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Abstract

We present a series of improvements to the Hybrid system, a formal theory imple-

mented in Isabelle/HOL to support specifying and reasoning about formal systems

using higher-order abstract syntax (HOAS). We modify Hybrid’s type of terms, which

is built definitionally in terms of de Bruijn indices, to exclude at the type level

terms with ‘dangling’ indices. We strengthen the injectivity property for Hybrid’s

variable-binding operator, and develop rules for compositional proof of its side con-

dition, avoiding conversion from HOAS to de Bruijn indices. We prove representa-

tional adequacy of Hybrid (with these improvements) for a λ-calculus-like subset of

Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding

Hybrid’s definition in terms of de Bruijn indices. In further work, we prove an

induction principle that maintains some of the benefits of HOAS even for open terms.

We also present a case study of the formalization in Hybrid of a small programming

language, Mini-ML with mutable references, including its operational semantics and

a type-safety property. This is the largest case study in Hybrid to date, and the first

to formalize a language with mutable references. We compare four variants of this for-

malization based on the two-level approach adopted by Felty and Momigliano in other

recent work on Hybrid, with various specification logics (SLs), including substructural

logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object

language. We also compare these with a variant that does not use an intermediate SL

layer. In the course of the case study, we explore and develop new proof techniques,

particularly in connection with context invariants and induction on SL statements.
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Chapter 1

Introduction

The formalization of mathematical proof, originally pursued in search of a solid

foundation for mathematics, has gained new currency with the help of computerized

tools that make it feasible to conduct formal proofs in practice.

In pure mathematics, machine-checked formal proof has provided a more philo-

sophically satisfactory alternative to computer-assisted proof based on the direct use

of computer programs to check very large numbers of straightforward cases. A notable

example is the proof of the four-colour theorem [3, 28], for which no proof without

computer assistance is yet known.

In applied mathematics, it has facilitated the mathematical study of large formal

systems, such as full programming languages. The proofs of key properties of such

systems tend to involve many cases, with a few subtle details lurking among them.

This can make it difficult to achieve confidence in such proofs without a method of

checking them that neither tires of checking the numerous cases nor misses subtle

flaws. Machine-checked formal proof offers a solution.

There have long been systems, such as first-order Zermelo-Fraenkel set theory

with the axiom of choice (ZFC), that are believed to be sufficient in principle to

formalize most of ordinary mathematics. However, the use of such systems for
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constructing actual formal proofs brings new issues, as they must interact on the

one hand with the computer implementation, and on the other hand with informal

mathematical practice. These issues, and the approaches taken by current computer-

based formalization tools, will be discussed in Chapter 2.

While current systems for formal proof include sophisticated tools for proof

automation, in most cases they still require the human operator to provide more

detail than an informal mathematical proof, leaving only straightforward steps to the

automatic tools.

For certain concepts, the direct approach to formalization does not work as well

as one might expect – and yet there are sometimes alternatives that provide nice

solutions, while having interesting mathematical structure of their own. A notable

example, and one that is central to this thesis, is the concept of variables and their

scope, as found in logics and programming languages.

For example, consider first-order predicate logic. The formula ∀x. ∃ y. x 6= y

is certainly satisfiable, for it is true of any set of cardinality greater than 1. The

variable x is universally quantified, so we may instantiate it with any term. Yet if

we mechanically replace x with y, we end up with the formula ∃ y. y 6= y, which is

clearly not satisfiable.

This problem is called variable capture: the quantifier ∃ y has “captured” the

variable y in the instantiating term. For a sound logic, we need a more subtle notion of

substitution, called capture-avoiding substitution. To instantiate the original formula

with y, we first rename the existentially quantified variable y, e.g., to z, obtaining an

equivalent formula ∀x. ∃ z. x 6= z. (A poor choice of the replacement name can also

lead to variable capture, e.g., if we replace y with x.) We may then replace x with y

to obtain the correct instantiation ∃ z. y 6= z.

In the ordinary mathematical treatment of such systems, it is common to work

with terms “up to renaming of bound variables”, i.e., to work with equivalence classes

of terms. (See, for example, Pierce [62], section 5.3.) This may be combined with
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the choice of convenient representatives for those classes, e.g., Barendregt’s variable

convention ([5], p. 26) which stipulates that bound variables in terms are always

chosen to be different from all free variables present. In this way the issue of variable

capture may be neatly sidestepped. Well-formedness of functions on terms is generally

left implicit.

However, in formalizing the theory of logics and programming languages with the

help of software proof assistants such as Isabelle/HOL [56] or Coq [6], we do not have

the luxury of an intelligent human reader with the ability to reason informally yet

soundly, so we must replace our informal conventions with something more precise.

There are several possibilities:

• We could formalize the standard named-variable syntax of terms. However,

since a term may be duplicated as a result of substitution, and later one instance

may need to be substituted for a variable in the other, we cannot avoid the need

to rename bound variables at some point.

This may be done using a choice function that takes a list of variables or terms

and produces a fresh variable, distinct from all the variables in its argument,

otherwise arbitrary but deterministically chosen. For example, Melham [48]

used this approach to formalize the π-calculus in HOL. However, he noted that

much of the resulting formal theory dealt with such syntactic issues, which is

undesirable if we want to go beyond syntax to nontrivial metatheory.

• We could use a canonical representation of terms up to renaming of bound

variables. One such representation that is well known is de Bruijn indices [15].

This approach consists of replacing variable names with natural numbers, which

identify a (nameless) variable-binding operator by counting outward from the

variable occurrence in question. When not enough variable-binding operators

are present in the expression, the index is said to be dangling. Dangling

indices can be used as free variables, though their numbering changes under
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each variable-binding operator. This representation is widely used in software

implementation, but it has serious drawbacks as a human-readable notation.

(We will use it in Section 3.2.2.)

A related option is to use equivalence classes of terms as in the usual informal

treatment. These can be difficult to work with in formal proof systems such as

Isabelle/HOL or Coq; however, this approach has been used with some success

by Urban in the form of a nominal datatype package [73] for Isabelle/HOL.

There are also some more abstract mathematical treatments of variable binding,

using certain presheaf categories [22, 34] or a somewhat unusual variant of set

theory [23]. (Urban’s nominal datatype package uses ideas from the latter

approach.)

• Pierce ([62], Ch. 6) lists two other options. We could use explicit substitutions

[1] (or a related mechanism) to avoid the need for a substitution operation; or we

could use a system such as combinatory logic [14] that avoids variables entirely,

by working only with closed terms (having no free variables) and building them

from a small set of primitive combinators without the use of bound variables.

However, variables and substitution are useful concepts, so these approaches

entail significant tradeoffs; we will not consider them further here.

• We could represent the variable-binding constructs of terms using a variable-

binding construct (λ-abstraction) of the formal proof system, thus representing

the arguments of these constructs as functions in that system. This approach is

called higher-order abstract syntax (HOAS) and dates back to Church’s higher-

order logic [11]. It allows us to exploit the underlying system’s support for

manipulating variables, which is often simpler to use than any explicit formal-

ization of variables.

We focus on the latter option, the use of higher-order abstract syntax to specify
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and reason about formal systems. The Hybrid system, developed by Ambler, Crole,

and Momigliano [2], aims to support this approach in the modern proof assistants

Isabelle/HOL and Coq.

Isabelle/HOL is based on an extension of higher-order logic [57], while Coq is

based on a type theory called the Calculus of Inductive Constructions [6]. Both

systems have a function type and λ-abstraction as required, but they also have logical

constants at all types, unlike the logical frameworks (such as LF [32]) in which HOAS

is more commonly used. This makes their function types “too large” for HOAS, in

two senses:

• They contain elements with irreducible occurrences of logical constants, which

thus do not represent syntax;

• The function space τ ⇒ τ has a larger cardinality than τ , so a variable-binding

operator represented as a functional Φ of type (τ ⇒ τ) ⇒ τ cannot be injec-

tive. This makes it unsuitable for syntax, for we cannot uniquely recover the

argument F from a term of the form Φ(F).

Hybrid’s solution to both problems is to use only a subset of the function type,

identified by a predicate called abstr. It builds a type expr of terms with a HOAS

variable-binding operator definitionally in terms of a de Bruijn index representation.

(This is discussed further in Section 3.1.)

By providing HOAS in a modern proof assistant, Hybrid automatically gains

the latter’s capabilities for meta-theoretical reasoning. This approach is intended to

provide advantages in flexibility and proof automation, in contrast to systems that

directly implement logical frameworks, such as Twelf [60], which must build their own

meta-reasoning layers from the ground up.

In contrast to established systems such as Twelf, Hybrid is currently a research

prototype, and still very much a work in progress. In Chapter 3, we present a variety

of improvements to the Hybrid system as implemented in Isabelle/HOL. We also prove
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representational adequacy of Hybrid’s HOAS for first-order named variable syntax,

improving on a prior result by Crole [13].

Higher-order abstract syntax in logical frameworks [58] is generally combined

with the use of hypothetical and parametric judgments. These techniques consist

of the use of an implication connective and universal quantifier in the framework’s

specification layer to represent logical aspects of the object language (i.e., the system

to be formalized) using the specification layer’s logical contexts. These techniques

have been found to combine synergistically with the use of HOAS [21].

We may consider applying these techniques in a proof assistant rather than a

logical framework; however, McDowell and Miller’s work [46, 47], shows that there

is a tradeoff between the use of these techniques (known as “direct” or “shallow”

encoding styles) and the ability to state and prove metatheoretic properties in the

system where we are representing the object language. This is not a problem for

logical frameworks, as they do not aim to perform meta-theoretic reasoning in the

specification layer. However, it is an obstacle to the use of these techniques with

Hybrid.

To successfully combine these techiques with Hybrid’s HOAS and meta-theoretic

reasoning, recent work using Hybrid [21, 20, 49] has adopted a two-level approach.

This consists of formalizing a specification logic (SL) in the proof assistant, and

then formalizing the judgments of the object language in the SL with the use of

hypothetical and parametric judgments, rather than directly in the proof assistant.

It is based on the methods used, e.g., by McDowell and Miller to overcome similar

obstacles in logics with definitional reflection such as FOλ∆N [46].

The advantage of using a specification logic is that we may use a more direct

encoding style to represent the object language in the SL, in search of the kinds of

synergies with HOAS found in logical frameworks; yet use a less direct encoding style

to represent the SL in the proof assistant, to preserve the ability to perform meta-

theoretic reasoning. By proving properties of the SL once and for all, and then reusing
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it for many object languages, it should be possible to minimize the disadvantages of

the less direct encoding of the SL in the proof assistant.

The specification logic is typically a deliberately weak logic, e.g., with implication

restricted to atomic antecedents, that uses a backchaining rule to support logic-

programming-style specification of object-language judgments [21, 46, 47]. Sub-

structural logics such as linear logic [26] and ordered logic [65, 66] have also been

used [21, 46, 52].

In Chapters 5 to 10, we present a case study of subject reduction (i.e., type

safety) for Mini-ML with references ([9], see also Chapter 4), in which we develop

further proof techniques for the two-level approach, and extend it to a larger object

language than those previously formalized in Hybrid. We also compare various SLs

(intuitionistic, linear, and ordered linear) and encoding techniques, and compare the

two-level approach with the use of a less-direct encoding style (i.e., with explicit

contexts, see [46, 47]) directly in Isabelle/HOL (with no SL).

1.1 Summary of Contributions

The contributions of this thesis fall into two areas: improvements to Hybrid and its

metatheory, and the case study of subject reduction for Mini-ML with references in

Isabelle/HOL and Hybrid. They include both traditional mathematical proof and

material formalized in Isabelle/HOL.

Improvements to Hybrid

Chapter 3 presents several improvements to the Isabelle/HOL version of Ambler,

Crole, and Momigliano’s Hybrid system [2], and an adequacy result improving on the

one proved by Crole [13].

• Starting in Section 3.2.3, we modify Hybrid’s type of terms, expr , to better
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hide its implementation in terms of de Bruijn indices, by excluding at the type

level terms with dangling indices. This simplifies the representation of object

languages by eliminating the need to carry a predicate for this purpose (called

“proper” in [2]) along with Hybrid terms in meta-theoretic reasoning.

• In Sections 3.2.4 and 3.2.6, we modify Hybrid’s HOAS variable-binding opera-

tor, LAM, to support a stronger injectivity property with only one abstr premise

rather than two. This allows abstr premises of introduction rules for inductively

defined predicates, as used in representing object-language judgments, to appear

as conclusions, rather than premises again, in the corresponding elimination

rules. That in turn reduces the need to carry abstr conditions in meta-theoretic

reasoning, as they are more often available where they are needed.

This improvement depends essentially on the previous one, for reasons that are

explained in Section 3.2.6.

• In Section 3.2.9, we formally prove that a version of abstr for two-argument

functions (as described by Momigliano et al. in [50]) is equivalent to a conjunc-

tion of one-argument abstr conditions on “slices” of the function (fixing one

argument).

We use this result to prove a case-distinction lemma for functions satisfying

abstr, and a lemma abstr LAM that enables compositional proof of abstr con-

ditions at the HOAS level, without conversion to de Bruijn indices as required

in [2].

These two lemmas complete Hybrid’s characterization of its type expr in terms

of properties stated at the HOAS level, as illustrated by the fact that the proof

of adequacy in Section 3.4 does not involve de Bruijn syntax. In addition to the

practical benefits of the added lemmas, this makes Hybrid a more mathemati-

cally satisfactory theory.
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We also eliminate the need for a special-purpose tactic for proving abstr con-

ditions (as used in [2]) in favour of Isabelle’s general-purpose simp and auto

proof methods, by declaring rules for Isabelle’s simplifier and classical reasoner.

These consist of abstr LAM together with some simpler properties from Sec-

tion 3.2.4.

• In Section 3.2.7, we set up rewrite rules for Isabelle’s simplifier to convert

automatically between HOAS at type expr and the underlying de Bruijn index

representation at a separate type dB , controlled by the application of type-

conversion functions dB :: expr ⇒ dB and expr :: dB ⇒ expr .

As a result of the previous improvement, such conversion is now included only

for illustrative purposes.

• In various parts of Section 3.2, especially Section 3.2.4, we generalize and

simplify certain internal parts of the formal theory that constitutes Hybrid.

These changes are later applied in work on generalizing abstr to functions of

more than one argument, as described below.

• We replace the tactic-style proofs of the previous version of Hybrid with Isar

proofs. This style of proof (which will be described briefly in Section 2.2 on

Isabelle/HOL) is both more readable and more robust against changes to the

underlying proof assistant (e.g., in upgrading to a more recent version).

• In Section 3.3, we define a version of abstr for a representation of n-argument

functions, and prove an induction principle for such functions. This induction

principle improves on Hybrid’s usual form of induction, by using a representa-

tion of open terms that supports HOAS-style substitution by function applica-

tion, though it does require keeping track of variable names (or numbers).

This work is experimental, and integration into Hybrid remains as future work.
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• In Section 3.4, we prove a representational adequacy result for (the improved

version of) Hybrid, i.e., a compositional one-to-one correspondence between

Hybrid’s higher-order syntax and ordinary named-variable syntax for variable

binding. This is done at the level of set-theoretic semantics for higher-order

logic; as such, it applies directly to the actual formal theory of Hybrid, unlike

Crole’s result [13] which models Hybrid as a logical framework but does not

prove correctness of this model.

The proof is also based solely on the properties of expr formally proved by Hy-

brid, without reference to the underlying de Bruijn syntax. This simplifies the

proof as compared with Crole’s, and also illustrates Hybrid’s characterization

of the type expr as mentioned above.

In contrast to the formalized mathematics developed in Sections 3.2 and 3.3, the

adequacy result of Section 3.4 is a metatheoretical result developed using traditional

mathematical proof.

Case study

Chapters 5 to 10 present a case study of the formalization of subject reduction for

Mini-ML with references in Isabelle/HOL and Hybrid.

• We complete the largest case study to date in Hybrid.

• We formalize operational semantics and subject reduction for mutable references

in Hybrid for the first time. (This part of the formalization makes use of the

substructural features of a linear specification logic.)

• In Chapter 10, we compare the two-level approach to formalizing object-

language judgments (as used in Chapters 6 to 9) with the use of a less direct

encoding style directly in Isabelle/HOL (in Chapter 5). We also compare the
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four formalizations based on the two-level approach, which use different SLs and

different encoding techniques. (The SLs themselves, and most of the encoding

techniques, are not new.)

• We explore alternatives to the usual method of induction on SL statements (from

[46]), which uses a natural-number argument as an induction measure. One

alternative (in Section 7.4) is the use of structural induction on the inductively-

defined SL sequent predicate. Another (in Chapter 8) is the use of a possibly-

infinite ordinal induction measure, together with transfinite induction. The lat-

ter approach, in particular, allows inductive proofs of nearly identical structure

to that obtained with the use of a natural-number argument, while eliminat-

ing the need to calculate bounds on derivation height when using infinitely-

branching rules (such as all i in Chapter 8).

• In Section 8.3, we explore the use of Isabelle’s locale mechanism for modular

definition of the context invariants needed to reason about SL statements in

the proof of subject reduction.

While the case study consists of a somewhat more technical variety of formal

proof as compared with Hybrid, it does contain points of mathematical interest such

as the use of transfinite induction in Chapter 8.

1.2 Outline of the Thesis

Chapter 2 provides background on formal proof in general, and describes the Isabelle/

HOL system [56] in which the formal theories described in this thesis were constructed.

Chapter 3 presents Hybrid, an Isabelle/HOL theory that provides higher-order

abstract syntax (HOAS). The version presented there improves on [2]; this chapter

thus serves both as background for the case study to follow, and to present contri-
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butions of its own. Some experimental work not yet integrated into Hybrid is also

presented. Representational adequacy of Hybrid is proved in Section 3.4.

Chapter 4 specifies a subset of the programming language ML, which extends

Mini-ML with mutable references, in the form that will be used as the object language

(OL) for the case study of Hybrid and HOAS in Isabelle/HOL to follow. It defines

the syntax, continuation-style operational semantics, and type system, and states the

type-safety theorem (a.k.a. subject reduction) that is the focus of the case study’s

formalizations. (This object language is based on [9], with minor modifications and

with many omitted cases filled in.)

Chapters 5 to 9 present a case study in Isabelle/HOL and Hybrid consisting of

five successive formalizations of Mini-ML with references and its subject reduction

theorem. The first uses a “one-level” approach with explicit typing contexts; the

second uses a “two-level” approach where the judgments of the OL are encoded in

a specification logic (SL); and the remaining three extend the two-level approach by

adding sub-structural logic features to the specification logic. Chapter 10 makes some

concluding observations regarding the case study, and discusses related work.

Chapter 11 concludes with a summary of results and a discussion of future work.

1.3 Higher-Order Abstract Syntax

We introduce higher-order abstract syntax by way of an example; for a more compre-

hensive presentation, see [32, 59].

Higher-order abstract syntax (HOAS) is a technique for representing the syntax

of object languages (OLs) in a meta-language based on a typed λ-calculus. For an

example, we consider as an object language the untyped λ-calculus:

e ::= x | (e1 e2) | (λx. e)

where e, e1, and e2 represent expressions and x represents a variable, and we assume
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a countably infinite set of variables.

A HOAS representation of this object language consists of a type exp to represent

expressions, and constants

APP of type exp → exp → exp

LAM of type (exp → exp)→ exp

to represent OL application and λ-abstraction respectively. APP is simply a binary

operator on the type exp, written in curried form; this is a first-order construct, which

could equally well appear as a constant in a first-order theory, or as a constructor of

an inductive datatype in a system such as Isabelle/HOL or Coq. LAM, on the other

hand, is a second-order construct, specifically an operator taking a function-type

argument, which is the HOAS way of representing a variable-binding operator.

We translate OL expressions to terms of type exp by a function φ where

φ(x) = x∗

φ(e1 e2) = APP φ(e1) φ(e2)

φ(λx. e) = LAM (λx∗. φ(e))

where the function ( )∗ is a bijective mapping from OL variables to variables of type

exp. This translation preserves α-equivalence and capture-avoiding substitution:

e1 ∼α e2 iff φ(e1) ∼α φ(e2)

φ
(
e1[e2/x]

)
= φ(e1)

[
φ(e2)/x

∗]
Thus, properties of the meta-language concerning α-equivalence and substitution

transfer directly to the object language. In the case where the meta-language includes

a notion of equality up to αβ-equivalence, this allows us to treat variables using

something close to Barendregt’s convention and perform OL substitution using meta-

language function application.

A first-order representation would differ from the HOAS representation above

by having a separate type of variables var , with an additional constant VAR of type
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var → exp and with LAM taking two arguments, a variable and an expression. With

such a representation, we would have to formalize α-equivalence and substitution

explicitly, and prove their basic properties, as in [48].

Up to this point, we have only required that the meta-language have function

types, application, and λ-abstraction. However, to prove properties of the OL in terms

of its HOAS representation, we need representational adequacy : every term of type

exp should be equivalent in an appropriate sense1 to φ(e) for some OL expression

e. This causes problems when attempting to apply HOAS in an expressive meta-

language such as Isabelle/HOL or Coq, as we will see in Chapter 3.

1In a logical framework, the appropriate equivalence is definitional equality (and we might have
to exclude non-fully-applied terms); in our adequacy proof (Section 3.4), it is semantic equality in a
set model.



Chapter 2

Formal Proof

A large portion of this thesis concerns formal proofs in Isabelle/HOL. The subject

of formal proof is a topic of considerable recent interest in mathematics [44], and

one that leads to some philosophical questions regarding the nature of mathematical

proof (see, for instance, [43, ch. 4]). In this chapter we will briefly explore this topic,

and also describe some aspects of Isabelle/HOL relevant to this work.

2.1 Motivation and Examples

The development of formal systems for mathematics long predates the invention

of computers. In the early part of the 20th century, the main interest in these

systems (notably Whitehead and Russell’s Principia Mathematica [77]) was as a

foundation for mathematics, as set out in Hilbert’s program (see [78]). Gödel’s

incompleteness theorems showed that the most ambitious goals of this program,

notably a finitary consistency proof for the methods of ordinary mathematics, were

unachievable. However, systems such as Zermelo-Fraenkel set theory with the axiom

of choice (abbreviated ZFC) are still generally believed to be capable of formalizing

15
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at least most of ordinary mathematics1. This is formalization in principle: without

computers, actually carrying out the encoding of large portions of mathematics in

such systems would be tedious and of dubious value.

The development of computers has provided the means and motivation for for-

malization in practice. Systems such as Isabelle/HOL [56] and Coq [6], while generally

not yet able to automatically prove nontrivial results, have reduced the burden of te-

dious detail and “bookkeeping” to the point where it is feasible to formalize existing

mathematical proofs. There are a variety of reasons to pursue such efforts, and a

corresponding variety in the nature of the formal proofs.

• At one extreme, there are results that have been obtained by computer-assisted

methods that would have been infeasible to carry out on paper. The leading

example is Haken and Appel’s proof of the four-colour theorem [3, 4]. In this

proof, the problem was reduced by ordinary mathematical reasoning to a certain

property of the objects in a large finite set, and a purpose-built computer

program was used to check the billions of cases thus obtained. However, the

fallible nature of computer programs (and programmers) makes this approach

less satisfactory than a typical mathematical proof. The traditional part of the

proof was also very large (hundreds of pages), making it difficult to check in

detail. For these reasons, the result was at first not universally accepted (see

[43, pp. 138–139]).

Gonthier [27, 28] improved on this situation by constructing a formal proof

of the four-colour theorem in the Coq system [6], a modern interactive proof

assistant based on a constructive type theory called the Calculus of Inductive

Constructions (CiC). Coq’s support for computational reflection, in which proofs

may include computations performed by normalization of terms in the type

theory, allowed Gonthier to follow essentially the same proof strategy as Haken

1An important exception is the metatheory of ZFC itself.
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and Appel (as simplified by Robertson et al. [69]), using the computer to check

billions of cases, but with the correctness of this procedure guaranteed by Coq’s

type system. This approach also turned out to be useful for parts of the proof

that had originally been done in the traditional mathematical way without

computer assistance [27].

• At the other extreme, there is proof-carrying code [54], which makes use of

formal proofs generated automatically, e.g., by a compiler, to express safety

properties for software. These proofs may incorporate lemmas that formalize

mathematical results, but they consist mostly of a formalization of information

obtained by compiler techniques such as static analysis and type-checking. Such

applications are arguably a part of applied mathematics, but they are usually

pursued as computer science.

Formal proof is also used for correctness properties of software, which are more

complicated and may require considerable human effort, sometimes including

nontrivial mathematics. (Gonthier’s use of computational reflection [27] in-

volved such correctness proofs.)

• Another area of mathematical research is the use of formal proof to obtain

increased confidence in the correctness of proofs that can be (and may have

been) carried out on paper, but that contain many tedious cases, making

verification of the proof by other mathematicians a difficult task.

Such proofs often occur in the mathematical study of properties of programming

languages, which is part of the interdisciplinary subject of theoretical computer

science and has been pursued by both mathematicians and computer scientists.

Research is often conducted on highly simplified programming languages to

keep the numbers of cases manageable, but it is also desirable to be able

to prove properties of more realistic programming languages. This is one of
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the goals of Hybrid, a system for which improvements are developed in the

present work (Chapter 3). The development and theory of such systems, using

techniques such as HOAS, tends toward the mathematical side of the subject;

however, the formal proofs in the subsequent case study (Chapters 5 to 9) also

have considerable mathematical content, e.g., the use of transfinite induction in

Chapter 8.

If we are to use formal proof to obtain increased confidence in mathematical

results, then we must ensure that the software tools used to conduct such proofs

correctly implement the intended formal systems. Existing systems use several ap-

proaches:

• HOL [35] and Isabelle/HOL [56] follow the LCF approach due to Milner (see

[31]), in which proofs are represented as objects of an abstract data type

(traditionally called thm) in a type-safe programming language (a variant of

Milner’s ML). The code implementing this type has the sole task of checking

proofs, and is kept small and simple so that it can be carefully verified by hand.

The type-safety guarantees of the programming language ensure that errors in

the rest of the system cannot endanger the soundness of proofs represented in

this way. (Indeed, the type thm need not actually store a representation of the

proof, although it often does for reasons described below.)

• Coq [6] and several other systems are based on constructive dependent type

theory and the judgments-as-types approach, where formal statements are types

and proofs are objects inhabiting those types. In this case it is the type-checking

code that must be verified to ensure that it implements the intended type

system. This code is again kept small and simple to facilitate verification.

• Some systems, including both Coq and Isabelle/HOL, provide proof terms that

can be verified by independently constructed proof-checking software. Such
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software can be constructed by many people using a variety of hardware, oper-

ating systems, and programming languages, so that an unlikely coincidence of

flaws would be required for an incorrect proof to be accepted.

• Many other approaches have been used, e.g., translation from a more compli-

cated formal system into a simpler one.

Soundness and consistency properties of the formal system itself are also impor-

tant (and have failed at times, e.g., as mentioned in [75]). As a consequence of Gödel’s

incompleteness theorems, we cannot expect to establish such properties in an abso-

lute way; however, we can prove them informally (or formally) in a well-established

metalanguage with sufficient consistency strength, which in practice rarely needs to

go much beyond ZFC set theory.

Correctness of the layers of hardware and software underlying the proof-checking

program is also a difficult issue. In practical terms, diligent application of the methods

described above is sufficient to eliminate any realistic possibility of a false proof being

accepted. Philosophically, however, these methods are not entirely satisfactory. We

do not yet have general-purpose computers and operating systems that are proven

correct; and any such proof would on the one hand depend on modelling the physical

behaviour of the machine, which is not directly susceptible to mathematical proof,

and on the other hand would be so large and complicated as to likely require computer

assistance – a circularity that might be difficult to resolve! These issues are discussed

in detail by Pollack [68]; see also [43, Ch. 8].

2.2 The Isabelle/HOL Proof Assistant

Isabelle/HOL [56] is an interactive proof assistant that implements an extension of

Church’s higher-order logic [11], and is built within the generic framework of Isabelle

[40]. It is based [57] on Gordon’s HOL system [30].
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We briefly describe the notation we will use to present definitions and statements

formally proved in Isabelle/HOL, along with some features of the system that we

will need. Many of these features are more recent than Nipkow et al.’s 2002 book

[56]; current information may be found in the Documentation section of the Isabelle

project website [40]. (We will define set-theoretic semantics for Isabelle/HOL later,

in Section 3.4.1.)

Our formal theory development is based on Isabelle/HOL 2008, but we do not

anticipate major difficulties in updating our work for newer versions of Isabelle/HOL.

(An archived version of the Isabelle website, with the documentation and software of

Isabelle 2008, is available at [41].)

Notation

We use a typeset version of Isabelle/HOL’s concrete syntax [57] that is similar to the

default output of Isabelle’s document-preparation system.

We distinguish the syntactic classes of Isabelle/HOL by typefaces: roman type

for variables and lemma/theorem names, sans serif type for defined constants, italic

type for types, and boldface type for Isabelle keywords.

Isabelle/HOL is built on top of Isabelle/Pure, which is a logical framework with

only a few connectives: universal quantification (
∧

), implication (=⇒), and equality

(≡). These connectives are provably equivalent to the corresponding Isabelle/HOL

connectives within Isabelle/HOL, but they are often used in statements of definitions

and lemmas. (We will sometimes also use a reversed implication arrow ⇐= when

it helps readability.) The notation
q

A1; A2; . . . ; An

y
=⇒ B abbreviates the nested

implication

A1 =⇒ (A2 =⇒ · · · (An =⇒ B) · · ·).

As a logical framework, Isabelle/Pure also has λ-abstraction (λ x. B) and function

application (denoted by juxtaposition). These are used directly in Isabelle/HOL,
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which is a form of HOAS. Function application has the highest precedence and

associates to the left.

Function types are denoted A ⇒ B , and the notation
[
A1 , A2 , . . . , An

]
⇒ B

abbreviates a type of n-ary functions in curried form,

A1 ⇒ (A2 ⇒ · · · (An ⇒ B) · · ·).

We write x :: A to indicate that x has type A. This notation may also be

used inside an Isabelle/HOL expression to specify a type constraint. Isabelle/HOL

supports type inference, so it is usually unnecessary to give types for terms. We will

likewise omit types when they are clear from context.

