential is reset to zero. 

More formally, the following definition can be given for 
networks of LI&F neurons. 
Definition 1 (LI&F Neural Network). A LI&F Neural Network is 
a tuple (𝑉, 𝐸, 𝑤), where:  

• 𝑉 is the set of LI&F neurons,  
• 𝐸 ⊆ 𝑉×	𝑉 is the set of synapses,  
• 𝑤: 𝐸 → ℚ ∩ [−1,1]	is the synapse weight function 

associating a weight 𝑤2,3 to each synapse (𝑢, 𝑣). 

We distinguish three disjoint sets of neurons: 𝑉7 (input 
neurons), 	𝑉789 (intermediary neurons), and 	𝑉: (output 
neurons), with 𝑉 = 	𝑉7 ∪ 𝑉789 ∪ 𝑉:. 

A LI&F neuron is characterized by a tuple (𝜏, 𝑟, 𝑝, 𝑦), 
where: 

• 𝜏 ∈ ℚB is the firing threshold or activation threshold,  
• 𝑟 ∈ ℚ ∩ [0, 1] is the leak factor, 
• 𝑝: ℕ → ℚ	is the [membrane] potential function defined 

as: 

𝑝 𝑡 =
𝑤7. 𝑥7 𝑡 ,																													𝑖𝑓	𝑝 𝑡 − 1 ≥ 𝜏

J

7KL

𝑤7. 𝑥7 𝑡 + 𝑟 ∙ 𝑝 𝑡 − 1 ,				𝑖𝑓	𝑝 𝑡 − 1 < 𝜏
J

7KL

							 1  

with 𝑝(0) = 0  and where 𝑥7 𝑡 ∈ 0, 1 	 is the signal 
received at the time 𝑡 by the neuron through its 𝑖9Pout of 
𝑚  input synapses (observe that the past potential is 
multiplied by the leak factor while current inputs are not 
weakened), 

• 𝑦:	ℕ → {0, 1} is the neuron output function, defined as: 

𝑦 𝑡 = 1							𝑖𝑓	𝑝 𝑡 ≥ 𝜏
0							𝑖𝑓	𝑝 𝑡 < 𝜏																																																								(2) 

The set of neurons of a LI&F neural network can be divided into 
input, intermediary, and output neurons. Each input neuron can 
only receive external signals as input and the output of each output 
neuron is considered as an output for the network. Output neurons 
are the only ones whose output is not connected to other neurons. 

In neural networks, it is possible to identify some mini-circuits 
with a relevant topological structure. Each one of these small 
modules, which are often referred to as archetypes in the literature, 
displays a specific class of behaviors. They can be coupled together 
to form the elementary bricks of bigger neural circuits. In [21], six 
basic archetypes have been identified and validated against some 
temporal logic properties thanks to model checking techniques [1].	
They are the following ones (see Figure 1 for a graphical 
representation): (a) simple series, which is a sequence of neurons 
where each element of the chain receives as input the output of the 
preceding one; (b) series with multiple outputs, which is a series 
where, at each time unit, we are interested in knowing the outputs 
of all the neurons (i.e., all the neurons are considered as output); (c) 
parallel composition, which is a set of neurons receiving as input 
the output of a given neuron; (d) negative loop, which is a loop 
consisting of two neurons—the first neuron activates the second 
one while the latter inhibits the former; (e) inhibition of a behavior, 
which consists of two neurons, the first one inhibiting the second 
one; and (f) contralateral inhibition, which is made by two or more 
neurons, each one inhibiting the other ones. In Figure 1, a solid 
black circle at the end of an edge shows an inhibitory connection 
and a regular arrow represents an excitatory connection. 
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Figure 1: Neuron archetypes [21, 22] 

In this paper, we exploit Coq to prove more general properties 
concerning some of these archetypes. 

4 The Coq Proof Assistant 
In this section, we present the basic elements of Coq that we use 

to represent our model. More complete documentation of Coq can 
be found in [25, 34]. Coq is a proof assistant that implements the 
Calculus of Inductive Constructions [35], which is an expressive 
higher-order logic. Using this software, we can express and prove 
properties in this logic. Expressions in the logic include a functional 
programming language. It is a typed language, which means that 
every Coq expression has a type. For instance, X:nat expresses 
that variable X is in the domain of natural numbers. The types used 
in our model include nat, Q, and list which denote natural 
numbers, rational numbers, and list of elements respectively. These 
types are found in Coq’s standard libraries. Elements of a list have 
their own type. For instance, L:list nat means that L is a list 
of natural numbers. A list can be empty, which is written [] or 
nil in Coq. Functions are a basic element of any functional 
programming language. The general form of a function in Coq is 
shown in Figure 2. 

Definition/Fixpoint Function_Name  
(Input1: Type of Input1) … 
(Inputn: Type of Inputn) : Output Type := 
  Body of the function. 

Figure 2. General form for defining a function in Coq 

Definition and Fixpoint are Coq keywords for defining 
non-recursive and recursive functions, respectively. Calling a 
function inside its body causes an error when Definition is 
used. After either one of these keywords comes the name that a 

programmer gives to the function. Following the function name are 
the input arguments and their types. If two or more inputs have the 
same type, they can be grouped as, for example, (X Y Z: Q) 
which means all variables X, Y, and Z are rational numbers. 
Following the inputs is a colon, followed by the type of the 
function. Finally, the body of the function is a Coq expression 
representing a program, followed by a dot. 

