

Modelling and Verifying Dynamic Properties of Biological Neural
Networks in Coq

Abdorrahim Bahrami
 School of Electrical Engineering

and Computer Science
University of Ottawa

 Ottawa, Ontario, Canada
 abahr010@uottawa.ca

Elisabetta De Maria
Université Côte d’Azur

CNRS, I3S
 France

 elisabetta.de-maria@unice.fr

Amy Felty
 School of Electrical Engineering

and Computer Science
 University of Ottawa

 Ottawa, Ontario, Canada
 afelty@uottawa.ca

ABSTRACT
Formal verification has become increasingly important because of
the kinds of guarantees that it can provide for software systems.
Verification of models of biological and medical systems is a
promising application of formal verification. Human neural
networks have recently been emulated and studied as a biological
system. Some recent research has been done on modelling some
crucial neuronal circuits and using model checking techniques to
verify their temporal properties. In large case studies, model
checkers often cannot prove the given property at the desired level
of generality. In this paper, we provide a model using the Coq Proof
Assistant and prove properties concerning the dynamic behavior of
some basic neuronal structures. Understanding the behavior of
these modules is crucial because they constitute the elementary
building blocks of bigger neuronal circuits. By using a proof
assistant, we guarantee that the properties are true for any input
values, any length of input, and any amount of time. With such a
model, there is the potential to detect inactive regions of the human
brain and to treat mental disorders. Furthermore, our approach can
be generalized to the verification of other kinds of networks, such
as regulatory, metabolic, or environmental networks.

CCS CONCEPTS
• Applied Computing~Systems Biology • Theory of
Computation~Logic and Verification

KEYWORDS
Biological network reconstruction and analysis, Modelling and
simulation of biological processes and pathways, Human Neural
Networks, Dynamic Properties, Leaky Integrate and Fire Model,
Neuronal Modules, Archetypes, Formal Verification, Theorem
Proving, Coq Proof Assistant

1 Introduction
In this work, we apply formal verification to verify the dynamic

behavior of biological human neural networks. We focus on
theorem proving, which can be used to show that a piece of
software or a system is free of errors with respect to a formal model
that is provided for it. In formal verification, often a model of the
system is defined based on a transition graph [1]. Each node in the
graph represents a state of the system being modelled and each edge
stands for a transition from a source to a destination state. Model
checkers or theorem provers are often used to verify that specific
properties of the system hold at particular states.

The field of systems biology is a more recent application area
for formal verification, and such techniques have turned out to be
very useful so far in this domain [2]. A variety of biological systems
can be modelled as graphs whose nodes represent the different
possible configurations of a system and whose edges encode
meaningful configuration changes. It is then possible to define and
prove properties concerning the temporal evolution of the
biological species involved in the system [3, 4]. This often allows
deep insight into the biological system at issue, in particular
concerning the biological transitions governing it, and the reactions
the system will have when confronted with external factors such as
disease, medicine, and environmental changes [5, 6]. By
understanding and proving properties of a biological system, there
is a higher chance of treating diseases and developing medicines
that will be suited for them. Furthermore, weak points of the system
can be detected and better prevention against disease and other
external problems can be proposed. Finally, biological system
recovery after damage has occurred can be studied and verified. In
summary, behavior, disease, effects of medicine, external
problems, environmental change impacts, and system recovery of
a biological system can all be detected and verified using formal
verification.

As far as the modelling of biological systems is concerned, in
the literature we can find both qualitative and quantitative
approaches. To express the qualitative nature of dynamics, the most
used formalisms are Thomas’ discrete models [7], Petri nets [8], π-
calculus [9], bio-ambients [10], and reaction rules [11]. To capture
the dynamics from a quantitative point of view, ordinary or
stochastic differential equations are used extensively. More recent
approaches include hybrid Petri nets [12] and hybrid automata [13],

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s).
CSBio 2018, December 10–13, 2018, Bangkok, Thailand
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6560-4/18/12…$15.00
https://doi.org/10.1145/3291757.3291771

CSBio 2018, December, 2018, Bangkok, Thailand A. Bahrami et al.

stochastic π-calculus [14], and rule-based languages with
continuous/stochastic dynamics such as Kappa [15]. Relevant
properties concerning the obtained models are then often expressed
using a formalism called temporal logic and verified thanks to
model checkers such as NuSMV [16] or PRISM [17].

In [18], the authors propose the use of modal linear logic as a
unified framework to encode both biological systems and temporal
properties of their dynamic behavior. They focus on a model of the
P53/Mdm2 DNA-damage repair mechanism and they prove some
desired properties using theorem proving techniques. In [19], the
authors advocate the use of higher-order logic to formalize reaction
kinetics and exploit the HOL Light theorem prover to verify some
reaction-based models of biological networks. Finally, the Porgy
system is introduced in [20]. It is a visual environment which
allows modelling of biochemical systems as rule-based models.
Rewriting strategies are used to choose the rules to be applied.

As far as human neural networks are concerned, there is recent
work that has focused on their formal verification. In [21, 22], the
authors consider the synchronous paradigm to model and verify
some specific graphs composed of a few biological neurons. These
graphs or mini-circuits, characterized by biologically relevant
structures and behaviors, are referred to as archetypes and
constitute the fundamental elements of neuronal information
processing. They can be coupled to create the elementary building
blocks of bigger neuronal circuits. For this reason, their study has
become an emerging question in the domain of neurosciences,
especially for their potential integration with neurocomputational
techniques [23]. Furthermore, understanding these micro-circuits
can help in detecting weakly active or inactive zones of the human
brain, and in identifying neurons whose role is crucial to perform
some vital activities, such as breathing or moving.

In the work proposed in [21, 22], some model checkers such as
Kind2 [24] are employed to automatically verify properties
concerning the dynamics of six basic archetypes and their coupling.
However, model checkers prove properties for some given
parameter intervals, and do not handle inputs of arbitrary length. In
our work, we use the Coq Proof Assistant [25] to prove four
important properties of neurons and archetypes. Coq implements a
highly expressive higher-order logic in which we can directly
introduce datatypes modelling neurons and archetypes, and express
properties about them. As a matter of fact, one of the main
advantages of using Coq is the generality of its proofs. Using such
a system, we can prove properties about arbitrary values of
parameters, such as any length of time, any input sequence, or any
number of neurons. We use Coq’s general facilities for structural
induction and case analysis, as well as Coq’s standard libraries that
help in reasoning about rational numbers and functions on them.
We believe the approach introduced in this paper for reasoning
about neural networks is very promising, because it can be
exploited for the verification of other kinds of biological networks,
such as gene regulatory, metabolic, or environmental networks.

The paper is organized as follows. In Section 2, we introduce
the state of the art relative to neural network modelling and the
application of formal methods in this domain. In Section 3, we
describe the computational model we have chosen, the Leaky

Integrate and Fire model (LI&F), and we briefly introduce some
basic archetypes. In Section 4, we introduce the Coq Proof
Assistant. In Section 5, we present our model of neural networks in
Coq, which includes definitions of neurons, operations on them,
and combining them into archetypes. In Section 6, we present and
discuss four important properties, starting with properties of single
neurons and the relation between the input and output, and moving
toward more complex properties that express their interactions and
behaviors as a system. We provide a full proof of the first property;
the remaining proofs are found in the appendix at the end of this
paper. Finally, in Section 7, we conclude and discuss future work.
The accompanying Coq code can be found at:
http://www.site.uottawa.ca/~afelty/csbio18/.

2 Background
Neurons are the smallest unit of a neural network [26]. They are

basically just a single cell. We can consider them simply as a
function with one or more inputs and a single output. A human
neuron receives its inputs via its dendrites. Dendrites are short
extensions connected to the neuron body, which is called a soma.
Inputs are provided in the form of electrical pulses (spikes). For
each neuron there is another extension, called the axon, which plays
the role of output. This extension is also connected to the cell body,
but it is longer than the dendrites. Each neuron has its own
activation threshold which is coded somehow inside the soma.
When the sum of the spikes received by a neuron through its
dendrites passes its threshold, the neuron fires a spike in the axon.
Neurons can be connected to other neurons. Connections happen
between the axon of a neuron and a dendrite of another neuron.
Theses connections are called synaptic connections and the location
of the connection is called a synapse. They are responsible for
transmitting signals between neurons.