We write “a type constr” for a type constructor type constr applied to one

argument a, or “(a1 , a2 , . . . , an) type constr” when there are multiple arguments.

We use the usual logical and mathematical symbols for Isabelle/HOL connectives

and quantifiers (−→, ∧, ∨, ¬, ∀, and ∃), equality and inequalities (=, 6=, <, 6, etc.),

set membership and subset (∈ and ⊆), and function composition (◦).

The functional update notation f (x := y) stands for the function that agrees

with f on all arguments except x, for which it takes the value y.

List notation consists of a binary operator # that is used to add an element

to the front of a list, in the form (h :: a) # (t :: a list); the empty list is denoted ·.

There is also a list concatenation operator @. Membership in a list is denoted by an

infix operator mem. The function set :: (a list) ⇒ (a set) gives the set of elements

in a list.

Free variables in Isabelle/HOL statements and definitions are implicitly univer-

sally quantified. A statement of the form some predicate (λ x. a) actually means∧
a. some predicate (λ x. a); since the quantifier is outside the λ-abstraction, the

bound variable x may not occur in a. Thus, such a statement expresses a property

of constant functions, not arbitrary functions. For the latter purpose, we must use a

free variable of higher-order type, in the form some predicate (λ x. A x).
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However, when defining mere notation, this convention does not apply: a free

variable will stand for an arbitrary term with possible occurrences of all bound

variables in scope.

Features

We list here a number of Isabelle/HOL features that we will need.

Inductive datatypes (see [57, § 2.6])

The command datatype defines an inductive datatype. It is best described by

example:

datatype a btree = Leaf a | Node (a btree) (a btree)

This command defines a type constructor btree, with one type parameter a, and

constructors Leaf :: a ⇒ (a btree) and Node ::
[
a btree, a btree

]
⇒ (a btree).

It also automatically proves many properties of the type (a btree) and its

constructors, of which three are primitive:

• Distinctness:

(Leaf a) 6= (Node t1 t2)

• Injectivity:

(Leaf a = Leaf a′) = (a = a′)

(Node t1 t2 = Node t′1 t′2) = (t1 = t′1) ∧ (t2 = t′2)

• Structural induction:

q∧
a. P (Leaf a);∧
t1 t2. J P t1; P t2 K =⇒ P (Node t1 t2)

y
=⇒ P (t :: a btree)

Distinctness and injectivity are automatically added to the set of rewrite rules

for Isabelle’s simplifier; as a result, any equality with datatype constructors on
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both sides will be simplified, and there is little need to mention these properties

explicitly in proofs.

A size function and a definition-by-cases operator are automatically defined,

and their basic properties proved. A case-analysis rule is derived from the

structural induction rule. Functions on a datatype may be defined by primitive

recursion, by declaring them with consts and then giving recursive equations

with primrec.

We will reserve the term constructor for constants defined using datatype, or

defined in some other way but satisfying all of the same properties, as in the case

of 0 :: nat and Suc :: nat ⇒ nat . (The command rep datatype may be used

to derive all the properties of a datatype from the three primitive properties

listed above.)

Inductively defined predicates

A predicate may be defined using the inductive command, by giving a list of

introduction rules. We give a simple example:

inductive even :: nat ⇒ bool

where zero is even: even 0∣∣ next even: even x =⇒ even (x + 2)

An induction rule for the predicate is automatically proved. Corresponding

elimination rules may be generated automatically.

Some other features, such as type definitions (typedef), general recursive func-

tions (function), axiomatic type classes (class), and locales (locale) will be ex-

plained when they are first used.



2.2. The Isabelle/HOL Proof Assistant 24

Formal Proof

Isabelle theories are specified in a language called Isar [74]; the name stands for intel-

ligible semi-automated reasoning, and the general approach is inspired by Mizar [70]

(see [76] for a comparison). Isar defines an outer syntax of theory and proof com-

mands, within which quoted strings are used for Isabelle/HOL expressions and types,

with their own separate and extensible inner syntax.

Isabelle supports two distinct styles of proof:

• In tactic-style proof, a goal is stated and then logical rules, lemmas, and au-

tomatic proof methods are applied in a goal-directed way using the command

apply. Each step may solve the goal or leave one or more subgoals. Formu-

las and expressions are usually not stated explicitly after the initial goal; to

follow the reasoning, it is typically necessary to step through the proof inter-

actively to see the subgoals. This style of proof is useful for exploration and

can lead to shorter proofs, but because intermediate results and even the tree

structure of subgoals are implicit, it has significant disadvantages in readability

and maintainability of proofs.

• Isar-style proof uses a block-structured language of proof commands. A state-

ment is accompanied by a single proof step; either it proves the goal at once, or

a block is opened in which subgoals are stated and proved. Intermediate results

may also be stated and proved within such a block. This style of proof puts

the emphasis on intermediate results rather than the rules by which they are

obtained; it can be used to construct readable formal proofs approximating the

style of ordinary mathematical proof.

The two styles may be freely intermixed. We use the Isar proof style almost

exclusively, with occasional recourse to apply in situations where the Isar-style

alternative is worse, such as when case analysis must be performed on a particular



2.2. The Isabelle/HOL Proof Assistant 25

variable in all cases of a proof by induction.

We generally use automatic proof methods whenever they are successful, which

yields shorter proofs but not necessarily readable ones, as important steps may be

hidden. There are two main automatic proof tools: the simplifier which operates by

rewriting using proven equations, and the classical reasoner which operates by proof

search using natural-deduction-style introduction and elimination rules. The auto

proof method combines both techniques. We may add our own lemmas to Isabelle’s

simpset and claset so that they may be used by the automatic proof tools; either

semi-permanently using attributes, or temporarily for a single automatic proof step.

Extensions

Isabelle supports a modular system of theories, in which each file begins with a

theory command giving a name to the theory it defines and specifying one or more

theories on which it depends. The theory Main of Isabelle/HOL includes many

basic mathematical constructs including everything described above, but we will have

occasion to use certain other theories as well.

Two of these theories are found in the Library directory of the Isabelle/HOL

distribution, and may be loaded simply by naming them as dependencies:

• The theory Multiset defines a type (a multiset) of multisets with elements of

type a.

The function count ::
[
a multiset , a

]
⇒ nat gives the number of occurrences

of x in a multiset M as (count M x). Multiset membership is defined as

(x ∈ M) = (count M x > 0). The singleton multiset with element x is denoted

{{ x }}, and the empty multiset is denoted �.

We use an abbreviation mset for the function multiset of :: (a list) ⇒ (a multiset)

that converts a list to a multiset by forgetting the order of elements.
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• The theory Countable defines an axiomatic type class countable with one

axiom stating the existence of an injective function to the type of natural

numbers.

The third is a theory Ordinal from the Archive of Formal Proofs [38], which

defines a type ordinal of countable ordinals.



Chapter 3

Improvements to Hybrid

3.1 An Abstract View of Hybrid

This section will present an overview of the present version of Hybrid, which com-

bines previous work (especially from [2]) and our contributions, without necessarily

distinguishing the two. Details of the theory, and discussion of what parts of Hybrid

are the contributions of this thesis, will follow in the subsequent sections.

Hybrid takes the form of an Isabelle/HOL theory, built around a type expr

that serves as abstract syntax. It is intended to be used for representing object

languages (OLs) such as programming languages, logics, and other formal systems. It

aims to provide higher-order abstract syntax (HOAS) for variable-binding constructs,

and to support reasoning in Isabelle/HOL about object languages so represented,

including in particular proof by induction over expr . It is also built definitionally on

the foundation of Isabelle/HOL, introducing no new axioms1.

Isabelle/HOL already has extensive support for first-order abstract syntax, in the

form of its datatype package. Hybrid may be viewed as an attempt to approximate

1Except for the definitional extensions used internally by Isabelle/HOL’s definition mechanisms,
which introduce new constants and defining axioms together in a consistency-preserving way.

27
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a datatype definition that is not well-formed because of its higher-order features:

datatype expr = CON con
∣∣ VAR var

∣∣ APP expr expr (notation (s $$ t))∣∣ LAM (expr ⇒ expr) (notation (LAM x. B))

where CON represents constants, from an OL-specific type con (typically a trivial

datatype); VAR may be used to represent free variables, from a countably infinite

type var (actually a synonym for nat); APP represents pairing, which is sufficient to

encode list- or tree-structured syntax; and LAM represents variable binding in HOAS

style, using the bound variable of an Isabelle/HOL λ-abstraction to represent a bound

variable of the object language.2

It should be noted that Hybrid only approximates one such pseudo-datatype, not

the datatype package with its ability to define multiple types for first-order abstract

syntax. That is, Hybrid is untyped, so predicates rather than types must be used to

distinguish different kinds of OL terms encoded into expr . This is a potential area for

significant improvement, but it remains as future work. (Some work in that direction

has been done in another version of Hybrid, based on the Coq proof assistant; see

Section 3.5, Related Work.)

The problem is LAM, whose argument type includes a negative occurrence of

expr (underlined). This is essential for HOAS, but it is not permitted in a datatype

definition [57, § 2.6], and it will require modifications to some of the properties

expected for a constructor of a datatype; we will return to this issue later.

Hybrid does provide a type expr with operators CON, VAR, APP, and LAM of

the appropriate types. This is enough to give an example of representing terms of a

simple object language, even before considering the properties required of expr and its

operators. We use the untyped λ-calculus with its usual named-variable syntax, using

capital letters for variables (Vi, i ∈ N) and λ-abstraction (Λ) to avoid ambiguity.

Hybrid was originally designed as a representation of an untyped λ-calculus [2];

2While APP and LAM were inspired by the untyped λ-calculus, in Hybrid they are used only as
syntax, without built-in notions of β-conversion, normal forms, etc.
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as such, its operators can be used directly to represent the constructs of this ob-

ject language. An object language term (Λ V1. Λ V2. (V1 V2) V3) would be repre-

sented as (LAM (λ x. LAM (λ y. (x $$ y) $$ (VAR 3)))), which can be abbreviated

to (LAM x y. x $$ y $$ VAR 3). Note that the free variable V3 is represented using

Hybrid’s VAR operator, while the bound variables V1 and V2 are represented as bound

Isabelle/HOL variables (x and y) in the function-type arguments of LAM. The names

of the latter variables are irrelevant, so long as they are distinct, since Isabelle/HOL

handles α-conversion automatically.

However, the preferred way to represent OL terms in Hybrid is to translate each

OL construct to a list formed using Hybrid’s $$ operator, headed by a constant

that identifies the particular OL construct. If we use c lam :: con for OL lambda-

abstraction and c app :: con for OL function application, we would have:

c lam $$ (LAM x. c lam $$ (LAM y. c app $$ (c app $$ x $$ y) $$ VAR 3)).

This approach has more notational overhead, but it is essential for working with more

complicated OLs with many constructs and syntactic classes (such as Mini-ML with

references in Chapters 4 to 9). Isabelle’s ability to define abbreviations and infix

notations can be used to recover a reasonable concrete syntax:

fn x y. (x $ y) $ VAR 3.

(These examples have used VAR to represent free OL variables, which means

giving up some of the advantages of HOAS, as discussed below. Alternatives will be

discussed in Section 3.3.)

We now turn to the properties required of expr and its operators to function

as higher-order abstract syntax. The main requirement is a meta-theoretic property,

representational adequacy. This can take several forms, but we will use bijectivity

of a set-theoretic semantics on a λ-calculus-like subset of the Isabelle/HOL terms of

type expr , called the syntactic terms :

s ::= x | CON a | VAR n | s1 $$ s2 | LAM x. s
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where s (with possible subscripts) stands for a syntactic term, x for a variable of type

expr , a for a constant of type con, and n for a natural-number constant.

However, open terms present a complication. Suppose we have a theory where

the semantics is bijective on closed syntactic terms, which it maps to a set S. Then it

will map open terms with n free variables to functions from the Cartesian power Sn

to S. But there are many such functions that do not correspond to syntactic terms;

for example, the function S → S corresponding to the Isabelle/HOL term

λ x. if (∃ a. x = CON a) then (x $$ x) else x

of type (expr ⇒ expr). Indeed, there are a countable infinity of syntactic terms, while

the set of functions from Sn to S is uncountable for n ≥ 1.

Thus, Hybrid must define a subset of the function space to be used as its

representation for open syntactic terms. This is done using a predicate abstr ::

((expr ⇒ expr) ⇒ bool). The functions satisfying abstr will be those of the form

(λx. s) where s is a syntactic term with (at most) one free variable x; we call these

the syntactic functions3. (Syntactic terms with more than one free variable will be

handled one variable at a time; the details are given as part of the proof of adequacy

in Section 3.4.)

The present version of Hybrid further aims to characterize the type expr , its

operators, and the predicate abstr with formal lemmas, in such a way that adequacy

follows from these lemmas without unfolding the definitions.

Isabelle/HOL datatype definitions achieve this in the first-order case using three

properties: distinctness of the datatype constructors, injectivity of each constructor,

and an induction principle.

In the case of Hybrid, distinctness of all the operators and injectivity of the

3Previous work called such functions abstractions [2] – thus the predicate name abstr; and called
functions not satisfying abstr exotic terms [2, 16], because they are foreign to the intentionally weak
logics typically used as specification layers for logical frameworks.
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first-order operators (i.e., all except LAM) are straightforward to achieve, e.g.:

∀ (c :: con) (S :: expr ⇒ expr). CON c 6= LAM S

∀ (s t s′ t′ :: expr). (s $$ t = s′ $$ t′) −→ (s = s′) ∧ (t = t′).

(These properties are used as rewrite rules for Isabelle’s simplifier, to reduce equalities

of Hybrid terms with known operators on both sides; typically this results in equalities

where one side is just an Isabelle/HOL variable, which can then be eliminated by

substitution.)4

Injectivity of LAM must be restricted to functions satisfying abstr; indeed, it can

be proven in Isabelle/HOL that no injective function from (expr ⇒ expr) to expr

exists, by formalizing Cantor’s diagonal argument. However, the present version of

Hybrid proves an injectivity property that requires an abstr condition for only one

side of the equality:

q
abstr S ∨ abstr T; LAM S = LAM T

y
=⇒ S = T.

This reduces the need for explicit abstr conditions in object-language encodings,

because they can be transported across equalities of LAM terms. It is achieved by

adding to the type expr an additional constant ERR, and defining LAM to take the

value ERR on functions not satisfying abstr. (The constant ERR will sometimes appear

as an additional case alongside the operators of Hybrid, in lemmas that impose an

abstr condition for the LAM case. We also include it among the syntactic terms.)

Since abstr appears as a premise of injectivity – and it would in any case be

needed to state properties of open syntactic terms – we must also include properties

sufficient to characterize it. While Hybrid proves a number of lemmas regarding abstr

for convenience and proof automation, the desired characterization can be given in a

4Indeed, most use of Hybrid’s lemmas in object-language work is automated using Isabelle’s
simplifier and classical reasoner, and as a result, direct references to Hybrid’s lemmas may be rare.
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single statement:

abstr Y ≡ (Y = (λ x. x))

∨ (∃ a. Y = (λ x. CON a))

∨ (∃ n. Y = (λ x. VAR n))

∨ (∃ S T. Y = (λ x. S x $$ T x) ∧ abstr S ∧ abstr T)

∨ (∃ W. Y = (λ x. LAM y. W x y) ∧ abstr W)

∨ (Y = (λ x. ERR))

Once again the LAM case complicates matters: the underlined occurrence of

(abstr W) applies abstr to a function W ::
(
[expr , expr ] ⇒ expr

)
. This should be

possible by using type classes to give a polymorphic definition for abstr, but that is

future work. The present version of Hybrid instead replaces (abstr W) with

(∀ y. abstr (λ x. W x y)) ∧ (∀ x. abstr (λ y. W x y)).

(This requires a partial formalization of the reasoning used to handle one variable at

a time in the proof of adequacy.)

As for induction, it can take several forms. In the first-order case, Isabelle/HOL’s

datatype package provides two forms of induction:

• A structural induction rule.

• A well-founded induction measure, in the form of a function size :: (a ⇒ nat)

defined for any5 datatype a, together with equations to simplify size applied to

the constructors; and an exhaustiveness property for the constructors.

In the case of Hybrid, it is straightforward enough to define a size function on

syntactic terms, which can be used as an induction measure. Hybrid does this for

the type expr , which represents closed syntactic terms, and there is a straightforward

extension to open terms. The proof of adequacy in Section 3.4 uses this induction

5In fact the size function is not defined for datatypes with infinitely-branching recursion, e.g.,
Definition 6.1.
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measure, together with exhaustiveness properties for the types expr and (expr ⇒

expr).

However, this approach is not entirely satisfactory for reasoning within Isabelle/

HOL. To work with open syntactic terms (which may occur as subterms even if we

start with a closed term), we must λ-bind their free variables; this is semantically

trivial but changes the type from expr to a functional type
(
[expr ]n ⇒ expr

)
, where

n is the number of free variables.6 Isabelle/HOL is thus unable to formalize the form

of induction used in the proof of adequacy, because it lacks explicit quantification

over types.

To work around this limitation, we must bring the induction cases back to the

same type as the original object. The original version of Hybrid [2] addressed this issue

by including another representation of free variables within the type expr , specifically

named-variable syntax in the form of VAR (as illustrated above in the example of

encoding OL terms). It then proved a structural induction principle for expr in terms

of this representation, while still using the HOAS representation for bound variables.

The first-order induction cases are standard, while the induction case for LAM is:

∀ S :: (expr ⇒ expr). abstr S ∧
(
∀ n. P (S (VAR n))

)
−→ P (LAM x. S x).

However, falling back to named (or numbered) variables for inductive proofs means

giving up some of the advantages of HOAS. To make meaningful use of such an induc-

tion principle, it is necessary to prove many technical lemmas about VAR involving

freshness, substitution, etc.

The present version of Hybrid retains VAR and this induction principle, but

omits the technical lemmas. As an alternative, in Section 3.3 we prove an induction

principle for a type that represents n-ary functions on the type expr . This approach

preserves the HOAS feature of substitution by function application, though it is

currently experimental and integration into Hybrid remains as future work.

6The meta-notation
(
[expr ]n ⇒ expr

)
stands for the Isabelle/HOL type of curried n-ary functions

with argument and result types expr . (When n = 0, this is just expr .)
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(The lack of a good induction principle for syntactic terms was not a major

obstacle in the case study presented in Chapters 5 to 10, because other forms of

induction were available and open terms could be handled using HOAS techniques.

Size induction on expr is nonetheless used in Lemma 7.31, which deals with a first-

order part of an OL encoding where the LAM case cannot occur.)

In addition to proof by induction, it is convenient to be able to recursively define

functions and predicates on syntactic terms. For datatypes, Isabelle/HOL provides

primitive recursion in the form of a primrec command; extending this to Hybrid

would require modifying the datatype package’s program code. However, Isabelle/

HOL 2007 introduced a new function command that supports general recursive def-

inition using a well-founded termination measure; it works unmodified with Hybrid,

though it faces the same type issues described above for induction.

Finally, Hybrid aims to build expr and its operators definitionally in Isabelle/

HOL. While the description above is an informal but reasonably complete specification

of Hybrid, it is not directly usable as a definition because it is circular: the arguments

of LAM and abstr may themselves contain LAM, and injectivity of LAM depends on

abstr. It could be formalized as an axiomatic theory, leaving consistency as a meta-

theoretical problem; but instead, Hybrid is built definitionally in terms of a first-order

representation of variable binding based on de Bruijn indices. The definitions and

lemmas involved in achieving this are the subject of the next section.

3.2 Definition of Hybrid

This section presents the definitions and many of the lemmas of Hybrid. Some

technical lemmas are omitted, as are most proofs, many of which use Isabelle/HOL’s

automatic proof methods. Informal translations of Isar proofs are given for some key

lemmas, typically showing more steps than were actually needed in the formal proof

to improve readability. (The Isabelle/HOL 2008 theory file for the present version of
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Hybrid is available online [45].)

The present version of Hybrid is based on Hybrid as developed by Ambler et

al. [2]; the theory files for that version were provided by Alberto Momigliano, and are

now available online [18] (as “the original Hybrid infrastructure” for Isabelle/HOL

2002 and 2003). The discussion accompanying the theory development will specify

which features are from that work and which ones are original, and explain the ways

in which we improve on the original version of Hybrid.

Some of our contributions were presented in [51], and the Isabelle theory file cor-

responding to that paper is also available online [18] (as “Hybrid 0.2”, in versions for

Isabelle/HOL 2005, 2007, and 2008). The most significant change since that version

is the addition of the material in Section 3.2.9, notably Lemma 3.38 (abstr LAM).

This change enabled the proof of Theorem 3.56 (Adequacy) without unfolding Hy-

brid’s definitions, an important objective as described in Sections 3.1 and 3.4.4.

One improvement that will not be apparent, due to the omission of proofs,

is that all of the theory’s lemmas are proved in Isar style, rather than as tactic

scripts. (“Improper” Isar constructs, emulating tactics, are used in a few exceptional

cases.) This makes the formal proofs more readable, and better approximates informal

mathematical practice. The Isar proofs were also quite robust when upgrading from

Isabelle 2005 to Isabelle 2007 and then Isabelle 2008; the required changes were few

and obvious, which is typically not the case for large theories based on tactic scripts

(as noted, e.g., in [18]).

3.2.1 Outline

We begin in Section 3.2.2 by defining a datatype dB for first-order abstract syntax

with variables represented by de Bruijn indices. In Section 3.2.3, we then define the

type expr and its first-order operators (i.e., all except LAM) in terms of dB and its

constructors.
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In Section 3.2.4, we define the remaining operator LAM and the predicate abstr,

and give some of their basic properties as lemmas. These definitions are illustrated

by an example in Section 3.2.5.

In Section 3.2.6, we prove an injectivity property for LAM on arguments satisfying

abstr, and state distinctness and injectivity for all of Hybrid’s operators (the remaining

cases being straightforward).

In Section 3.2.7, we define an inverse for the auxiliary function used to define

LAM in terms of de Bruijn indices, and use it to support conversion of de Bruijn

syntax to HOAS. This is used to prove exhaustiveness of Hybrid’s operators for the

type expr in Section 3.2.8, where we also define an induction measure (as a function

size :: (expr ⇒ nat)) and give a structural induction principle for expr using VAR for

free variables.

In Section 3.2.9, we generalize abstr to binary functions, and present a lemma

reducing this generalization to the original predicate abstr for unary functions. This

is used to complete the characterization of abstr described in Section 3.1.

3.2.2 De Bruijn syntax

The Hybrid theory defines the type expr in terms of an Isabelle/HOL datatype dB ,

which represents abstract syntax using a nameless first-order representation of bound

variables called de Bruijn indices [15].

This approach differs from the original version of Hybrid [2], which used a

datatype corresponding to our dB directly as expr ; the significance of this difference

will be explained in Sections 3.2.3 and 3.2.6. However, the datatype itself is very

similar, and this section follows [2] closely.
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Definition 3.1

types

var = nat

bnd = nat

datatype a dB =

CON′ a
∣∣ VAR′ var

∣∣ APP′ (a dB) (a dB) (notation (s $$′ t))∣∣ ERR′
∣∣ BND′ bnd

∣∣ ABS′ (a dB)

The constructors CON′, VAR′, and APP′ correspond to the operators CON, VAR,

and APP on type expr , which were discussed in Section 3.1 and will be defined later.

The one significant difference is that the argument of CON′ is a type parameter a,

rather than a particular type con. This will actually be true for CON as well, and

it allows Hybrid to be defined as an OL-independent Isabelle/HOL theory, and later

used with OL-specific constants. (We will frequently omit this type parameter, except

where it occurs in formal definitions or it is instantiated.)

The other three constructors (ERR′, BND′, and ABS′) will all be used in the

definition of LAM. The constant ERR′ will be a placeholder for LAM applied to a

non-syntactic function; it was not present in [2], and its significance will be explained

later. The constructor ABS′ functions as a nameless binder, while (BND′ i) represents

the variable implicitly bound by the (i + 1)th enclosing ABS′ node. If there are not

enough enclosing ABS′ nodes, then it is called a dangling index.

As an example, consider the term

ABS′ (ABS′ (BND′ 2 $$′ BND′ 1 $$′ BND′ 0) $$′ BND′ 0).

The underlined occurrences of (BND′ 1) and (BND′ 0) both refer to the variable bound

by the outer ABS′ (also underlined), while the other occurrence of (BND′ 0) refers to

the variable bound by the inner ABS′. (BND′ 2) is a dangling index, because there

are only 2 enclosing ABS′ nodes.

To keep track of dangling indices, Hybrid defines a predicate level ::
[
bnd , dB

]
⇒

bool such that (level i t) is true if enclosing the term t in i or more ABS′ nodes would



3.2. Definition of Hybrid 38

result in a term without dangling indices.

Definition 3.2

fun level ::
[
bnd , a dB

]
⇒ bool

level i (CON′ a) = True

level i (VAR′ n) = True

level i (s $$′ t) = (level i s ∧ level i t)

level i ERR′ = True

level i (BND′ j) = (j < i)

level i (ABS′ s) = level (i + 1) s

A term with no dangling indices is called proper, and we may define an abbrevi-

ation (proper t) = (level 0 t). (These notions are standard for abstract syntax based

on de Bruijn indices [2].)

Lemma 3.3

level le level :
q

level i s; i 6 j
y

=⇒ level j s

The lemma level le level shows that level is upward closed in its first argument:

a term satisfying (level i) also satisfies (level j) for any j > i.

Dangling indices are the analog of free variables for de Bruijn syntax: the

subterms of a proper term are not necessarily proper, but may instead be open terms

represented using dangling indices. Hybrid uses this de Bruijn representation of open

terms internally in defining LAM and abstr, but it is not intended to be part of expr ;

indeed, its presence there would conflict with its internal use in the definition of LAM.

3.2.3 The type “expr” of proper de Bruijn terms

In the original version of Hybrid [2], where expr was a datatype similar to our dB ,

many important properties were proved with proper premises. This meant that OL

encodings had to build in proper conditions, and proofs of OL metatheorems had to
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manipulate them; a special-purpose tactic called proper tac was provided for this

purpose.

The present work improves on that situation by using Isabelle/HOL’s typedef

mechanism to define expr as a bijective image of the set of proper terms of type dB .

That eliminates the proper conditions in object-language work using Hybrid, at the

expense of having to convert terms between expr and dB in defining LAM and abstr.

This is a good trade-off, because those definitions are internal to Hybrid and need only

be made once. It also turns out to be essential for strengthening the quasi-injectivity

property of LAM, as described in Section 3.2.6.

Definition 3.4

typedef (open) a expr = {x :: a dB . level 0 x} morphisms dB expr

This typedef statement first demands a proof that the specified set is nonempty

(which is trivial here). Then it introduces the type expr , the functions dB :: (expr ⇒

dB) and expr :: (dB ⇒ expr), and axioms stating that they are inverse bijections

between the type expr and the set {x :: dB . level 0 x}. (Some obvious but useful

consequences of these axioms, including injectivity and surjectivity of the functions,

are proved automatically.) Although axioms are used, the overall mechanism is a

form of definitional extension and preserves consistency of the theory.

The open modifier instructs Isabelle not to define a new predicate for mem-

bership in the set, which would be redundant here, since (level 0) is already such a

predicate. The type expr has the same type parameter a that dB does, and we will

frequently omit it for expr as well.

We may now define all of the first-order operators of Hybrid (i.e., all except LAM,

with its functional-type argument) in the obvious way.

Definition 3.5

CON :: a ⇒ a expr

CON a ≡ expr (CON′ a)
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VAR :: var ⇒ a expr

VAR n ≡ expr (VAR′ n)

APP ::
[
a expr , a expr

]
⇒ a expr (notation (s $$ t))

s $$ t ≡ expr (dB s $$′ dB t)

ERR :: a expr

ERR ≡ expr ERR′

ERR is defined as if it were a separate operator, and it will sometimes be treated

as such, but it will also be generated by LAM applied to a non-syntactic function.

The functions dB and expr translate these operators to the corresponding con-

structors of dB (Definition 3.1) and vice versa.

Lemma 3.6

dB (CON a) = CON′ a

dB (VAR n) = VAR′ n

dB (s $$ t) = dB s $$′ dB t

dB ERR = ERR′

Lemma 3.7

expr (CON′ a) = CON a

expr (VAR′ n) = VAR n
q

level 0 s; level 0 t
y

=⇒ expr (s $$′ t) = expr s $$ expr t

expr ERR′ = ERR

These properties are all straightforward consequences of the definitions.

Distinctness and injectivity for these operators follow from the corresponding

properties of dB using these lemmas; however, we will defer stating those properties

until Section 3.2.6, where we can include similar properties for LAM.

The (level 0) premises of the third property in Lemma 3.7 are needed because

the typedef -generated function expr is undefined on terms with dangling indices.

These premises could be eliminated by defining a more tightly-specified version of

expr, satisfying the same typedef -generated axioms while preserving the structure of

its argument except for any dangling indices. This was done in the previous version of
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Hybrid [18, 51] (with the help of an auxiliary function called trim), but with systematic

use of the predicate level as described below, it was found to be unnecessary.

It would be convenient to be able to make a type definition similar to Defini-

tion 3.4 for the predicate (level i) for arbitrary i :: nat . However, the nat parameter

would make this a dependent type, which is not supported by Isabelle/HOL.

Nonetheless, in the present work, Hybrid’s use of the predicate level is structured

as if by translation from a notional extension of Isabelle/HOL with dependent types.

This determines a systematic way of using level that avoids nontrivial proof obliga-

tions. (For an example of an actual translation from a language with dependent types

into one without them, see [17].)

The notional type (level i) is replaced with the actual type dB , inserting (level i)

subformulas to relativize quantifiers:

∀ x :: (level i). P x becomes ∀ x :: dB . level i −→ P x ;

∃ x :: (level i). P x becomes ∃ x :: dB . level i ∧ P x .

We also insert (level i) premises to relativize the implicit universal quantification of

free variables. (The lemmas proved automatically by Isabelle/HOL for the typedef

in Definition 3.4 fit this pattern, with i = 0.)

Type-checking is simulated using simplifier rules for level, one for each construct

of type dB . The defining equations from Definition 3.2 provide such rules for the

constructors of dB . However, they indicate the need for a further notional extension,

as they are polymorphic: for instance, (CON′ a) is given the notional type (level i)

for any i :: nat .