Pattern matching is a useful method in Coq, used for case 
analysis. This feature is used, for instance, for distinguishing 
between base cases and recursive cases in recursive functions. For 
example, it can distinguish when a list is empty or not. The pattern 
for a non-empty list shows the first element of the list, which is 
called the head, followed by a double colon, followed by the rest of 
the list, which is called the tail. The tail of a list itself is a list of 
elements of the same type as the type of the head. For example, let 
L be the list (6::3::8::nil) containing three natural numbers.  
An alternate notation for Coq lists allows L to be written as 
[6;3;8] where the head is 6 and the tail is [3;8]. Thus, the 
general pattern for non-empty lists often used in Coq recursive 
functions has the form (h::t). Another example of a Coq data 
type is the natural numbers. A natural number is either 0 or the 
successor of another natural number, written (S n), where n is a 
natural number. For example, 1 is represented as (S 0), 2 as (S 
(S 0)), etc. In Figure 3, some patterns for lists and natural 
numbers are shown using Coq’s match…with…end pattern 
matching construct. 

match X with 
| 0 => Do something when X = 0 
| S n => Do something when X is successor of n 
end 
 
match L with 
| [] => Do something when L is an empty list 
| h::t => Do something when L has head h 
          followed by tail t 
end 

Figure 3. General form for pattern matching of natural 
numbers and lists in Coq 

In addition to the data types that are defined in Coq’s libraries, 
new data types can be defined. One way to do so is using records. 
Records can have different fields with different types. For example, 
we can define a record that has 3 fields Fieldnat, FieldQ, and 
ListField, which have types natural number, rational number, 
and list of natural numbers, respectively. Figure 4 shows the Coq 
syntax for the definition of this record with one additional field 
called CR.  
 
Record Sample_Record := MakeSample { 
  Fieldnat: nat; 
  FieldQ: Q; 
  ListField: list nat; 
  CR: Fieldnat > 7 
}. 
 
S: Sample_Record 

Figure 4. Definition of a record and a variable with the record 
type in Coq 
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Fields in Coq can represent conditions on other fields. For example, 
field CR in Figure 4 is a condition on the Fieldnat field stating 
that it must be greater than 7. After defining a record, it is a type 
like any other type, and so for example, we can have variables with 
the new record type. Variable S shown with type 
Sample_Record in Figure 4 is an example.  

5 Modelling Human Neural Networks in Coq 

Record Neuron := MakeNeuron { 
  Output:list nat; 
  Weights:list Q; 
  Leak_Factor:Q; 
  Tau:Q; 
  Current:Q; 
  Output_Bin: Bin_List Output;  
  LeakRange: Qle_bool 0 Leak_Factor = true /\ 
             Qle_bool Leak_Factor 1 = true;  
  PosTau: Qlt_bool 0 Tau = true; 
  WRange: WeightInRange Weights = true }. 
 
Fixpoint potential (Weights: list Q) 
                   (Inputs: list nat): Q := 
  match Weights, Inputs with 
  | nil, _ => 0 
  | _, nil => 0 
  | h1::t1, h2::t2 =>  
      if (beq_nat h2 0%nat)  
      then (potential t1 t2)     
      else (potential t1 t2) + h1 
  end. 
 
Figure 5. Coq code defining a neuron and the weighted sum of 
its inputs 

We illustrate our encoding of neural networks in Coq by 
beginning with the code in Figure 5. We use Coq’s record structure 
to define a neuron.  This record includes five fields with their types, 
and four fields which represent constraints that the first five fields 
must satisfy according to the LI&F model mentioned in Section 3. 
The types include natural numbers, rational numbers, and lists.  In 
particular, a neuron’s output (Output) is represented as a list of 
natural numbers, with one entry for each time step.  The weights 
attached to the inputs of the neuron (Weights) are stored in a list 
of rational numbers, one for each input in some designated order.  
The leak factor (Leak_Factor), the firing threshold (Tau), and 
the most recent neuron membrane potential (Current) are 
rational numbers.  With respect to the four conditions, for example, 
consider PosTau, which expresses that Tau must be positive. 
Qle_bool and other arithmetic operators come from Coq’s 
rational number library. The other three state, respectively, that 
Output contains only 0s and 1s (it is a binary list), 
Leak_Factor is between 0 and 1 inclusive, and each input 
weight is in the range of [-1, 1].  We omit the definitions of 
Bin_List and WeightInRange used in these statements.  The 
reader is referred to the accompanying Coq code. 

Given a neuron N, we write (Output N) to denote its first 
field, and similarly for the others.  To create a new neuron with 
values O, W, L, T, and C of the appropriate types, and proofs P1,…, 

P4 of the four constraints, we write (MakeNeuron O W L T C 
P1 P2 P3 P4). 

The next definition in Figure 5 implements the weighted sum of 
the inputs of a neuron, which is an important part of the calculation 
in Equation (1). In this recursive function, there are two arguments: 
Weights representing 𝑤L, … , 𝑤J  and Inputs representing 
𝑥L, … , 𝑥J.  The function returns an element of type Q. Its definition 
uses pattern matching on both inputs simultaneously.  The body of 
the definition uses Booleans, the if statement, and the equality 
operator on natural numbers (beq_nat), all from Coq’s standard 
library. Natural numbers, such as 0%nat above are marked with 
their type to distinguish them from rational numbers, whose types 
are omitted. Although, we always call the potential function 
with two lists of equal length, Coq requires functions to be total; 
when two lists do not have equal length, we return a “default” value 
of 0. Also, when we call this function, Inputs, which is the 
second argument of the function, will always be a binary list 
(contains only the natural numbers 0 and 1). Thus, when head of 
this list h2 is 0, we don’t need to add anything to the final sum 
because anything multiplied by 0 is 0. In this case, we just call the 
function recursively on the remaining weights and inputs t1 and 
t2, respectively. On the other hand, when h2 is 1, we need to add 
h1, the head of Weights to the final sum, which again is the 
recursive call on t1 and t2. 

Definition NextPotential (N: Neuron) (Inputs: 
list nat): Q := 
  if (Qle_bool (Tau N) (Current N)) 
  then  (potential (Weights N) Inputs) 
  else  (potential (Weights N) Inputs) + 
       (Leak_Factor N) * (Current N). 
 