In this paper, we consider third generation models of neural
networks. They are known as spiking neural networks [27] and
have been proposed in the literature with different complexities and
capabilities. In this work we focus on the Leaky Integrate and Fire
(LI&F) model originally proposed in [28]. It is a computationally
eǑcient approximation of a single-compartment model [29] and is
abstract enough to be able to apply formal verification techniques.
In such a model, neurons integrate present and past inputs in order
to update their membrane potential values. Whenever the potential
exceeds a given threshold, an output signal is fired.

As far as spiking neural networks are concerned, in the literature
there are a few attempts at giving formal models for them. In [30],
a mapping of spiking neural P systems into timed automata is
proposed. In that work, the dynamics of neurons are expressed in
terms of evolution rules and durations are given in terms of the
number of rules applied. Timed automata are also exploited in [31]
to model LI&F networks. This modelling is substantially different
from the one proposed in [30] because an explicit notion of duration
of activities is given. Such a model is formally validated against
some crucial properties defined as temporal logic formulas and is
then exploited to find an assignment for the synaptic weights of
neural networks so that they can reproduce a given behavior.

Modelling and Verifying Dynamic Properties of Biological Neural
Networks in Coq CSBio 2018, December, 2018, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

Another recent application of formal methods in computer
science to neuro-sciences is given in [21, 22], where the authors
model LI&F neurons and some basic small circuits using the
synchronous language Lustre. Such a language is dedicated to the
modelling of reactive systems, i.e., systems which constantly
interact with the environment and which may have an infinite
duration. It relies on the notion of logical time: time is considered
as a sequence of discrete instants, and an instant is a point in time
where external input events can be observed, computations can be
done, and outputs can be emitted. Lustre is used not only to encode
neurons and some basic archetypes (simple series, parallel
composition, etc.), but also some properties concerning their
dynamic evolution. Some model checkers are then employed to
automatically prove these properties for some given parameter
intervals.

LI&F networks extended with probabilities are formalized as
discrete-time Markov chains in [32]. The proposed framework is
then exploited to propose an algorithm which reduces the number
of neurons and synaptic connections of input networks while
preserving their dynamics.

3 Leaky Integrate and Fire Model and Neuron
Modules
Leaky Integrate and Fire (LI&F) networks [33]	can be seen as

directed weighted graphs whose nodes stand for neurons and whose
edges represent synaptic connections. The signals propagating over
synapses are trains of impulses and they are referred to as spikes.
Synapses may modulate these signals according to their weight:
excitatory if positive, or inhibitory if negative.

The dynamic behavior of neurons is guided by their membrane
potential (or, simply, potential), which represents the difference of
electrical potential across the cell membrane. The membrane
potential of each neuron depends on the spikes received over its
input synapses. Both current and past spikes are taken into account,
but the contribution of old spikes is less important. In particular,
the leak factor is introduced to weaken the signals received in the
past. The neuron outcome depends on the difference between its
membrane potential and its firing threshold: it is enabled to fire
(i.e., emit a spike over all its outgoing synapses) only whenever
such a difference is positive. Immediately after each spike
emission, the neuron membrane potential is reset to zero.

More formally, the following definition can be given for
networks of LI&F neurons.
Definition 1 (LI&F Neural Network). A LI&F Neural Network is
a tuple (𝑉, 𝐸, 𝑤), where:

• 𝑉 is the set of LI&F neurons,
• 𝐸 ⊆ 𝑉×	𝑉 is the set of synapses,
• 𝑤: 𝐸 → ℚ ∩ [−1,1]	is the synapse weight function

associating a weight 𝑤2,3 to each synapse (𝑢, 𝑣).

We distinguish three disjoint sets of neurons: 𝑉7 (input
neurons), 	𝑉789 (intermediary neurons), and 	𝑉: (output
neurons), with 𝑉 = 	𝑉7 ∪ 𝑉789 ∪ 𝑉:.

A LI&F neuron is characterized by a tuple (𝜏, 𝑟, 𝑝, 𝑦),
where:

• 𝜏 ∈ ℚB is the firing threshold or activation threshold,
• 𝑟 ∈ ℚ ∩ [0, 1] is the leak factor,
• 𝑝: ℕ → ℚ	is the [membrane] potential function defined

as:

𝑝 𝑡 =
𝑤7. 𝑥7 𝑡 ,																													𝑖𝑓	𝑝 𝑡 − 1 ≥ 𝜏

J

7KL

𝑤7. 𝑥7 𝑡 + 𝑟 ∙ 𝑝 𝑡 − 1 ,				𝑖𝑓	𝑝 𝑡 − 1 < 𝜏
J

7KL

							 1

with 𝑝(0) = 0 and where 𝑥7 𝑡 ∈ 0, 1 	 is the signal
received at the time 𝑡 by the neuron through its 𝑖9Pout of
𝑚 input synapses (observe that the past potential is
multiplied by the leak factor while current inputs are not
weakened),

• 𝑦:	ℕ → {0, 1} is the neuron output function, defined as:

𝑦 𝑡 = 1							𝑖𝑓	𝑝 𝑡 ≥ 𝜏
0							𝑖𝑓	𝑝 𝑡 < 𝜏																																																								(2)

The set of neurons of a LI&F neural network can be divided into
input, intermediary, and output neurons. Each input neuron can
only receive external signals as input and the output of each output
neuron is considered as an output for the network. Output neurons
are the only ones whose output is not connected to other neurons.

In neural networks, it is possible to identify some mini-circuits
with a relevant topological structure. Each one of these small
modules, which are often referred to as archetypes in the literature,
displays a specific class of behaviors. They can be coupled together
to form the elementary bricks of bigger neural circuits. In [21], six
basic archetypes have been identified and validated against some
temporal logic properties thanks to model checking techniques [1].	
They are the following ones (see Figure 1 for a graphical
representation): (a) simple series, which is a sequence of neurons
where each element of the chain receives as input the output of the
preceding one; (b) series with multiple outputs, which is a series
where, at each time unit, we are interested in knowing the outputs
of all the neurons (i.e., all the neurons are considered as output); (c)
parallel composition, which is a set of neurons receiving as input
the output of a given neuron; (d) negative loop, which is a loop
consisting of two neurons—the first neuron activates the second
one while the latter inhibits the former; (e) inhibition of a behavior,
which consists of two neurons, the first one inhibiting the second
one; and (f) contralateral inhibition, which is made by two or more
neurons, each one inhibiting the other ones. In Figure 1, a solid
black circle at the end of an edge shows an inhibitory connection
and a regular arrow represents an excitatory connection.

CSBio 2018, December, 2018, Bangkok, Thailand A. Bahrami et al.

Figure 1: Neuron archetypes [21, 22]

In this paper, we exploit Coq to prove more general properties
concerning some of these archetypes.

4 The Coq Proof Assistant
In this section, we present the basic elements of Coq that we use

to represent our model. More complete documentation of Coq can
be found in [25, 34]. Coq is a proof assistant that implements the
Calculus of Inductive Constructions [35], which is an expressive
higher-order logic. Using this software, we can express and prove
properties in this logic. Expressions in the logic include a functional
programming language. It is a typed language, which means that
every Coq expression has a type. For instance, X:nat expresses
that variable X is in the domain of natural numbers. The types used
in our model include nat, Q, and list which denote natural
numbers, rational numbers, and list of elements respectively. These
types are found in Coq’s standard libraries. Elements of a list have
their own type. For instance, L:list nat means that L is a list
of natural numbers. A list can be empty, which is written [] or
nil in Coq. Functions are a basic element of any functional
programming language. The general form of a function in Coq is
shown in Figure 2.

Definition/Fixpoint Function_Name
(Input1: Type of Input1) …
(Inputn: Type of Inputn) : Output Type :=
 Body of the function.