Thus, we also notionally translate subtype polymorphism (see [62, ch. 15]), with

(level i) being a subtype of (level j) when i 6 j. That is the content of Lemma 3.3;

however, it is not usable directly as a conditional rewrite rule because it would loop.

Fortunately, its non-looping corollary

level i s =⇒ level (i + 1) s
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is sufficient for those cases where we will need explicit use of subsumption, specifically

for proofs by induction on the level i.

Lemmas providing additional simplifier rules for level will be proved as further

constructs of type dB are introduced. We have already seen one such construct, the

function dB :: (expr ⇒ dB); the corresponding rule follows from Definition 3.4 and

Lemma 3.3:

Lemma 3.8

level i (dB x)

Extending the translation to functional types with negative occurrences of

(level i) might complicate matters; fortunately, we will only need positive occurrences,

for which the extension to functional types is straightforward.

All versions of Hybrid follow a general pattern of making definitions and proving

lemmas first for arbitrary levels, and then deriving the desired results for proper

terms as corollaries. In the present version, arbitrary levels are handled by recursion

and induction over de Bruijn syntax, using the type dB and the predicate level as

described above, while the results for proper terms are stated at type expr .

3.2.4 Definition of “abstr” and “LAM”

We now turn to the task of defining abstr and LAM. The main ideas are from [2], but

the details of the definitions and proofs are original. There are some improvements

over the original version of Hybrid, which will be described in this section and

Section 3.2.6.

Since we will be defining abstr and LAM in terms of de Bruijn syntax, the

definition of syntactic functions from Section 3.1 is not directly usable here: we need

an analogous definition using de Bruijn syntax in place of LAM.

For recursion, we must work with dB -valued functions (arbitrary levels) rather

than expr -valued functions. However, the argument type need not also be dB , and
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in fact it will be more convenient to work with functions of type (expr ⇒ dB). This

avoids negative occurrences of the type dB , and therefore of the notional type (level i)

as described in Section 3.2.3.

Thus we define the syntactic dB-terms, as a subset of Isabelle/HOL terms of

type dB , using variables of type expr converted via dB:

s ::= dB x | CON′ a | VAR′ n | s1 $$′ s2 | ERR′ | BND′ i | ABS′ s

where s (with possible subscripts) stands for a syntactic dB -term, x for a variable of

type expr , a for a constant of type con, and n and i for natural-number constants.

We define the syntactic dB-functions as the functions of type (expr ⇒ dB) of the

form (λx. s), where s is a syntactic dB -term with (at most) one free variable x. Such

functions mix de Bruijn indices (BND′) with higher-order abstract syntax (using the

Isabelle/HOL bound variable x to represent an object-language variable).

We define a predicate Abstr to recognize the syntactic dB -functions, together

with an auxiliary predicate ordinary needed in the definition of Abstr:

Definition 3.9

ordinary :: (b ⇒ a dB) ⇒ bool

ordinary X ≡ (∃ a. X = (λ x. CON′ a)) ∨ (∃ n. X = (λ x. VAR′ n)) ∨
(∃ S T. X = (λ x. S x $$′ T x)) ∨ (X = (λ x. ERR′)) ∨
(∃ j. X = (λ x. BND′ j)) ∨ (∃ S. X = (λ x. ABS′ (S x)))

Definition 3.10

function Abstr :: (a expr ⇒ a dB) ⇒ bool

Abstr (λ x. CON′ a) = True

Abstr (λ x. VAR′ n) = True

Abstr (λ x. S x $$′ T x) = (Abstr S ∧ Abstr T)

Abstr (λ x. ERR′) = True

Abstr (λ x. BND′ i) = True

Abstr (λ x. ABS′ (S x)) = Abstr S

¬ ordinary S =⇒ Abstr S = (S = dB)
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Syntactically, the defining equations for Abstr have the form of recursion on the

body of a λ-abstraction. Mathematically, they define (Abstr S) by recursion on the

common structure of all the values of the function S, i.e., on the common structure

(if any) of (S x) for all x :: expr . The predicate ordinary is defined to recognize those

functions that match one of the first six equations, so that the condition (¬ ordinary S)

on the last equation may be read as “otherwise”; that equation corresponds to the

variable case for syntactic dB -terms as defined above.

The function command demands proofs of pattern completeness and compati-

bility: that is, every function S :: (expr ⇒ dB) must match at least one of the defining

equations, and if two equations match the same function S, then they must give the

same value for (Abstr S). Here, pattern completeness follows from the definition of

ordinary, while compatibility is trivial as the cases are disjoint.

It is followed by a termination command (not shown), which demands a ter-

mination order for the recursion and a proof that it is well-founded. Here we use

(size (S arbitrary)) as a termination measure: the size of one value of the function S

serves as an upper bound for the size of the common structure of all values of S.7

Once these proof obligations are satisfied, Isabelle/HOL defines the constant

Abstr and proves its defining equations as formal theorems.8 It also provides structural

induction and case-distinction rules for the type (expr ⇒ dB), called Abstr . induct

and Abstr .cases respectively, based on the pattern of recursion used in the definition.

We may now define the predicate abstr in terms of Abstr by using post-

composition with dB to convert its function argument from the type (expr ⇒ expr)

to (expr ⇒ dB).

7Isabelle/HOL’s polymorphic constant arbitrary gives a fixed but arbitrary element of any type.
8In fact the constant is defined by the function command, even without a termination order; a

recursion that does not always terminate gives a function that is undefined on some arguments.
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Definition 3.11

abstr :: (a expr ⇒ a expr) ⇒ bool

abstr S ≡ Abstr (dB ◦ S)

Note that unlike the situation in [2], the definition of Abstr does not need to

impose a constraint on the argument of BND′, because in the case of (abstr S) dangling

indices are excluded by the type of the function S :: (expr ⇒ expr).

Lemma 3.12

Abstr const : Abstr (λ x. s)

The lemma Abstr const shows that any constant function of type (expr ⇒ dB)

satisfies Abstr. It is used to prove a similar property for abstr, and will later be used

directly as well. It is proved by induction on s using Definition 3.10 (Abstr).

Lemma 3.13

abstr id : abstr (λ x. x)

abstr const : abstr (λ x. s)

abstr APP: abstr (λ x. S x $$ T x) = (abstr S ∧ abstr T)

The lemma abstr const is a corollary of Abstr const, while the other two lemmas

are proved directly, using Definitions 3.11 (abstr) and 3.10 (Abstr).

These lemmas allow abstr conditions for syntactic functions to be proved com-

positionally without unfolding the definition, except when the body of the function

contains a LAM subterm that involves the function argument (so that it is not just

a constant). In that case, previous versions of Hybrid required unfolding the defi-

nitions of abstr and LAM to convert HOAS to de Bruijn syntax. The present work

improves on that situation by providing a compositional rule also for the LAM case

(Lemma 3.38 in Section 3.2.9).

The lemma abstr const will be important for Hybrid terms with nested LAM

operators, to show that the argument of an inner LAM satisfies abstr when its body
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contains a bound variable from an outer LAM; such a bound variable is a placeholder

for an arbitrary term of type expr , which is exactly the role of s in abstr const.

We now define the function LAM, using the same form of recursion that was used

in the definition of abstr.

Definition 3.14

LAM :: (a expr ⇒ a expr) ⇒ a expr

LAM S ≡ expr (Lambda (dB ◦ S))

Lambda :: (a expr ⇒ a dB) ⇒ a dB

Lambda S ≡ if (Abstr S) then (ABS′ (Lbind 0 S)) else ERR′

The function LAM, like abstr, first composes dB with the given function. It then

applies the auxiliary function Lambda and converts the resulting term from type dB

to type expr .

The function Lambda first checks if its argument satisfies Abstr, and produces

ERR′ if not. (This is equivalent to checking if the argument of LAM satisfies abstr.)

The original version of Hybrid [2] did not do this check (and did not have the constant

ERR′), making it impossible to determine from (LAM S) whether S is a syntactic

function or not. We include these features to support the stronger injectivity property

for LAM proved in Section 3.2.6.

If its argument does satisfy Abstr, then Lambda applies another auxiliary function

Lbind, defined by recursion, to convert HOAS to de Bruijn syntax; i.e., to convert the

variable represented by the function argument into a dangling de Bruijn index. It then

applies a new ABS′ node to bind the variable and obtain a proper de Bruijn term.

Definition 3.15

function Lbind ::
[
bnd , (a expr ⇒ a dB)

]
⇒ a dB

Lbind i (λ x. CON′ a) = CON′ a

Lbind i (λ x. VAR′ n) = VAR′ n

Lbind i (λ x. S x $$′ T x) = Lbind i S $$′ Lbind i T

Lbind i (λ x. ERR′) = ERR′
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Lbind i (λ x. BND′ j) = BND′ j

Lbind i (λ x. ABS′ (S x)) = ABS′ (Lbind (i + 1) S)

¬ ordinary S =⇒ Lbind i S = BND′ i

The auxiliary function Lbind extracts the common structure of the values of

its function argument, replacing indecomposable uses of the bound variable (i.e.,

functions that do not match any of the first six equations) with (BND′ i). This is

a dangling de Bruijn index, and i is incremented each time the recursion passes an

ABS′ node so that all such instances of BND′ will refer to the ABS′ node added by

Lambda. The Abstr condition checked in the definition of Lambda ensures that the

last equation will be applied only when S = (λ x. dB x).

Lemma 3.16

Lbind const : Lbind i (λ x. s) = s

The lemma Lbind const shows that applying (Lbind i) to a constant function of

type (expr ⇒ dB) gives the constant value of that function. It is proved by induction

on s. This lemma will be important for Hybrid terms with nested LAM operators, to

allow the argument of an outer LAM to satisfy abstr when its bound variable occurs

in the scope of an inner LAM.

Since Lbind is a new construct of type dB , we need a simplifier rule for level

applied to it. We first define an abbreviation Level for pointwise application of level

to a function:

Definition 3.17

abbreviation Level ::
[
bnd , (b ⇒ a dB)

]
⇒ bool

Level i S ≡ ∀ x. level i (S x)

This abbreviation is then used in the premise of a conditional rewrite rule:

Lemma 3.18

Level Lbind: Level i S =⇒ level (i + 1) (Lbind i S)
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This lemma was proved from the definition of Lbind by induction (Abstr . induct).

Stronger results are possible, but this one will be sufficient.

Lemma 3.19

dB LAM: dB (LAM S) = if (abstr S) then (ABS′ (Lbind 0 (dB ◦ S))) else ERR′

abstr dB LAM: abstr S =⇒ dB (LAM S) = ABS′ (Lbind 0 (dB ◦ S))

The lemma dB LAM combines unfolding of Definition 3.14 (LAM and Lambda)

with cancellation of the functions dB and expr, using the fact that both ERR′

and (ABS′ (Lbind 0 (dB ◦ S))) are proper. (Dangling indices are excluded from

S :: (expr ⇒ expr) by its type, and the one introduced by Lbind is bound by the

enclosing ABS′.)

The lemma abstr dB LAM is a weaker version intended as a conditional rewrite

rule for Isabelle’s simplifier, to do the unfolding only if the abstr condition simplifies

to True.

With the definitions above, Hybrid terms using LAM (i.e., closed syntactic terms)

are provably equal to the corresponding de Bruijn syntax representations, converted

to the type expr using the function expr. (This is much the same situation as in [2],

except for the type conversion which was not necessary there.) Thus, starting from

two distinct representations for free variables, we have established two ambiguous

representations for bound variables, in the sense that any given element of expr may

be viewed as having either form. (An example is given in Section 3.2.5.) In the

remainder of Section 3.2, we will state results using the HOAS representation (LAM)

but use the de Bruijn syntax representation (ABS′/BND′) in proofs by induction,

aiming to characterize the former representation so that it stands on its own.

The fact that abstr as defined above agrees with the definition of syntactic

functions given in Section 3.1 will follow from Theorem 3.56 (Adequacy).

All versions of Hybrid have used essentially the same form of recursion to define

abstr and LAM, and the corresponding form of induction to prove their properties.
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However, the means of formalizing it have varied greatly:

• The original version [2] used inductively-defined predicates and induction on

those predicates. However, for LAM it was necessary to convert a predicate

lbnd to a function lbind (corresponding to our Lbind) using a description oper-

ator. This required several technical lemmas, including an induction principle

called abstraction induct (corresponding to our Abstr . induct), proved by size

induction (corresponding to our termination measure).

• The following version [18, 51] defined a polymorphic datatype dB fn with con-

structors corresponding to the cases of Definition 3.10, and used a generalized

version of abstraction induct (together with a description operator) to establish

inverse bijections between a subset of dB fn and the dB -valued functions. It

then used primitive recursion and induction on dB fn as supplied by Isabelle/

HOL’s datatype package. This approach simplified the definition of LAM and

some of the proofs, but the use of an auxiliary datatype was itself a significant

complication.

• The present version uses the function package introduced in Isabelle/HOL 2007,

which directly supports the desired form of recursion and thus avoids many of

the complications of the previous approaches, even proving a corresponding

induction principle (Abstr . induct) automatically.

A predicate called ordinary has also been present in all versions of Hybrid, though

it originally included the variable case as well.9 Removing this case allowed ordinary

to be generalized to dB -valued functions on any type; this will allow us to reuse it

for binary functions in Section 3.2.9 and for n-ary functions in Section 3.3.

9We retain the predicate name ordinary for consistency with [2], although “head-constant” would
be a more descriptive term.
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3.2.5 Example: “abstr” and “LAM”

To illustrate the definitions of abstr and LAM, and some of the complications that

arise from nesting of LAM, we consider a simple example of a Hybrid term:

LAM x. LAM y. x $$ y

The argument of the inner LAM, (λ y. x $$ y), can be proved to satisfy abstr

using Lemma 3.13, for any x :: expr :

abstr (λ y. x) (by abstr const)

abstr (λ y. y) (by abstr id)

abstr (λ y. (x $$ y)) (by abstr APP)

We may then unfold Definition 3.14 for the inner LAM, immediately simplifying

the conditional construct:

LAM y. x $$ y

≡ expr (ABS′ (Lbind 0 (dB ◦ (λ y. x $$ y))))

The conversion from HOAS in the argument of LAM to de Bruijn syntax goes in

three stages. First the function of type (expr ⇒ expr) is converted to (expr ⇒ dB)

by composing dB with it:

dB ◦ (λ y. x $$ y)

≡ λ y. dB (x $$ y)

≡ λ y. dB x $$′ dB y

(The function dB remains where it is applied to a variable.) Next, the function of

type (expr ⇒ dB) is converted to a term of type dB using Lbind, which replaces the

HOAS variable in the form (dB y) with a dangling de Bruijn index:

Lbind 0 (λ y. dB x $$′ dB y)

≡ Lbind 0 (λ y. dB x) $$′ Lbind 0 (λ y. dB y)

≡ dB x $$′ BND′ 0

(The first Lbind is simplified by Lemma 3.16 (Lbind const), while the second one

η-contracts to (Lbind 0 dB) which is (BND′ 0) by Definition 3.15.) Finally, this term
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is wrapped in ABS′ to bind the dangling index, and converted to the type expr using

expr; in summary, we have shown

(LAM y. x $$ y) = expr (ABS′ (dB x $$′ BND′ 0)).

Or using Lemma 3.19 (abstr dB LAM),

dB (LAM y. x $$ y) = ABS′ (dB x $$′ BND′ 0).

The argument of the outer LAM can now be shown to be satisfy abstr by unfolding

Definition 3.11 and using the defining equations for Abstr (Definition 3.10). This is

no longer the recommended way; we will revisit this example in Section 3.2.9, after

establishing a compositional rule (Lemma 3.38) for simplifying the LAM case of abstr.

abstr (λ x. LAM y. x $$ y)

≡ Abstr (dB ◦ (λ x. LAM y. x $$ y))

≡ Abstr (λ x. ABS′ (dB x $$′ BND′ 0))

≡ Abstr (λ x. dB x $$′ BND′ 0)

≡ Abstr (λ x. dB x) ∧ Abstr (λ x. BND′ 0)

≡ True ∧ True ≡ True

(The first Abstr η-contracts to (Abstr dB) which is true by Definition 3.10, while

Lemma 3.12 (Abstr const) proves the second one.)

For the final part of the example, we convert the original term with nested LAM

operators fully to de Bruijn syntax, by unfolding Definition 3.14 for the outer LAM:

LAM x. LAM y. x $$ y

≡ expr (ABS′ (Lbind 0 (dB ◦ (λ x. LAM y. x $$ y))))

≡ expr (ABS′ (Lbind 0 (λ x. ABS′ (dB x $$′ BND′ 0))))

≡ expr (ABS′ (ABS′ (Lbind 1 (λ x. dB x $$′ BND′ 0))))

≡ expr (ABS′ (ABS′ (Lbind 1 (λ x. dB x) $$′ Lbind 1 (λ x. BND′ 0))))

≡ expr (ABS′ (ABS′ (BND′ 1 $$′ BND′ 0)))

(The first Lbind η-contracts to (Lbind 1 dB) = (BND′ 1), while the second one is

simplified by Lbind const.)
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The type conversions dB and expr complicate this example, as compared with

the original version of Hybrid [2] which did not have the typedef of Definition 3.4.

However, in practice these details are handled automatically by Isabelle’s simplifier;

and in object-language work using Hybrid, there is no need to unfold the definitions

or work with de Bruijn syntax at all. The benefits of eliminating explicit proper

conditions and strengthening the injectivity property for LAM (Theorem 3.21) make

the typedef worthwhile.

3.2.6 Injectivity of “LAM”

As stated in Section 3.1, Hybrid proves injectivity of LAM restricted to functions of

type (expr ⇒ expr) satisfying abstr. Improving on [2], this property is strengthened

by requiring only one abstr premise, using the fact that LAM maps functions not

satisfying abstr to a recognizable placeholder term ERR.

We begin with an injectivity result for arbitrary de Bruijn levels.

Lemma 3.20

Abstr Lbind inject :
q

Abstr S; Abstr S′; Level i S; Level i S′
y

=⇒ (Lbind i S = Lbind i S′) = (S = S′)

This lemma is proved by a straightforward induction on S :: (expr ⇒ dB) using

Abstr . induct (from Definition 3.10).

Theorem 3.21 (Injectivity of LAM)
q

LAM S = LAM T; abstr S ∨ abstr T
y

=⇒ S = T

Proof. If one of S and T satisfies abstr and the other does not, then by Lemma 3.19

(dB LAM), one of the terms (dB (LAM S)) and (dB (LAM T)) is of the form (ABS′ t)

for some t :: dB , while the other is ERR′. But these terms cannot be equal, which

contradicts the premise LAM S = LAM T. Thus the original assumption must be

false, and we must have both (abstr S) and (abstr T).
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We apply dB to both sides of the equality LAM S = LAM T and simplify using

abstr dB LAM (Lemma 3.19) to obtain

ABS′ (Lbind 0 (dB ◦ S)) = ABS′ (Lbind 0 (dB ◦ T)).

ABS′ is a datatype constructor and thus injective, so we may cancel it:

Lbind 0 (dB ◦ S) = Lbind 0 (dB ◦ T).

We have (Abstr (dB ◦ S)) and (Abstr (dB ◦ T)) by unfolding Definition 3.11 (abstr),

and we have (Level 0 (dB ◦ S)) and (Level 0 (dB ◦ T)) since terms converted from

type expr are proper by Lemma 3.8. Thus we may apply the preceding lemma

(Abstr Lbind inject) to deduce dB ◦ S = dB ◦ T. Since dB is injective, it can be

canceled to obtain S = T, as was to be proven. 2

Note that (Lbind 0) is only injective on functions from expr to dB whose values

are proper terms, i.e., those that factor through dB, because any pre-existing dangling

indices at level 1 would be indistinguishable from those resulting from conversion of

the HOAS variable. For example,

Lbind 0 (λ x. dB x) = BND′ 0 = Lbind 0 (λ x. BND′ 0).

Thus, without the typedef limiting expr to proper terms, we would not be able to

avoid conditions on both S and T; at best, we could replace one abstr condition with

something like (∀ x. proper x −→ proper (T x)).

Attempts were made to work around this problem, prior to the introduction of

a type of proper terms, by excluding dangling indices in the definition of abstr or

LAM. However, it was found that any such change invalidated either Abstr const

(Lemma 3.12) or Lbind const (Lemma 3.16), causing the argument of at least one of

the LAM operators in (LAM x. LAM y. x $$ y) to fail to satisfy abstr. In effect, abstr

and LAM must concern themselves only with the behaviour of the bound variable,

and not with the structure of any constant part of the function body, as the latter

could be the bound variable of an enclosing LAM.
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The advantage of an injectivity property that can work with a condition on

only one of S and T is that it simplifies the elimination rules for inductively-defined

predicates on Hybrid terms, such as those found in Section 5.3 (representing an

evaluation judgment for Mini-ML with references). As a result, abstr conditions are

more often available where they are needed, without having to add them as premises.

We now have everything needed to state the distinctness and injectivity proper-

ties for expr promised in Section 3.1.

Lemma 3.22 (Distinctness of Hybrid operators)

expr distinct :

VAR n 6= CON a s $$ t 6= CON a s $$ t 6= VAR n

LAM S 6= CON a LAM S 6= VAR n LAM S 6= s $$ t

ERR 6= CON a ERR 6= VAR n ERR 6= s $$ t

abstr S =⇒ ERR 6= LAM S

Lemma 3.23 (Injectivity of Hybrid operators)

expr inject :

(CON a1 = CON a2) = (a1 = a2)

(VAR n1 = VAR n2) = (n1 = n2)

(s $$ t = u $$ v) = (s = u ∧ t = v)

abstr S =⇒ (LAM S = LAM T) = (S = T)

abstr T =⇒ (LAM S = LAM T) = (S = T)

All of these properties are declared as simplification rules, so that Isabelle’s

auto and simp proof methods will use them automatically. Thus, they rarely appear

explicitly in proofs of properties of object languages represented using Hybrid.

3.2.7 Conversion from de Bruijn indices to HOAS

We have seen in Sections 3.2.4 and 3.2.5 how the definitions of LAM and abstr convert

a HOAS representation of variable binding to one based on de Bruijn indices. The
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reverse process is also useful, e.g., to prove exhaustiveness of Hybrid’s operators for

the type expr .

The original version of Hybrid [2] did this using a function called lconv, with

simplifier rules that fully convert a de Bruijn term to HOAS in one pass. We use

a simpler variant of the same idea, converting just one ABS′ into LAM since that is

sufficient for our purposes.

Definition 3.24

fun Linv ::
[
bnd , a dB

]
⇒ (a expr ⇒ a dB)

Linv i (CON′ a) = (λ x. CON′ a)

Linv i (VAR′ n) = (λ x. VAR′ n)

Linv i (s $$′ t) = (λ x. (Linv i s) x $$′ (Linv i t) x)

Linv i ERR′ = (λ x. ERR′)

Linv i (BND′ j) = (if j = i then dB else (λ x. BND′ j))

Linv i (ABS′ s) = (λ x. ABS′ ((Linv (i + 1) s) x))

The function Linv is the reverse of Lbind, converting a specified dangling de Bruijn

index to a HOAS representation of a variable, specifically the variable case (dB x)

from the definition of syntactic dB -functions in Section 3.2.4. Several basic properties

are proved as lemmas:

Lemma 3.25

Linv inverse : Lbind i (Linv i s) = s

Abstr Linv : Abstr (Linv i s)

Level Linv : level (i + 1) s =⇒ Level i (Linv i s)

Linv const : level i s =⇒ Linv i s = (λ x. s)

The lemma Linv inverse shows that (Linv i) is pre-inverse to (Lbind i), for any

i :: bnd . It is not a full inverse function, as (Lbind i) leaves no way to distinguish

pre-existing dangling indices from newly introduced ones, as mentioned previously.

(With a Level condition to exclude dangling indices, it would be post-inverse too; but

that property will not be needed.)
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The lemma Abstr Linv shows that (Linv i) produces syntactic dB -functions. The

lemma Level Linv shows that (Linv i) applied to a term of level i + 1 produces a result

of level i, by replacing the dangling indices that were responsible for the higher level.

The lemma Linv const shows that (Linv i) applied to a term of level i produces a

constant function whose constant value is that term.

All four lemmas were proved by straightforward inductions on s.

Lemma 3.26

Abstr Linv Abstr : Abstr S =⇒ Abstr (λ x. (Linv i (S x)) y)

The lemma Abstr Linv Abstr shows that if (S x) is a syntactic dB -function of

x, then so is ((Linv i (S x)) y) for any fixed i :: nat and y :: expr . It is proved by

induction on S (using Abstr . induct from Definition 3.10), with the help of Linv const

from Lemma 3.25.

Lemma 3.27

expr ABS′ LAM: level 1 s =⇒ expr (ABS′ s) = LAM (expr ◦ (Linv 0 s))

The lemma expr ABS′ LAM shows that expr applied to an ABS′ term is equal

to LAM applied to a certain function constructed with the help of Linv.

In addition to using conversion from de Bruijn syntax to HOAS to prove exhaus-

tiveness and induction, the original version of Hybrid [2] specified methods for per-

forming this conversion and its inverse on concrete terms. Conversion from HOAS to

de Bruijn syntax simply required unfolding the definition of LAM and using simplifier

rules. Conversion in the other direction, however, required inserting a trivial instance

of the auxiliary function lconv of type dB ⇒ dB , and this was hard to control.

The present version of Hybrid aims to make it unnecessary to perform such con-

versions by keeping object-language work entirely at the HOAS level. But for demon-

stration purposes, it supports automatic conversion between HOAS and de Bruijn

syntax controlled by the type-conversion functions dB and expr. Simplifier rules are
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provided so that Isabelle’s simp and auto proof methods will rewrite

dB (LAM x. LAM y. x $$ y) to ABS′ (ABS′ (BND′ 1 $$′ BND′ 0)),

and conversely

expr (ABS′ (ABS′ (BND′ 1 $$′ BND′ 0))) to LAM x. LAM y. x $$ y.

Having separate types expr for HOAS and dB for de Bruijn syntax makes these con-

versions easier to control. (The latter conversion does, however, require more rewrite

steps than the one-pass conversion provided by the original version of Hybrid [2].)

The main rewrite rules are Lemmas 3.6 and 3.7 for the non-HOAS operators,

together with Lemmas 3.19 (abstr dB LAM) and 3.27 (expr ABS′ LAM) for con-

version between LAM and ABS′. Supporting rules are provided for proving abstr condi-

tions (Lemma 3.13 and the upcoming Lemma 3.38), proving level conditions, and sim-

plifying Lbind and Linv, including Lemmas 3.16 (Lbind const) and 3.25 (Linv const)

in addition to the defining equations.

The rule expr ABS′ LAM is added to the default simpset only at the end of

the theory file, since expr applied to a partially specified ABS′ term occurs in several

places in Hybrid’s lemmas, and attempting to convert such a term to HOAS would

be a step in the wrong direction. Conversely, injectivity of expr (on proper terms) is

removed from the default simpset at the end of the theory file, as it is useful within

Hybrid but it would interfere with the use of expr to convert de Bruijn syntax to

HOAS. These adjustments should be reversed when developing extensions of Hybrid

as separate theory files, as is done in Section 3.3.

3.2.8 Exhaustiveness and induction

The original version of Hybrid [2] proved a case analysis rule called properE for terms

satisfying a proper condition, and an induction rule using VAR to represent open

terms, which was proved in turn using size induction. We adapt these features to our

type of proper terms expr .
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Lemma 3.28

expr nchotomy: (∃ a. y = CON a) ∨ (∃ n. y = VAR n) ∨ (∃ s t. y = s $$ t)

∨ (∃ S. abstr S ∧ y = LAM S) ∨ y = ERR

The lemma expr nchotomy shows that a term y :: expr must have one of the five

forms (CON a), (VAR n), (s $$ t), (LAM S) where S satisfies abstr, or ERR.

Proof. By Definition 3.4 (expr), we must have y = expr y′ for some y′ :: dB satisfying

(level 0 y′). Then y′ must be formed using one of the constructors of dB . It cannot

be (BND′ j), as (level i (BND j)) is true only when i > j, and we have (level 0 y′). If

it is (ABS′ s′), we rewrite y = expr (ABS′ s′) using Lemma 3.27 (expr ABS′ LAM)

to put y in the form (LAM S). Otherwise, one of the equations from Lemma 3.7 will

apply to put y in one of the four other forms listed. 2

This fact is also stated as an elimination rule called expr exhaust suitable for

use with Isabelle’s cases proof method, similar to the original version’s properE. The

transformation from disjunction to elimination rule is straightforward, and we omit

the statement. (The suffixes “nchotomy” and “exhaust” follow the pattern used by

Isabelle/HOL’s datatype package.)

In the present version of Hybrid, we add a similar case analysis rule for syntactic

functions. Only the elimination-rule form is stated at this point, since we will later

strengthen the disjunction form to a biconditional (Lemma 3.39, expand abstr).

Lemma 3.29

abstr cases :
q

abstr Y; J Y = (λ x. x) K =⇒ P;∧
a. J Y = (λ x. CON a) K =⇒ P;∧
n. J Y = (λ x. VAR n) K =⇒ P;∧
S T. J Y = (λ x. S x $$ T x); abstr S; abstr T K =⇒ P;∧
W. J Y = (λ x. LAM y. W x y);

(∀ x. abstr (λ y. W x y)); (∀ y. abstr (λ x. W x y)) K =⇒ P;

J Y = (λ x. ERR) K =⇒ P
y

=⇒ P
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This lemma is also proved by using Lemma 3.27 (expr ABS′ LAM) to convert

ABS′ to LAM, this time after unfolding Definitions 3.11 (abstr) and 3.10 (Abstr).

Establishing the abstr conditions for the ABS′/LAM case also requires Lemma 3.26

(Abstr Linv Abstr), which was not needed in the proof of Lemma 3.28.

In [2], a structural induction rule called proper VAR induct was proved by size

induction. We do the same, but since our expr is not a datatype, it is first necessary

to define a size function for it and prove its basic properties.

Definition 3.30

size (y :: a expr) ≡ size (dB y)

The constant size is actually a type-class constant in Isabelle/HOL; this definition

instantiates the type class size, which consists of the constant size :: a ⇒ nat with

no axioms, for expr . The size of a Hybrid term s :: expr is defined to be the size of

(dB s) :: dB , which is a term of a datatype, for which size is automatically defined by

Isabelle/HOL.