Figure 6. Coq code defining neuron potential function 

Figure 6 shows the NextPotential function, which 
implements 𝑝(𝑡) from Equation (1). Recall that (Current N) is 
the most recent potential value of the neuron which is 𝑝(𝑡 − 1) in 
Equation (1). (Qle_bool (Tau N) (Current N)) 
represents 𝜏 ≤ 𝑝(𝑡 − 1) and we use the potential function defined 
in Figure 5 for the part calculating the weighted sum of the neuron 
inputs. Finally, the last line implements 𝑟 ∙ 𝑝(𝑡 − 1). 

Figure 7 on the next page contains two definitions. The first 
calculates the next output of the neuron which is 𝑦(𝑡) in Equation 
(2). Recall that (NextPotential N Inputs) shown in 
Figure 6 calculates 𝑝(𝑡). Thus, the expression (Qle_bool (Tau 
N) (NextPotential N Inputs)) expresses the condition 
𝜏 ≤ 𝑝(𝑡).  

In our model, the state of a neuron is represented by the 
Output and Current fields.  The Output field of a neuron in 
the initial state is [0%nat], which denotes a list of length 1 
containing only 0.  The Current field represents the initial 
potential, which is set to 0.  A neuron changes state by processing 
input.  After processing a list of 𝑛 inputs, the Output field will be 
a list of length 𝑛 + 1 containing 0’s and 1’s, and the Current 
field will be set to the value of the potential after processing these 
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𝑛  inputs. State change occurs by applying the NextNeuron 
function in Figure 7 to a neuron and a list of inputs.  As is typical 
in functional programming, we represent a neuron at its later state 
by creating a new record with the new values for Output and 
Current and other values directly copied over. We store the 
values in the Output field in reverse order, which simplifies 
proofs by induction over lists, which we use regularly in our Coq 
proofs. Thus, the most recent output of the neuron is at the of head 
the list. We can see this in the code in Figure 7, where the new value 
of the output is ((NextOutput N Inputs)::(Output 
N)).  The next output of the neuron is at the head, followed by the 
previous outputs. (NextPotential N Inputs) is the new 
value for (Current N). Recall that (Current N) is the most 
recent value of potential value of the neuron or 𝑝(𝑡 − 1). So, for 
calculating the next potential value of the neuron or 𝑝(𝑡) , the 
NextPotential function in Figure 6 is called.  

Following the new values for each field of the neuron, we have 
proofs of the four constraints.  The first requires a lemma 
NextOutput_Bin_List (statement omitted) which allows us 
to prove that the new longer list is still a binary list.  Proofs of the 
other three constraints are carried over exactly from the original 
neuron, since they are about components of the neuron that do not 
change. 

Definition NextOutput 
  (N: Neuron) (Inputs: list nat): nat := 
  if (Qle_bool (Tau N) (NextPotential N Inputs)) 
  then 1%nat  
 else 0%nat 
 
Definition NextNeuron 
 (N: Neuron) (Inputs: list nat): Neuron := 
  MakeNeuron 
    ((NextOutput N Inputs)::(Output N)) 
    (Weights N) 
    (Leak_Factor N) 
    (Tau N) 
    (NextPotential N Inputs) 
    (NextOutput_Bin_List N Inputs (Output_Bin N)) 
    (LeakRange N) 
    (PosTau N) 
    (WRange N). 

Figure 7. Coq functions for returning the next output and 
neuron structure after the next time step  

To reinitialize a neuron to the initial state as described above, 
the ResetNeuron function is used.  This function takes any 
Neuron as input, and returns a new one, with the Output, 
Current, and Output_Bin fields reset, while keeping the 
others. 

So far, we have discussed the encoding and processing of single 
neurons in isolation, which take in inputs and produce outputs.  The 
archetypes in Figure 1 illustrate some ways in which networks of 
neurons are connected.  We have so far considered archetypes (a) 
and (e) in our work.  We represent (a) as an ordered list of single 
input neurons (a Coq list of type list Neuron), where we 
assume that the output of a neuron in the list is connected to the 
input of the neuron occurring immediately following it, the input to 
the first is the input to the whole series, and the output of the last is 

the output of the whole series.  To represent (e), we define Coq 
predicates that relate two neurons; an example is discussed further 
in Section 6. 

6 Properties of Neural Networks and their Proofs 
As mentioned earlier, we prove four basic properties of the 

LI&F model of neurons in this section. All of them have been fully 
verified in Coq. We start in the next section with a property about 
a simple neuron, which has only one input. We refer to this neuron 
as a single-input neuron.  

In all of the statements of the properties, we omit the assumption 
that the input sequence of the neuron is a binary list and contains 
only 0s and 1s. It is, of course, included in the Coq code. We use 
several other conventions to enhance readability when stating 
properties and presenting proofs. For example, we state our 
properties using pretty-printed Coq syntax, with some 
abbreviations for our own definitions.  For instance, we use 
mathematical fonts and conventions for Coq text, e.g., (Output 
N) is written 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁 ,  (Tau N) is written as 	𝜏 𝑁 , 
(Weights N) is written 𝑤 𝑁 , (Leak_Factor N) is written 
𝑟 𝑁 , and (Current N) is written 𝑝 𝑁 . In addition, if 𝑤 𝑁  is 
a list of the form 𝑤L;… ;	𝑤8  for some 𝑛 ≥ 0, for 𝑖 = 1, … , 𝑛, we 
often write 𝑤7 𝑁  to denote 𝑤7 .  Also, we use notation and 
operators from the Coq standard library for lists.  For instance, 
𝑙𝑒𝑛𝑔𝑡ℎ  and +  are list operators; the former is for finding the 
number of elements in the list and the latter is the notation we will 
use here for list concatenation. 

In addition, although for a neuron 𝑁 , the list 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁)  is 
encoded in reverse order in our Coq model, when presenting 
properties and their proofs here, we use forward order. 