Figure 2. General form for defining a function in Coq

Definition and Fixpoint are Coq keywords for defining
non-recursive and recursive functions, respectively. Calling a
function inside its body causes an error when Definition is
used. After either one of these keywords comes the name that a

programmer gives to the function. Following the function name are
the input arguments and their types. If two or more inputs have the
same type, they can be grouped as, for example, (X Y Z: Q)
which means all variables X, Y, and Z are rational numbers.
Following the inputs is a colon, followed by the type of the
function. Finally, the body of the function is a Coq expression
representing a program, followed by a dot.

Pattern matching is a useful method in Coq, used for case
analysis. This feature is used, for instance, for distinguishing
between base cases and recursive cases in recursive functions. For
example, it can distinguish when a list is empty or not. The pattern
for a non-empty list shows the first element of the list, which is
called the head, followed by a double colon, followed by the rest of
the list, which is called the tail. The tail of a list itself is a list of
elements of the same type as the type of the head. For example, let
L be the list (6::3::8::nil) containing three natural numbers.
An alternate notation for Coq lists allows L to be written as
[6;3;8] where the head is 6 and the tail is [3;8]. Thus, the
general pattern for non-empty lists often used in Coq recursive
functions has the form (h::t). Another example of a Coq data
type is the natural numbers. A natural number is either 0 or the
successor of another natural number, written (S n), where n is a
natural number. For example, 1 is represented as (S 0), 2 as (S
(S 0)), etc. In Figure 3, some patterns for lists and natural
numbers are shown using Coq’s match…with…end pattern
matching construct.

match X with
| 0 => Do something when X = 0
| S n => Do something when X is successor of n
end

match L with
| [] => Do something when L is an empty list
| h::t => Do something when L has head h
 followed by tail t
end

Figure 3. General form for pattern matching of natural
numbers and lists in Coq

In addition to the data types that are defined in Coq’s libraries,
new data types can be defined. One way to do so is using records.
Records can have different fields with different types. For example,
we can define a record that has 3 fields Fieldnat, FieldQ, and
ListField, which have types natural number, rational number,
and list of natural numbers, respectively. Figure 4 shows the Coq
syntax for the definition of this record with one additional field
called CR.

Record Sample_Record := MakeSample {
 Fieldnat: nat;
 FieldQ: Q;
 ListField: list nat;
 CR: Fieldnat > 7
}.

S: Sample_Record

Figure 4. Definition of a record and a variable with the record
type in Coq

S
1

S
2

S
n

(a) Simple series

S
n

S

S
1

S
2

(c) Parallel composition

S
1

S
2

(e) Inhibition of a behavior

S
1

S
2

(f) Contralateral inhibition

S
1

S
2

S
n

(b) Series with multiple outputs

S
2

S
1

(d) Negative loop

Modelling and Verifying Dynamic Properties of Biological Neural
Networks in Coq CSBio 2018, December, 2018, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

Fields in Coq can represent conditions on other fields. For example,
field CR in Figure 4 is a condition on the Fieldnat field stating
that it must be greater than 7. After defining a record, it is a type
like any other type, and so for example, we can have variables with
the new record type. Variable S shown with type
Sample_Record in Figure 4 is an example.

5 Modelling Human Neural Networks in Coq

Record Neuron := MakeNeuron {
 Output:list nat;
 Weights:list Q;
 Leak_Factor:Q;
 Tau:Q;
 Current:Q;
 Output_Bin: Bin_List Output;
 LeakRange: Qle_bool 0 Leak_Factor = true /\
 Qle_bool Leak_Factor 1 = true;
 PosTau: Qlt_bool 0 Tau = true;
 WRange: WeightInRange Weights = true }.

Fixpoint potential (Weights: list Q)
 (Inputs: list nat): Q :=
 match Weights, Inputs with
 | nil, _ => 0
 | _, nil => 0
 | h1::t1, h2::t2 =>
 if (beq_nat h2 0%nat)
 then (potential t1 t2)
 else (potential t1 t2) + h1
 end.

Figure 5. Coq code defining a neuron and the weighted sum of
its inputs

We illustrate our encoding of neural networks in Coq by
beginning with the code in Figure 5. We use Coq’s record structure
to define a neuron. This record includes five fields with their types,
and four fields which represent constraints that the first five fields
must satisfy according to the LI&F model mentioned in Section 3.
The types include natural numbers, rational numbers, and lists. In
particular, a neuron’s output (Output) is represented as a list of
natural numbers, with one entry for each time step. The weights
attached to the inputs of the neuron (Weights) are stored in a list
of rational numbers, one for each input in some designated order.
The leak factor (Leak_Factor), the firing threshold (Tau), and
the most recent neuron membrane potential (Current) are
rational numbers. With respect to the four conditions, for example,
consider PosTau, which expresses that Tau must be positive.
Qle_bool and other arithmetic operators come from Coq’s
rational number library. The other three state, respectively, that
Output contains only 0s and 1s (it is a binary list),
Leak_Factor is between 0 and 1 inclusive, and each input
weight is in the range of [-1, 1]. We omit the definitions of
Bin_List and WeightInRange used in these statements. The
reader is referred to the accompanying Coq code.

Given a neuron N, we write (Output N) to denote its first
field, and similarly for the others. To create a new neuron with
values O, W, L, T, and C of the appropriate types, and proofs P1,…,

P4 of the four constraints, we write (MakeNeuron O W L T C
P1 P2 P3 P4).

The next definition in Figure 5 implements the weighted sum of
the inputs of a neuron, which is an important part of the calculation
in Equation (1). In this recursive function, there are two arguments:
Weights representing 𝑤L, … , 𝑤J and Inputs representing
𝑥L, … , 𝑥J. The function returns an element of type Q. Its definition
uses pattern matching on both inputs simultaneously. The body of
the definition uses Booleans, the if statement, and the equality
operator on natural numbers (beq_nat), all from Coq’s standard
library. Natural numbers, such as 0%nat above are marked with
their type to distinguish them from rational numbers, whose types
are omitted. Although, we always call the potential function
with two lists of equal length, Coq requires functions to be total;
when two lists do not have equal length, we return a “default” value
of 0. Also, when we call this function, Inputs, which is the
second argument of the function, will always be a binary list
(contains only the natural numbers 0 and 1). Thus, when head of
this list h2 is 0, we don’t need to add anything to the final sum
because anything multiplied by 0 is 0. In this case, we just call the
function recursively on the remaining weights and inputs t1 and
t2, respectively. On the other hand, when h2 is 1, we need to add
h1, the head of Weights to the final sum, which again is the
recursive call on t1 and t2.

Definition NextPotential (N: Neuron) (Inputs:
list nat): Q :=
 if (Qle_bool (Tau N) (Current N))
 then (potential (Weights N) Inputs)
 else (potential (Weights N) Inputs) +
 (Leak_Factor N) * (Current N).

Figure 6. Coq code defining neuron potential function

Figure 6 shows the NextPotential function, which
implements 𝑝(𝑡) from Equation (1). Recall that (Current N) is
the most recent potential value of the neuron which is 𝑝(𝑡 − 1) in
Equation (1). (Qle_bool (Tau N) (Current N))
represents 𝜏 ≤ 𝑝(𝑡 − 1) and we use the potential function defined
in Figure 5 for the part calculating the weighted sum of the neuron
inputs. Finally, the last line implements 𝑟 ∙ 𝑝(𝑡 − 1).

Figure 7 on the next page contains two definitions. The first
calculates the next output of the neuron which is 𝑦(𝑡) in Equation
(2). Recall that (NextPotential N Inputs) shown in
Figure 6 calculates 𝑝(𝑡). Thus, the expression (Qle_bool (Tau
N) (NextPotential N Inputs)) expresses the condition
𝜏 ≤ 𝑝(𝑡).

In our model, the state of a neuron is represented by the
Output and Current fields. The Output field of a neuron in
the initial state is [0%nat], which denotes a list of length 1
containing only 0. The Current field represents the initial
potential, which is set to 0. A neuron changes state by processing
input. After processing a list of 𝑛 inputs, the Output field will be
a list of length 𝑛 + 1 containing 0’s and 1’s, and the Current
field will be set to the value of the potential after processing these

CSBio 2018, December, 2018, Bangkok, Thailand A. Bahrami et al.