Lemma 3.31

size ERR: size ERR = 0

size CON: size (CON a) = 0

size VAR: size (VAR n) = 0

size APP: size (s $$ t) = size s + size t + 1

These properties follow immediately from Definition 3.30, using Lemma 3.6

(rewrite rules for dB) and the properties of size :: (dB ⇒ nat) provided by the

datatype package. They are declared as rewrite rules for Isabelle’s simplifier, to

support size induction.

Lemma 3.32

size LAM:
q

size t = 0; abstr S
y

=⇒ size (LAM S) = size (S t) + 1

size LAM lt :
q

size t = 0; abstr S
y

=⇒ size (S t) < size (LAM S)
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The lemma size LAM is proved by Abstr . induct (from Definition 3.10) on

(dB ◦ S), after unfolding Definition 3.11 (abstr) and Definition 3.30 and allowing the

simplifier rules for dB to unfold the definition of LAM. It shows that the size of (S t)

is one less than the size of (LAM S), if S satisfies abstr and t has size 0.

Because of the unknown t on the right-hand side of the equality, size LAM is

not usable as a simplifier rule. Thus we add its corollary size LAM lt to the simpset

instead.

Lemma 3.33

expr VAR induct :
q∧

a. P (CON a);
∧

n. P (VAR n);
∧

s t. J P s; P t K =⇒ P (s $$ t);∧
S. J abstr S; ∀ n. P (S (VAR n)) K =⇒ P (LAM S); P ERR

y
=⇒ P y

The lemma expr VAR induct is a structural induction rule for expr , which

represents open terms using VAR and corresponds to proper VAR induct from [2]

(without the proper premise since it is implicit in the type expr). It is proved by size

induction on y :: expr , using case distinction on y (Lemma 3.28, expr nchotomy) and

the simplifier rules we have defined for size :: (expr ⇒ nat).

To actually use this induction rule effectively would require auxiliary definitions

and lemmas for reasoning about free variables. The original version of Hybrid pro-

vided these things, but such reasoning is tedious; we did not adapt these features

for the present version of Hybrid, instead seeking to develop a better alternative, as

described in Section 3.3.

3.2.9 Characterizing “abstr”

In Section 3.2.4, an incomplete set of simplification rules for abstr was provided as

Lemma 3.13. The missing case is (abstr (λ x. LAM y. W x y)).

Both previous versions of Hybrid [2, 18, 51] relied on conversion from HOAS to

de Bruijn syntax to handle this case. That is sufficient for proving that particular
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syntactic functions satisfy abstr, as seen in Section 3.2.5; but it is less useful for

partially-specified functions as found in inductive proofs.

We could obtain a compositional introduction rule for this case by defining a

predicate biAbstr ::
(
[expr , expr ] ⇒ expr

)
⇒ bool generalizing abstr, and proving

biAbstr W =⇒ abstr (λ x. LAM y. W x y).

This was done by Momigliano et al. [50]; their formal theory BiAbstr is available

online [18].

However, the LAM case arises again for biAbstr, and for any higher-arity gener-

alization. There are several ways to address this:

• Use Isabelle/HOL’s axiomatic type classes to define a polymorphic predicate

generalizing abstr to curried functions of arbitrary arity. This looks like a

promising approach, but it remains as future work.

• Find a single type that can represent functions of arbitrary arity, and generalize

Hybrid’s constructs to that type. Some experimental work in that direction is

the subject of Section 3.3. (Such a type is also useful as a representation of

open terms for induction.)

• Prove a result that reduces biAbstr to abstr. This seems to be the most direct

solution, and it is the approach we take in the present work.

In this section, we will represent functions of two arguments using pairs, rather

than in the usual curried form, so that we may reuse Definition 3.9 (ordinary) and

some technical lemmas (left unstated as they are mathematically trivial), all of which

refer to the polymorphic type (b ⇒ dB).

Definition 3.34

abstr 2 :: (a expr × a expr ⇒ a expr) ⇒ bool

abstr 2 S ≡ Abstr 2 (dB ◦ S)
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The predicate abstr 2 generalizes abstr to functions on the Cartesian product

type (expr × expr); it corresponds to biAbstr [50]. It is defined in the same way

as abstr, composing dB with its argument and then applying a recursively-defined

auxiliary predicate Abstr 2.

Definition 3.35

function Abstr 2 :: (a expr × a expr ⇒ a dB) ⇒ bool

Abstr 2 (λ p. CON′ a) = True

Abstr 2 (λ p. VAR′ n) = True

Abstr 2 (λ p. S p $$ T p) = (Abstr 2 S ∧ Abstr 2 T)

Abstr 2 (λ p. ERR′) = True

Abstr 2 (λ p. BND′ i) = True

Abstr 2 (λ p. ABS′ (S p)) = Abstr 2 S

¬ ordinary S =⇒ Abstr 2 S = (S = dB ◦ fst ∨ S = dB ◦ snd)

The predicate Abstr 2 is similar to Abstr, except that it has two variable cases:

(dB ◦ fst) and (dB ◦ snd), or equivalently, (λ (x, y). dB x) and (λ (x, y). dB y).

For a concise statement of the main result, we define some abbreviations:

Definition 3.36

abstr x :: (a expr × a expr ⇒ a expr) ⇒ bool

abstr x S ≡ ∀ y. abstr (λ x. S (x, y))

abstr y :: (a expr × a expr ⇒ a expr) ⇒ bool

abstr y S ≡ ∀ x. abstr (λ y. S (x, y))

The predicate abstr x fixes the second argument y of a two-argument function,

and requires the resulting function of x to satisfy abstr for all y :: expr . The predicate

abstr y is similar, fixing x and requiring the result to satisfy abstr as a function of y.

Lemma 3.37 (abstr 2 is componentwise abstr)

abstr 2 S = (abstr x S ∧ abstr y S)

This lemma shows that if a two-argument function satisfies abstr in each argument

for any fixed value of the other argument, then it satisfies abstr 2. (And the converse,
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which is easier.) It is fairly straightforward to prove informally, yet its formal proof

was long and required several lemmas. The reasoning is similar to the first part of

the proof of Lemma 3.60 (one of the lemmas for the proof of adequacy).

Having thus reduced abstr 2 to componentwise abstr, we may now derive the

desired simplification rule for the case (abstr (λ x. LAM y. W x y)).

Lemma 3.38

abstr LAM: ∀ x. abstr (λ y. W x y) =⇒
abstr (λ x. LAM y. W x y) = (∀ y. abstr (λ x. W x y))

This lemma provides a compositional rule for proving abstr conditions on func-

tions of the form (λ x. LAM y. W x y), via the reverse direction of the biconditional.

Both directions are also used in the proof of adequacy. It was proved with the help

of Lemmas 3.29 (abstr cases) and 3.37.10

We briefly revisit the example term (LAM x. LAM y. x $$ y) from Section 3.2.5,

illustrating abstr LAM by proving that the argument of the outer LAM satisfies abstr,

without the use of de Bruijn syntax:

∀ x. abstr (λ y. x) (by abstr const)

abstr (λ y. y) (by abstr id)

∀ x. abstr (λ y. (x $$ y)) (by abstr APP)

abstr (λ x. x) (by abstr id)

∀ y. abstr (λ x. y) (by abstr const)

∀ y. abstr (λ x. (x $$ y)) (by abstr APP)

abstr (λ x. LAM y. (x $$ y)) (by abstr LAM)

Not only does the lemma abstr LAM allow abstr statements to be proved without

the use of de Bruijn syntax, but it also completes the task of characterizing expr on

its own terms – that is, without reference to the underlying de Bruijn syntax. This

is demonstrated by the fact that Theorem 3.56 (Adequacy) follows from Hybrid’s

10Actually a variant of Lemma 3.37 for arbitrary levels (i.e., for Abstr instead of abstr) is used.
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lemmas concerning the type expr , and it is a significant improvement over both

previous versions of Hybrid [2, 18, 51].

We also obtain the characterization of abstr stated in Section 3.1 as a corollary

of abstr LAM:

Lemma 3.39

expand abstr :

abstr Y =
(
Y = (λ x. x) ∨
(∃ a. Y = (λ x. CON a)) ∨
(∃ n. Y = (λ x. VAR n)) ∨
(∃ S T. abstr S ∧ abstr T ∧

Y = (λ x. S x $$ T x)) ∨
(∃ W. (∀ x. abstr (λ y. W x y)) ∧ (∀ y. abstr (λ x. W x y)) ∧

Y = (λ x. LAM y. W x y)) ∨
Y = (λ x. ERR)

)
The forward implication is equivalent to Lemma 3.29 (abstr cases), while the

reverse implication follows from Lemmas 3.13 and 3.38.

For notational convenience, we extend the abbreviations abstr x and abstr y to

curried functions, and define another abbreviation abstr LAM:

Definition 3.40

abstr x ::
(
[a expr , a expr ] ⇒ a expr

)
⇒ bool

abstr x W ≡ ∀ y. abstr (λ x. W x y)

abstr y ::
(
[a expr , a expr ] ⇒ a expr

)
⇒ bool

abstr y W ≡ ∀ x. abstr (λ y. W x y)

abstr LAM ::
(
[a expr , a expr ] ⇒ a expr

)
⇒ bool

abstr LAM W ≡ abstr (λ x. LAM y. W x y)

We may then restate Lemma 3.38 (abstr LAM) as

(abstr y W −→ (abstr LAM W = abstr x W)).

This lemma does not give a necessary and sufficient condition for (abstr LAM W).

The conjunction (abstr x W ∧ abstr y W) is sufficient, but not necessary; while the
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implication (abstr y W −→ abstr x W) is necessary, but not sufficient. On its own,

(abstr x W) is neither necessary nor sufficient.

Indeed, when (abstr y W) fails, there are examples exhibiting all four possible

combinations of truth values for (abstr x W) and (abstr LAM W):

T T W1 = (λ x y. if y = t1 then t1 else t2)

T F W2 = (λ x y. if y = t1 then t1 else x)

F T W3 = (λ x y. if y = x then t1 else t2)

F F W4 = (λ x y. if y = x then t1 else x)

for any fixed t1, t2 :: expr with t1 6= t2.

Fortunately, since Hybrid is intended for reasoning about syntactic terms (for

which all subterms are also syntactic), we do not need to handle the case where

(abstr y W) fails. We may assume that an abstr LAM goal is to be proved via abstr x

and abstr y; and when given a fact of the form (abstr LAM W), we may demand a

proof of (abstr y W) to deduce (abstr x W). This is accomplished using Isabelle’s

classical reasoner, by declaring safe introduction and elimination rules derived from11

Lemma 3.38 (abstr LAM):

Lemma 3.41

abstr LAM I:
q

abstr x W; abstr y W
y

=⇒ abstr LAM W

abstr LAM E:
q

abstr LAM W; abstr y W; (abstr x W =⇒ P)
y

=⇒ P

The lemma abstr LAM is also declared as a simplifier rule, together with the

three rules from Lemma 3.13; but unlike the latter, abstr LAM is a conditional rewrite

rule. This means that (abstr LAM W) will be rewritten to (abstr x W), wherever it

occurs in the goal or premises, but only if (abstr y W) simplifies to True. Such a rule

is usually sufficient for proving abstr subgoals, but it is sometimes unable to simplify

such subgoals when they cannot be proved immediately.

11In fact abstr LAM is proved via Lemma 3.41 to simplify the formalization.
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Neither the introduction rule from Lemma 3.41 (abstr LAM I), nor Lemma 3.38

(abstr LAM) as a conditional rewrite rule, is efficient in proving abstr goals for

functions with nested LAM. The number of subgoals grows exponentially rather

than linearly with nesting depth, with many duplicate subgoals. This is not a

significant problem for the intended application of Hybrid, namely formalization of

the metatheory of object languages. However, the alternative approach considered in

Section 3.3 avoids this inefficiency.

The original version of Hybrid [2] provided a special-purpose tactic called abstr tac

for proving abstr subgoals. This was retained for backwards compatibility in the fol-

lowing version [18, 51], but since some changes to object-language theories based on

the original version of Hybrid would be required in any case (e.g., to remove proper

conditions), abstr tac has been dropped from the present version in favour of the

general-purpose simp and auto.

While we have characterized the predicate abstr well enough, it might reasonably

be asked why we do not use Isabelle/HOL’s typedef mechanism to define a type

abstr , as we did for expr (which was a predicate proper in [2]).

The trouble with that idea is, how would we construct terms of that type? We

could define operators corresponding to the cases of Lemma 3.39 (expand abstr),

but then we would not be using Isabelle/HOL variables to represent object-language

variables, which would mean giving up many of the benefits of HOAS. We could

instead use the typedef -generated bijection applied to a syntactic function, but for

partially-specified functions, we would still have to carry along abstr conditions to

ensure that the result is well-defined!

The problem is that Isabelle/HOL’s type-checking of λ-abstractions does not

distinguish syntactic from non-syntactic functions, so in one way or another, this

distinction must be handled at the logical level instead.

This idea might be more feasible in another system. For instance, in Coq [6],

we could use dependent pairs consisting of a function together with a proof that it is
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syntactic. Another possibility would be to extend the type system of Isabelle/HOL

in such a way as to be able to distinguish syntactic from non-syntactic functions, an

idea that has been explored by Howe [36, 37].

3.3 A theory of n-ary syntactic functions

In this section we revisit the question of generalizing abstr to n-ary functions, and

develop a different approach from that of Section 3.2.9. Specifically, we consider the

use of a single type to represent n-ary functions, for arbitrary n. This was proposed

as future work in [50], but to date we know of no published work in that direction12.

We have seen two examples where the LAM case is handled in a less-than-

ideal way:

• In expr VAR induct (Lemma 3.33), the induction hypothesis when y = (LAM S)

is a property of (S (VAR n)) for all n :: var , rather than a property of S :: expr ⇒

expr directly.

• In proving (abstr (λ x. S x)), when (S x) = (LAM y. W x y), abstr LAM I

(Lemma 3.41) requires W to satisfy abstr in both of its arguments. For nested

LAM, the number of subgoals grows exponentially with the nesting depth and

many of them are duplicates, as mentioned in Section 3.2.9.

We develop a theory of n-ary syntactic functions that offers solutions to these

problems. (We omit many techical details, which are mostly similar to Hybrid itself.)

This work is experimental and integration into Hybrid remains as future work. The

corresponding theory file is found in Appendix A.

Our representation of n-ary functions on the type expr will consist of functions

of the type ((nat ⇒ expr) ⇒ expr), where the ith argument will be represented

12However, similar techniques have been used in other systems, such as McDowell and Miller’s
explicit eigenvariable encoding in FOλ∆N ([46], section 4.4) which uses functions with list arguments.
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as (λ v. v i). This type appears to represent infinitary functions; however, those

satisfying our n-ary generalization of abstr will provably make use of only finitely

many of their arguments.

There are many other possible representations for n-ary functions, but this

representation benefits from Isabelle/HOL’s support for well-known operations on

the function type (nat ⇒ expr); for instance, composition and functional update can

be used for variable renaming and substitution.

We define some type abbreviations for notational convenience:

Definition 3.42

types

ind = nat

a iexp = (ind ⇒ a expr)

a nexp = (a iexp ⇒ a expr)

a ndB = (a iexp ⇒ a dB)

The type ind is a synonym for nat that will be used to index the arguments of

n-ary functions; in effect, it serves to identify variables, much like bnd and var in

Definition 3.1. The type iexp is the argument type for our representation of n-ary

functions, and nexp is the type of the functions themselves. The type ndB allows

dangling indices, for recursion and induction on de Bruijn syntax.

We next define notation for terms of the types ndB and nexp:

Definition 3.43 (Operators for ndB)

CONn′ a ≡ (λ v. CON′ a)

VARn′ n ≡ (λ v. VAR′ n)

APPn′ S T ≡ (λ v. S v $$′ T v)

ERRn′ ≡ (λ v. ERR′)

BNDn′ j ≡ (λ v. BND′ j)

ABSn′ S ≡ (λ v. ABS′ (S v))

INDn′ i ≡ (λ v. dB (v i))
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The first six operators apply the constructors of dB pointwise. The last, (INDn′ i),

stands for the n-ary function whose value is its ith argument (converted from expr

to dB).

Definition 3.44 (Operators for nexp)

CONn a ≡ (λ v. CON a)

VARn n ≡ (λ v. VAR n)

APPn S T ≡ (λ v. S v $$ T v)

ERRn ≡ (λ v. ERR)

INDn i ≡ (λ v. v i)

We define corresponding operators for nexp, except for BNDn′ and ABSn′ which

will correspond to LAMn when the latter is defined. We may convert between nexp

and ndB by postcomposing with dB or expr; we do not give names to these opera-

tions, however we do prove simplifier rules analogous to Lemmas 3.6 and 3.7 (whose

statements are omitted here).

Definition 3.45

abstr n :: a nexp ⇒ bool

abstr n S ≡ Abstr n (dB ◦ S)

function Abstr n :: a ndB ⇒ bool

Abstr n (CONn′ a) = True

Abstr n (VARn′ n) = True

Abstr n (APPn′ S T) = (Abstr n S ∧ Abstr n T)

Abstr n (ERRn′) = True

Abstr n (BNDn′ j) = True

Abstr n (ABSn′ S) = Abstr n S

¬ ordinary S =⇒ Abstr n S = (∃ i. S = INDn′ i)

We define the predicate abstr n, corresponding to abstr for the case of n-ary

functions, in a manner completely analogous to Definitions 3.10 and 3.11. The only

significant difference is that we now have a natural-number-indexed variable case,

(INDn′ i).
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Lemma 3.46

Abstr n const : Abstr n (λ v. s)

abstr n INDn: abstr n (INDn i)

abstr n const : abstr n (λ v. s)

abstr n APPn:
q

abstr n S; abstr n T
y

=⇒ abstr n (APPn S T)

These lemmas correspond to Lemmas 3.12 and 3.13, and serve the same purpose.

Definition 3.47

LAMn ::
[
ind , a nexp

]
⇒ a nexp

LAMn i S ≡ expr ◦ (Lambda n i (dB ◦ S))

Lambda n ::
[
ind , a ndB

]
⇒ a ndB

Lambda n i S ≡ if (Abstr n S) then (ABSn′ (Lbind n i 0 S)) else ERRn′

The variable-binding operator LAMn for n-ary functions must take an additional

argument i of type ind to specify which variable (in the form (INDn i)) to bind. Unlike

LAM, the result is again an n-ary function of the same type nexp, in which the ith

argument is still present but unused. LAMn is defined in terms of auxiliary functions

Lambda n and Lbind n, analogous to those of Definitions 3.14 and 3.15.

Definition 3.48

function Lbind n ::
[
ind , bnd , a ndB

]
⇒ a ndB

Lbind n i j (CONn′ a) = CONn′ a

Lbind n i j (VARn′ n) = VARn′ n

Lbind n i j (APPn′ S T) = APPn′ (Lbind n i j S) (Lbind n i j T)

Lbind n i j ERRn′ = ERRn′

Lbind n i j (BNDn′ k) = BNDn′ k

Lbind n i j (ABSn′ S) = ABSn′ (Lbind n i (j + 1) S)

¬ ordinary S =⇒ Lbind n i j S = (if S = INDn′ i then BND j else S)

The function (Lbind n i j) replaces occurrences of (INDn′ i) with (BNDn′ j),

incrementing j as it proceeds recursively under ABSn′ nodes.

Lemma 3.49

abstr n LAMn: abstr n S =⇒ abstr n (LAMn i S)
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The lemma abstr n LAMn is used to compositionally prove abstr n conditions

for terms of the form (LAMn i S) :: nexp. Unlike Hybrid as presented in Section 3.2,

there is no proliferation of subgoals even with nested LAMn.

Lemma 3.50 (Injectivity for LAMn)
q

LAMn i S = LAMn i T; abstr n S ∨ abstr n T
y

=⇒ S = T

This lemma corresponds to Theorem 3.21, and its proof is similar.

Theorem 3.51 (Induction for nexp)
q

abstr n U;
∧

i. P (INDn i);∧
a. P (CONn a);

∧
n. P (VARn n);∧

S T. J P S; P T K =⇒ P (APPn S T);∧
i S. P S =⇒ P (LAMn i S); P ERRn

y
=⇒ P (U :: nexp)

Our main result in this section is an induction principle for nexp that handles

the LAMn case directly, unlike the LAM case of expr VAR induct (Lemma 3.33).

This induction principle represents open terms using INDn for the free variables.

The numeric argument of INDn functions like a variable name, and to use this form

of induction we would need to keep track of free variables. The technical lemmas to

support this have not yet been developed, but they should be similar to those used

for VAR in the original version of Hybrid [2].

On the other hand, we may still use function application to perform substitution:

to substitute S :: nexp for (INDn i) in T :: nexp, we use functional update notation

to define

subst nexp i S T ≡
(
λ v. S (v (i := T))

)
.

This method of performing substitution generalizes easily to simultaneous substitu-

tion, which is useful for applications such as strong normalization proofs (as noted

by Urban [73]).
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3.4 Adequacy

Adequacy is the term traditionally used for properties of a HOAS representation that

are meant to show its correctness, typically by establishing some form of equivalence

with ordinary named-variable syntax.

In the setting of logical frameworks [32, 58] (and also in proof assistants based

on constructive type theory such as Coq), there is a notion of definitional equality

generated by a confluent and strongly normalizing reduction relation, such as βη-

reduction in a typed λ-calculus. The η-long β-normal forms are called canonical

forms, and every term is definitionally equal to a unique canonical form.13 Adequacy

consists of establishing a compositional bijection between the canonical forms of

certain types and the object-logic terms to be represented.

The classical higher-order logic of Isabelle/HOL, however, does not fit into that

approach. Rather than definitional equality, we have provable equality which does not

satisfy such nice properties. In particular, as a corollary of Gödel’s first incompleteness

theorem, any type with at least 2 elements includes terms that are not provably equal

to any of the concrete elements of that type. So we will need a different notion of

adequacy; there are several candidates:

• We could work with a restricted sublanguage of Isabelle/HOL, which behaves as

a logical framework with canonical forms, as done by Felty and Momigliano [21].

A similar option is to model Hybrid as a theory in a logical framework, defined

separately from Hybrid itself, which is the approach used by Crole [13] to prove

adequacy for the previous version of Hybrid.

This approach leads to adequacy proofs that are similar to the traditional ones

for logical frameworks, yet it is not fully satisfactory because of the lack of a

13Some systems (such as LF) have a definitional equality generated by β-reduction only. Canonical
forms are still required to be η-long, so there will be terms that are not definitionally equal to any
canonical form. This complicates the picture somewhat but it is not relevant for our present purposes.
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solid formal correspondence between the system for which adequacy is proved

and the actual Isabelle/HOL formal theory of Hybrid.

• We could attempt to show an equivalence between Hybrid and named-variable

syntax within Isabelle/HOL.

This approach would give a direct connection with the actual formal theory of

Hybrid, and it is straightforward enough for closed terms. (A similar corre-

spondence, using de Bruijn indices in place of named variables, was used in the

definition of Hybrid.) However, it would require a suitable representation for

open terms in Hybrid. This could be VAR, or the n-ary syntactic functions from

Section 3.3; but either would complicate the statement and proof of adequacy.

It is also doubtful whether this approach could be extended to prove adequacy

for two-level encodings that use shallow embeddings into Isabelle/HOL for some

object-language features, as found in Chapters 6 to 9.

• We could work with a set-theoretic semantics for classical higher-order logic

[63]. Elements of sets given by a semantic model take the place of the canonical

forms in a traditional proof of adequacy.

This approach provides a precise correspondence with the formal theory of

Hybrid while supporting straightforward reasoning on open terms of Isabelle/

HOL. It can also borrow elements from either of the other two approaches. It

is the approach we take in the present work.

It might seem that working directly with a system as large and complicated as

Isabelle/HOL would unduly complicate the proof of adequacy. However, most of the

complicated parts of Isabelle/HOL are built definitionally, so they do not impose the

burden of proving consistency. Nor is it necessary to unfold complicated definitions,

as the necessary properties of the defined constructs are available as formal theorems.
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Thus, most of Isabelle/HOL’s features, including even those actually used in the

development of Hybrid, were not an obstacle at all.

There is one exception: Isabelle/HOL’s extensions to simple types, notably type

classes and overloading. These features would complicate a detailed presentation

of semantics for Isabelle/HOL, such as would be required to prove consistency of

its axioms and soundness of its inference rules and definitional mechanisms. We will

instead assume these properties without proof, in effect limiting the scope of our work

to correctness of Hybrid within Isabelle/HOL, as opposed to correctness of Hybrid

and Isabelle/HOL.

3.4.1 Definitions and Notation

We mainly follow Pitts [63]. However, that is a semantics for the HOL system [35]

rather than Isabelle/HOL. For specifics of the latter system, we follow Krauss and

Schropp [42], and to some extent Wenzel [75]. The notation and ideas are largely

standard, with a few exceptions indicated where they first occur.

We assume that type classes and overloaded constant definitions are translated

out in the manner of [42, § 5]. Overloaded constant definitions amount to case

distinction on the syntax of types,14 so it is more appropriate to deal with them

syntactically (by translation) rather than semantically. Type classes must then be

translated out as well, so that the translation of overloading can be applied to their

logical content. In the proof of adequacy, we will work only with monomorphic types

and terms, which are unchanged by these translations; so we omit the details.

Sequences of finite but arbitrary length occur frequently in definitions of syntax

and semantics. For conciseness of exposition, we use the notation xn to mean

x1, . . . , xn, for various formulas x. Unless otherwise indicated, the length n of the

sequence is an arbitrary non-negative integer. (This notation is found, e.g., in [42].)

14Also primitive recursion and structural induction, in Isabelle.
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Types

Let Ω be a finite set of type declarations, which are pairs (ν, n) where ν is a type

constant name and n ∈ N is its arity. (We require that the first components of these

pairs be distinct, i.e., type constants are declared at most once.)

A type constant ν of arity 0 is called a base type, and it is modeled by a set

M(ν). A type constant ν of arity n > 0 is called a type constructor, and it is

modeled by a mapping M(ν) from n-tuples of sets to sets. We assume that these sets

are elements of a universe U , whose properties we will consider later. (This could be

either a set or a proper class, though the latter option would require a metalanguage

somewhat stronger than ZFC [42, § 3].) Base types and type constructors may be

treated uniformly by identifying functions f : U0 → U with the corresponding sets

f() ∈ U .

We define the syntax of types recursively by:

τ ::= α | (τn) ν

where τ and τi stand for types, α for a type variable, and ν for a type constant

of arity n. We will use the usual Isabelle/HOL concrete syntax for types, dropping

the parentheses when n ≤ 1 and using infix notations where convenient. We write

TV(τ) for the set of type variables occurring in τ . A type τ is called polymorphic if

TV(τ) 6= ∅, monomorphic otherwise.

We assume that Ω contains at least the base type prop (propositions) and the

type constructor⇒ of arity 2 (function space, written infix). We further assume that

M(prop) = {0, 1} and M(⇒)(Y1, Y2) is the set of functions from Y1 to Y2. Thus, we

restrict our attention to classical, standard models.

Given a finite sequence of distinct type variables αn, and corresponding sets

Xi ∈ U for i ∈ {1, . . . , n}, we recursively define the interpretation JτK ∈ U for types τ
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with TV(τ) ⊆ {αn} by:15

JαiK = Xi

q
(τm) ν

y
= M(ν)

(
JτmK

)
This induces a function Jαn . τK : Un → U given by

(
Xn

)
7→ JτK. We call αn a

type context and αn . τ a type-in-context. We will always write the context αn and the

function arguments Xn explicitly, except for monomorphic types (where the context is

empty) and in the definition of J K on terms (where we will again fix a correspondence

between type variables and sets).

This approach of interpreting types-in-context by explicit functions on Un is

from Pitts [63]; a more traditional approach is to interpret types in an environment

consisting of a function from type variables to U .

A type substitution is a function δ from type variables to types. We write τ [δ]

for the type obtained by replacing each type variable α in τ with δ(α), i.e., the usual

notion of simultaneous substitution. We may also write a type substitution explicitly

as δ = τn/αn, which means δ(αi) = τi for i ∈ {1, . . . , n} and δ(α) = α for α /∈ {αn}.

Terms

Let Σ be a finite set of constant declarations, which are pairs (c, τ) where c is a

constant name and τ is its type. (We again require that the first components of the

pairs be distinct.)

For each constant c of type τ , we define a canonical type context TC(c) = αn

listing the type variables of τ in some fixed order.16 Then c is modeled by a mapping

M(c), giving for each tuple of sets
(
Xn

)
∈ Un an element M(c)

(
Xn

)
of Jαn . τK

(
Xn

)
.

When τ is monomorphic, this simplifies to M(c) ∈ JτK.

15The notation J K, sometimes called Scott brackets, is quite standard; Isabelle’s use of these
brackets to group the premises of an implication leads to an unfortunate notational clash here. We
will simply avoid stating any Isabelle/HOL propositions in this form in Section 3.4.

16This can be done without the use of an ordering on type variables, e.g., by listing them in the
order in which they occur in τ .
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We then recursively define the syntax of terms – a simply-typed λ-calculus with

constants:

tτ ::= xτ | cτ | (tτ⇒τ ′ t′τ ) :: τ ′ | (λxτ . tτ ′) :: τ ⇒ τ ′

where t, t′ stand for terms, x for a variable, c for a constant, and τ, τ ′ for types. This is

a Church-style presentation, in which we define syntax for just the well-typed terms

and simultaneously give their types. (We write a term t of type τ as either tτ or

t :: τ .) We will use Isabelle/HOL concrete syntax for terms, including infix notations

and omission of parentheses and types that can be reconstructed from context.

A variable xτ is treated as a pair consisting of a name x and a type τ , so variables

with the same name but different types are considered distinct.17 (A variable and a

constant with the same name are also considered distinct, regardless of type.) We

then have the standard notions of free and bound variables, and α-equivalence; we

write FV(t) for the set of free variables of a term t. We also write TV(t) for the set of

type variables occurring in a term t, calling t polymorphic if this set is nonempty, or

monomorphic otherwise. Note that a term t :: τ can be polymorphic even if the type

τ is monomorphic; an example from [63] is (fα⇒b xα) :: b where b is a base type.