6.1 The Delayer Effect for a Single-Input Neuron 
The first property is called the delayer effect property. Recall 

that a neuron is in an inactive state initially, which means the output 
of a neuron at time 0 is 0. When a neuron has only one input, and 
the weight of that input is greater than or equal to its activation 
threshold, then the neuron transfers the input sequence to the output 
without any change (except for a “delay” of length 1). For instance, 
if a single input neuron receives 0100110101 as its input sequence, 
it will produce 00100110101 as output. Neurons that have this 
property are not functional neurons. They are mainly just 
transferring signals. Humans have some of this type of neuron in 
their auditory system. This property is expressed as Property 1. 
Property 1. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 , 
	𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 ≥ 𝜏 𝑁 → 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d = 0 + 𝑖𝑛𝑝𝑢𝑡 
In the above statement, 𝑁d  denotes the neuron obtained by 

initializing 𝑁 and then processing the input (using 𝑅𝑒𝑠𝑒𝑡𝑁𝑒𝑢𝑟𝑜𝑛 
and repeated applications of 𝑁𝑒𝑥𝑡𝑁𝑒𝑢𝑟𝑜𝑛).  We use this 
convention in stating all of our properties.  Note that in Definition 
1, Equation (1), 𝑝 is a function of time.  Time in our Coq model is 
encoded as the position in the output list. If 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁  has 
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length	𝑡, then 𝑝(𝑁) stores 𝑝 𝑡 − 1  from Equation (1). If we then 
apply 𝑁𝑒𝑥𝑡𝑁𝑒𝑢𝑟𝑜𝑛  to 𝑁  and the next input obtaining 𝑁d , then 
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d  has length 𝑡 + 1  and 𝑝(𝑁d)  stores the value 𝑝(𝑡) 
from Equation (1). 

In order to prove Property 1, we need the following lemma, 
which states that when a neuron has one input and its input weight 
is greater than or equal to its threshold, the potential value of that 
neuron is always non-negative. 
Lemma 1. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,  
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 ≥ 𝜏 𝑁 → 𝑝(𝑁′) ≥ 0 

As explained above 𝑝(𝑁′)  is the most recent value of the 
potential function of neuron 𝑁 , i.e., the one obtained after 
processing all of the input values. The proof of this lemmas is in 
the appendix.  We use it here to prove Property 1. 
Proof (of Property 1). The proof is by induction on the length of 
the input sequence as follows. 

Base case: 𝑖𝑛𝑝𝑢𝑡 = [] (the empty list). If there is no input in the 
input sequence, the neuron will keep its initial status, i.e., 𝑁 = 𝑁′. 
So, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = [0] . Therefore, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = 0 = 0 +
[] = 0 + 𝑖𝑛𝑝𝑢𝑡. 

Induction case: We assume that the property is true for 𝑖𝑛𝑝𝑢𝑡 
and we must show that it holds for some 𝑖𝑛𝑝𝑢𝑡′  of the form 
(𝑖𝑛𝑝𝑢𝑡 + [�]) for some additional input value �.  Let 𝑁′ be the 
neuron resulting from processing 𝑖𝑛𝑝𝑢𝑡, and let 𝑁′′ be the neuron 
after processing 𝑖𝑛𝑝𝑢𝑡′.  By the induction hypothesis, we know 
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = 0 + 𝑖𝑛𝑝𝑢𝑡  and we must prove that 
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁 ′′ = 0 + 𝑖𝑛𝑝𝑢𝑡′. 

Note that 𝜏 𝑁 = 𝜏 𝑁′ = 𝜏 𝑁′′  and similar equalities hold 
for 𝑟 and 𝑤1,	so we use them interchangeably. Because 𝑖𝑛𝑝𝑢𝑡 is a 
binary list, we know that � = 0 or � = 1. We break this into two 
different cases, depending on the value of �. 

First, we assume that 𝑖𝑛𝑝𝑢𝑡 ′ = 𝑖𝑛𝑝𝑢𝑡 + [0] and we prove that 
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [0]. In this case, the most recent 
input to the neuron is 0. Again, to relate this to Equation (1), let 𝑡 
be the time at which we process the last input. We calculate 𝑝 𝑁′′ , 
which corresponds to 𝑝(𝑡), i.e., the potential value of the neuron at 
time 𝑡; also the value 𝑝 𝑁′  represents 𝑝(𝑡 − 1) in this definition. 
Using the first and second clauses of Equation (1), respectively, the 
value is one of: 

𝑝(𝑁dd) = 𝑤L(𝑁′) ∙ 0 = 0 or 
𝑝 𝑁′′ = 𝑤L(𝑁′) ∙ 0 + 𝑟(𝑁′) ∙ 𝑝 𝑁′ . 
In the first case, 𝑝 𝑁′′ = 0 and we know 0 < 𝜏(𝑁), because 

𝜏(𝑁) is always positive.  So, by the second clause of Equation (2) 
in Definition 1, the next output of the neuron will be 0. The other 
case, which comes from the second clause of Equation (1) has the 
same result. In this case, the condition on this clause says that 
𝑝 𝑁′ < 	𝜏(𝑁′) and we must show that 𝑝 𝑁′′ = 𝑟(𝑁′) ∙ 𝑝 𝑁′ <
𝜏 𝑁 . Recall that 𝑟(𝑁′), the leak factor of the neuron, is between 0 
and 1. So, multiplying any number that is less than a positive 
number by a value between 0 and 1 gives a value that is smaller 
than or equal to the original number.  Therefore, by Equation (2), 
the next output of the neuron will be 0 again. We can conclude now 
that by adding 0 to the input sequence, a 0 will be produced in the 

output. Thus, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [0] . Using our 
induction hypothesis, we have: 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′′) = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + 0 = 0 + 𝑖𝑛𝑝𝑢𝑡 + 0 =
0 + 𝑖𝑛𝑝𝑢𝑡′. 