𝑛 inputs. State change occurs by applying the NextNeuron
function in Figure 7 to a neuron and a list of inputs. As is typical
in functional programming, we represent a neuron at its later state
by creating a new record with the new values for Output and
Current and other values directly copied over. We store the
values in the Output field in reverse order, which simplifies
proofs by induction over lists, which we use regularly in our Coq
proofs. Thus, the most recent output of the neuron is at the of head
the list. We can see this in the code in Figure 7, where the new value
of the output is ((NextOutput N Inputs)::(Output
N)). The next output of the neuron is at the head, followed by the
previous outputs. (NextPotential N Inputs) is the new
value for (Current N). Recall that (Current N) is the most
recent value of potential value of the neuron or 𝑝(𝑡 − 1). So, for
calculating the next potential value of the neuron or 𝑝(𝑡) , the
NextPotential function in Figure 6 is called.

Following the new values for each field of the neuron, we have
proofs of the four constraints. The first requires a lemma
NextOutput_Bin_List (statement omitted) which allows us
to prove that the new longer list is still a binary list. Proofs of the
other three constraints are carried over exactly from the original
neuron, since they are about components of the neuron that do not
change.

Definition NextOutput
 (N: Neuron) (Inputs: list nat): nat :=
 if (Qle_bool (Tau N) (NextPotential N Inputs))
 then 1%nat
 else 0%nat

Definition NextNeuron
 (N: Neuron) (Inputs: list nat): Neuron :=
 MakeNeuron
 ((NextOutput N Inputs)::(Output N))
 (Weights N)
 (Leak_Factor N)
 (Tau N)
 (NextPotential N Inputs)
 (NextOutput_Bin_List N Inputs (Output_Bin N))
 (LeakRange N)
 (PosTau N)
 (WRange N).

Figure 7. Coq functions for returning the next output and
neuron structure after the next time step

To reinitialize a neuron to the initial state as described above,
the ResetNeuron function is used. This function takes any
Neuron as input, and returns a new one, with the Output,
Current, and Output_Bin fields reset, while keeping the
others.

So far, we have discussed the encoding and processing of single
neurons in isolation, which take in inputs and produce outputs. The
archetypes in Figure 1 illustrate some ways in which networks of
neurons are connected. We have so far considered archetypes (a)
and (e) in our work. We represent (a) as an ordered list of single
input neurons (a Coq list of type list Neuron), where we
assume that the output of a neuron in the list is connected to the
input of the neuron occurring immediately following it, the input to
the first is the input to the whole series, and the output of the last is

the output of the whole series. To represent (e), we define Coq
predicates that relate two neurons; an example is discussed further
in Section 6.

6 Properties of Neural Networks and their Proofs
As mentioned earlier, we prove four basic properties of the

LI&F model of neurons in this section. All of them have been fully
verified in Coq. We start in the next section with a property about
a simple neuron, which has only one input. We refer to this neuron
as a single-input neuron.

In all of the statements of the properties, we omit the assumption
that the input sequence of the neuron is a binary list and contains
only 0s and 1s. It is, of course, included in the Coq code. We use
several other conventions to enhance readability when stating
properties and presenting proofs. For example, we state our
properties using pretty-printed Coq syntax, with some
abbreviations for our own definitions. For instance, we use
mathematical fonts and conventions for Coq text, e.g., (Output
N) is written 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁 , (Tau N) is written as 	𝜏 𝑁 ,
(Weights N) is written 𝑤 𝑁 , (Leak_Factor N) is written
𝑟 𝑁 , and (Current N) is written 𝑝 𝑁 . In addition, if 𝑤 𝑁 is
a list of the form 𝑤L;… ;	𝑤8 for some 𝑛 ≥ 0, for 𝑖 = 1, … , 𝑛, we
often write 𝑤7 𝑁 to denote 𝑤7 . Also, we use notation and
operators from the Coq standard library for lists. For instance,
𝑙𝑒𝑛𝑔𝑡ℎ and + are list operators; the former is for finding the
number of elements in the list and the latter is the notation we will
use here for list concatenation.

In addition, although for a neuron 𝑁 , the list 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁) is
encoded in reverse order in our Coq model, when presenting
properties and their proofs here, we use forward order.

6.1 The Delayer Effect for a Single-Input Neuron
The first property is called the delayer effect property. Recall

that a neuron is in an inactive state initially, which means the output
of a neuron at time 0 is 0. When a neuron has only one input, and
the weight of that input is greater than or equal to its activation
threshold, then the neuron transfers the input sequence to the output
without any change (except for a “delay” of length 1). For instance,
if a single input neuron receives 0100110101 as its input sequence,
it will produce 00100110101 as output. Neurons that have this
property are not functional neurons. They are mainly just
transferring signals. Humans have some of this type of neuron in
their auditory system. This property is expressed as Property 1.
Property 1. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,
	𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 ≥ 𝜏 𝑁 →

𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d = 0 + 𝑖𝑛𝑝𝑢𝑡
In the above statement, 𝑁d denotes the neuron obtained by

initializing 𝑁 and then processing the input (using 𝑅𝑒𝑠𝑒𝑡𝑁𝑒𝑢𝑟𝑜𝑛
and repeated applications of 𝑁𝑒𝑥𝑡𝑁𝑒𝑢𝑟𝑜𝑛). We use this
convention in stating all of our properties. Note that in Definition
1, Equation (1), 𝑝 is a function of time. Time in our Coq model is
encoded as the position in the output list. If 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁 has

Modelling and Verifying Dynamic Properties of Biological Neural
Networks in Coq CSBio 2018, December, 2018, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

length	𝑡, then 𝑝(𝑁) stores 𝑝 𝑡 − 1 from Equation (1). If we then
apply 𝑁𝑒𝑥𝑡𝑁𝑒𝑢𝑟𝑜𝑛 to 𝑁 and the next input obtaining 𝑁d , then
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d has length 𝑡 + 1 and 𝑝(𝑁d) stores the value 𝑝(𝑡)
from Equation (1).

In order to prove Property 1, we need the following lemma,
which states that when a neuron has one input and its input weight
is greater than or equal to its threshold, the potential value of that
neuron is always non-negative.
Lemma 1. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 ≥ 𝜏 𝑁 → 𝑝(𝑁′) ≥ 0

As explained above 𝑝(𝑁′) is the most recent value of the
potential function of neuron 𝑁 , i.e., the one obtained after
processing all of the input values. The proof of this lemmas is in
the appendix. We use it here to prove Property 1.
Proof (of Property 1). The proof is by induction on the length of
the input sequence as follows.

Base case: 𝑖𝑛𝑝𝑢𝑡 = [] (the empty list). If there is no input in the
input sequence, the neuron will keep its initial status, i.e., 𝑁 = 𝑁′.
So, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = [0] . Therefore, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = 0 = 0 +
[] = 0 + 𝑖𝑛𝑝𝑢𝑡.

Induction case: We assume that the property is true for 𝑖𝑛𝑝𝑢𝑡
and we must show that it holds for some 𝑖𝑛𝑝𝑢𝑡′ of the form
(𝑖𝑛𝑝𝑢𝑡 + [�]) for some additional input value �. Let 𝑁′ be the
neuron resulting from processing 𝑖𝑛𝑝𝑢𝑡, and let 𝑁′′ be the neuron
after processing 𝑖𝑛𝑝𝑢𝑡′. By the induction hypothesis, we know
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = 0 + 𝑖𝑛𝑝𝑢𝑡 and we must prove that
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁 ′′ = 0 + 𝑖𝑛𝑝𝑢𝑡′.

Note that 𝜏 𝑁 = 𝜏 𝑁′ = 𝜏 𝑁′′ and similar equalities hold
for 𝑟 and 𝑤1,	so we use them interchangeably. Because 𝑖𝑛𝑝𝑢𝑡 is a
binary list, we know that � = 0 or � = 1. We break this into two
different cases, depending on the value of �.