The constant cτ ′ is well-typed if (c, τ) ∈ Σ and τ ′ = τ [δ] for some type substitu-

tion δ. (This allows specialization of polymorphic constants to type instances.) We

will implicitly assume that constants are well-typed. By [63, Lemma 1], the values of

δ on the type variables of τ are uniquely determined by τ and τ ′.

We assume that Σ contains at least the constants

=⇒ :: [prop, prop]⇒ prop (implication)

≡ :: [α, α]⇒ prop (equality)∧
:: (α⇒ prop)⇒ prop (universal quantification)

and that they are interpreted as follows:

17This is a technical convenience; the actual Isabelle/HOL system uses type inference, and reports
a type error if it is unable to give the same type to all occurrences of a variable name.
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• M(=⇒)(p)(q) is 0 if p = 1 and q = 0, otherwise 1;

• M(≡)(x)(y) is 1 if x = y, otherwise 0;

• M(
∧

)(f) is 1 if the function f is constant with value 1, otherwise 0.

We again fix a type context αn and corresponding sets Xi ∈ U for i ∈ {1, . . . , n},

which will later become explicit arguments of the interpretation function. Until then,

we implicitly require that all types and terms have only type variables from {αn},

unless otherwise indicated.

A finite sequence of (term) variables xm, not necessarily distinct, is called a

context ; and xm . t is called a term-in-context when t is a term with FV(t) ⊆ {xm}.

Given a term-in-context xm . t with t :: τ and JτK = Y , and xi :: τi and JτiK = Yi

for i ∈ {1, . . . ,m}, we define the interpretation Jxm . tK : Y1 × · · · × Ym → Y by

recursion on t simultaneously for all contexts xm containing FV(t):

• If t is a variable, then it must be equal to at least one of the xi, and there is a

unique largest k such that t = xk; we set Jxm . tK(ym) = yk.

• If t = cτ where (c, τ ′) ∈ Σ with τ = τ ′[δ] and TC(c) = βp, then we set

Jxm . cτK(ym) = M(c)
(
Sp

)
where Sj =

q
δ(βj)

y
for j ∈ {1, . . . , p}.

Note that τ ′ and TC(c) = βp may have type variables that are not in {αn}; and

the δ(βj) are uniquely determined by τ and τ ′, as noted above.

We have M(c)
(
Sp

)
∈

q
βp . τ ′

y(
Sp

)
; equality of this set with JτK =

q
τ ′[δ]

y
is

a type substitution property [63, Lemma 2] that follows by a straightforward

induction on τ ′ from the definition of J K for types.

• If t = (t1 t2) where t1 :: τ ′ ⇒ τ and t2 :: τ ′ and Jτ ′K = Y ′, then
q
xm .(t1 t2)

y
(ym) = f(y)

where f = Jxm . t1K(ym) : Y ′ → Y and y = Jxm . t2K(ym) ∈ Y ′.
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• If t = (λx. t′) where x :: τ ′ and t′ :: τ ′′, then τ = (τ ′ ⇒ τ ′′) and Y = Jτ ′ ⇒ τ ′′K

is the set of functions from Jτ ′K = Y ′ to Jτ ′′K = Y ′′; we set

q
xm .(λx. t′)

y
(ym)(y) =

q
(xm, x) . t′

y
(ym, y)

for all y ∈ Y ′.

A substitution is a function γ from variables to terms, respecting types. We

write t[γ] for the term obtained by first renaming the bound variables of t to be

disjoint from FV(γ(xτ )) for all xτ ∈ FV(t), and then replacing each free variable

xτ in the resulting term t′ with γ(xτ ). This is the usual notion of capture-avoiding

simultaneous substitution; to obtain a uniquely-defined result, the renaming must be

performed deterministically (e.g., with the help of a fixed total order on variables),

but we omit the details. We may also write a substitution explicitly as γ = tm/xm,

with the convention that variables not named are mapped to themselves, just as we

did for type substitutions.

By induction on terms, we have a substitution lemma analogous to [63, Lemma 4]:

given a term-in-context xm . t, another context
 

x′p, and a substitution γ such that

FV(γ(xi)) ⊆
{

 

x′p
}

for i ∈ {1, . . . ,m}, we have

q
 

x′p . t[γ]
y(

 

y′p
)

= Jxm . tK(ym)

where yi =
q

 

x′p .γ(xi)
y(

 

y′p
)

for i ∈ {1, . . . ,m}.

As a corollary, Jxm . K identifies α-equivalent terms, so by renaming variables as

needed, we may arrange for contexts to consist of distinct variables.18

We write Jαn, xm . tK for the function mapping
(
Xn

)
∈ Un to Jxm . tK, which

is itself a function Y1 × · · · × Ym → Y , with Y = Jαn . τK
(
Xn

)
where t :: τ , and

Yi = Jαn . τiK
(
Xn

)
where xi :: τi (for i ∈ {1, . . . ,m}). Henceforth, the context for a

polymorphic term will include a type context, and its interpretation will be a function

18Or even variables that differ in their name components, which avoids problems when substituting
types for type variables in a term.
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taking explicit set arguments
(
Xn

)
∈ Un, in this manner. (This is a dependently-

typed function, or set-theoretically, an element of a Cartesian product indexed by

elements of Un.) However, for monomorphic terms we may omit this complication,

and for a closed monomorphic term t :: τ , we will simply have JtK ∈ JτK where JτK is

a set in U .

We omit the statement of a type substitution lemma analogous to [63, Lemma 3]

since we will be working only with monomorphic terms.

Theories and Models

A theory T has the form (Ω, Σ, Φ) where Ω and Σ are sets of type and constant

declarations respectively, as defined above, and Φ is a finite set of axioms, i.e., closed

terms of type prop. The theorems of T are the closed terms of type prop derivable

from the axioms by Isabelle/HOL’s inference rules. These rules take the form of a

sequent calculus for higher-order logic, a portion of which is detailed in [42].

A model M for a theory T consists of interpretations M(ν) for each (ν, n) ∈ Ω

and M(c) for each (c, τ) ∈ Σ, as defined above, such that JφK = 1 (if monomorphic)

or JφK is a constant function with value 1 (if polymorphic) for each φ ∈ Φ. We could

write J KM to make the dependency on M explicit, but in most cases it will be clear

from context.

A theory T is syntactically consistent if not all propositions of T are theorems

of T ; equivalently, if T does not prove the single proposition (
∧

(P :: prop). P ).

A theory T is semantically consistent if it has a model. This is a stronger property

than syntactic consistency, because higher-order logic is not complete for standard

models such as those considered here.

A theory T ′ extends T if each component of T is a subset of the corresponding

component of T ′. It is a definitional extension if all added type and term constants

and axioms result from a sequence of applications of Isabelle/HOL’s definition mech-
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anisms. We omit the details of the latter, but they are similar to Pitts’ constant and

type definitions [63, § 16.5].

3.4.2 Assumptions

In the following sections, we consider an Isabelle/HOL theory T that definitionally

extends Hybrid and has a type con that we will use to instantiate Hybrid’s type

parameter for constants. (The case study presented in Chapters 5 to 10 provides

examples of such theories.) This instantiation will generally be left implicit, e.g.,

(con expr) will be abbreviated to expr . We will also implicitly require that all types

and terms considered are monomorphic.

We assume semantic consistency of T , which follows from semantic consistency

of a much smaller theory consisting of Isabelle/HOL’s primitive constants and ax-

ioms, together with preservation of semantic consistency by Isabelle/HOL’s definition

mechanisms. We let M be an arbitrary model of T , which will be used implicitly to

interpret types and terms.

We assume soundness of Isabelle/HOL’s inference rules, so that JφK = 1 (if

monomorphic) or JφK is a constant function with value 1 (if polymorphic) for all

theorems φ of T , rather than just for its axioms.

We assume that JboolK is bijective with JpropK, and we identify those two sets. We

also assume that the logical connectives of Isabelle/HOL have their usual meaning.

(These assumptions are likely to be implied by Isabelle/HOL’s axioms, and easily

proven with the help of its formal lemmas, given a classical standard model for prop

and its connectives as we have assumed.)

While we do not assume that the universe U is the class of all sets, we will assume

that particular sets such as the natural numbers are elements of U where convenient.

We will also assume closure properties as needed for semantic consistency, as in [63];

it is enough that U contains an infinite set, all non-empty subsets of sets in U , and
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all sets of functions Y X for X, Y ∈ U .

Soundness also requires one property of U : that its elements are all non-empty

sets. (Unlike some other systems such as Coq, Isabelle/HOL builds in the assumption

that types are non-empty.) We will also require the Axiom of Choice to obtain

elements of the interpretations of polymorphic types, and if U were a proper class,

we would need a stronger form of it such as global choice (as in [42]). However, ZFC

set theory contains sets that meet all of our requirements for U .19

In practice, these assumptions will allow us to use Isabelle/HOL formal theorems

as mathematical statements about models of the theory in a straightforward manner.

In particular, we may apply formal induction principles not only to formally defined

predicates, but also to arbitrary mathematical properties. We will use formal the-

orems provided as part of Isabelle/HOL as well as those stated in Section 3.2 (and

proved in the corresponding theory file [45]).

Since most of Isabelle/HOL is built definitionally, it would not be unreasonably

difficult to prove the consistency and soundness properties that we are assuming

without proof. However, features such as type classes and overloaded definitions

would complicate such a proof considerably (e.g., as compared with Pitts’ consistency

proofs in [63]), and we view it as outside the scope of the present work.

Since our notion of model uses the full set-theoretic function space, we do not

have a completeness property; that would require Henkin models [33]. This is a well-

known limitation of HOL with standard models, and it does not cause problems for

adequacy. (Indeed, adequacy would not hold for more general models.20)

In addition to the general assumptions above, we require one technical assump-

tion related specifically to Hybrid. We assume the existence of a set Lcon of closed

19Such a set can be constructed by transfinite recursion as in the von Neumann cumulative
hierarchy, as mentioned in [63].

20As explained by Henkin [33], it is a corollary of completeness (via compactness) that no infinite
structure can be axiomatized categorically on general models. (This is the same situation as for
first-order logic.)
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T -terms of type con such that for any model M of T , the function J KM restricted to

Lcon is a bijection onto JconKM . This is in effect a base case for adequacy of Hybrid.

It will hold in the common case where con is a datatype with only 0-ary constructors,

or with constructors whose argument types satisfy the same property.

However, it does not hold for all types: for instance, the set of all functions from

any infinite set to any set with at least two elements is uncountable, and thus cannot

be in bijection with any set of terms. This is the main reason why we use the type

(con expr) rather than the polymorphic type (a expr) in the proof of adequacy. These

issues will be discussed further in Section 3.4.4.

A similar “base case” is needed also for the type nat , but this one is a consequence

of the assumption of soundness:

Proposition 3.52 The function from N to JnatK defined by n 7→ JSucn 0K, where

(Sucn 0) is the term consisting of n applications of Suc to 0, is a bijection.

This follows from Isabelle/HOL’s basic theorems for nat (namely Suc not Zero,

inj Suc, and nat induct). Indeed, those theorems, together with the typing rules for

0 and Suc and Isabelle/HOL’s basic theorems for equality, are precisely the Peano

axioms for natural number arithmetic (with second-order induction), which are well-

known to characterize the natural numbers uniquely in a standard model.

For notational convenience, we will identify JnatK with N and JSucn 0K with n.

We will also define a set Lnat = {Sucn 0 | n ∈ N} of closed terms of type nat , called

the numerals.

3.4.3 Proof of Adequacy

Crole’s adequacy result [13] is based on a bijection between a lambda calculus (rep-

resenting Hybrid’s syntax with LAM) and canonical forms of a logical framework (in

a signature corresponding to our type dB), both of which had to be defined for that
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purpose. We will use the actual Isabelle/HOL syntax of the type expr and its oper-

ators in place of the lambda calculus, and elements of sets given by the model M in

place of the canonical forms.

Definition 3.53 Let LE be the smallest set of terms of type expr containing ERR,

(CON c) for all c ∈ Lcon, (VAR n) for all n ∈ Lnat, (APP s1 s2) for all s1, s2 ∈ LE,

and x and (LAM x. s) for all variables x of type expr and all s ∈ LE.

This set LE of “lambda-expressions” includes open terms of type expr ; it makes

precise the notion of syntactic terms from Section 3.1. Here we diverge significantly

from Crole [13], as we do not translate the free variables of such terms into the form

(VAR n); we instead use the semantics directly, with its interpretation of open terms

as functions from a Cartesian power JexprKn to JexprK.

Definition 3.54 Let Mn
expr be the set of all functions f : JexprKn → JexprK such that

for any function g : JexprK→ JexprKn, if πi ◦ g is the identity function for some i and

πj ◦ g is a constant function for all j 6= i, then JabstrK(f ◦ g) = 1.

For n = 0, the condition is vacuous and the domain of the functions is a one-

element set, so we may identify M0
expr with JexprK. For n = 1, M1

expr is the set

of functions f : JexprK → JexprK satisfying JabstrK(f) = 1. For n ≥ 2, the set Mn
expr

corresponds to an n-ary generalization of abstr. It is possible to define such a predicate

in Isabelle/HOL for any fixed n, e.g., abstr 2 from Section 3.2.9 (based on Momigliano

et al.’s biAbstr [50]) for n = 2. However, we cannot generalize this to a predicate with

n as an argument, due to the lack of dependent types in Isabelle/HOL. (Ways of

working around this limitation were discussed in Section 3.2.9.)

Definition 3.55 Given a context σ = xn consisting of distinct variables of type expr,

define Lσ
expr to be the set of terms in LE with free variables from σ.
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We will henceforth implicitly require that a “context σ” consists of distinct

variables of type expr . For any term t ∈ Lσ
expr, σ .t is a term-in-context; and if n

is the length of σ, then Jσ .tK is a function from JexprKn to JexprK.

Theorem 3.56 (Adequacy of Hybrid) For any context σ = xn, there is a bijec-

tion φσ : Lσ
expr/∼α →Mn

expr given by φσ

(
[t]α

)
= Jσ .tK.

Furthermore, these bijections are compositional, in the sense that for any contexts

σ = xn and σ′ =
 

x′m and any substitution γ with γ(xi) ∈ Lσ′
expr for i ∈ {1, . . . , n},

φσ′
(
[t[γ]]α

)
(ym) = φσ

(
[t]α

)(
 

y′n
)

for all (ym) ∈ JexprKn, where y′i = φσ′
(
[γ(xi)]α

)
(ym) for i ∈ {1, . . . , n}.

This theorem will be proved with the help of several lemmas.

Lemma 3.57 The function t 7→ Jσ .tK is well-defined on alpha-equivalence classes.

This is a corollary of [63, Lemma 4], as described in Section 3.4.1.

Lemma 3.58 If t ∈ Lσ
expr, then Jσ .tK ∈Mn

expr.

Proof. We show that Jσx̂ .(abstr (λx. t))K(y) = 1 for all x ∈ σ and y ∈ JexprKn−1,

where σx̂ is σ with x removed. The proof is by induction on t with cases from

Definition 3.53, using Isabelle/HOL theorems from Lemma 3.13:

• If t is a variable, then the claim follows either from abstr id if t = x, or from

abstr const otherwise.

• If t = ERR, t = (CON c), or t = (VAR n), then the claim follows from

abstr const.

• If t = (APP s1 s2), then the claim follows from the induction hypothesis by

abstr APP.
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• If t = (LAM x′. s), then the claim follows either from abstr const if x′ = x, or

from the induction hypothesis by abstr LAM (Lemma 3.38) otherwise.

Then by the definition of J K for terms, we have

JabstrK
(
Jσx̂ .(λx. t)K(y)

)
= 1

JabstrK
(
z 7→ J(σx̂, x) . tK(y, z)

)
= 1

JabstrK
(
Jσ .tK ◦ g

)
= 1

where in the last step, we have permuted the context and g is the function sending

z ∈ JexprK to y with z inserted in the position where x occurs in σ. But this is an

arbitrary function of the form specified in Definition 3.54, so Jσ .tK ∈ Mn
expr. 2

Lemma 3.59 If t1, t2 ∈ Lσ
expr and Jσ .t1K = Jσ .t2K, then t1 ∼α t2.

Proof. We proceed by induction on t1. If either t1 or t2 is a variable, then either

they are the same variable and the conclusion is immediate, or there is a substitution

γ of closed terms for the variables in σ that takes t1 and t2 to different cases of

Definition 3.53. By the term substitution property for J K, the premise of the lemma

implies
q
t1[γ]

y
=

q
t2[γ]

y
, but this contradicts expr distinct (Lemma 3.22). So we

may assume that neither t1 nor t2 is a variable; and again by expr distinct, they

must fall into the same case of Definition 3.53:

• If t1 = (CON c1) and t2 = (CON c2), then the premise Jσ .t1K = Jσ .t2K implies

Jc1K = Jc2K by expr inject (Lemma 3.23), and thus c1 = c2 by the assumed

property of Lcon (in Section 3.4.2), so we have t1 ∼α t2 as required (indeed they

are equal).

The VAR case is similar, while the ERR case is trivial.

• If t1 = (APP s1 s2) and t2 = (APP s3 s4), then we have Jσ .s1K = Jσ .s3K

and Jσ .s2K = Jσ .s4K by expr inject, and thus s1 ∼α s3 and s2 ∼α s4 by the

induction hypothesis. Together, these imply t1 ∼α t2.
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• If t1 = (LAM x1. s1) and t2 = (LAM x2. s2), choose a variable x′ of type expr

that does not occur in σ, and define s′i = si[x
′/xi] and t′i = (LAM x′. s′i); by

definition, we have ti ∼α t′i. Since the semantics equates α-variants, the premise

implies Jσ .t′1K = Jσ .t′2K which in turn implies
q
σ .(λ x′. s′1)

y
=

q
σ .(λ x′. s′2)

y

by expr inject. (The abstr premise of expr inject is provided by Lemma 3.58

via Definition 3.54.) From the semantics of λ, this equality is equivalent to
q
(σ, x′) . s′1

y
=

q
(σ, x′) . s′2

y
and we may apply the induction hypothesis to

conclude that s′1 ∼α s′2. Thus we have t′1 ∼α t′2 and finally t1 ∼α t2 as

required. 2

Lemma 3.60 For any context σ = xn, if f ∈ Mn
expr, then there is a term t ∈ Lσ

expr

such that Jσ .tK = f .

Proof. Let y0 = JERRK; we have JsizeK(y0) = 0 by size ERR (Lemma 3.31). We

proceed by induction on JsizeK(f(y0, y0, . . . , y0)).

Suppose f ◦ g is the identity function on JexprK, for some g : JexprK → JexprKn

with πi ◦ g = id and all other projections of g being constant functions. We claim

that in this case f = πi. This is equivalent to f ◦ g′ = id for all such functions g′ (for

the same i).

Suppose not; then there are functions g1, g2 satisfying the same conditions as g

above, such that f◦g1 = id and f◦g2 6= id. We may assume, without loss of generality,

that g1 and g2 differ only in the jth component for some j 6= i; let y1 and y2 be their

respective constant values on this component. By expand abstr (Lemma 3.39), f ◦g2

must take values corresponding to a single case of Definition 3.53. Choose y ∈ JexprK

from a different case of that definition and not equal to y1. (Such a y can always

be chosen from a 3-element set such as {JERRK, JVAR 0K, JCON cK} for some fixed

c ∈ Lcon.)

Now define a function g3 to agree with g1 and g2 in all components except i

and j, and with πj ◦ g3 = id while πi ◦ g3 is a constant function with value y. This
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function again satisfies the conditions of Definition 3.54. By construction, f ◦g3(y1) =

f ◦g1(y) = y is from a different case of Definition 3.53 than f ◦g3(y2) = f ◦g2(y), so by

expand abstr, f ◦ g3 must be the identity function; however, this contradicts y1 6= y.

So our original assumption must be false, and we must have f = πi as claimed.

Since Jσ .xiK = πi, the result follows in this case; it remains to prove it when f ◦g

is not the identity function for any such g. We consider cases for f(y0, y0, . . . , y0)

according to expr nchotomy (Lemma 3.28):

• If f(y0, y0, . . . , y0) = JCON cK for some c ∈ Lcon, then we claim that f is

a constant function. Indeed, suppose not; then it must take values v1 =

JCON cK and v2 6= JCON cK at some points Y1 and Y2 in its domain. We

may assume, without loss of generality, that Y1 and Y2 differ only in the ith

component. Define a function g : JexprK → JexprKn such that πi ◦ g = id

while the other projections are constant functions agreeing with Y1 and Y2. By

Definition 3.54, we have JabstrK(f ◦ g) = 1, while by assumption, f ◦ g 6= id.

By expand abstr (Lemma 3.39) and expr distinct (Lemma 3.22), the only case

that agrees with f ◦g◦πi(Y0) = v0 is f ◦g = Jλx. CON cK; but this is contradicted

by f ◦ g ◦ πi(Y1) = v1. Thus, our original assumption must be false and f must

be a constant function as claimed. We then have
q
σ .(CON c)

y
= f , and the

result follows.

The VAR and ERR cases are similar.

• If f(y0, y0, . . . , y0) = JAPPK(y1, y2), then by a similar argument, f(Y ) is of

the form JAPPK(v1, v2) for all Y ∈ JexprKn. Thus, we may define functions

f1, f2 : JexprKn → JexprK such that f(Y ) = JAPPK(f1(Y ), f2(Y )) for all Y .

We have f1, f2 ∈ Mn
expr, taking the necessary abstr conditions from f via

abstr APP (Lemma 3.13). By size APP (Lemma 3.31), we may apply the

induction hypothesis to obtain terms t1, t2 ∈ Lσ
expr such that Jσ .tiK = fi for



3.4. Adequacy 89

i ∈ {1, 2}. From the semantics of Isabelle/HOL function application, we have
q
σ .(APP t1 t2)

y
= f , and again the result follows.

• The final case is f(y0, y0, . . . , y0) = JLAMK(h) where h : JexprK → JexprK

satisfies JabstrK(h) = 1. Again by a similar argument, we obtain a func-

tional H such that for all Y ∈ JexprKn, we have f(Y ) = JLAMK(H(Y )) and

H(Y ) is a function from JexprK to JexprK satisfying JabstrK(H(Y )) = 1. De-

fine a function H ′ : JexprKn+1 → JexprK by H ′(Y, y) = H(Y )(y). We have

H ′ ∈ Mn+1
expr, with the abstr conditions for the last component given above, and

those for the other components taken from f via abstr LAM (Lemma 3.38).

By size LAM (Lemma 3.32) we may apply the induction hypothesis, using the

context σ′ = σ, x for some variable x :: expr not occurring in σ, to obtain a

term t′ ∈ Lσ′
expr such that Jσ′ . t′K = H ′. From the semantics of Isabelle/HOL

lambda-abstraction, we have
q
σ .(λx. t′)

y
= H, from which we may deduce

q
σ .(LAM x. t′)

y
= JLAMK ◦H = f .

In all cases, we have obtained a term t ∈ Lσ
expr such that Jσ .tK = f , as was

to be proven. 2

Proof of Theorem 3.56. Well-definedness and bijectivity of the function φσ given

in the statement of the theorem follow directly from Lemmas 3.57, 3.58, 3.59, and 3.60.

Compositionality is just an instance of the term substitution property for J K,

as stated in Section 3.4.1 (or [63, Lemma 4]). 2

3.4.4 Discussion and Comparison

A representational adequacy result is meant to show correctness of the use of a

particular representation of terms for object-language reasoning. This can be broken

down into correctness of particular reasoning steps:
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• Correctness of equality on Hybrid terms follows from injectivity of φσ. (For

open terms, i.e., when σ is not empty, its variables must be λ-bound.)

• Correctness of quantification over Hybrid terms follows from surjectivity of φσ.

(For open terms, abstr conditions are required as specified in Definition 3.54.21)

• Correctness of Hybrid’s operators on the type expr is trivial, once their argu-

ments are translated from Mn
expr to Lσ

expr using φ−1
σ .

• Correctness of substitution by function application follows from composition-

ality, together with the semantics of function abstraction and application. (It

could also be justified syntactically, since Isabelle/HOL equates β-convertible

terms.)

Even large and complicated formalizations such as those of Chapters 5 to 9 ma-

nipulate Hybrid terms using these operations, so the correctness of such manipulations

follows from Theorem 3.56.

We briefly revisit the assumption of a set Lcon of terms of type con for which

J K is bijective onto JconK. If it fails, we could recover a “relative adequacy” result

by working in a diagram language consisting of Isabelle/HOL syntax augmented with

a constant for each element of JconKM , for a particular model M . These constants

could then be used as Lcon, and we would obtain a compositional bijection as in

Theorem 3.56, except that the set in bijection with Mn
expr would no longer consist

entirely of syntax and the structure of sub-“terms” of type con would depend on M .

This dependency on M could be eliminated in the case where T categorically

axiomatizes (on standard models) some particular mathematical structure (such as

the real numbers, as the unique complete ordered field) in the form of a type con

with suitable operators. Thus we could still obtain a satisfactory adequacy result in

21Except where omitting the abstr conditions strengthens the statement, without making it un-
provable; for instance, in object-language elimination rules that take advantage of the stronger form
of injectivity for LAM proven in Section 3.2.6.
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that case. Stating and proving an adequacy result for such cases in general would,

however, be an additional complication – one that we chose to avoid in Section 3.4.3.

We now turn to a comparison of our adequacy result (Theorem 3.56) with Crole’s

result [13]. In addition to trivial differences resulting from the changes to Hybrid

described in Section 3.2, there are some more substantial differences:

• Domain of the function: Crole’s function Πε is defined on α-equivalence

classes of untyped λ-terms, while our function φσ is defined on α-equivalence

classes of a subset of Isabelle/HOL terms of type expr .

Our approach leads to a more direct proof, but perhaps a less elegant result, in

the sense that Hybrid is intended to represent λ-calculus syntax rather than

specifically Isabelle/HOL syntax. However, it would be straightforward to

establish a bijection between the two, and thus prove adequacy of Hybrid for a

separately-defined λ-calculus as a corollary of Theorem 3.56.

• Codomain of the function: Crole’s function Πε takes values in a logical

framework intended as a model of Hybrid, but not proven to correspond to the

actual formal theory. Our function φσ, on the other hand, takes values from

an arbitrary set-theoretic model of Hybrid as an Isabelle/HOL theory. In this

sense, the present work is a more complete proof of Hybrid’s adequacy.

It should be noted that a corollary of Theorem 3.56 together with Crole’s result

(updated for the present version of Hybrid) is that Crole’s logical-framework

model of Hybrid is, in fact, bijective with the set-theoretic semantics of Hybrid.

• Representation of open terms: Crole’s adequacy result represents open

terms using VAR for variables free in the original λ-calculus term, but uses free

variables of the logical framework for variables bound in the original λ-calculus

term (which appear free when translating its subterms). Our result uses a single

representation of open terms, as certain functions from JexprKn to JexprK.
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This results in major differences in the structure of the proof of adequacy, and

also represents a difference in what is being proved adequate for λ-calculus (or

similar) syntax. This difference is motivated by our intention to replace the use

of VAR to represent open terms (as in Lemma 3.33, expr VAR induct) with

an alternate representation such as that given in Section 3.3 (nexp, as used in

Theorem 3.51, whose integration into Hybrid remains as future work).

• Prerequisites: Crole’s proof is based on de Bruijn syntax, and requires un-

folding of most of Hybrid’s definitions (as modeled in a logical framework).

Our proof is based solely on the properties that the present version of Hybrid

formally proves for the type expr , making no reference to the type dB , the con-

version functions dB :: (expr ⇒ dB) and expr :: (dB ⇒ expr), or any of their

properties.

Not only does this allow our proof to be much shorter than Crole’s, but it

also makes Theorem 3.56 a stronger result, in the sense that it represents not

just correctness but also a form of completeness for Hybrid’s set of lemmas

concerning the type expr .

This result was enabled by certain of the improvements to Hybrid described in

Section 3.2, notably Lemmas 3.38 (abstr LAM) and 3.39 (expand abstr). In

effect, part of the work of proving adequacy – a meta-theoretical result – is

done in the formal setting of Isabelle/HOL. (These lemmas also turned out to

be useful for other purposes, as described in Section 3.2.9.)

3.5 Related Work

Hybrid is unique among approaches to formalizing variable-binding constructs in

that it is based on full higher-order abstract syntax, and it is built definitionally in a

general-purpose proof assistant (Isabelle/HOL).
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Thus, there are three categories of related work. One is those approaches that

make use of HOAS, but not in a general-purpose proof assistant (or not definitionally).

The second is those approaches that formalize variable-binding constructs in a proof

assistant, but not using full HOAS. The third is related work on Hybrid itself, which

has been developed by various people starting with Ambler, Crole, and Momigliano’s

work in [2].

Related work for Hybrid is discussed in great detail by Felty and Momigliano in

[21]; we consider here only a subset of the many approaches that have been explored.

Other approaches to formalizing HOAS

One approach to formalizing HOAS is the formalization of logical frameworks, such as

LF [32]. Pfenning and Schürmann’s Twelf system [60] is one that takes this approach.

It implements the specification layer of LF (a form of type theory) with a sophisticated

type-inference algorithm that minimizes notational overhead. For meta-reasoning, it

uses a form of constraint logic programming on LF terms, together with algorithms

for verifying the totality of relations defined as logic programs, so that they may be

interpreted as proofs of meta-theoretic properties.

A related approach based on functional programming rather than logic program-

ming is Pientka and Dunfield’s work [61]. This work has focused on programming with

HOAS rather than meta-reasoning, but Twelf’s approach to proving meta-theoretic

properties by totality checking of programs could be used here as well. (That approach

exploits the expressive power of dependent types, so that the type of a program spec-

ifies the property to be proved.)

Another approach is based on logics with definitional reflection, starting with

McDowell and Miller’s work on FOλ∆N [46, 47]. Successive enhancements to FOλ∆N

have led to Linc (Momigliano and Tiu, [53]) and later G (Gacek et al., [25]), which

has been used by Gacek as the basis for an interactive theorem prover called Abella
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[24]. This system uses the two-level approach that originated with McDowell and

is also used with Hybrid. It has the advantage of being purpose-built for reasoning

about formal systems, but this can also be a disadvantage in that it cannot exploit

the extensive libraries of formalized mathematics available for proof assistants such

as Isabelle/HOL and Coq.