Second, we assume that 𝑖𝑛𝑝𝑢𝑡 ′ = 𝑖𝑛𝑝𝑢𝑡 + [1]  and we will 
prove that 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [1] . In this case, the 
most recent input of the neuron is 1. Again, we calculate the 
potential value of 𝑁′′ using Equation (1): 
							𝑝 𝑁′′ = 𝑤1 𝑁′ ∙ 1 = 𝑤1 𝑁′  or  

 𝑝 𝑁′′ = 𝑤1 𝑁′ ∙ 1 + 𝑟 𝑁′ ∙ 𝑝 𝑁′  
															= 𝑤1(𝑁′) + 𝑟(𝑁′) ∙ 𝑝 𝑁′ . 
In the first case, when 𝑝 𝑁′′ = 𝑤1(𝑁′) , we know that 

𝑤1(𝑁) ≥ 𝜏(𝑁) by assumption in the statement of the property, we 
know that 𝑤1 𝑁 = 𝑤1 𝑁′  as discussed, and thus 𝑝 𝑁′′ ≥ 𝜏(𝑁).  
So by Equation (2), the next output of the neuron will be 1. In the 
second case, 𝑝 𝑁′ ≥ 0 according to Lemma 1, and it is always the 
case that 𝑟(𝑁′) ≥ 0, so we can conclude that 𝑟(𝑁′) ∙ 𝑝(𝑁′) ≥ 0. 
Because 𝑤1(𝑁) ≥ 𝜏(𝑁)  and adding a non-negative value to the 
greater side of an inequality keeps it that way, we can conclude that 
𝑝 𝑁′′ = 𝑤1(𝑁′) + 𝑟(𝑁′) ∙ 𝑝 𝑁′ ≥ 𝜏(𝑁) . Therefore, again by 
Equation (2), the next output of the neuron will be 1 again. Thus, 
we can conclude in both cases that by adding 1 to the input 
sequence, a 1 will be produced in the output. Thus, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ =
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [1].Using our induction hypothesis, we have: 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′′) = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + 1 = 0 + 𝑖𝑛𝑝𝑢𝑡 + 1 = 0 +
𝑖𝑛𝑝𝑢𝑡′. 

This completes the proof. 

6.2 The Filter Effect for a Single Neuron 
The next property we consider is also about single-input 

neurons. When a neuron has only one input, and the weight of that 
input is less than its activation threshold, the neuron passes on the 
value 1 once as output for each sequence of 𝑛 1s in the input, where 
𝑛  is the designated length of the series. All 1s in the input are 
replaced by 0 except for the 𝑛9� one, the 2𝑛9�one, the 3𝑛9�one, 
etc. The other 1s are “filtered out.” For instance, let 𝑛 = 3.  Then if 
a single input neuron with this effect receives 01110010101 as 
input, it will produce 000010000001 as the output sequence. (The 
output sequence is one longer than the input because of the leading 
0.) As a consequence, there are never two consecutive 1s in the 
output sequence.  This consequence is called the filter effect. Most 
neurons in a human body have the filter effect because their input 
weight is less than their activation threshold. Normally, more than 
one input is needed to activate a human neuron. In biology, this 
property is often called the integrator effect. 
Property 2. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,	 
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 < 𝜏 𝑁 → 11	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′  

Note that in the statement above, 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d)  means 
there are no two consecutive 1s in the list 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ . This 
theorem is also proved by induction on the structure of the input 
list. (See the appendix.) 
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6.3 The Inhibitor Effect 
The next property is an important one because it has the 

potential to help us detect inactive zones of the brain. Normally, a 
human neuron does not have negative weights for all of its inputs 
but when one or more positive weight inputs are out of order 
because of some kind of disability, this property can occur. It is 
called the inhibitor effect because it is important for proving 
properties of archetype 1(e). We consider here the single neuron 
case.  When a neuron has only one input and the weight of that input 
is less than 0, then the neuron is inactive, which means that for any 
input, the neuron cannot emit 1 as output. i.e., if a signal reaches 
this neuron, it will not pass through. As with the other properties, 
the input sequence has an arbitrary finite length.  This property is 
expressed as follows. 
Property 3. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,	 
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 < 0 → 1	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′  

Similarly, in the statement above, 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) means there 
is no 1 in the list 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′).  This property is also proved by 
induction on the structure of the input, again in the appendix. 

The inhibitor effect expressed in Property 3 has a more general 
version, which we plan to prove as a future work. For a neuron with 
multiple inputs, when all input weights are less than or equal to 0, 
then the neuron is inactive and can’t pass any signal. Thus, in 
addition to proving this property for arbitrary input length, we 
intend to generalize it to an arbitrary number of neurons.  As 
mentioned, recognizing inactive neurons can help to detect inactive 
zones of the brain. In addition, it can also help to simplify the 
structure of a neural network by removing such neurons from the 
network.  

6.4 The Delayer Effect in a Series of Single 
Neurons 
The next property is about the archetype shown in Figure 1(a). 

In this structure, each neuron output is the input of the next neuron. 
If we have a series of 𝑛 single input neurons and all of them have 
the delayer effect, then the output of the whole structure is the input 
plus 𝑛  leading zeros. In other words, this structure transfers the 
input sequence exactly with a delay marked by the 𝑛 leading zeros, 
denoted as 𝑧𝑒𝑟𝑜𝑠 𝑛  in the statement of the property below. This 
property is expressed as follows. 
Property 4. ∀	 𝑆𝑒𝑟𝑖𝑒𝑠: 𝑙𝑖𝑠𝑡	𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 	 𝑖: 𝑛𝑎𝑡 ,	 
𝑙𝑒𝑛𝑔𝑡ℎ 𝑆𝑒𝑟𝑖𝑒𝑠 = 𝑛 ∧ 0 ≤ 𝑖 < 𝑛 ∧ 

𝑙𝑒𝑛𝑔𝑡ℎ(𝑤 𝑆𝑒𝑟𝑖𝑒𝑠 𝑖 = 1 ∧ 𝑤L(𝑆𝑒𝑟𝑖𝑒𝑠 𝑖 ) > 𝜏 𝑆𝑒𝑟𝑖𝑒𝑠 𝑖
→ 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑧𝑒𝑟𝑜𝑠 𝑛 + 𝑖𝑛𝑝𝑢𝑡	 

This time, the proof proceeds by induction on the length of 
𝑆𝑒𝑟𝑖𝑒𝑠. As with the other properties, the complete proof is in the 
appendix. 