First, we assume that 𝑖𝑛𝑝𝑢𝑡 ′ = 𝑖𝑛𝑝𝑢𝑡 + [0] and we prove that
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [0]. In this case, the most recent
input to the neuron is 0. Again, to relate this to Equation (1), let 𝑡
be the time at which we process the last input. We calculate 𝑝 𝑁′′ ,
which corresponds to 𝑝(𝑡), i.e., the potential value of the neuron at
time 𝑡; also the value 𝑝 𝑁′ represents 𝑝(𝑡 − 1) in this definition.
Using the first and second clauses of Equation (1), respectively, the
value is one of:

𝑝(𝑁dd) = 𝑤L(𝑁′) ∙ 0 = 0 or
𝑝 𝑁′′ = 𝑤L(𝑁′) ∙ 0 + 𝑟(𝑁′) ∙ 𝑝 𝑁′ .
In the first case, 𝑝 𝑁′′ = 0 and we know 0 < 𝜏(𝑁), because

𝜏(𝑁) is always positive. So, by the second clause of Equation (2)
in Definition 1, the next output of the neuron will be 0. The other
case, which comes from the second clause of Equation (1) has the
same result. In this case, the condition on this clause says that
𝑝 𝑁′ < 	𝜏(𝑁′) and we must show that 𝑝 𝑁′′ = 𝑟(𝑁′) ∙ 𝑝 𝑁′ <
𝜏 𝑁 . Recall that 𝑟(𝑁′), the leak factor of the neuron, is between 0
and 1. So, multiplying any number that is less than a positive
number by a value between 0 and 1 gives a value that is smaller
than or equal to the original number. Therefore, by Equation (2),
the next output of the neuron will be 0 again. We can conclude now
that by adding 0 to the input sequence, a 0 will be produced in the

output. Thus, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [0] . Using our
induction hypothesis, we have:

𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′′) = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + 0 = 0 + 𝑖𝑛𝑝𝑢𝑡 + 0 =
0 + 𝑖𝑛𝑝𝑢𝑡′.

Second, we assume that 𝑖𝑛𝑝𝑢𝑡 ′ = 𝑖𝑛𝑝𝑢𝑡 + [1] and we will
prove that 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [1] . In this case, the
most recent input of the neuron is 1. Again, we calculate the
potential value of 𝑁′′ using Equation (1):
							𝑝 𝑁′′ = 𝑤1 𝑁′ ∙ 1 = 𝑤1 𝑁′ or

 𝑝 𝑁′′ = 𝑤1 𝑁′ ∙ 1 + 𝑟 𝑁′ ∙ 𝑝 𝑁′
															= 𝑤1(𝑁′) + 𝑟(𝑁′) ∙ 𝑝 𝑁′ .
In the first case, when 𝑝 𝑁′′ = 𝑤1(𝑁′) , we know that

𝑤1(𝑁) ≥ 𝜏(𝑁) by assumption in the statement of the property, we
know that 𝑤1 𝑁 = 𝑤1 𝑁′ as discussed, and thus 𝑝 𝑁′′ ≥ 𝜏(𝑁).
So by Equation (2), the next output of the neuron will be 1. In the
second case, 𝑝 𝑁′ ≥ 0 according to Lemma 1, and it is always the
case that 𝑟(𝑁′) ≥ 0, so we can conclude that 𝑟(𝑁′) ∙ 𝑝(𝑁′) ≥ 0.
Because 𝑤1(𝑁) ≥ 𝜏(𝑁) and adding a non-negative value to the
greater side of an inequality keeps it that way, we can conclude that
𝑝 𝑁′′ = 𝑤1(𝑁′) + 𝑟(𝑁′) ∙ 𝑝 𝑁′ ≥ 𝜏(𝑁) . Therefore, again by
Equation (2), the next output of the neuron will be 1 again. Thus,
we can conclude in both cases that by adding 1 to the input
sequence, a 1 will be produced in the output. Thus, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ =
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [1].Using our induction hypothesis, we have:

𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′′) = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + 1 = 0 + 𝑖𝑛𝑝𝑢𝑡 + 1 = 0 +
𝑖𝑛𝑝𝑢𝑡′.

This completes the proof.

6.2 The Filter Effect for a Single Neuron
The next property we consider is also about single-input

neurons. When a neuron has only one input, and the weight of that
input is less than its activation threshold, the neuron passes on the
value 1 once as output for each sequence of 𝑛 1s in the input, where
𝑛 is the designated length of the series. All 1s in the input are
replaced by 0 except for the 𝑛9� one, the 2𝑛9�one, the 3𝑛9�one,
etc. The other 1s are “filtered out.” For instance, let 𝑛 = 3. Then if
a single input neuron with this effect receives 01110010101 as
input, it will produce 000010000001 as the output sequence. (The
output sequence is one longer than the input because of the leading
0.) As a consequence, there are never two consecutive 1s in the
output sequence. This consequence is called the filter effect. Most
neurons in a human body have the filter effect because their input
weight is less than their activation threshold. Normally, more than
one input is needed to activate a human neuron. In biology, this
property is often called the integrator effect.
Property 2. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,	
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 < 𝜏 𝑁 → 11	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′

Note that in the statement above, 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d) means
there are no two consecutive 1s in the list 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ . This
theorem is also proved by induction on the structure of the input
list. (See the appendix.)

CSBio 2018, December, 2018, Bangkok, Thailand A. Bahrami et al.

6.3 The Inhibitor Effect
The next property is an important one because it has the

potential to help us detect inactive zones of the brain. Normally, a
human neuron does not have negative weights for all of its inputs
but when one or more positive weight inputs are out of order
because of some kind of disability, this property can occur. It is
called the inhibitor effect because it is important for proving
properties of archetype 1(e). We consider here the single neuron
case. When a neuron has only one input and the weight of that input
is less than 0, then the neuron is inactive, which means that for any
input, the neuron cannot emit 1 as output. i.e., if a signal reaches
this neuron, it will not pass through. As with the other properties,
the input sequence has an arbitrary finite length. This property is
expressed as follows.
Property 3. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,	
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 < 0 → 1	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′

Similarly, in the statement above, 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) means there
is no 1 in the list 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′). This property is also proved by
induction on the structure of the input, again in the appendix.

The inhibitor effect expressed in Property 3 has a more general
version, which we plan to prove as a future work. For a neuron with
multiple inputs, when all input weights are less than or equal to 0,
then the neuron is inactive and can’t pass any signal. Thus, in
addition to proving this property for arbitrary input length, we
intend to generalize it to an arbitrary number of neurons. As
mentioned, recognizing inactive neurons can help to detect inactive
zones of the brain. In addition, it can also help to simplify the
structure of a neural network by removing such neurons from the
network.

6.4 The Delayer Effect in a Series of Single
Neurons
The next property is about the archetype shown in Figure 1(a).

In this structure, each neuron output is the input of the next neuron.
If we have a series of 𝑛 single input neurons and all of them have
the delayer effect, then the output of the whole structure is the input
plus 𝑛 leading zeros. In other words, this structure transfers the
input sequence exactly with a delay marked by the 𝑛 leading zeros,
denoted as 𝑧𝑒𝑟𝑜𝑠 𝑛 in the statement of the property below. This
property is expressed as follows.
Property 4. ∀	 𝑆𝑒𝑟𝑖𝑒𝑠: 𝑙𝑖𝑠𝑡	𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 	 𝑖: 𝑛𝑎𝑡 ,	
𝑙𝑒𝑛𝑔𝑡ℎ 𝑆𝑒𝑟𝑖𝑒𝑠 = 𝑛 ∧ 0 ≤ 𝑖 < 𝑛 ∧

𝑙𝑒𝑛𝑔𝑡ℎ(𝑤 𝑆𝑒𝑟𝑖𝑒𝑠 𝑖 = 1 ∧ 𝑤L(𝑆𝑒𝑟𝑖𝑒𝑠 𝑖) > 𝜏 𝑆𝑒𝑟𝑖𝑒𝑠 𝑖
→ 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑧𝑒𝑟𝑜𝑠 𝑛 + 𝑖𝑛𝑝𝑢𝑡	

This time, the proof proceeds by induction on the length of
𝑆𝑒𝑟𝑖𝑒𝑠. As with the other properties, the complete proof is in the
appendix.