Other representations of bound variables in proof assistants

There are projects that aim to implement in Isabelle/HOL some of the other general

approaches to representation of variable-binding constructs mentioned in Chapter 1.

Most prominent among these is Urban’s nominal datatype package [73], which seeks

to formalize equivalence classes of terms up to renaming of bound variables, and also

the Barendregt variable convention, using concepts from Gabbay and Pitts’ nominal

logic [23, 64].

Nominal, unlike the present version of Hybrid, provides typed abstract syntax

similar to Isabelle’s datatype package. It also has better-developed induction prin-

ciples than the present version of Hybrid, although our work in Section 3.3 is a step

in that direction. On the other hand, Nominal requires substitution to be defined

recursively and its basic properties developed, where in Hybrid substitution can be

defined by simple function application (for which many useful properties are already

provided by Isabelle/HOL).

Another implementation of variable binding in Isabelle/HOL is Andrew Gordon’s

work [29]. It builds a representation of named-variable syntax up to renaming of

bound variables (i.e., of equivalence classes) definitionally in terms of de Bruijn

indices, and it was the starting point for the development of Hybrid [2].

There are also weak HOAS approaches that use a function space to represent

variable binding, but one in which the argument type is different from the type

of terms. Unlike full HOAS as in Hybrid, which represents variable binding using
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endofunctions of the type of terms, the weak HOAS approach does not violate the

constraints for an inductive datatype. It is still necessary to deal with the problem

of functions that do not represent syntax, but they can be excluded by other means

than predicates, e.g., by the use of polymorphic types in Chlipala’s work in Coq [10].

Weak HOAS is related to mathematical models of variable binding based on presheaf

categories [22, 34].

Other work on Hybrid

In addition to the Isabelle/HOL theory of [2] that was the starting point for Hybrid as

described in this chapter, there are several versions of Hybrid based on the Coq proof

assistant. One such version [18, 21] closely follows the structure of the Isabelle/HOL

version, and uses non-constructive features via Coq’s ClassicalChoice library. There

is also a constructive variant of Hybrid for Coq, introduced by Capretta and Felty in

[8], and extended in [7] to a typed version that can be instantiated with signatures

for various object languages, specifying multiple sorts and operations.

As well as these variants of Hybrid, there have also been a number of applications

and case studies for Hybrid, which will be discussed in Section 10.2. There is also

Crole’s work on adequacy for Hybrid [13], which was compared with our adequacy

result (Theorem 3.56) in Section 3.4.4.



Chapter 4

Mini-ML with References

In preparation for presenting our case study in Hybrid in Chapters 5 to 10, we describe

the object language whose formalization is the subject of the case study. It is a

variant of Mini-ML [12] with mutable references. This object language is taken from

an example in Cervesato and Pfenning’s work on a linear logical framework [9], and

we closely follow its presentation there. (Definition 4.3 is almost exactly as shown

in [9], while Definition 4.2, Table 4.2, and Table 4.1 agree with [9] but fill in many

cases omitted there.) See also [62] for general background on typing and operational

semantics.

4.1 Syntax

We define abstract syntax for Mini-ML expressions and types using a BNF-like

notation. Each syntactic class is denoted by a specific metavariable: v for values,

e for expressions, x for variables, c for abstract memory cell locations, and τ for types.

Subscripts and primes are used to distinguish separate instances of the same syntactic

class. Infix notations are used for some constructs to aid readability. Parentheses are

introduced as needed to remove ambiguity.

96
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Definition 4.1 (Values)

v ::= 0 | suc v | true | false | ∗ | (v1, v2) | λx. e | x | ref c

Mini-ML values consist of natural numbers in unary notation (0 and suc),

booleans (true and false), unit (∗), pairs, functions, variables, and memory refer-

ences. Although pairs are written in the usual mathematical notation as (v1, v2), the

prefix notation (pair v1 v2) is used synonymously where convenient. The body e of a

function (λx. e) can be an arbitrary expression, not necessarily a value. Variables x

denote function arguments, and they are considered values because Mini-ML uses

call-by-value evaluation; however, they are never actually used in a context that re-

quires a value rather than a general expression. Memory references (ref c) arise during

evaluation and may not appear in the text of a program. Indeed, no specific syntax

is defined for memory locations c; rather, they are treated as location variables, to be

made local by binding operators, and assumed merely to form a countably infinite

set disjoint from program variables x.

Definition 4.2 (Expressions)

e ::= 0 | suc e | pred e | iszero e | true | false | if e1 then e2 else e3

| ∗ | (e1, e2) | π1 e | π2 e | e1 e2 | λx. e | x | fix x. e

| let x = e in e | letv x = v in e | let rec x = e1 in e2

| ref e | ! e | e1 := e2 | ref c

Expressions extend the syntax of values with some basic operations: predecessor

and zero-test functions for natural numbers, a conditional construct for booleans,

projections for pairs, application for functions, recursion, definition constructs, and

reference manipulation.

The letv construct allows “ML-polymorphism”, in that the typing rules will

not require v to have the same type in all the places where it is substituted for x

in e. (It substitutes only values, not general expressions, to avoid trouble with type

safety in the presence of mutable references; see [62, § 22.7].) The let rec construct
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allows recursion, i.e., x is bound in e1 as well as e2. It is syntactic sugar for the

fixpoint construct fix, which binds a variable x that recursively stands for the entire

fix-expression.

There are three basic operations on references: allocation, dereferencing, and

assignment. (ref e) allocates a new location c, and evaluates to the value (ref c). ! e

(also written deref e) expects e to be a reference, and returns the value associated

with its location. e1 := e2 (also written assign e1 e2) expects e1 to be a reference,

and stores at its location the value that results from evaluating e2. There is no

deallocation operation; an implementation would presumably use garbage collection.

The allocation mechanism is not specified except that it should always return a

fresh location. The representation of values in memory is likewise considered an

implementation detail.

Every value is also an expression, however it would not be enough to have a case

e ::= v because constructs such as suc may be applied to expressions as well as values.

4.2 Typing

Definition 4.3 (Types)

τ ::= nat | bool | 1 | τ1 × τ2 | τ1 → τ2 | τ ref

Mini-ML is equipped with simple types, consisting of basic types for natural

numbers, booleans, and unit, together with type constructors for pairs, functions,

and references.

Definition 4.4 (Typing Contexts)

Γ ::= · | Γ, x:τ | Γ, c:τ

The typing judgment Γ ` e : τ means that expression e has type τ in the typing

context Γ. It is defined recursively by the rules in Table 4.1, which is based on Figure 4

of [9]. Γ gives types for function arguments and reference cells occurring free in e.
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Natural numbers and booleans

Γ ` 0 : nat
ofe zero

Γ ` e : nat

Γ ` suc e : nat
ofe suc

Γ ` e : nat

Γ ` pred e : nat
ofe pred

Γ ` e : nat

Γ ` iszero e : bool
ofe iszero

Γ ` true : bool
ofe true

Γ ` false : bool
ofe false

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ
ofe ifthen

Unit and pairs

Γ ` ∗ : 1
ofe unit

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

ofe pair
Γ ` e : τ1 × τ2

Γ ` πi e : τi

ofe proj

Functions and recursion

Γ, x:τ ′ ` e : τ

Γ ` λx. e : τ ′ → τ
ofe lam

x /∈ Γ′

Γ, x:τ, Γ′ ` x : τ
ofe id

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ
ofe app

Γ, x:τ ` e : τ

Γ ` fix x. e : τ
ofe fix

Definitions

Γ ` [v/x]e : τ

Γ ` letv x = v in e : τ
ofe letv

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

ofe let

Γ, x:τ1 ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let rec x = e1 in e2 : τ2

ofe letrec

References

Γ ` e : τ

Γ ` ref e : τ ref
ofe ref

Γ ` e : τ ref

Γ ` ! e : τ
ofe deref

Γ ` e1 : τ ref Γ ` e2 : τ

Γ ` e1 := e2 : 1
ofe assign

Γ, c:τ, Γ′ ` ref c : τ ref
ofe cell

Table 4.1: Typing rules for Mini-ML
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The rules are mostly self-explanatory. However, it should be noted that without

type annotations on bound variables, the type τ is not uniquely determined by Γ and e.

For example, the expression (λx. x) can be typed as either bool→ bool or nat→ nat

(among others) in the empty context.

Implementations of ML-like languages typically use type variables, so that each

expression can be assigned a unique principal type from which all its valid types can

be obtained as instances. (See [62, § 22.5].) However, such complications are not

needed for the present purposes.

Also, the rule ofe letv might never type-check the substituted value v if the

variable x does not occur in e. Practical programming languages usually do require

it to be well-typed even in this case.

The condition on the rule ofe id ensures that scopes of variables are respected.

It is not necessary at this point to deal with α-conversion in a more systematic way.

Further typing rules will be needed to type-check intermediate states of a com-

putation; these will be given after the formal sematics, in Section 4.4.

4.3 Continuation-Style Semantics

The operational semantics of Mini-ML are formalized as a continuation-style big-step

evaluation judgment. We begin by defining additional syntactic classes to represent

intermediate steps of a computation.

Definition 4.5 (States)

S ::= · | S, c = v

A state is an association list specifying values for reference cells. The cells in the

list are required to be distinct.

Definition 4.6 (Continuations)

K ::= init | K, λx. e
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A continuation is a list of function expressions. It serves as a stack of functions

and primitives that are waiting for their arguments to be evaluated.

Definition 4.7 (Answers)

w ::= (S, v) | new c. w

An answer consists of a final state and a value, in which location variables may

be bound by new. This allows the result value to refer to reference cells allocated in

the course of evaluation, without giving those cells global names.

The evaluation judgment then has the form S . K ` e ↪→ w, where S is the

initial state, K is the continuation, e is the expression to be evaluated, and w is the

result of evaluation. It is defined by the rules in Table 4.2, which is based on Figure 5

of [9].

Values are handled by ex return, which takes the last function from a continua-

tion, applies it to the value, and recursively evaluates the result; or if the continuation

is empty, by ex init, which packages the current state and the value as the final re-

sult.

Evaluation of arguments for functions and primitives is performed by rules like

ex suc and ex pred. The argument to be evaluated is taken out of its context and

becomes the new expression to evaluate, while the context is turned into a function

expression and appended to the continuation.

There are two cases where evaluation is deferred. One is in the body of a function:

a function (λx. e) is considered a value even if its body e is not. The other is in the

conditional construct (if), which evaluates its boolean argument but then chooses

between its then and else clauses before proceeding with evaluation. Such deferred

evaluation is necessary to allow programs to control side effects, and even to have

terminating recursive functions.

The remaining rules specify how operations are actually performed once their

arguments have been evaluated. For instance, ex pred0 and ex predS define the
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Continuations

S . K ` [v/x]e ↪→ w

S . K; λx. e ` v ↪→ w
ex return

S . init ` v ↪→ (S, v)
ex init

Natural numbers and booleans

S . K; λx. suc x ` ē ↪→ w

S . K ` suc ē ↪→ w
ex suc

S . K; λx. pred x ` ē ↪→ w

S . K ` pred ē ↪→ w
ex pred

S . K ` 0 ↪→ w

S . K ` pred 0 ↪→ w
ex pred0

S . K ` v ↪→ w

S . K ` pred (suc v) ↪→ w
ex predS

S . K; λx. iszero x ` ē ↪→ w

S . K ` iszero ē ↪→ w
ex iszero

S . K; λx. if x then e2 else e3 ` ē1 ↪→ w

S . K ` if ē1 then e2 else e3 ↪→ w
ex ifthen

S . K ` true ↪→ w

S . K ` iszero 0 ↪→ w
ex iszero0

S . K ` e1 ↪→ w

S . K ` if true then e1 else e2 ↪→ w
ex ifthenT

S . K ` false ↪→ w

S . K ` iszero (suc v) ↪→ w
ex iszeroS

S . K ` e2 ↪→ w

S . K ` if false then e1 else e2 ↪→ w
ex ifthenF

Pairs

S . K; λx. (x, e2) ` ē1 ↪→ w

S . K ` (ē1, e2) ↪→ w
ex pair

S . K; λx. (v, x) ` ē ↪→ w

S . K ` (v, ē) ↪→ w
ex pair1

S . K; λx. πi x ` ē ↪→ w

S . K ` πi ē ↪→ w
ex proj

S . K ` vi ↪→ w

S . K ` πi (v1, v2) ↪→ w
ex proj1

Functions and recursion

S . K; λx. x e2 ` ē1 ↪→ w

S . K ` ē1 e2 ↪→ w
ex app

S . K; λx. v x ` ē ↪→ w

S . K ` v ē ↪→ w
ex app1

S . K ` [v/x]e ↪→ w

S . K ` (λx. e) v ↪→ w
ex app2

S . K ` [(fix x. e)/x]e ↪→ w

S . K ` fix x. e ↪→ w
ex fix

Definitions

S . K ` (λx. e2)e1 ↪→ w

S . K ` let x = e1 in e2 ↪→ w
ex let

S . K ` [v/x]e ↪→ w

S . K ` letv x = v in e ↪→ w
ex letv

S . K ` (λx. e2)(fix x. e1) ↪→ w

S . K ` let rec x = e1 in e2 ↪→ w
ex let rec

Table 4.2: Evaluation rules for Mini-ML
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References

S . K; λx. ref x ` ē ↪→ w

S . K ` ref ē ↪→ w
ex ref

S, c = v . K ` ref c ↪→ w

S . K ` ref v ↪→ new c. w
ex ref1

S . K; λx. ! x ` ē ↪→ w

S . K ` ! ē ↪→ w
ex deref

S, c = v, S ′ . K ` v ↪→ w

S, c = v, S ′ . K ` ! (ref c) ↪→ w
ex deref1

S . K; λx. x := e2 ` ē1 ↪→ w

S . K ` ē1 := e2 ↪→ w
ex assign

S . K; λx. v := x ` ē ↪→ w

S . K ` v := ē ↪→ w
ex assign1

S, c = v, S ′ . K ` ∗ ↪→ w

S, c = v0, S ′ . K ` ref c := v ↪→ w
ex assign2

Table 4.2: Evaluation rules for Mini-ML, continued

predecessor function for natural numbers by cases on its argument. (There are no

such rules for suc because suc v is already a value when v is.) The rule ex app2 is the

usual β-reduction for functions, and the notation [v/x]e represents capture-avoiding

substitution (renaming bound variables as needed) of v for x in e.

The ref operation is performed by the rule ex ref1, which introduces a new

location variable c to represent the newly allocated reference cell. This location must

be fresh; the requirement that cells in a state be distinct ensures that it does not

occur in S. It is bound by new in the answer, so that free location variables are not

introduced by evaluation. It is returned to the continuation as a value of the form

ref c, a form that is not used directly in programs.

Dereferencing (!) is performed by the rule ex deref1, by looking up the location

to be dereferenced in the state, and returning the corresponding value. Assignment

(:=) is performed by the rule ex assign2, by looking up the location to be assigned

and replacing its value in the state with the right-hand side of the assignment.

This continuation-based approach, with its rules for evaluating arguments, makes

the call-by-value evaluation order explicit. Indeed, evaluation is deterministic except

for the possibility of re-evaluating arguments that are already values. (That possi-
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bility can be eliminated, without changing the set of derivable typing statements, by

requiring the expressions written as ē in Table 4.2 to not be values.)

4.4 Type Safety

A key property of a typed language is type safety, which can be informally stated

as “Well-typed programs cannot go wrong”. More specifically, such programs should

not attempt nonsensical operations, like (π1 (suc 0)), for which there is no evaluation

rule; and the result of evaluation should have the same type as the original expression.

These properties are called progress and preservation, respectively.

The type safety properties are most easily stated for a small-step operational

semantics, which uses a formal judgment to represent an individual step of evaluation.

A big-step operational semantics like that of Section 4.3 formalizes only the complete

evaluation of an expression to a value, so properties of the evaluation judgment

say nothing directly about the intermediate states of a computation. Structurally

inductive proofs of such properties, however, do consider the intermediate states and

typically correspond closely with small-step versions. While this may not be entirely

satisfying from a mathematical point of view, it works well enough in practice.

A bigger problem, however, is that a straightforward statement of progress for

big-step evaluation is false for languages with non-terminating computations, such as

Mini-ML with let rec. The evaluation judgment does not distinguish between failure

to progress (due to an ill-typed operation) and infinite recursion. (See [62], p. 505.)

There are several ways to deal with this problem:

• Add explicit error terms, and rules evaluating ill-typed operations to them.

• State progress as a property of evaluation derivations, rather than just their

conclusions.

• Switch to a small-step semantics.
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Continuations

Γ ` init : τ → τ
ofk init

Γ ` e : τ1 → τ3 Γ ` K : τ3 → τ2

Γ ` K; e : τ1 → τ2

ofk func

States

∆ ` · : ·
ofc empty

∆ ` S : ∆′ ∆ ` v : τ

∆ ` (S, c = v) : (∆′, c:τ)
ofc cell

Answers

∆ ` S : ∆ ∆ ` v : τ

∆ ` (S, v) : τ
off loc

∆, c:τ ′ ` w : τ

∆ ` new c. w : τ
off new

Table 4.3: Typing rules for Mini-ML, continued

• Simply do without a progress property.

For this case study, the latter approach was taken: only a preservation property,

also known as subject reduction, was considered. To state this property, it is necessary

to type states, continuations, and answers as well as expressions. These additional

typing judgments are defined in Table 4.3. They use a restricted kind of typing

context called a store typing, and written ∆, which gives values only for reference

cells and not for program variables:

Definition 4.8 (Store Typings)

∆ ::= · | ∆, c:τ

The typing judgment for continuations has the form Γ ` K : τ1 → τ2, which

means that the continuation K expects a value of type τ1 and produces an answer

of type τ2. We view τ1 and τ2 as separate arguments of this judgment, with the

arrow between them being part of its syntax rather than a function type constructor,

although semantically it is analogous to one.

The typing judgment for states has the form ∆ ` S : ∆′. It means that the same

locations occur in S and ∆′, and if a location c is associated with a value v in S and
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with a type t in ∆′, then v is well-typed with type t in the context ∆.

We will typically be interested in typing statements of the form ∆ ` S : ∆,

with the same store typing on both sides. However, in deriving such a statement, it

is necessary to check the reference cells one-by-one, using an axiom (ofc empty) to

start with the empty state and a rule (ofc cell) to check each cell as it is added to the

state. To ensure that the locations in ∆ correspond one-to-one with those in S, the

state and store typing should be built up simultaneously. Yet we need the entire store

typing, in general, to check even the first cell, since that cell may have been assigned

a value containing references to newer cells. These opposing requirements are the

reason for having two separate store-typing arguments, which are treated differently

by the rule ofe cell.

The typing judgment for answers has the form ∆ ` w : τ . The type of an answer

is the type of the value it contains, but the judgment also checks the types of values

in reference cells, allowing those bound by new to have any type so long as it is used

consistently.

Now we have everything required to state a subject reduction property.

Theorem 4.9 (Subject Reduction) Suppose S . K ` e ↪→ w. If the state S is

well-typed, ∆ ` S : ∆, under a store typing ∆; the continuation K is well-typed,

∆ ` K : τ → τ ′; and the expression e is well-typed, ∆ ` e : τ ; then the answer w is

also well-typed: ∆ ` w : τ ′.

The proof is by induction on the evaluation judgment, and is mostly straightfor-

ward. The structure of the first formalized version of subject reduction (in Chapter 5)

is similar to what would be used in an informal proof.



Chapter 5

Case Study: One-level Approach

In this and the following chapters, we present a case study consisting of five differ-

ent formalizations of subject reduction for Mini-ML with references, as described in

Chapter 4, using the proof assistant Isabelle/HOL and the Hybrid package as pre-

sented in Chapter 3. For the purpose of this presentation, the term object logic (OL)

will refer to Mini-ML with references.

The purpose of the case study was to explore the issues that arise with different

specification logics and encoding styles. Although the size and composition of the

formal proofs are compared in Chapter 10, it should be kept in mind that the for-

malizations were not done independently – rather, each was built as a modification of

the previous one. Additionally, some simplifications and adjustments for consistency

were made after all of the formalizations were complete.

As in the presentation of Hybrid in Chapter 3, we omit most of the proofs and

some technical lemmas. The later chapters will refer to the earlier ones for the parts

of the formalization that were reused. Also, the earlier formalizations are presented

in somewhat greater detail than the later ones.

All five formalizations represented OL terms as Hybrid terms of type expr .

Hybrid was not directly involved in the encoding of judgments, however some of
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the arguments of those judgments were Hybrid terms, and some of the formalizations

used specification logics supporting quantification over Hybrid terms.

The first version of the formalization used a one-level approach, where OL

judgments are represented directly by Isabelle/HOL predicates, with explicit contexts

where necessary. This was reasonably straightforward, and provides a baseline against

which the later versions can be compared.

All the remaining versions used the two-level approach [19, 21, 20, 49], in which

a specification logic (SL) is encoded in Isabelle/HOL and OL judgments are repre-

sented as SL atoms. They differ in two respects: the particular SL used, and which

judgments are actually encoded in the SL (with the others remaining as Isabelle/HOL

predicates).

Three different specification logics were used. The first is a minimal version of

intuitionistic logic with a backchaining rule [46, § 5.1], previously used in Hybrid in

[49, § 4.1] and [21, § 4.1]. It was used for the formalization in Chapter 6, representing

typing for functions using a hypothetical judgment. Evaluation was represented at

the meta-level as in Chapter 5.

The second specification logic [46, § 5.2] combines intuitionistic and linear logic

by the use of two separate contexts. It was used in two formalizations, in Chapters

7 and 8. The first one represents typing for reference cells in the SL context, while

reusing the representation of evaluation at the meta-level. The second also represents

evaluation as an SL predicate, with the values of reference cells in the SL context.

Although these formalizations use the same specification logic, its formalization is

different in Chapter 8 to support induction on the height of SL derivations.

The third specification logic adds a third context with ordered logic features

[65, 66]. It is similar to the SL used in [21, § 5.1], except that the latter omits

the linear context. It was used for the formalization in Chapter 9, which encodes

continuations in the SL’s ordered context as in [21, § 5.3], and otherwise follows the

same approach as Chapter 8.
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In this and the following chapters, the term “formal” will be reserved for machine-

checked proof, i.e., the content of Isabelle/HOL theory files. Ordinary mathematical

specifications such as those of Chapter 4 may be called “informal” by contrast, even

when they might normally be considered “formal systems”.

Every definition, lemma, and theorem stated in these chapters is formalized in

the corresponding Isabelle/HOL theory file, and these files are available online [45].

5.1 Syntax

The one-level formalization described here is quite close to the informal presentation

in Chapter 4, so this chapter is heavy on formal proof text, many of the general issues

having already been addressed.

We used as a starting point an Isabelle/HOL theory called mlLang.thy [67],

provided by Alberto Momigliano in a personal communication, which formalized

subject reduction for a fragment of Mini-ML using an intuitionistic specification

logic. We follow the general approach to representing syntax used in previous work

on Hybrid.

Most of the Mini-ML syntactic classes will be represented using Hybrid terms.

Each syntactic class will be given its own type name, and the use of these type names

will specify the intended syntactic classes of variables, function and predicate argu-

ments, etc. But Hybrid is untyped, so these type names will actually be abbreviations

for a single underlying type, con expr .

Functions and predicates will not, in general, constrain their arguments to the

appropriate syntactic classes. The statements of lemmas and theorems will be re-

sponsible for constraining Hybrid variables to the appropriate syntactic classes where

necessary. However, the straightforward definitions of predicates tend to provide

some constraints, which will be exploited to prove lemmas and theorems without ex-

plicit syntactic constraints – indeed, without ever defining formal syntactic validity
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predicates (but see the discussion following Definitions 5.2 and 5.20). As long as all

variables are universally quantified, it would be trivial to prove properly-constrained

corollaries, given the predicates needed to state them.

The type con is set up with the constants needed for all of the syntactic classes:

Definition 5.1 (Constants for Hybrid)

datatype con = c eZero
∣∣ c eSuc

∣∣ c ePred
∣∣ . . .

∣∣ c fNew

There is a constant for each construct in Definitions 5.2 and 5.5–5.7, named by

prefixing the name of the construct with c . The names of the constructs themselves

start with a lowercase letter indicating the syntactic class. (The letter f is used for

answers, rather than w as in Chapter 4.)

Definition 5.2 (Expressions)

types

exp = con expr

constdefs

eZero, eTrue, eFalse, eUnit :: exp

eZero ≡ CON c eZero (others similar)

eSuc, ePred, eIsZero, eFst, eSnd, eRef, eDeref :: exp ⇒ exp

eSuc n ≡ CON c eSuc $$ n (others similar)

eApp, ePair, eAssign ::
[
exp, exp

]
⇒ exp

eApp f x ≡ CON c eApp $$ f $$ x (notation f $ x)

ePair x y ≡ CON c ePair $$ x $$ y (eAssign similar)

eIfThen ::
[
exp, exp, exp

]
⇒ exp

eIfThen c tt ff ≡ CON c eIfThen $$ c $$ tt $$ ff

eFn, eFix ::
(
exp ⇒ exp

)
⇒ exp

eFn F ≡ CON c eFn $$ LAM F (notation fn x. F x)

eFix F ≡ CON c eFix $$ LAM F (notation fix f. F f)

eLetv ::
[
exp, exp ⇒ exp

]
⇒ exp

eLetv v F ≡ CON c eLetv $$ v $$ LAM F

eCell :: cell ⇒ exp

eCell c ≡ CON c eCell $$ c
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Each construct of Mini-ML is represented by its corresponding Hybrid constant,

joined by Hybrid’s $$ operator with the representations of its immediate subterms.

Variable binding (e.g., for eFn) is done using HOAS in the form of Hybrid’s LAM.

Values do not have their own representation, instead being treated as a special case of

expressions. However, the case ref c from Definition 4.1 is renamed eCell. (Isabelle/

HOL supports overloading, but it could not be used here, because the argument types

cell and exp are really the same type.)

Isabelle’s mixfix and binder annotations are used to provide a more familiar

syntax for functions: infix $ for application (eApp), and an fn binder for abstraction

(eFn). However, because some of the automated proof methods are sensitive to η-

expansion, eFn is often used in preference to the fn notation in the formal proofs.

The use of different but synonymous type names for constructor arguments

has no formal significance in Isabelle/HOL, but serves to informally specify the

intended syntactic class of each argument, and thus which Hybrid terms are valid

representations of Mini-ML expressions. (Indeed, eZero etc. are constructors only in

this informal sense, as they are not exhaustive for the type exp = con expr .)

Definition 5.3

syntax

eLet ::
[
exp, exp ⇒ exp

]
⇒ exp

eLetrec ::
[
exp ⇒ exp, exp ⇒ exp

]
⇒ exp

translations

eLet x F ≡ (eFn F) $ x

eLetrec E F ≡ (eFn F) $ (eFix E)

As a simplification, the “let” and “let rec” constructs are represented as derived

constructs, using Isabelle/HOL abbreviations, rather than as constructors for exp.

They are intended to be equivalent to the corresponding constructs defined in Chap-

ter 4, although this was not proved. This approach avoids the need for separate cases

in the encoding of evaluation and in the subsequent proofs.
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Definition 5.4 (Locations)

types

cell = con expr

No constructors are defined for cell , nor will the predicates encoding evaluation,

etc. impose any constraints on what Hybrid expressions can be used as locations. For

the formalization it is enough that a countable infinity of locations are available, since

Mini-ML’s operations on references do not reveal their representation.

Definition 5.5 (Continuations)

types

cont = con expr

constdefs

kCons, kApp ::
[
exp ⇒ exp, cont

]
⇒ cont

kCons E k ≡ CON c kCons $$ LAM E $$ k (kApp similar)

kArg, kPair1, kPair2, kAssign1 ::
[
exp, cont

]
⇒ cont

kArg e k ≡ CON c kArg $$ e $$ k (others similar)

kPred, kIsZero, kFst, kSnd, kRef, kDeref :: cont ⇒ cont

kPred k ≡ CON c kPred $$ k (others similar)

kIfThen ::
[
exp, exp, cont

]
⇒ cont

kIfThen tt ff k ≡ CON c kIfThen $$ tt $$ ff $$ k

kAssign2 ::
[
cell , cont

]
⇒ cont

kAssign2 c k ≡ CON c kAssign2 $$ c $$ k

kDone :: cont

kDone ≡ CON c kDone

As in Chapter 4, a continuation is a stack that holds operations whose execution

has been deferred while their arguments are being evaluated. However, it is not

represented as a list of function expressions. Instead there is a specific constructor

for each evaluation rule that adds an operation to the continuation. (These will be

explained further when the evaluation judgment is formalized.)



5.1. Syntax 113

Definition 5.6 (States)

types

state = con expr

constdefs

sNil :: state

sNil ≡ CON c sNil

sCons ::
[
cell , exp, state

]
⇒ state

sCons c v s ≡ CON c sCons $$ c $$ v $$ s

A state is a mapping from locations to values, represented as an association list

built out of Hybrid terms. The use of Hybrid terms, rather than a list or function

type (which would otherwise be more convenient), allows locations to be bound by

fNew as defined below.

Definition 5.7 (Answers)

types

final = con expr

constdefs

fVal ::
[
state, exp

]
⇒ final

fVal s v ≡ CON c fVal $$ s $$ v

fNew ::
[
cell ⇒ final

]
⇒ final

fNew F ≡ CON c fNew $$ LAM F

The representation of answers again uses HOAS for variable binding, this time

for location variables. Note that location variables can be distinguished from program

variables by the contexts where they occur.

Since multiple Hybrid constructors are needed to represent a single Mini-ML

construct, induction over Hybrid terms will visit subterms that do not represent

Mini-ML terms. This is awkward to deal with in proofs. Fortunately, induction over

terms is not required in the proof of subject reduction. As future work, the consistent

use of CON, $$, and LAM should make it possible to derive an alternate induction rule

that visits only the intended subterms, without specifically tailoring it for Mini-ML.
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The types of Mini-ML do not use bound variables, so unlike the other syntactic

classes which share the type of Hybrid expressions, they are represented as an Isabelle/

HOL datatype.