 

7 Conclusion 
In this work, we proposed a formal approach to model and 

validate leaky integrate and fire neurons and some basic circuits 

(simple series and inhibition of a behavior). In the literature, this is 
not the first attempt to the formal investigation of neural networks. 
In [21, 22], the synchronous paradigm has been exploited to model 
neurons and some small neuronal circuits with a relevant 
topological structure and behavior and to prove some properties 
concerning their dynamics. Our approach based on the use of the 
Coq proof assistant (which is, to the best of our knowledge, the first 
one), turned out to be much more general. As a matter of fact, we 
guarantee that the properties we prove are true in the general case, 
such as true for any input values, any length of input, and any 
amount of time. As an example, let us consider the simple series. 
In [22], the authors were able to write a function (more precisely, a 
Lustre node) which encodes the expected behavior of the circuit. 
Then, they could call a model checker to test whether the property 
at issue is valid for some input series with a fixed length. Here we 
can prove that the wished behavior is true whatever the length and 
the parameters of the series are. 

As a first next step, we intend to formally study the missing 
archetypes of Figure 1 (series with multiple outputs, parallel 
composition, negative loop, and contralateral inhibition) and other 
new archetypes made of two, three or more neurons. We already 
started to investigate the two-neuron positive loop, where the first 
neuron activates the second one, which in turn activates the first 
one. Our progress so far includes defining a Coq inductive 
predicate that relates these two neurons and their corresponding 
two lists of values obtained by applying the potential function over 
time. This predicate is true whenever the output has a particular 
pattern that is important for proving one of the more advanced 
properties we are studying.  Defining general relations that can be 
specialized to specific patterns will likely also be very useful for 
the kinds of properties that are important for more complex 
networks. 

As a second next step, we plan to focus on the composition of 
the studied archetypes. There are two main ways to couple two 
circuits: either to connect the output of the first one to the input of 
the second one, or to nest the first one inside the second one. We 
are interested in detecting the compositions which lead to circuits 
with a meaningful biological behavior. Archetypes can be 
considered as the syllables of a given alphabet. When two or more 
syllables are combined, it is possible to obtain either a real word or 
a word which does not exist. At the same way, the archetype 
composition can lead to meaningful networks or not. 

As a long-term aim, we would like to be able to prove that 
whatever neural network can be expressed as a combination of the 
small mini-circuits we have identified, as far as all the words can 
be expressed as combination of the syllables of a given alphabet. 
Although, the proofs we have completed require some 
sophisticated reasoning, there is still a significant amount that is 
common between them.  As we continue, we expect to encounter 
more complex inductions as we consider more complex properties. 
Thus, it will become important to automate as much of the proofs 
as possible, most likely by writing tactics tailored to the kind of 
induction, case analysis, and mathematical reasoning that is needed 
here. 
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Appendix 
We include here the complete proofs of Lemma 1 and Properties 

2, 3, and 4. 
 
Lemma 1. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 , 

𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 ≥ 𝜏 𝑁 → 𝑝(𝑁′) ≥ 0 
As explained above 𝑝(𝑁′)  is the most recent value of the 

potential function of neuron 𝑁 , i.e., the one obtained after 
processing all of input values. 
 

Proof (of Lemma 1). The proof is by induction on the length of the 
input sequence. 

Base case: 𝑖𝑛𝑝𝑢𝑡 = [] (the empty list). If there is no input in the 
input sequence, the neuron will keep its initial status, i.e., 𝑁 = 𝑁′. 
So, 𝑝 𝑁′ = 0. Therefore, 𝑝 𝑁′ ≥ 0. 

Induction case: we assume that the property is true for 𝑖𝑛𝑝𝑢𝑡 
and we must show that it holds for some 𝑖𝑛𝑝𝑢𝑡′  of the form 
(𝑖𝑛𝑝𝑢𝑡 + [ℎ]) for some additional input value ℎ.  Let 𝑁′ be the 
neuron resulting from processing 𝑖𝑛𝑝𝑢𝑡, and let 𝑁′′ be the input 
after processing 𝑖𝑛𝑝𝑢𝑡′.  By the induction hypothesis, we know 
𝑝(𝑁′) ≥ 0 and we must prove that 𝑝(𝑁′′) ≥ 0. 

Note that 𝜏 𝑁 = 𝜏 𝑁d = 𝜏 𝑁dd  and 𝑤L 𝑁 = 𝑤L 𝑁d =
𝑤L 𝑁dd , so we use them interchangeably. We break this proof into 
two cases depending on whether or not 𝑝(𝑁′) ≥ 𝜏(𝑁′). 

First, let’s assume that 𝑝(𝑁′) ≥ 𝜏(𝑁′) . Because the input 
contains only 0s and 1s, we know that ℎ = 0  or ℎ = 1 . We 
calculate 𝑝 𝑁dd , which as stated, corresponds to 𝑝(𝑡) in Equation 
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(1), i.e., the potential value of the neuron at time 𝑡; the value 𝑝 𝑁d  
represents 𝑝(𝑡 − 1) in this definition. Because of our assumption, 
only the first clause of Equation (1) applies, with two possibilities 
depending on the value of ℎ: 

𝑝(𝑁dd) = 𝑤L(𝑁′) ∙ 0 = 0 or 𝑝 𝑁′′ = 𝑤L 𝑁d ∙ 1 = 𝑤L 𝑁d . 
In the first case, 𝑝 𝑁′′ = 0 ≥ 0.	In the second case, 𝑝 𝑁′′ =

𝑤L(𝑁d) and we know 𝑤L 𝑁d ≥ 𝜏 𝑁  by assumption, and 𝜏(𝑁) >
0 because, by definition, the activation threshold of any neuron is a 
positive value.  