7 Conclusion
In this work, we proposed a formal approach to model and

validate leaky integrate and fire neurons and some basic circuits

(simple series and inhibition of a behavior). In the literature, this is
not the first attempt to the formal investigation of neural networks.
In [21, 22], the synchronous paradigm has been exploited to model
neurons and some small neuronal circuits with a relevant
topological structure and behavior and to prove some properties
concerning their dynamics. Our approach based on the use of the
Coq proof assistant (which is, to the best of our knowledge, the first
one), turned out to be much more general. As a matter of fact, we
guarantee that the properties we prove are true in the general case,
such as true for any input values, any length of input, and any
amount of time. As an example, let us consider the simple series.
In [22], the authors were able to write a function (more precisely, a
Lustre node) which encodes the expected behavior of the circuit.
Then, they could call a model checker to test whether the property
at issue is valid for some input series with a fixed length. Here we
can prove that the wished behavior is true whatever the length and
the parameters of the series are.

As a first next step, we intend to formally study the missing
archetypes of Figure 1 (series with multiple outputs, parallel
composition, negative loop, and contralateral inhibition) and other
new archetypes made of two, three or more neurons. We already
started to investigate the two-neuron positive loop, where the first
neuron activates the second one, which in turn activates the first
one. Our progress so far includes defining a Coq inductive
predicate that relates these two neurons and their corresponding
two lists of values obtained by applying the potential function over
time. This predicate is true whenever the output has a particular
pattern that is important for proving one of the more advanced
properties we are studying. Defining general relations that can be
specialized to specific patterns will likely also be very useful for
the kinds of properties that are important for more complex
networks.

As a second next step, we plan to focus on the composition of
the studied archetypes. There are two main ways to couple two
circuits: either to connect the output of the first one to the input of
the second one, or to nest the first one inside the second one. We
are interested in detecting the compositions which lead to circuits
with a meaningful biological behavior. Archetypes can be
considered as the syllables of a given alphabet. When two or more
syllables are combined, it is possible to obtain either a real word or
a word which does not exist. At the same way, the archetype
composition can lead to meaningful networks or not.

As a long-term aim, we would like to be able to prove that
whatever neural network can be expressed as a combination of the
small mini-circuits we have identified, as far as all the words can
be expressed as combination of the syllables of a given alphabet.
Although, the proofs we have completed require some
sophisticated reasoning, there is still a significant amount that is
common between them. As we continue, we expect to encounter
more complex inductions as we consider more complex properties.
Thus, it will become important to automate as much of the proofs
as possible, most likely by writing tactics tailored to the kind of
induction, case analysis, and mathematical reasoning that is needed
here.

Modelling and Verifying Dynamic Properties of Biological Neural
Networks in Coq CSBio 2018, December, 2018, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

ACKNOWLEDGMENTS

The first and third authors acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada. We thank
neurophysiologist Frank Grammont for his useful explanations of
neuron functioning.

REFERENCES

[1] E.M. Clarke, O. Grumberg, and D. Peled. 1999. Model Checking. MIT Press,
Cambridge, MA, USA.

[2] D.R. Gilbert and M. Heiner. 2015. Advances in computational methods in systems
biology. Theoretical Computer Science, 599, 2-3.

[3] F. Fages, S. Soliman, and N. Chabrier-Rivier. (2004). Modelling and querying
interaction networks in the biochemical abstract machine BIOCHAM. Journal of
Biological Physics and Chemistry, 4(2), 64–73.

[4] A. Richard, J.P. Comet, and G. Bernot. 2004. Graph-based modeling of biological
regulatory networks: Introduction of singular states. In International Conference
on Computational Methods in Systems Biology (CMSB ’04), pp. 58-72.

[5] E. De Maria, F. Fages, A. Rizk, and S. Soliman. 2011. Design, optimization and
predictions of a coupled model of the cell cycle, circadian clock, DNA repair
system, irinotecan metabolism and exposure control under temporal logic
constraints. Theoretical Computer Science 412(21), 2108-2127.

[6] C.L Talcott, and M. Knapp. 2017. Explaining response to drugs using pathway
logic. In International Conference on Computational Methods in Systems Biology
(CMSB ’17), pp. 249-264.

[7] R. Thomas, D. Thieffry, and M. Kaufman. 1995. Dynamical behaviour of
biological regulatory networks-i. Biological role of feedback loops and practical
use of the concept of the loop-characteristic state. Bulletin of Mathematical
Biology 57(2), 247-276.

[8] V.N Reddy, M.L. Mavrovouniotis, and M.N. Liebman. 1993. Petri net
representations in metabolic pathways. In Proceedings of the 1st International
Conference on Intelligent Systems for Molecular Biology (ISMB ’93). pp. 328-
336. AAAI Press.

[9] A. Regev, W. Silverman, and E.Y. Shapiro. 2001. Representation and simulation
of biochemical processes using the pi-calculus process algebra. In Proceedings
of the sixth Pacific Symposium of Biocomputing (PSB ’01), pp. 459-470.

[10] A. Regev, E.M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. (2004).
Bioambients: An abstraction for biological compartments. Theoretical Computer
Science 325(1), 141-167.

[11] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter. (2004).
Modeling and querying biochemical interaction networks. Theoretical Computer
Science 325(1), 25-44.

[12] R. Hofestädt and S. Thelen. 1998. Quantitative modeling of biochemical
networks. In Silico Biology, vol. 1, pp. 39-53. IOS Press.

[13] R. Alur, C. Belta, F. Ivanicic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, and J.
Schug. 2001. Hybrid modeling and simulation of biomolecular networks. In
Proceedings of the 4th International Workshop on Hybrid Systems: Computation
and Control (HSCC’01), Springer LNCS, vol. 2034.

[14] A. Phillips and L. Cardelli, L. 2004. A correct abstract machine for the stochastic
pi-calculus. In Proceedings of BioConcur, Electronic Notes in Computer Science.

[15] V. Danos and C. Laneve. 2004. Formal molecular biology, Theoretical Computer
Science 325(1), 69-110.

[16] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. 1999. NUSMV: A new
symbolic model verifier. In Proceedings of the 11th Intl. Conference on
Computer Aided Verification. pp. 495-499. CAV '99, Springer-Verlag, London,
UK.

[17] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0 2001 Verification
of probabilistic real-time systems. In Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV’11), volume 6806 of Springer
LNCS, pp. 585-591.

[18] E. De Maria, J. Despeyroux, and A.P. Felty. 2014. A Logical Framework for
Systems Biology, In 1st International Conference on Formal Methods in Macro-
Biology (FMMB ’14), Springer LNCS 8738, pp. 136-155.

[19] A. Rashid, O. Hasan, U. Siddique, and S. Tahar. 2017. Formal reasoning about
systems biology using theorem proving. PLoS ONE 12(7): e0180179.

[20] O. Andrei, M. Fernández, H. Kirchner, and B. Pinaud. 2016. Strategy-Driven
Exploration for Rule-Based Models of Biochemical Systems with Porgy. Research
Report: Université de Bordeaux, Inria; King's College London, University of
Glasgow.

[21] E. De Maria, A. Muzy, D. Gaffé, A. Ressouche, and F. Grammont. 2016.
Verification of Temporal Properties of Neuronal Archetypes Modeled as
Synchronous Reactive Systems. In Hybrid Systems Biology - 5th International
Workshop, (HSB ’16), Grenoble, France, October 20-21, 2016, pp. 97–112.

[22] E. De Maria, T. L'Yvonnet, D. Gaffé, A. Ressouche, and F. Grammont. 2017.
Modelling and Formal Verification of Neuronal Archetypes Coupling. In 8th
International Conference on Computational Systems-Biology and Bioinformatics
(CSBio 2017), pp. 3-10.

[23] H. Markram. 2006. The blue brain project. Nat Rev Neurosci 7(2), 153–160.
[24] G. Hagen and C. Tinelli. 2008. Scaling up the formal verification of Lustre

programs with SMT-based techniques. In Proceedings of the 2008 International
Conference on Formal Methods in Computer-Aided Design (FMCAD ’08), pp.
1–9.