Definition 5.8 (Types)

datatype tp = tNat
∣∣ tBool

∣∣ tUnit
∣∣ tPair tp tp

∣∣ tFun tp tp
∣∣ tRef tp

This definition corresponds case-by-case to Definition 4.3, with infix notations

replaced by named (prefix) constructors.

Typing contexts (Γ, Definition 4.4) are represented in two parts, C :: (exp ×

tp) set and D :: (cell × tp) set , the latter also being used alone to represent store

typings (∆, Definition 4.8). C and D are intended to assign types to program variables

and location variables respectively. But since these variables will be represented in

HOAS style as universally quantified terms of types exp and cell , the Isabelle/HOL

types of C and D must allow them to specify Mini-ML types for arbitrary expressions

and locations. (Indeed, for arbitrary Hybrid terms, since Hybrid is untyped.)

The use of sets eliminates irrelevant distinctions of order and multiplicity, and

allows the use of Isabelle/HOL’s many built-in lemmas and tools for set reasoning.

5.2 Auxiliary predicates

Definition 5.9 (s fresh)

inductive s fresh ::
[
cell , state

]
⇒ bool

where s fresh Nil I : s fresh c′ sNil∣∣ s fresh Cons I :
q

c′ 6= c; s fresh c′ s
y

=⇒ s fresh c′ (sCons c v s)

(s fresh c s) is true when the cell c does not already occur in the state s. It is

used to choose a new cell when evaluating eRef.

Definition 5.10 (s func)

inductive s func :: state ⇒ bool

where s func Nil I : s func sNil
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∣∣ s func Cons I :
q

s fresh c s; s func s
y

=⇒ s func (sCons c v s)

(s func s) is true when the state s contains at most one occurrence of any given

cell. This should be true of any valid state.

Definition 5.11 (s lookup)

inductive s lookup ::
[
state, cell , exp

]
⇒ bool

where s lookup Cons I1 : s lookup (sCons c v s) c v∣∣ s lookup Cons I2 : s lookup s c v =⇒ s lookup (sCons c′ v′ s) c v

(s lookup s c v) is true when the state s contains the pair (c, v). It is used in

evaluating eDeref.

Definition 5.12 (s assign)

inductive s assign ::
[
state, cell , exp, state

]
⇒ bool

where s assign Cons I1 : s assign (sCons c v s) c v′ (sCons c v′ s)∣∣ s assign Cons I2 : s assign s c v s′ =⇒ s assign (sCons c′ v′ s) c v (sCons c′ v′ s′)

(s assign s c v′ s′) is true when the state s contains a pair (c, v) for some v :: exp,

and s′ is formed by replacing v with v′ in that pair. It is used in evaluating eAssign.

Definition 5.13 (D fresh)

constdefs D fresh ::
[
cell , (cell × tp) set

]
⇒ bool

D fresh c D ≡ ∀ t. (c, t) /∈ D

(D fresh c D) is true when the location c does not occur in the store typing D.

Definition 5.14 (D func)

constdefs D func :: (cell × tp) set ⇒ bool

D func D ≡ ∀ c t t′. (c, t) ∈ D ∧ (c, t′) ∈ D −→ t = t′

(D func D) is true when the store typing D associates at most one type with

each location. This should be true of any valid store typing.

Several basic properties are proved, which are sufficient to manipulate states and

store typings for the purpose of subject reduction. (It might be easier if states were
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represented using Isabelle/HOL’s list type, or a function type, but that would not

allow locations to be HOAS bound variables.)

Lemma 5.15 (Properties of s fresh)

s fresh lookup E:
q

s fresh c s; ¬ P =⇒ s lookup s c v
y

=⇒ P

s lookup Cons func E:
q

s lookup (sCons c′ v′ s) c v; ¬ P =⇒ s func (sCons c′ v′ s);

J c = c′; v = v′ K =⇒ P; J c 6= c′; s lookup s c v; s func s K =⇒ P
y

=⇒ P

The lemma s fresh lookup E allows the elimination of cases with the contradic-

tory assumptions that a location is fresh for a state, and that it is found in that state.

The lemma s lookup Cons func E is a stronger elimination rule for s lookup in the

case of valid states (satisfying s func).

Lemma 5.16 (Properties of s assign)

s fresh assign E:
q

s fresh c s; ¬ P =⇒ s assign s c v s′
y

=⇒ P

s assign Cons func E:
q

s assign (sCons c′ v′ s) c v s′; ¬ P =⇒ s func (sCons c′ v′ s);

J c = c′; s′ = sCons c v s K =⇒ P;∧
s′′. J c 6= c′; s′ = sCons c′ v′ s′′; s assign s c v s′′; s func s K =⇒ P

y
=⇒ P

s assign fresh:

s assign s c v s′ =⇒ s fresh c′ s′ = s fresh c′ s

s assign func:

s assign s c v s′ =⇒ s func s′ = s func s

The lemmas s fresh assign E and s assign Cons func E are analogous to the

lemmas for s lookup above, while s assign fresh and s assign func state that the

predicates s fresh and s func are invariant under assignment of new values to reference

cells.
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Lemma 5.17 (Properties of D fresh)

D fresh I :

∀ t. (c, t) /∈ D =⇒ D fresh c D

D fresh empty I :

D fresh c ∅
D fresh insert I :

q
c 6= c′; D fresh c D

y
=⇒ D fresh c

(
D ∪ {(c′, t)}

)
D fresh E:

q
D fresh c D; ∀ t. (c, t) /∈ D =⇒ P

y
=⇒ P

D fresh E1:
q

D fresh c D; ¬ P =⇒ (c, t) ∈ D
y

=⇒ P

D fresh insert E:
q

D fresh c
(
D ∪ {(c′, t)}

)
; J c 6= c′; D fresh c D K =⇒ P

y
=⇒ P

These lemmas provide natural-deduction-style introduction and elimination rules

for D fresh, which are more convenient in Isabelle/HOL proofs than unfolding the

definition every time.

Lemma 5.18 (Properties of D func)

D func empty I :

D func ∅
D func insert I :

q
D fresh c D; D func D

y
=⇒ D func

(
D ∪ {(c, t)}

)
These two lemmas provide introduction rules for D func.

This collection of lemmas represents only those properties that were actually

needed; they are not intended as a complete axiomatization of the auxiliary predicates.

5.3 Evaluation

The evaluation judgment S . K ` e ↪→ w defined in Table 4.2 is represented by two

inductively defined predicates: (eval s k e w) and (cont s k v w). The rules for eval
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are named with an ev prefix, while the rules for cont have an op prefix, replacing

the single prefix ex used for the informal rules.

The first three arguments of eval and cont are considered inputs, while the

fourth (the answer w) is considered an output. Evaluation statements will be viewed

operationally, i.e., as resulting from a logic- programming-style proof search, starting

from a conclusion with w unknown and working backwards using the inference rules

to construct a derivation and determine the answer. The evaluation rules are written

using reversed implication arrows (⇐=) to fit this viewpoint.

The answer (if any) is uniquely determined by the inputs, and is syntactically

valid if the inputs are. However, these properties were not proved.

Definition 5.19 (eval, cont)

inductive eval ::
[
state, cont , exp, final

]
⇒ bool

where ev Zero I : eval s k eZero w ⇐= cont s k eZero w∣∣ ev Suc I : eval s k (eSuc e) w ⇐= eval s (kCons (λ v. eSuc v) k) e w∣∣ ev Pred I : eval s k (ePred e) w ⇐= eval s (kPred k) e w∣∣ ev IsZero I : eval s k (eIsZero e) w ⇐= eval s (kIsZero k) e w∣∣ ev True I : eval s k eTrue w ⇐= cont s k eTrue w∣∣ ev False I : eval s k eFalse w ⇐= cont s k eFalse w∣∣ ev IfThen I : eval s k (eIfThen c tt ff) w ⇐= eval s (kIfThen tt ff k) c w∣∣ ev Unit I : eval s k eUnit w ⇐= cont s k eUnit w∣∣ ev Pair I : eval s k (ePair x y) w ⇐= eval s (kPair1 y k) x w∣∣ ev Fst I : eval s k (eFst p) w ⇐= eval s (kFst k) p w∣∣ ev Snd I : eval s k (eSnd p) w ⇐= eval s (kSnd k) p w∣∣ ev App I : eval s k (f $ x) w ⇐= eval s (kArg x k) f w∣∣ ev Fn I : eval s k (eFn F) w ⇐=
q

abstr F; cont s k (eFn F) w
y∣∣ ev Fix I : eval s k (eFix F) w ⇐=

q
abstr F; eval s k (F (eFix F)) w

y∣∣ ev Letv I : eval s k (eLetv v F) w ⇐=
q

abstr F; eval s k (F v) w
y∣∣ ev Ref I : eval s k (eRef e) w ⇐= eval s (kRef k) e w∣∣ ev Deref I : eval s k (eDeref e) w ⇐= eval s (kDeref k) e w∣∣ ev Assign I : eval s k (eAssign m e) w ⇐= eval s (kAssign1 e k) m w∣∣ ev Cell I : eval s k (eCell c) w ⇐= cont s k (eCell c) w
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and cont ::
[
state, cont , exp, final

]
⇒ bool

where op Cons I : cont s (kCons E k) v w ⇐=
q

abstr E; cont s k (E v) w
y∣∣ op Arg I : cont s (kArg x k) (eFn F) w ⇐=

q
abstr F; eval s (kApp F k) x w

y∣∣ op App I : cont s (kApp E k) v w ⇐=
q

abstr E; eval s k (E v) w
y∣∣ op Pred I1 : cont s (kPred k) eZero w ⇐= cont s k eZero w∣∣ op Pred I2 : cont s (kPred k) (eSuc v) w ⇐= cont s k v w∣∣ op IsZero I1 : cont s (kIsZero k) eZero w ⇐= cont s k eTrue w∣∣ op IsZero I2 : cont s (kIsZero k) (eSuc v) w ⇐= cont s k eFalse w∣∣ op IfThen I1 : cont s (kIfThen tt ff k) eTrue w ⇐= eval s k tt w∣∣ op IfThen I2 : cont s (kIfThen tt ff k) eFalse w ⇐= eval s k ff w∣∣ op Pair1 I : cont s (kPair1 y k) v w ⇐= eval s (kPair2 v k) y w∣∣ op Pair2 I : cont s (kPair2 v k) v′ w ⇐= cont s k (ePair v v′) w∣∣ op Fst I : cont s (kFst k) (ePair v v′) w ⇐= cont s k v w∣∣ op Snd I : cont s (kSnd k) (ePair v v′) w ⇐= cont s k v′ w∣∣ op Ref I : cont s (kRef k) v (fNew W)

⇐=
q

abstr W;
∧

c. s fresh c s =⇒ cont (sCons c v s) k (eCell c) (W c)
y∣∣ op Deref I : cont s (kDeref k) (eCell c) w ⇐=

q
s lookup s c v; cont s k v w

y∣∣ op Assign1 I : cont s (kAssign1 e k) (eCell c) w ⇐= eval s (kAssign2 c k) e w∣∣ op Assign2 I : cont s (kAssign2 c k) v w ⇐=
q

s assign s c v s′; cont s′ k v w
y∣∣ op Done I : cont s kDone v (fVal s v)

During the development of the formalization, an inductively defined predicate val

was set up to recognize values. However, none of the evaluation rules (nor any other

part of the formal theory) made use of it. Instead, they assume that an expression

needs to be evaluated if passed to eval, while it is already a value if passed to

cont. The latter is maintained as an invariant. On the other hand, when a value

is substituted for a variable in an expression (e.g., in op App I), the fact that it is a

value is forgotten, and it goes through the evaluation process again. That would be

unacceptably inefficient behaviour in an implementation of Mini-ML, but since the

end result is unchanged, it is not a problem for operational semantics.

In Chapter 4, primitives and functions from e are placed on the continuation while

their arguments are evaluated, then brought back into e by the rule ex return, where
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another rule actually performs the operation. Here, after the arguments are evaluated

by eval, the cont predicate takes over and immediately performs an operation taken

from the end of the continuation, without bringing it back into e.

Each rule for eval applies to expressions built with a particular constructor, and

is named correspondingly. The rules can be divided into several groups, according to

how they correspond to the informal rules from Table 4.2:

Constants (ev Zero I, ev True I, ev False I, ev Unit I)

These rules just convert eval to cont, since the constants are already values.

(There were no rules for constants in Table 4.2.)

Other syntactic values (ev Cell I, ev Fn I)

Memory references and lambda-abstractions are treated the same as constants,

passing them immediately to cont. The latter rule has an abstr condition, as

usual for Hybrid’s HOAS.

Evaluating arguments (ev Suc I, ev Pred I, ev IsZero I, ev IfThen I, ev Pair I,

ev Fst I, ev Snd I, ev App I, ev Ref I, ev Deref I, ev Assign I)

These rules work much like the corresponding rules from Table 4.2, passing one

argument to eval as the expression to be evaluated and saving its context (in-

cluding any other arguments) to the continuation. However, the saved context

is represented using a specific constructor from Definition 5.5, rather than as

a function expression. The one exception is ev Suc I, which uses the kCons

constructor that does take a function expression (see op Cons I below).

Immediate substitutions (ev Fix I, ev Letv I)

These rules are identical in behaviour to the corresponding rules from Table 4.2,

substituting an expression for a variable and passing the result back to eval,

except that the variable binding is represented using Hybrid’s HOAS.
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Each rule for cont applies to continuations built with a particular constructor,

and is named correspondingly. Once again, they correspond to informal rules from

Table 4.2 in several different ways:

Substitution (op Cons I, op App I)

These rules are similar to ex return, substituting the value into a function,

except that here it is not a function expression but just the body of such an

expression in its HOAS representation as a term of type exp ⇒ exp. The former

rule passes the result to cont, the latter to eval. However, most instances of

ex return are folded into other rules, as described below.

Evaluating further arguments (op Arg I, op Pair1 I, op Assign1 I)

These rules combine ex return with a rule to evaluate the next argument of

an operation. That argument is taken from the continuation and passed to eval

as the expression to be evaluated, while the just-evaluated value is saved to the

continuation using a different constructor.

Performing an operation (op Pred I1, op Pred I2, op IsZero I1, op IsZero I2,

op IfThen I1, op IfThen I2, op Pair2 I, op Fst I, op Snd I, op Deref I,

op Assign2 I)

These rules combine ex return with a rule that actually performs an operation.

Where the result is known to be a value, it is passed to cont; otherwise, it is

passed to eval.

The rules op Deref I and op Assign2 I make use of auxiliary predicates defined

earlier (s lookup and s assign) to manipulate the state.

Memory allocation (op Ref I)

This rule also performs an operation, but its formalization is somewhat trickier

than the others. It passes (eCell c) to cont, for a universally quantified cell c, and
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assigns the just-evaluated value to c in the state. It then abstracts c from the

answer obtained under the universal quantifier, bringing it outside as a function

W :: cell ⇒ final that is passed to fNew, producing a HOAS representation of

a bound location variable.

This use of universal quantification is a HOAS technique that represents free

location variables as Isabelle/HOL variables. The actual representation of the

type cell is never used directly. It is only necessary that there are infinitely

many distinct values of that type, so that there will be an instantiation of c

with a fresh location.

It is also possible to instantiate c with locations that already occur in the state;

such instances are excluded by the s fresh condition. An invariant is maintained

that any location occurring in the continuation, the current value, or a value in

a memory cell must also occur in the state; this ensures that such locations are

also excluded.

As future work, it should be possible to modify the definitions of s lookup and

s assign, without changing their values on states satisfying s func, so that they

are preserved by (possibly non-injective) substitutions on location variables.

This property would extend by induction to eval and cont, and the s fresh

condition could then be dropped as the non-fresh instances would be harmless.

Finishing up (op Done I)

This rule is identical in behaviour to ex init, packaging the final state and

value as the result of evaluation.

5.4 Typing judgments

The typing judgment Γ ` e : τ for expressions, defined in Table 4.1, is represented

by an inductively defined predicate (ofe C D e t). As explained in Section 5.1, the
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typing context Γ is split into two parts C and D, for program variables and location

variables respectively.

Definition 5.20 (ofe)

inductive ofe ::
[

(exp × tp) set , (cell × tp) set , exp, tp
]
⇒ bool

where ofe Context I : ofe C D x t ⇐= (x, t) ∈ C∣∣ ofe Zero I : ofe C D eZero tNat∣∣ ofe Suc I : ofe C D (eSuc e) tNat ⇐= ofe C D e tNat∣∣ ofe Pred I : ofe C D (ePred e) tNat ⇐= ofe C D e tNat∣∣ ofe IsZero I : ofe C D (eIsZero e) tBool ⇐= ofe C D e tNat∣∣ ofe True I : ofe C D eTrue tBool∣∣ ofe False I : ofe C D eFalse tBool∣∣ ofe IfThen I : ofe C D (eIfThen c tt ff) t

⇐=
q

ofe C D c tBool; ofe C D tt t; ofe C D ff t
y∣∣ ofe Unit I : ofe C D eUnit tUnit∣∣ ofe Pair I : ofe C D (ePair x y) (tPair t s) ⇐=

q
ofe C D x t; ofe C D y s

y∣∣ ofe Fst I : ofe C D (eFst p) t ⇐= ofe C D p (tPair t s)∣∣ ofe Snd I : ofe C D (eSnd p) s ⇐= ofe C D p (tPair t s)∣∣ ofe App I : ofe C D (f $ x) s ⇐=
q

ofe C D f (tFun t s); ofe C D x t
y∣∣ ofe Fn I : ofe C D (eFn F) (tFun t s)

⇐=
q

abstr F;
∧

x. ofe
(
C ∪ {(x, t)}

)
D (F x) s

y∣∣ ofe Fix I : ofe C D (eFix F) t

⇐=
q

abstr F;
∧

x. ofe
(
C ∪ {(x, t)}

)
D (F x) t

y∣∣ ofe Letv I : ofe C D (eLetv v F) t ⇐=
q

abstr F; ofe C D (F v) t
y∣∣ ofe Ref I : ofe C D (eRef e) (tRef t) ⇐= ofe C D e t∣∣ ofe Deref I : ofe C D (eDeref m) t ⇐= ofe C D m (tRef t)∣∣ ofe Assign I : ofe C D (eAssign m e) t ⇐=

q
ofe C D m (tRef t); ofe C D e t

y∣∣ ofe Cell I : ofe C D (eCell c) (tRef t) ⇐= (c, t) ∈ D

Most of these rules are semantically identical to the corresponding rules from Ta-

ble 4.1. The rule ofe Context I generalizes ofe id by allowing arbitrary expressions

in place of program variables, and the rule ofe Letv I includes an abstr condition for

its HOAS representation of a bound variable.
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The most significant differences are found in the rules ofe Fn I and ofe Fix I.

The corresponding rules ofe lam and ofe fix from Table 4.1 added a program

variable and its type to the typing context. Here, the variable is represented by a

universally quantified expression. (There is also an abstr condition as for ofe Letv I.)

This is similar to the HOAS technique used for op Ref I, with the added benefit that

the instances can be used to type the results of certain substitutions that will occur

in Corollary 5.27.

It would be convenient to verify that the Hybrid term e :: exp fits the syntax

of a Mini-ML expression while type-checking it. However, the predicate ofe fails to

do so in two cases. One is ofe Letv I, which converts (eLetv v F) to (F v) without

checking that v actually represents a Mini-ML value or even an expression – for

example, v could be (c ePair $$ eZero) and F could be (λ v. v $$ eZero). The other

is ofe Context I, which deliberately does no checking so that ofe Fn I and ofe Fix I

can use a simple universal quantification over exp.

The remaining typing judgments will also fail to verify syntactic validity, but only

because of their dependence on ofe. As possible future work, relatively minor changes

to the definition of ofe should allow all four typing judgments to imply syntactic

validity of their subjects. However, for the purpose of subject reduction, this is not

needed. (The problem of checking eLetv-expressions, at least, will be addressed in a

later formalization in Definitions 7.9 and 7.10.)

The typing judgment Γ ` K : τ1 → τ2 for continuations, defined in Table 4.3, is

formalized as an inductively defined predicate (ofk C D k t r), in which the typing

context Γ is split as before into C and D. While the form of the judgment corresponds

to that of Table 4.3, though, the typing rules are quite different, as explained below.

Definition 5.21 (ofk)

inductive ofk ::
[

(exp × tp) set , (cell × tp) set , cont , tp, tp
]
⇒ bool

where ofk Cons I : ofk C D (kCons E k) t r

⇐=
q

abstr E; ofe C D (eFn E) (tFun t s); ofk C D k s r
y
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∣∣ ofk Arg I : ofk C D (kArg x k) (tFun t s) r ⇐=
q

ofe C D x t; ofk C D k s r
y∣∣ ofk App I : ofk C D (kApp E k) t r

⇐=
q

abstr E; ofe C D (eFn E) (tFun t s); ofk C D k s r
y∣∣ ofk Pred I : ofk C D (kPred k) tNat r ⇐= ofk C D k tNat r∣∣ ofk IsZero I : ofk C D (kIsZero k) tNat r ⇐= ofk C D k tBool r∣∣ ofk IfThen I : ofk C D (kIfThen tt ff k) tBool r

⇐=
q

ofe C D tt t; ofe C D ff t; ofk C D k t r
y∣∣ ofk Pair1 I : ofk C D (kPair1 y k) t r ⇐=

q
ofe C D y s; ofk C D k (tPair t s) r

y∣∣ ofk Pair2 I : ofk C D (kPair2 v k) s r ⇐=
q

ofe C D v t; ofk C D k (tPair t s) r
y∣∣ ofk Fst I : ofk C D (kFst k) (tPair t s) r ⇐= ofk C D k t r∣∣ ofk Snd I : ofk C D (kSnd k) (tPair t s) r ⇐= ofk C D k s r∣∣ ofk Ref I : ofk C D (kRef k) t r ⇐= ofk C D k (tRef t) r∣∣ ofk Deref I : ofk C D (kDeref k) (tRef t) r ⇐= ofk C D k t r∣∣ ofk Assign1 I : ofk C D (kAssign1 e k) (tRef t) r

⇐=
q

ofe C D e t; ofk C D k t r
y∣∣ ofk Assign2 I : ofk C D (kAssign2 c k) t r ⇐=

q
(c, t) ∈ D; ofk C D k t r

y∣∣ ofk Done I : ofk C D kDone r r

The rules ofk Cons I and ofk App I both correspond to ofk func, the difference

between kCons and kApp being irrelevant to typing, while ofk Done I corresponds to

ofk init. However, the representation of continuations as a datatype with many

constructors (Definition 5.5) requires many corresponding rules here that did not

appear in Chapter 4. These rules combine ofk func with various typing rules for

expressions, according to the correspondence between continuation constructors and

function expressions.

For example, comparing ex pair from Table 4.2 with ev Pair I from Definition

5.19, the continuation K; λx. (x, e2) corresponds to (kPair1 y k), in which y represents

e2 and k represents K. The rule ofk Pair1 I thus represents a combination of

ofk func, ofe lam, ofe pair, and ofe id.

The typing judgment ∆ ` S : ∆′ for states is formalized as an inductively defined

predicate (ofs D s D′).
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Definition 5.22 (ofs)

inductive ofs ::
[

(cell × tp) set , state, (cell × tp) set
]
⇒ bool

where ofs Nil I : ofs D sNil ∅∣∣ ofs Cons I : ofs D (sCons c v s)
(
D′ ∪ {(c, t)}

)
⇐=

q
ofs D s D′; s fresh c s; D fresh c D′; ofe ∅ D v t

y

These rules match the informal ones of Table 4.3 exactly, except for the addition

of the freshness conditions (s fresh c s) and (D fresh c D′). Those conditions were

implicit in the syntax in Chapter 4, but it is convenient here to fold them into ofs.

Lemma 5.23 (Basic properties of ofs)

ofs s func :

ofs D s D′ =⇒ s func s

ofs D func:

ofs D s D′ =⇒ D func D′

ofs fresh equiv :

ofs D s D′ =⇒ s fresh c s = D fresh c D′

The lemmas ofs s func and ofs D func extract the consequences of the freshness

conditions from (ofs D s D′), namely that s and D′ are both valid in the sense of having

at most one occurrence of any given location. The lemma ofs fresh equiv states that

the same locations are found (or not found) in s and D′.

The typing judgment ∆ ` w : τ for answers is formalized as an inductively

defined predicate (off C D w t), in which a context C of types for program variables

has been added for more generality.

Definition 5.24 (off)

inductive off ::
[

(exp × tp) set , (cell × tp) set , final , tp
]
⇒ bool

where off Val I : off C D (fVal s v) t ⇐=
q

ofs D s D; ofe C D v t
y∣∣ off New I: off C D (fNew W) t

⇐=
q

abstr W;
∧

c. D fresh c D

=⇒ off C
(
D ∪ {(c, t′)}

)
(W c) t

y
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The rule off Val I matches off loc from Table 4.3, while off New I represents

off new using the same HOAS treatment of location variables that was used for

op Ref I in Definition 5.19.

5.5 Semantic lemmas

Lemma 5.25 (Weakening properties)

ofe C weakening :

assumes ofe C D e t

shows
∧

C′. C 6 C′ =⇒ ofe C′ D e t

ofe D weakening :

assumes ofe C D e t

shows
∧

D′. D 6 D′ =⇒ ofe C D′ e t

ofk D weakening :

assumes ofk C D k t s

shows
∧

D′. D 6 D′ =⇒ ofk C D′ k t s

ofs D weakening :

assumes ofs D s D′

shows
∧

D′′. D 6 D′′ =⇒ ofs D′′ s D′

These four lemmas show that adding elements to the contexts C and D does

not invalidate typing statements. They are analogous to the weakening property in

a sequent calculus. Weakening of C is used in proving the substitution property

described below, while weakening of D is needed to carry typing statements through

the allocation of a memory cell with op Ref I.

Lemma 5.26

ofe cut :

assumes ofe
(
C ∪ {(x, s)}

)
D e t and ofe C D x s

shows ofe C D e t

The lemma ofe cut shows that an element (x, s) of the typing context (a typing

assumption) may be dropped, strengthening the typing statement, if the expression
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x has type s in the resulting, smaller context. (It is named by analogy with the cut

rule in a sequent calculus, which will take its place in the two-level formalizations to

follow.)

Proof. The conclusion is derived starting from a derivation of the first premise

by removing the typing assumption (x, s) throughout, replacing each use of that

assumption (via the axiom ofe Context I) with a derivation of the second premise,

weakened as necessary.

More formally, we let Cx =
(
C ∪ {(x, s)}

)
, and proceed by induction on the first

premise, (ofe Cx D e t) (see Definition 5.20):

Case ofe Context I: In this case we have (e, t) ∈ Cx. If (e, t) ∈ C, then the con-

clusion may likewise be derived by ofe Context I. Otherwise we must have

(e, t) = (x, s), and the conclusion is identical to the second premise.

Case ofe Fn I: Here e is of the form eFn F where F :: exp ⇒ exp and abstr F, t is

of the form (tFun t1 t2) where t1, t2 :: tp, and the induction hypothesis is∧
y C′.

q (
Cx ∪ {(y, t1)}

)
=

(
C′ ∪ {(x, s)}

)
; ofe C′ D x s

y
=⇒ ofe C′ D (F y) t2.

Let y :: exp be arbitrary, and Cy =
(
C ∪ {(y, t1)}

)
. We have

(
Cx ∪ {(y, t1)}

)
=(

Cy ∪ {(x, s)}
)
. We also have (ofe Cy D x s) by ofe C weakening (Lemma 5.25)

applied to the second premise. Instantiating C′ with Cy in the induction hy-

pothesis, we deduce (ofe Cy D (F y) t2). Finally, we generalize y and apply the

rule ofe Fn I to conclude (ofe C D e t) as required.

Case ofe Fix I: This case is similar to ofe Fn I, except that t is not of the form

(tFun t1 t2), and the other occurrences of t1 and t2 are replaced with t.

The remaining cases are proved trivially by induction, in each case applying the

IH and then the same rule as the case being considered. 2
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Corollary 5.27

ofe subst :
q

ofe ∅ D (eFn F) (tFun t s); ofe ∅ D e t
y

=⇒ ofe ∅ D (F e) s

Proof. Inverting Definition 5.20, the first premise must have been derived by ofe Fn I:

the other rules give types for constructs other than eFn, except ofe Context I which

does not apply here because the typing context for program variables is empty.

Thus, we must have
(
ofe {(x, t)} D (F x) s

)
for all x :: exp. Instantiating x

with e, and then applying the lemma ofe cut (with the second premise) to remove

(e, t) from the typing context, yields the desired conclusion (ofe ∅ D (F e) s). 2

The corollary ofe subst shows that substituting an expression of type t for the

bound variable in the body of a function of type (tFun t s) yields a well-typed

expression of type s. This is what is needed for type safety of β-reduction.

The proof illustrates an advantage of the HOAS encoding used for the typing

rule ofe Fn I: we were able to obtain a typing statement for the result of β-reduction

merely by instantiating a premise of that rule, with no need to explicitly reason about

the substitution of a value for a variable in an expression.

It also illustrates a limitation of this encoding style: we must not allow a non-

empty typing context C, because the generalized premise
(
ofe C D (eFn F) (tFun t s)

)
could be derived by ofe Context I, and in that case the conclusion would not follow.

However, since evaluation never proceeds under an fn binder (where the typing rules

would generate a non-empty context), the less-general form is sufficient for proving

type safety.

Lemma 5.28 (s lookup ofs)
q

s lookup s c v; ofs D s D′; (c, t) ∈ D′ y =⇒ ofe C D v t

The lemma s lookup ofs proves what is needed for type safety of a dereference

operation. That is, if we have a well-typed state s under a store typing D′, in which

location c has type t, then the value v found at location c is indeed well-typed with
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type t. This lemma is used only with D = D′, but the stronger statement is needed

for proof by induction on the ofs premise. (It is also used only with C = ∅, and there

is no real need for the more general statement with arbitrary C.)

Lemma 5.29 (s assign ofs)
q

s assign s c v s′; ofs D s D′; (c, t) ∈ D′; ofe ∅ D v t
y

=⇒ ofs D s′ D′

The lemma s assign ofs proves what is needed for type safety of an assignment

operation. That is, if we start with a well-typed state s under a store typing D′, in

which location c has type t, and we assign a value v of type t to c to obtain a new

state s′, then s′ is again well-typed under the same store typing D′. Again we will

have D = D′ in use, the stronger statement being needed for induction.