Second, we assume that 𝑝(𝑁′) < 𝜏(𝑁). So, again because the 
input contains only 0s and 1s, we know that ℎ = 0 or ℎ = 1.  By 
the second clause of the definition of 𝑝, we have: 

𝑝 𝑁′′ = 𝑟(𝑁d) ∙ 𝑝(𝑁′) or 𝑝 𝑁′′ = 𝑤L(𝑁d) + 𝑟(𝑁d) ∙ 𝑝(𝑁′).  
In the first case, 𝑟(𝑁d) is non-negative by definition and 𝑝(𝑁d) 

is non-negative by the induction hypothesis. Thus, 𝑟(𝑁d) ∙ 𝑝(𝑁′) ≥
0. For the second case, we also have that 𝑤L(𝑁d) ≥ 𝜏 𝑁′ > 0, and 
thus the sum of two non-negative numbers is also non-negative.  

This completes the proof, thus showing that it is always the case 
that the value of the potential of a single input neuron with a non-
negative input weight will be non-negative.  
 

Property 2. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,	 
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 < 𝜏 𝑁 → 11	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′  

Note that in the statement above, 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d  means there 
are no two consecutive 1s in the list 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d . 
 

Proof.  We prove this theorem again by induction on the structure 
of the input list. 

Base case: 𝑖𝑛𝑝𝑢𝑡 = []. If there is no input in the input sequence, 
the neuron will keep its initial status, i.e., 𝑁 = 𝑁′ . So, 
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = [0]. Therefore, 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d = [0]. 

Induction case: we assume that the property is true for 𝑖𝑛𝑝𝑢𝑡 
and we must show that it holds for some 𝑖𝑛𝑝𝑢𝑡′  of the form 
(𝑖𝑛𝑝𝑢𝑡 + [ℎ]) for some additional input value ℎ.  Let 𝑁′ be the 
neuron resulting from processing 𝑖𝑛𝑝𝑢𝑡, and let 𝑁′′ be the input 
after processing 𝑖𝑛𝑝𝑢𝑡′.  By the induction hypothesis, we know 
11	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′  and we must prove that	11	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′′). 

Because we know that a neuron produces only 0 and 1 as output 
values, we know that 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [0]  or 
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [1]. For the first case, we are done, 
because when 11 does not appear in a sequence, then by adding a 0 
to the end of that sequence, there will still no 11 in that sequence. 

The second case here is a bit more complicated. We need to split 
this case into two subcases. First, let’s assume that the last produced 
output in 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) is 0, i.e., 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d) has the form 𝑆𝑒𝑞 +
[0]. So, it is clear that by adding a 1 to a sequence which ended 
with 0 and didn’t have any 11, the resulting sequence will not have 
any 11 as a substring. Thus, we can conclude that 11 ∉
𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d) → 11 ∉ 𝑆𝑒𝑞 + 0 → 11 ∉ 𝑆𝑒𝑞 + 0 + 1 → 11 ∉
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d + 1 → 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁dd). 

Now for the second subcase, let’s assume that the last produced 
output in  𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) is 1, i.e., 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d) has the form 𝑆𝑒𝑞 +
[1]. In this case, we have to prove that the next output will be 0. 
Because the last produced output in 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) is 1, we know that 
𝑝 𝑁′ ≥ 𝜏 𝑁′ .  So, 𝑝 𝑁dd = 𝑤L 𝑁d . ℎ  and because ℎ = 0  or 

ℎ = 1, we can conclude that 𝑝 𝑁d′ = 𝑤L(𝑁d) or 𝑝 𝑁d′ = 0. In 
the first case, according to the property assumption, we know that 
𝑤L 𝑁 < 𝜏(𝑁) , and thus 𝑝 𝑁dd = 	𝑤L 𝑁′ = 𝑤L 𝑁 < 𝜏(𝑁) ,  
and in the second case, because 𝜏(𝑁) is a positive value we have 
𝑝 𝑁dd = 0 < 𝜏(𝑁) . Thus, by Equation (2), the next output 
produced will be 0. Therefore, 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d → 11 ∉ 𝑆𝑒𝑞 +
[1] → 11 ∉ 𝑆𝑒𝑞 + 1 + 0 → 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + 1 → 11 ∉
𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′d). 

This completes the proof. 
 

Property 3. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,	 
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 < 0 → 1	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′  

Similar to Property 2, in the statement above, 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d) 
means there is no 1 in the list 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d). 
 

Proof.  We will prove this property using induction on the input 
length again.  

Base case: 𝑖𝑛𝑝𝑢𝑡 = []. If there is no input in the input sequence, 
the neuron will keep its initial status, i.e., 𝑁 = 𝑁′ . So, 
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = [0]. Therefore, 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d = [0]. 

Induction case: we assume that the property is true for 𝑖𝑛𝑝𝑢𝑡 
and we must show that it holds for some 𝑖𝑛𝑝𝑢𝑡′  of the form 
(𝑖𝑛𝑝𝑢𝑡 + [ℎ]) for some additional input value ℎ.  Let 𝑁′ be the 
neuron resulting from processing 𝑖𝑛𝑝𝑢𝑡, and let 𝑁′′ be the input 
after processing 𝑖𝑛𝑝𝑢𝑡′.  By the induction hypothesis, we know 
1	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′  and we must prove that	1	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′′). 