[25] Y. Bertot and P. Castéran. 2004. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Springer.

[26] D. Purves, G.J. Augustine, D. Fitzpatrick, W.C. Hall, A.S. LaMantia, J.O.
McNamara, and S.M. Williams. (Eds.) 2006. Neuroscience (3rd ed.). Sinauer
Associates, Inc.

[27] H. Paugam-Moisy and S.M. Bohte. 2012. Computing with spiking neuron
networks. In Handbook of Natural Computing, pp. 335-376.

[28] L. Lapicque. 1907. Recherches quantitatives sur l’excitation electrique des nerfs
traitee comme une polarization. J Physiol Pathol Gen 9, 620–635.

[29] E.M. Izhikevich. 2004. Which model to use for cortical spiking neurons? IEEE
Transactions on Neural Networks 15(5), 1063–1070.

[30] B. Aman and G. Ciobanu. 2016. Modelling and verification of weighted spiking
neural systems. Theoretical Computer Science 623, 92 -102.

[31] E. De Maria and C. Di Giusto. 2018. Parameter Learning for Spiking Neural
Networks Modelled as Timed Automata. In 9th International Conference on
Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS ’18), pp.
17-28.

[32] E. De Maria, D. Gaffé, C. Girard Riboulleau, and A. Ressouche. 2018. A Model-
checking Approach to Reduce Spiking Neural Networks. In 9th International
Conference on Bioinformatics Models, Methods and Algorithms
(BIOINFORMATICS ’18), pp. 89-96.

[33] W. Maass. 1997. Networks of spiking neurons: The third generation of neural
network models. Neural Networks, 10(9):1659–1671.

[34] Coq reference manual. Retrieved from https://coq.inria.fr/distrib/current/-
refman/index.html.

[35] T. Coquand and G. Huet. 1988. The calculus of constructions. Information and
Computation, 76, 95-120.

Appendix
We include here the complete proofs of Lemma 1 and Properties

2, 3, and 4.

Lemma 1. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,

𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 ≥ 𝜏 𝑁 → 𝑝(𝑁′) ≥ 0
As explained above 𝑝(𝑁′) is the most recent value of the

potential function of neuron 𝑁 , i.e., the one obtained after
processing all of input values.

Proof (of Lemma 1). The proof is by induction on the length of the
input sequence.

Base case: 𝑖𝑛𝑝𝑢𝑡 = [] (the empty list). If there is no input in the
input sequence, the neuron will keep its initial status, i.e., 𝑁 = 𝑁′.
So, 𝑝 𝑁′ = 0. Therefore, 𝑝 𝑁′ ≥ 0.

Induction case: we assume that the property is true for 𝑖𝑛𝑝𝑢𝑡
and we must show that it holds for some 𝑖𝑛𝑝𝑢𝑡′ of the form
(𝑖𝑛𝑝𝑢𝑡 + [ℎ]) for some additional input value ℎ. Let 𝑁′ be the
neuron resulting from processing 𝑖𝑛𝑝𝑢𝑡, and let 𝑁′′ be the input
after processing 𝑖𝑛𝑝𝑢𝑡′. By the induction hypothesis, we know
𝑝(𝑁′) ≥ 0 and we must prove that 𝑝(𝑁′′) ≥ 0.

Note that 𝜏 𝑁 = 𝜏 𝑁d = 𝜏 𝑁dd and 𝑤L 𝑁 = 𝑤L 𝑁d =
𝑤L 𝑁dd , so we use them interchangeably. We break this proof into
two cases depending on whether or not 𝑝(𝑁′) ≥ 𝜏(𝑁′).

First, let’s assume that 𝑝(𝑁′) ≥ 𝜏(𝑁′) . Because the input
contains only 0s and 1s, we know that ℎ = 0 or ℎ = 1 . We
calculate 𝑝 𝑁dd , which as stated, corresponds to 𝑝(𝑡) in Equation

CSBio 2018, December, 2018, Bangkok, Thailand A. Bahrami et al.

(1), i.e., the potential value of the neuron at time 𝑡; the value 𝑝 𝑁d
represents 𝑝(𝑡 − 1) in this definition. Because of our assumption,
only the first clause of Equation (1) applies, with two possibilities
depending on the value of ℎ:

𝑝(𝑁dd) = 𝑤L(𝑁′) ∙ 0 = 0 or 𝑝 𝑁′′ = 𝑤L 𝑁d ∙ 1 = 𝑤L 𝑁d .
In the first case, 𝑝 𝑁′′ = 0 ≥ 0.	In the second case, 𝑝 𝑁′′ =

𝑤L(𝑁d) and we know 𝑤L 𝑁d ≥ 𝜏 𝑁 by assumption, and 𝜏(𝑁) >
0 because, by definition, the activation threshold of any neuron is a
positive value.

Second, we assume that 𝑝(𝑁′) < 𝜏(𝑁). So, again because the
input contains only 0s and 1s, we know that ℎ = 0 or ℎ = 1. By
the second clause of the definition of 𝑝, we have:

𝑝 𝑁′′ = 𝑟(𝑁d) ∙ 𝑝(𝑁′) or 𝑝 𝑁′′ = 𝑤L(𝑁d) + 𝑟(𝑁d) ∙ 𝑝(𝑁′).
In the first case, 𝑟(𝑁d) is non-negative by definition and 𝑝(𝑁d)

is non-negative by the induction hypothesis. Thus, 𝑟(𝑁d) ∙ 𝑝(𝑁′) ≥
0. For the second case, we also have that 𝑤L(𝑁d) ≥ 𝜏 𝑁′ > 0, and
thus the sum of two non-negative numbers is also non-negative.

This completes the proof, thus showing that it is always the case
that the value of the potential of a single input neuron with a non-
negative input weight will be non-negative.

Property 2. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,	
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 < 𝜏 𝑁 → 11	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′

Note that in the statement above, 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d means there
are no two consecutive 1s in the list 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d .

Proof. We prove this theorem again by induction on the structure
of the input list.

Base case: 𝑖𝑛𝑝𝑢𝑡 = []. If there is no input in the input sequence,
the neuron will keep its initial status, i.e., 𝑁 = 𝑁′ . So,
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = [0]. Therefore, 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d = [0].

Induction case: we assume that the property is true for 𝑖𝑛𝑝𝑢𝑡
and we must show that it holds for some 𝑖𝑛𝑝𝑢𝑡′ of the form
(𝑖𝑛𝑝𝑢𝑡 + [ℎ]) for some additional input value ℎ. Let 𝑁′ be the
neuron resulting from processing 𝑖𝑛𝑝𝑢𝑡, and let 𝑁′′ be the input
after processing 𝑖𝑛𝑝𝑢𝑡′. By the induction hypothesis, we know
11	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ and we must prove that	11	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′′).

Because we know that a neuron produces only 0 and 1 as output
values, we know that 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [0] or
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′′ = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + [1]. For the first case, we are done,
because when 11 does not appear in a sequence, then by adding a 0
to the end of that sequence, there will still no 11 in that sequence.

The second case here is a bit more complicated. We need to split
this case into two subcases. First, let’s assume that the last produced
output in 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) is 0, i.e., 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d) has the form 𝑆𝑒𝑞 +
[0]. So, it is clear that by adding a 1 to a sequence which ended
with 0 and didn’t have any 11, the resulting sequence will not have
any 11 as a substring. Thus, we can conclude that 11 ∉
𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d) → 11 ∉ 𝑆𝑒𝑞 + 0 → 11 ∉ 𝑆𝑒𝑞 + 0 + 1 → 11 ∉
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d + 1 → 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁dd).

Now for the second subcase, let’s assume that the last produced
output in 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) is 1, i.e., 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d) has the form 𝑆𝑒𝑞 +
[1]. In this case, we have to prove that the next output will be 0.
Because the last produced output in 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) is 1, we know that
𝑝 𝑁′ ≥ 𝜏 𝑁′ . So, 𝑝 𝑁dd = 𝑤L 𝑁d . ℎ and because ℎ = 0 or

ℎ = 1, we can conclude that 𝑝 𝑁d′ = 𝑤L(𝑁d) or 𝑝 𝑁d′ = 0. In
the first case, according to the property assumption, we know that
𝑤L 𝑁 < 𝜏(𝑁) , and thus 𝑝 𝑁dd = 	𝑤L 𝑁′ = 𝑤L 𝑁 < 𝜏(𝑁) ,
and in the second case, because 𝜏(𝑁) is a positive value we have
𝑝 𝑁dd = 0 < 𝜏(𝑁) . Thus, by Equation (2), the next output
produced will be 0. Therefore, 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d → 11 ∉ 𝑆𝑒𝑞 +
[1] → 11 ∉ 𝑆𝑒𝑞 + 1 + 0 → 11 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + 1 → 11 ∉
𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′d).

This completes the proof.

Property 3. ∀	 𝑁: 𝑛𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 ,	
𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑁 = 1 ∧ 𝑤L 𝑁 < 0 → 1	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′

Similar to Property 2, in the statement above, 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d)
means there is no 1 in the list 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁d).

Proof. We will prove this property using induction on the input
length again.

Base case: 𝑖𝑛𝑝𝑢𝑡 = []. If there is no input in the input sequence,
the neuron will keep its initial status, i.e., 𝑁 = 𝑁′ . So,
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ = [0]. Therefore, 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁d = [0].

Induction case: we assume that the property is true for 𝑖𝑛𝑝𝑢𝑡
and we must show that it holds for some 𝑖𝑛𝑝𝑢𝑡′ of the form
(𝑖𝑛𝑝𝑢𝑡 + [ℎ]) for some additional input value ℎ. Let 𝑁′ be the
neuron resulting from processing 𝑖𝑛𝑝𝑢𝑡, and let 𝑁′′ be the input
after processing 𝑖𝑛𝑝𝑢𝑡′. By the induction hypothesis, we know
1	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ and we must prove that	1	 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′′).

Let 𝑡 be the time at which we produced the most recent output.
So, 𝑝(𝑁′′) corresponds to 𝑝(𝑡) and 𝑝(𝑁′) corresponds to 𝑝(𝑡 −
1). Again, note that 𝜏 𝑁 = 𝜏 𝑁d = 𝜏 𝑁dd and similar equalities
hold for 𝑟 and 𝑤L,	 so we use them interchangeably. Using the
induction hypothesis, we know that 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′). So, the last
produced output in 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′) is 0. Thus, 𝑝 𝑁′ = 𝑝(𝑡 − 1) <
𝜏(𝑁′) . That makes 𝑝 𝑡 = 𝑝 𝑁′′ = 𝑤L(𝑁dd). ℎ + 𝑟(𝑁′′). 𝑝(𝑁′) .
We need to consider two cases, which are ℎ = 0 and ℎ = 1.

In the first case, 𝑝 𝑁′′ = 𝑟(𝑁′′). 𝑝(𝑁′). We can conclude that
𝑝 𝑁′′ = 𝑟(𝑁′′). 𝑝 𝑁d < 𝜏(𝑁′) because 𝑝 𝑁′ < 𝜏(𝑁′) by the
property assumption and it is multiplied by 𝑟(𝑁′), the leak factor,
which is between 0 and 1. Recall that 𝜏(𝑁′) is a positive value.
Thus, the next output will be 0 in this case and 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ +
0 = 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁dd).

In the second case, 𝑝 𝑁′′ = 𝑤L(𝑁′′) + 𝑟(𝑁dd). 𝑝(𝑁′). With the
same reasoning as the previous case, we can say that
𝑟(𝑁dd). 𝑝 𝑁d < 𝜏(𝑁′) . Because 𝑤L(𝑁′) is a negative value,
adding it to the left side of the inequality will make it smaller and
the inequality still holds. Thus, 𝑝 𝑁′′ = 𝑤L(𝑁′′) +
𝑟(𝑁dd). 𝑝 𝑁d < 𝜏(𝑁′). Therefore, the next output will be 0 in this
case too and 1 ∉ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁′ + 0 = 𝑂𝑢𝑡𝑝𝑢𝑡(𝑁′d).

This completes the proof.

Property 4. ∀	 𝑆𝑒𝑟𝑖𝑒𝑠: 𝑙𝑖𝑠𝑡	𝑁𝑒𝑢𝑟𝑜𝑛 	 𝑖𝑛𝑝𝑢𝑡: 𝑙𝑖𝑠𝑡	𝑛𝑎𝑡 	 𝑖: 𝑛𝑎𝑡 ,
𝑙𝑒𝑛𝑔𝑡ℎ 𝑆𝑒𝑟𝑖𝑒𝑠 = 𝑁 ∧ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤(𝑆𝑒𝑟𝑖𝑒𝑠 𝑖) = 1	 ∧
	𝑤L 𝑆𝑒𝑟𝑖𝑒𝑠 𝑖 > 𝜏 𝑆𝑒𝑟𝑖𝑒𝑠 𝑖 → 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑧𝑒𝑟𝑜𝑠 𝑁 + 𝑖𝑛𝑝𝑢𝑡	

Proof. This time we need to use induction on the length of 𝑆𝑒𝑟𝑖𝑒𝑠.
Here, we consider the series structure shown in Figure 1(a). In the
formula above, 𝑆𝑒𝑟𝑖𝑒𝑠[𝑖] denotes the 𝑖-th neuron in the 𝑆𝑒𝑟𝑖𝑒𝑠 and

Modelling and Verifying Dynamic Properties of Biological Neural
Networks in Coq CSBio 2018, December, 2018, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

𝑧𝑒𝑟𝑜𝑠(𝑁) means a sequence of 0s of length 𝑁 . Also, 𝑂𝑢𝑡𝑝𝑢𝑡
denotes the final output of the series structure which is equal to
𝑂𝑢𝑡𝑝𝑢𝑡(𝑆𝑒𝑟𝑖𝑒𝑠[𝑁]).

Base case: 𝑁 = 1. In this case, there is only one neuron in the
series and we know that this neuron has the delayer effect.
According to Property 1 proved earlier, we can conclude that
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡 + 0 = 𝑖𝑛𝑝𝑢𝑡 + 𝑧𝑒𝑟𝑜𝑠(1).

Induction case: We assume that the property holds for 𝑆𝑒𝑟𝑖𝑒𝑠
of length 𝑘. Let 𝑂𝑢𝑡𝑝𝑢𝑡′ be the output of this series. Thus by the
induction hypothesis, 𝑂𝑢𝑡𝑝𝑢𝑡′ = 𝑧𝑒𝑟𝑜𝑠 𝑘 + 𝑖𝑛𝑝𝑢𝑡 . We must
show that the property holds for a 𝑆𝑒𝑟𝑖𝑒𝑠 + [𝑀], where 𝑀 is a
neuron such that 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 𝑀 = 1 and 𝑤L 𝑀 > 𝜏 𝑀 ,. Let
𝑂𝑢𝑡𝑝𝑢𝑡′′ be the output of this series of length 𝑘 + 1. The input
sequence for 𝑀 is the final output of 𝑆𝑒𝑟𝑖𝑒𝑠, which is 𝑧𝑒𝑟𝑜𝑠 𝑘 +
𝑖𝑛𝑝𝑢𝑡. By the assumptions of this property, all neurons in 𝑆𝑒𝑟𝑖𝑒𝑠 +
[𝑀] satisfy Property 1, i.e., have the delayer effect, including the
last one 𝑀, which means that its output is equal to its input plus a
leading 0. In other words, 𝑂𝑢𝑡𝑝𝑢𝑡dd = 0 + 𝑧𝑒𝑟𝑜𝑠 𝑘 + 𝑖𝑛𝑝𝑢𝑡 .
Therefore, we can conclude that 𝑂𝑢𝑡𝑝𝑢𝑡dd = 0 + 𝑧𝑒𝑟𝑜𝑠 𝑘 +
𝑖𝑛𝑝𝑢𝑡 = 𝑧𝑒𝑟𝑜𝑠 𝑘 + 1 + 𝑖𝑛𝑝𝑢𝑡.

This completes the proof.