Let 𝑡 be the time at which we produced the most recent output. 
So, 𝑝(𝑁′′)  corresponds to 𝑝(𝑡)  and 𝑝(𝑁′)  corresponds to 𝑝(𝑡 −
1). Again, note that 𝜏 𝑁 = 𝜏 𝑁d = 𝜏 𝑁dd  and similar equalities 
hold for 𝑟  and 𝑤L,	 so we use them interchangeably. Using the 
induction hypothesis, we know that 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′). So, the last 
produced output in 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) is 0. Thus, 𝑝 𝑁′ = 𝑝(𝑡 − 1) <
𝜏(𝑁′) . That makes 𝑝 𝑡 = 𝑝 𝑁′′ = 𝑤L(𝑁dd). ℎ + 𝑟(𝑁′′). 𝑝(𝑁′) . 
We need to consider two cases, which are ℎ = 0 and ℎ = 1. 

In the first case, 𝑝 𝑁′′ = 𝑟(𝑁′′). 𝑝(𝑁′). We can conclude that 
𝑝 𝑁′′ = 𝑟(𝑁′′). 𝑝 𝑁d < 𝜏(𝑁′)  because 𝑝 𝑁′ < 𝜏(𝑁′)  by the 
property assumption and it is multiplied by 𝑟(𝑁′), the leak factor, 
which is between 0 and 1. Recall that 𝜏(𝑁′) is a positive value. 
Thus, the next output will be 0 in this case and 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ +
0 = 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁dd). 

In the second case, 𝑝 𝑁′′ = 𝑤L(𝑁′′) + 𝑟(𝑁dd). 𝑝(𝑁′). With the 
same reasoning as the previous case, we can say that 
𝑟(𝑁dd). 𝑝 𝑁d < 𝜏(𝑁′) . Because 𝑤L(𝑁′)  is a negative value, 
adding it to the left side of the inequality will make it smaller and 
the inequality still holds. Thus, 𝑝 𝑁′′ = 𝑤L(𝑁′′) +
𝑟(𝑁dd). 𝑝 𝑁d < 𝜏(𝑁′). Therefore, the next output will be 0 in this 
case too and 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + 0 = 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′d). 

This completes the proof.  
 

Property 4. ∀	 𝑆𝑒𝑟𝑖𝑒𝑠: 𝑙𝑖𝑠𝑡	𝑁𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 	 𝑖: 𝑛𝑎𝑡 ,
𝑙𝑒𝑛𝑔𝑡ℎ 𝑆𝑒𝑟𝑖𝑒𝑠 = 𝑁 ∧ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤(𝑆𝑒𝑟𝑖𝑒𝑠 𝑖 ) = 1	 ∧
	𝑤L 𝑆𝑒𝑟𝑖𝑒𝑠 𝑖 > 𝜏 𝑆𝑒𝑟𝑖𝑒𝑠 𝑖 → 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑧𝑒𝑟𝑜𝑠 𝑁 + 𝑖𝑛𝑝𝑢𝑡	 
 

Proof. This time we need to use induction on the length of 𝑆𝑒𝑟𝑖𝑒𝑠. 
Here, we consider the series structure shown in Figure 1(a). In the 
formula above, 𝑆𝑒𝑟𝑖𝑒𝑠[𝑖] denotes the 𝑖-th neuron in the 𝑆𝑒𝑟𝑖𝑒𝑠 and 
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𝑧𝑒𝑟𝑜𝑠(𝑁)  means a sequence of 0s of length 𝑁 . Also, 𝑂𝑢𝑡𝑝𝑢𝑡 
denotes the final output of the series structure which is equal to 
𝑂𝑢𝑡𝑝𝑢𝑡(𝑆𝑒𝑟𝑖𝑒𝑠[𝑁]). 

Base case: 𝑁 = 1. In this case, there is only one neuron in the 
series and we know that this neuron has the delayer effect. 
According to Property 1 proved earlier, we can conclude that 
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡 + 0 = 𝑖𝑛𝑝𝑢𝑡 + 𝑧𝑒𝑟𝑜𝑠(1). 

Induction case: We assume that the property holds for 𝑆𝑒𝑟𝑖𝑒𝑠 
of length 𝑘. Let 𝑂𝑢𝑡𝑝𝑢𝑡′ be the output of this series.  Thus by the 
induction hypothesis, 𝑂𝑢𝑡𝑝𝑢𝑡′ = 𝑧𝑒𝑟𝑜𝑠 𝑘 + 𝑖𝑛𝑝𝑢𝑡 .  We must 
show that the property holds for a 𝑆𝑒𝑟𝑖𝑒𝑠 + [𝑀], where 𝑀  is a 
neuron such that 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑀 = 1  and 𝑤L 𝑀 > 𝜏 𝑀 ,. Let 
𝑂𝑢𝑡𝑝𝑢𝑡′′ be the output of this series of length 𝑘 + 1. The input 
sequence for 𝑀 is the final output of 𝑆𝑒𝑟𝑖𝑒𝑠, which is 𝑧𝑒𝑟𝑜𝑠 𝑘 +
𝑖𝑛𝑝𝑢𝑡. By the assumptions of this property, all neurons in 𝑆𝑒𝑟𝑖𝑒𝑠 +
[𝑀] satisfy Property 1, i.e., have the delayer effect, including the 
last one 𝑀, which means that its output is equal to its input plus a 
leading 0. In other words, 𝑂𝑢𝑡𝑝𝑢𝑡dd = 0 + 𝑧𝑒𝑟𝑜𝑠 𝑘 + 𝑖𝑛𝑝𝑢𝑡 . 
Therefore, we can conclude that 𝑂𝑢𝑡𝑝𝑢𝑡dd = 0 + 𝑧𝑒𝑟𝑜𝑠 𝑘 +
𝑖𝑛𝑝𝑢𝑡 = 𝑧𝑒𝑟𝑜𝑠 𝑘 + 1 + 𝑖𝑛𝑝𝑢𝑡. 

This completes the proof. 
 