5.6 Subject reduction

Theorem 5.30

subjRed:
q

eval s k e w; ofs D s D; ofe ∅ D e t; ofk ∅ D k t r
y

=⇒ off ∅ D w r

Proof. By induction on eval and cont (Definition 5.19), together with a corresponding

property for cont:
q

cont s k v w; ofs D s D; ofe ∅ D v t; ofk ∅ D k t r
y

=⇒ off ∅ D w r

Case ev Suc I: In this case e is of the form (eSuc e′) for some e′ :: exp, and our

induction hypothesis is the original statement for eval with e 7→ e′ and k 7→

(kCons (λ x. eSuc x) k):∧
D t.

q
ofs D s D; ofe ∅ D e′ t;

ofk ∅ D (kCons (λ x. eSuc x) k) t r
y

=⇒ off ∅ D w r

Its first premise is already available as the original ofs premise.

Inverting Definition 5.20, the ofe premise, (ofe ∅ D (eSuc e′) t), must have been

derived by ofe Suc I; so we have t = tNat and (ofe ∅ D e′ tNat).
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We derive the remaining premise of the induction hypothesis using the axioms

and inference rules from Definitions 5.20 (ofe) and 5.21 (ofk). For any x :: exp,

we have (ofe {(x, tNat)} D x tNat) by the axiom ofe Context I. Applying the

rule ofe Suc I, we obtain (ofe {(x, tNat)} D (eSuc x) tNat). Next we apply the

rule ofe Fn I, using the fact abstr (λ x. eSuc x), to obtain

(ofe ∅ D (fn x. eSuc x) (tFun tNat tNat)).

Finally, we apply the rule ofk Cons I to the latter statement, the same abstr

fact, and the ofk premise to deduce
(
ofk ∅ D (kCons (λ x. eSuc x) k) tNat r

)
.

The conclusion, (off ∅ D w r), follows by induction.

Case ev Fix I: Here e is of the form (eFix F) where F :: exp ⇒ exp and (abstr F),

and our induction hypothesis is the original statement for eval with e 7→

(F (eFix F)).

By inversion, the ofe premise, (ofe ∅ D (eFix F) t), must have been derived by

ofe Fix I, so we have
(
ofe {(x, t)} D (F x) t

)
for all x :: exp. We instantiate

x with (eFix F) to obtain
(
ofe {(eFix F, t)} D (F (eFix F)) t

)
. Using the

ofe premise a second time, we eliminate the typing assumption (eFix F, t) via

ofe cut (Lemma 5.26) to obtain
(
ofe ∅ D (F (eFix F)) t

)
.

Since the remaining premises of the IH are the original ofs and ofk premises,

the conclusion follows by induction.

Case op Cons I: Here k is of the form (kCons E k′) where E :: exp ⇒ exp, (abstr E),

and k′ :: cont . Our induction hypothesis is the original statement for cont with

k 7→ k′ and v 7→ (E v).

Inverting Definition 5.21, the ofk premise, (ofk ∅ D (kCons E k′) t r), must

have been derived by ofk Cons I, which means there exists t′ :: tp such that

(ofe ∅ D (eFn E) (tFun t t′)) and (ofk ∅ D k′ t′ r). We combine the former with
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the ofe premise using ofe subst (Corollary 5.27) to obtain (ofe ∅ D (E v) t′).

The conclusion then follows by induction.

Case op App I: This case is similar to op Cons I.

Case op Ref I: Here k is of the form (kRef k′) where k′ :: cont , and w is of the form

(fNew W) where W :: cell ⇒ final and (abstr W). Our induction hypothesis is

the original statement for cont with s 7→ (sCons c v s), k 7→ k′, v 7→ (eCell c),

and w 7→ (W c), for any c :: cell satisfying (s fresh c s):∧
c D t.

q
s fresh c s; ofs D (sCons c v s) D;

ofe ∅ D (eCell c) t; ofk ∅ D k′ t r
y

=⇒ off ∅ D (W c) r

Let c be an arbitrary location satisfying (D fresh c D), and let s′ = (sCons c v s)

and D′ =
(
D ∪ {(c, t)}

)
. By ofs fresh equiv (Lemma 5.23), using the ofs

premise, c also satisfies (s fresh c s).

Using the weakening properties from Lemma 5.25, we obtain (ofe ∅ D′ v t) from

the ofe premise (via ofe D weakening) and (ofs D′ s D) from the ofs premise (via

ofs D weakening). We then apply the rule ofs Cons I (from Definition 5.22)

to give (ofs D′ s′ D′), in which all three arguments include c. (The freshness

assumptions are needed here.)

By inversion, the ofk premise, (ofk ∅ D (kRef k′) t r), must have been derived

by ofk Ref I and we have (ofk ∅ D k′ (tRef t) r). Via ofk D weakening, this

becomes (ofk ∅ D′ k′ (tRef t) r).

We have (ofe ∅ D′ (eCell c) (tRef t)) by the axiom ofe Cell I. We apply the

induction hypothesis, instantiating D with D′ and t with (tRef t), to obtain

(off ∅ D′ (W c) r).

Finally, we generalize c and apply the rule off New I (from Definition 5.24),

which also needs (abstr W), to deduce the required conclusion

(off ∅ D (fNew W) r).
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The remaining cases are straightforward combinations of inversion and application

of rules for ofe and ofk ending with use of the induction hypothesis, except that

op Deref I and op Assign2 I need the lemmas s lookup ofs (Lemma 5.28) and

s assign ofs (Lemma 5.29) respectively.

All cases except op Ref I were proved automatically by Isabelle/HOL, using a

single automatic proof method except for specifying the needed lemmas for the cases

op Deref I and op Assign2 I. 2



Chapter 6

Case Study: Two-level Approach

The first two-level formalization was done using a minimal intuitionistic specification

logic. This specification logic was based on the one from mlLang.thy [67], with some

small changes for better notation and proof automation.

Typing and evaluation judgments often include logical features, such as the use of

contexts, that are not specific to the language they formalize. The idea of the two-level

approach is to provide these features generically in the form of a specification logic

(SL) in which particular object languages (OLs) can be encoded. Useful properties

of the specification logic, such as derivability of a cut rule (which can be used to

prove substitution properties for the OL), can be proved once and reused for many

formalizations.

In this case, the main objective of using an intuitionistic SL is to represent

typing contexts for program variables as logical assumptions. This change is intended

to simplify the typing judgments, and allow some of the OL-specific lemmas of the

previous chapter to be generalized to (reusable) properties of the SL. The results will

be discussed following the definitions of the typing judgments.

For this and subsequent chapters, the term “meta-level” will refer to Isabelle/

HOL, as distinguished from the specification logic. (Isabelle/HOL is itself a two-level

134
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system built on top of Isabelle/Pure, but that will not be relevant here.) The term

“object language” (OL) will refer to the language being formalized, i.e., Mini-ML

with mutable references.

This formalization was constructed by modifying the one-level formalization from

Chapter 5. The parts of the formal theory described in sections 5.1 (Syntax), 5.2

(Auxiliary predicates), and 5.3 (Evaluation) were reused without modification, except

for the representation of typing assumptions for program variables in Section 5.1,

which will be replaced by an SL representation in Section 6.2.

6.1 Specification logic

The specification logic is presented in a form optimized for proof search, with neither

structural rules nor a cut rule as primitives. Instead, the logic’s structural properties

are built into its axiom rule, and then the structural rules and cut rule are established

as derived rules.

The type prp represents logical formulas.

Definition 6.1 (SL formulas)

datatype a prp =

at a (notation 〈A〉)∣∣ true (notation >)∣∣ conj (a prp) (a prp) (notation B & C)∣∣ imp a (a prp) (notation A ⊃ B)∣∣ forall (exp ⇒ a prp) (notation all x. B)

The connectives of the specification logic consist of a truth constant (>), con-

junction (B & C), implication (A ⊃ B) with an atomic premise, and universal quan-

tification (all x. B) over Hybrid terms (intended to represent Mini-ML expressions).

The type parameter a is the type of atomic formulas, which will be defined later as
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a datatype with one constructor for each judgment to be represented in the SL. The

constructor at (〈 〉) coerces atomic formulas to propositions.

Universal quantification is represented in HOAS style as a constructor forall

with an argument of the functional type (exp ⇒ a prp). Unlike Hybrid’s LAM ::

((a expr ⇒ a expr) ⇒ a expr) with its negative occurrence of the type to be defined,

the form of HOAS used here is not so problematic and can be used in an Isabelle/

HOL datatype.

The lack of Hybrid’s abstr requirement means that the function argument of forall

need not treat its exp argument generically, so it can represent infinite conjunctions,

not just universal quantifications. However, in this formalization, all the functions

actually used with forall will treat their arguments generically, so this potential extra

expressive power is never used. As future work, another formalization could be

attempted with SL formulas (and maybe even derivations) represented as Hybrid

terms, and compared with this one.

The rules of the specification logic are given in the form of a sequent calculus.

This consists of a predicate SL entails relating a context (a list of atoms) to a conclu-

sion (a formula). (Note that there is no real distinction between sequent calculus and

natural deduction here, because there are neither left rules nor elimination rules.)

Definition 6.2 (SL sequent rules)

class atm = type + fixes prog ::
[
a, a prp

]
⇒ bool (notation A ← B)

inductive SL entails ::
[

(a :: atm) list , a prp
]
⇒ bool (notation Γ ` B)

where bc: Γ ` 〈A〉 ⇐=
q

A ← β; Γ ` β
y∣∣ ax: Γ ` 〈A〉 ⇐= A mem Γ∣∣ true i : Γ ` >∣∣ conj i : Γ ` B & C ⇐=

q
Γ ` B; Γ ` C

y∣∣ imp i : Γ ` A ⊃ B ⇐= (A # Γ ` B)∣∣ all i : Γ ` all x. B x ⇐= (
∧

x. Γ ` B x)

Truth (>) is provable by axiom, while the rule for conjunction (B & C) takes the

two conjuncts (in the same context) as premises, as expected. The rule for implication
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(A ⊃ B) takes B as its premise, in a context augmented with A. The rule for universal

quantification (all x. B x) takes as premises (B e) for all Hybrid terms e :: exp, where

“for all” means universal quantification at the meta-level. This could be thought of

as a form of HOAS, or simply as treating the SL’s universal quantifier as an infinite

conjunction.1

The predicate SL entails converts an SL formula and context, which are objects

of Isabelle/HOL, to a statement of Isabelle/HOL expressing SL provability of the

formula in the context. This allows reasoning about specification-logic statements in

the logic of Isabelle/HOL, including mixed SL and meta-level reasoning.

Atomic formulas are proved either by assumption from the context (using the

rule ax), or by “backchaining” (using the rule bc). The latter rule supports logic-

programming-style recursive specification of object-logic judgments using a predicate

prog ::
[
atm, prp

]
⇒ bool (notation A ← B), which is supplied by instantiating the

type class atm. The use of Isabelle/HOL definition mechanisms for prog makes the

SL surprisingly flexible, with the ability to simulate some connectives that do not

appear in Definition 6.1. Some examples of this flexibility will be seen when prog is

actually defined for Mini-ML judgments, specifically in Definition 6.7.

This style of specification logic has been used in previous work with Hybrid

[19, 21, 20], and it goes back to McDowell and Miller’s work in FOλ∆N [46, 47]. As

compared with [21], our Definition 6.1 corresponds to the syntax of goals, and our

Definition 6.2 includes both the syntax of contexts (represented here as lists) and

the sequent rules. However, we do not fix a syntax for clauses to be followed in the

definition of prog; instead we allow the full use of Isabelle/HOL definition mechanisms.

We do not include a natural-number argument as an induction measure, as the

specification of SL statements as an inductively defined predicate already provides a

1Note that the SL’s universal quantifier is not used to represent an object-level universal quanti-
fier, but rather as part of the HOAS representation of certain typing rules (ofe Fn I and ofe Fix I)
in Definition 6.7.
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form of structural induction, which we will use in Section 6.3.

Lemma 6.3 (Structural properties)

SL structural :
q

G ` B; ∀ a. a mem G −→ a mem D
y

=⇒ D ` B

SL weakening 1: G ` B =⇒ a # G ` B

The lemma SL structural represents the usual three structural properties of in-

tuitionistic sequent calculus: exchange, weakening, and contraction. These proper-

ties allow permuting formulas, inserting additional formulas, and removing duplicate

formulas in the context of a sequent, respectively. They are combined here in the

requirement that every assumption appearing in the original sequent appears also in

the new sequent. The lemma SL weakening 1 is the weakening property alone, in a

form that is not the most general but will be convenient for later proofs.

Lemma 6.4

SL cut :
q

A # G ` B; G ` 〈A〉
y

=⇒ G ` B

The lemma SL cut allows an atomic formula to be dropped from the context of

a sequent if it can be proved in the SL from the rest of the context. It corresponds

to the “cut-elimination” property of sequent calculi with a primitive cut rule. It is

proved by replacing uses of the eliminated assumption A in the first premise with a

derivation of the second premise, similarly to Lemma 5.26. (The fact that the context

consists of atomic formulas greatly simplifies the proof.)

This lemma is closely connected with substitution properties such as Corollary

5.27; indeed, if explicit proof terms were defined for the specification logic, it would

become a substitution property itself.

Lemma 6.5 (Simplifier rules)

SL true simp: G ` > = True

SL conj simp: G ` B & C = (G ` B ∧ G ` C)

SL all simp: G ` all x. B x = (∀ x. G ` B x)

SL imp simp: G ` A ⊃ B = (A # G ` B)
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These lemmas combine the SL’s logical rules (i.e., the introduction rules for

SL entails) with their corresponding elimination rules in the form of equalities, for

use as rewrite rules by Isabelle’s simplifier. They are added to Isabelle’s default

simpset, and the intro/elim rules are added to the default claset, so that Isabelle’s

automatic proof methods can be used to reason in the SL.

Specification-level vs. meta-level representation

For each object-language judgment, there is a choice of whether to represent it in the

specification logic, or directly as a meta-level predicate. If it is represented in the

SL, then it can make use of the SL context and the general properties stated above;

examples of these advantages will be seen later in this chapter. However, there are

also some disadvantages: notational overhead, the need to combine the definitions

into prog, harder-to-use induction rules, more unsafe intro/elim rules, etc.

Therefore, as a general guiding principle, if a particular judgment doesn’t have

a clear reason to be represented in the SL, then it should be represented at the meta-

level instead. In this case study, following that principle has the additional benefit of

testing the ability to mix SL and meta-level reasoning.

Similar considerations apply to Hybrid, perhaps even to a greater extent, since

it provides forms of HOAS that otherwise would not work in Isabelle/HOL, yet it is

untyped and lacks a good induction principle. This is why Hybrid was not used to

represent SL formulas (or derivations) despite their use of HOAS.

Future work on reducing the disadvantages could shift the balance toward using

specification logics (and Hybrid) more often.
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6.2 Typing judgments

The typing judgments for expressions and continuations are represented as predicates

of the SL, so the type of atomic formulas must have two corresponding constructors.

Definition 6.6

datatype atm =

Ofe ((cell × tp) set) exp tp∣∣ Ofk ((cell × tp) set) cont tp tp

The representation of typing contexts differs from Chapter 5 for program vari-

ables, whose types are given here by Ofe atoms in the SL context, replacing the

explicit context argument C :: ((exp × tp) set) used in that chapter. For location

variables, the context argument D :: ((cell × tp) set) from Chapter 5 is retained, and

is used in SL atoms as well as meta-level predicates. The variables themselves are

still represented as universally-quantified terms of types exp and cell .

An alternative will be seen in Chapters 7 to 9, where D is replaced with atoms

in the SL context as well. That could be done in this chapter’s intuitionistic SL also.

However, this SL can express only monotonic constraints on its context, due to the

weakening property (Lemma 6.3); e.g., an SL formula cannot express the fact that the

context is empty, because any formula that is provable in the empty context is also

provable in every other context by weakening. Since the typing judgment for states is

not monotonic in its store-typing argument, it could not then be represented as an SL

atom; so a meta-level predicate would have to be used instead, yet the store-typing

argument would still be an SL context. Meta-level predicates on SL contexts will be

seen in the following chapters (as “context invariants”), but they are a complicating

factor, and for that reason D was kept as an explicit argument in this formalization.

The type class atm from Definition 6.2 is instantiated for the type atm by

supplying a prog predicate for that type. The rules for all atomic formulas must

be given by this one predicate; however, for readability its definition will be split up
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into two parts, representing the two typing judgments encoded in the SL. A trivial

(base cases only) inductive definition is used, because that is more convenient than

a direct definition using disjunction and existential quantification.

Definition 6.7 (Specification of SL atoms, part 1 – Ofe)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where ofe Zero I : Ofe D eZero tNat ← >∣∣ ofe Suc I : Ofe D (eSuc e) tNat ← 〈Ofe D e tNat〉∣∣ ofe Pred I : Ofe D (ePred e) tNat ← 〈Ofe D e tNat〉∣∣ ofe IsZero I : Ofe D (eIsZero e) tBool ← 〈Ofe D e tNat〉∣∣ ofe True I : Ofe D eTrue tBool ← >∣∣ ofe False I : Ofe D eFalse tBool ← >∣∣ ofe IfThen I : Ofe D (eIfThen c tt ff) t

← 〈Ofe D c tBool〉 & 〈Ofe D tt t〉 & 〈Ofe D ff t〉∣∣ ofe Unit I : Ofe D eUnit tUnit ← >∣∣ ofe Pair I : Ofe D (ePair x y) (tPair t s) ← 〈Ofe D x t〉 & 〈Ofe D y s〉∣∣ ofe Fst I : Ofe D (eFst p) t ← 〈Ofe D p (tPair t s)〉∣∣ ofe Snd I : Ofe D (eSnd p) s ← 〈Ofe D p (tPair t s)〉∣∣ ofe App I : Ofe D (f $ x) s ← 〈Ofe D f (tFun t s)〉 & 〈Ofe D x t〉∣∣ ofe Fn I : Ofe D (eFn F) (tFun t s)

← all x. Ofe D x t ⊃ 〈Ofe D (F x) s〉 ⇐= abstr F∣∣ ofe Fix I : Ofe D (eFix F) t

← all x. Ofe D x t ⊃ 〈Ofe D (F x) t〉 ⇐= abstr F∣∣ ofe Letv I : Ofe D (eLetv v F) t ← 〈Ofe D (F v) t〉 ⇐= abstr F∣∣ ofe Ref I : Ofe D (eRef e) (tRef t) ← 〈Ofe D e t〉∣∣ ofe Deref I : Ofe D (eDeref m) t ← 〈Ofe D m (tRef t)〉∣∣ ofe Assign I : Ofe D (eAssign m e) t ← 〈Ofe D m (tRef t)〉 & 〈Ofe D e t〉∣∣ ofe Cell I : Ofe D (eCell c) (tRef t) ← > ⇐= (c, t) ∈ D

Many of the typing rules for expressions are similar to those of Definition 5.20,

except that their premises are represented using SL connectives rather than Isabelle/

HOL connectives, and the context argument C giving types for program variables has

been removed.
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The main differences are in the rules that deal with program variables, namely

ofe Fn I and ofe Fix I. From an operational point of view (working backwards from

the conclusion to type-check an expression), they use an SL implication to add an

Ofe atom to the SL context, where the previous version added an element to the set

C directly. Also, the expression substituted for the program variable is universally

quantified in the SL, rather than at the meta-level. Finally, the axiom ofe Context I

has been removed, since the use of assumptions is handled at the logical level by the

axiom ax of the SL.

Several of these rules illustrate the flexibility of the SL’s backchain rule for spec-

ifying OL judgments. Meta-level premises are mixed with SL premises in ofe Fn I,

ofe Fix I, and ofe Letv I with their abstr conditions. Also, ofe Cell I has its only non-

trivial premise at the meta-level. Existential quantification over types is simulated in

ofe App I,∧
f x s t. Ofe D (f $ x) s ← 〈Ofe D f (tFun t s)〉 & 〈Ofe D x t〉,

where the variable t :: tp appears only in the premises, allowing it to be instantiated

arbitrarily without changing the conclusion.

Definition 6.8 (Specification of SL atoms, part 2 – Ofk)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)∣∣ ofk Cons I : Ofk D (kCons E k) t r

← 〈Ofe D (eFn E) (tFun t s)〉 & 〈Ofk D k s r〉 ⇐= abstr E∣∣ ofk Arg I : Ofk D (kArg x k) (tFun t s) r ← 〈Ofe D x t〉 & 〈Ofk D k s r〉∣∣ ofk App I : Ofk D (kApp E k) t r

← 〈Ofe D (eFn E) (tFun t s)〉 & 〈Ofk D k s r〉 ⇐= abstr E∣∣ ofk Pred I : Ofk D (kPred k) tNat r ← 〈Ofk D k tNat r〉∣∣ ofk IsZero I : Ofk D (kIsZero k) tNat r ← 〈Ofk D k tBool r〉∣∣ ofk IfThen I : Ofk D (kIfThen tt ff k) tBool r

← 〈Ofe D tt t〉 & 〈Ofe D ff t〉 & 〈Ofk D k t r〉∣∣ ofk Pair1 I : Ofk D (kPair1 y k) t r ← 〈Ofe D y s〉 & 〈Ofk D k (tPair t s) r〉∣∣ ofk Pair2 I : Ofk D (kPair2 v k) s r ← 〈Ofe D v t〉 & 〈Ofk D k (tPair t s) r〉
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∣∣ ofk Fst I : Ofk D (kFst k) (tPair t s) r ← 〈Ofk D k t r〉∣∣ ofk Snd I : Ofk D (kSnd k) (tPair t s) r ← 〈Ofk D k s r〉∣∣ ofk Ref I : Ofk D (kRef k) t r ← 〈Ofk D k (tRef t) r〉∣∣ ofk Deref I : Ofk D (kDeref k) (tRef t) r ← 〈Ofk D k t r〉∣∣ ofk Assign1 I : Ofk D (kAssign1 e k) (tRef t) r ← 〈Ofe D e t〉 & 〈Ofk D k t r〉∣∣ ofk Assign2 I : Ofk D (kAssign2 c k) t r ← 〈Ofk D k t r〉 ⇐= (c, t) ∈ D∣∣ ofk Done I : Ofk D kDone r r ← >

All of the typing rules for continuations match those of Definition 5.21 except that

their premises are represented using SL atoms and connectives rather than predicates

and Isabelle/HOL connectives.

The typing judgment for states only requires a store typing, not a typing context

for program variables. Thus, following the general principle stated in Section 6.1,

in this formalization it is represented at the meta-level as an inductively defined

predicate (ofs D s D′).

Definition 6.9

inductive ofs ::
[

(cell × tp) set , state, (cell × tp) set
]
⇒ bool

where ofs Nil I : ofs D sNil ∅∣∣ ofs Cons I : ofs D (sCons c v s)
(
D′ ∪ {(c, t)}

)
⇐=

q
ofs D s D′; s fresh c s; D fresh c D′; · ` 〈Ofe D v t〉

y

The typing rules for states are almost the same as those of Definition 5.22,

except that the premise of ofs Cons I that involves typing of an expression is now

an SL sequent. The basic properties of ofs from Lemma 5.23 were reused without

modification, including their mostly-automatic proof methods, despite this change to

the definition.

The typing judgment for answers is represented as an inductively defined pred-

icate (off D w t). Unlike Definition 5.24, it does not have a typing context for

program variables.
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Definition 6.10

inductive off ::
[

(cell × tp) set , final , tp
]
⇒ bool

where off Val I : off D (fVal s v) t ⇐=
q

ofs D s D; · ` 〈Ofe D v t〉
y∣∣ off New I: off D (fNew W) t

⇐=
q

abstr W;
∧

c. D fresh c D

=⇒ off
(
D ∪ {(c, t′)}

)
(W c) t

y

Other than the removal of the first argument C, the typing rules for answers differ

from those of Definition 5.24 only in that the expression-typing premise of off Val I

is now an SL sequent.

The typing judgment for answers in Chapter 5 did have a typing context for

program variables. That suggests that it should be represented in the SL. However,

its ofs premise would create a dependency loop, since ofs depends on SL entails which

depends in turn on prog. In a sense it would be a spurious one, because ofs really

depends only on Ofe and Ofk; but Isabelle/HOL cannot track dependencies inside the

SL.

One solution would be to put typing of states into the SL, even though it does

not make use of any SL features. This does not cause any additional problems,

indeed, it is possible to define a corresponding meta-level predicate equivalent to ofs

from Definition 6.9. However, off was never used with a nonempty typing context for

program variables in Chapter 5, so it is simpler just to remove that context and keep

the judgment at the meta-level. (Alternative approaches will be seen in Chapter 8.)

6.3 Semantic lemmas and subject reduction

Essentially the same properties are needed here as in the previous formalization, but

the use of a specification logic brings both advantages and disadvantages.
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Lemma 6.11 (Substitution in Mini-ML functions)

ofe subst :
q
· `

〈
Ofe D (eFn F) (tFun t s)

〉
; G ` 〈Ofe D e t〉

y
=⇒ G ` 〈Ofe D (F e) s〉

The substitution property ofe subst is an easy corollary of SL cut (Lemma 6.4),

which is reusable for other object logics.

Of the weakening properties from Lemma 5.25, ofe C weakening requires no

OL-specific counterpart here, as typing assumptions for program variables are just

logical assumptions in the SL. Either SL structural or its corollary SL weakening 1

can be used directly. This is an advantage of the two-level approach for OLs that

have contexts of assumptions.

On the other hand, we still have store typings as arguments of the typing judg-

ments, and the op Ref I case of subject reduction will require weakening properties

for them. However, the typing judgments for expressions and continuations are now

represented in the SL, so we must replace the mostly-automatic induction proofs from

the one-level formalization with a tricky induction on SL entails. (An alternative ap-

proach that simplifies the proofs somewhat will be seen in Chapter 8, and compared

with this approach.)

In particular, the desired statements must be strengthened for induction to a

property of arbitrary sequents, and that requires defining new functions or relations to

relate the premise to the weakened conclusion, where Lemma 5.25 could use D 6 D′.

Definition 6.12 (Weakening functions)

fun D weaken atm ::
[

(cell × tp) set , atm
]
⇒ atm

where D weaken atm D′ (Ofe D e t) = Ofe (D ∪ D′) e t∣∣ D weaken atm D′ (Ofk D k t r) = Ofk (D ∪ D′) k t r

definition D weaken list D′ ≡ map (D weaken atm D′)

consts D weaken prp ::
[

(cell × tp) set , atm prp
]
⇒ atm prp

primrec

D weaken prp D′ 〈A〉 = 〈D weaken atm D′ A〉
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D weaken prp D′ > = >
D weaken prp D′ (B & C) = (D weaken prp D′ B & D weaken prp D′ C)

D weaken prp D′ (A ⊃ B) = (D weaken atm D′ A ⊃ D weaken prp D′ B)

D weaken prp D′ (forall F) = (all x. D weaken prp D′ (F x))

The functions D weaken atm, D weaken list, and D weaken prp replace the store

typing argument of each occurrence of Ofe or Ofk with its union with a given set D′,

in an SL atom, a list of atoms, or an SL proposition respectively.

Lemma 6.13 (Weakening properties)

SL D weakening :

assumes Γ ` B shows D weaken list D′ Γ ` D weaken prp D′ B

ofe D weakening :

assumes · ` 〈Ofe D e t〉 and D 6 D′ shows · ` 〈Ofe D′ e t〉
ofk D weakening :

assumes · ` 〈Ofk D k t r〉 and D 6 D′ shows · ` 〈Ofk D′ k t r〉
ofs D weakening :

assumes ofs D s D′ and D 6 D′′ shows ofs D′′ s D′

The lemma SL D weakening is the strengthened weakening property that is

proved by induction on SL entails. The lemmas ofe D weakening and ofk D weakening

are its corollaries, corresponding to the lemmas of the same name in Chapter 5. The

lemma ofs D weakening, which does not refer to the SL, is unchanged from Chap-

ter 5.

Lemma 6.14 (s lookup ofs)
q

s lookup s c v; ofs D s D′; (c, t) ∈ D′ y =⇒ · ` 〈Ofe D v t〉

Lemma 6.15 (s assign ofs)
q

s assign s c v s′; ofs D s D′; (c, t) ∈ D′; · ` 〈Ofe D v t〉
y

=⇒ ofs D s′ D′

The lemmas s lookup ofs and s assign ofs correspond directly to the lemmas

of the same name in Chapter 5, with the only difference being the representation of

typing for expressions.
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Theorem 6.16 (Subject reduction)
q

eval s k e w; ofs D s D; · ` 〈Ofk D k t r〉; · ` 〈Ofe D e t〉
y

=⇒ off D w r

Proof. By induction on eval and cont (as in Theorem 5.30), where the corresponding

property for cont is

q
cont s k v w; ofs D s D; · ` 〈Ofk D k t r〉; · ` 〈Ofe D v t〉

y
=⇒ off D w r.

Case op Ref I: In this case, k is of the form (kRef k′) where k′ :: cont , w is of

the form (fNew W) where W :: cell ⇒ final and (abstr W), and our induction

hypothesis is∧
c D t.

q
s fresh c s; ofs D (sCons c v s) D;

· ` 〈Ofk D k′ t r〉; · ` 〈Ofe D (eCell c) t〉
y

=⇒ off ∅ D (W c) r.

The proof of this case is similar to the corresponding case from Theorem 5.30,

except that inversion now takes two steps. Starting from the Ofk premise, first

we invert SL entails (“`”, Definition 6.2) and deduce that the last SL rule used

in its derivation must be bc, and thus we must have (Ofk D (kRef k′) t r) ← B

and · ` B for some B :: prp. Then we invert prog (“←”, Definition 6.8) and

deduce that it must have been derived by ofk Ref I, so B = 〈Ofk D k′ (tRef t) r〉.

Application of rules from Definitions 6.7 and 6.8 likewise requires two steps,

first applying the SL rule bc, and then the specific typing rule in the form of

an introduction rule for prog.

These differences are hidden in the formal proof text, because the two steps

are combined into one using Isabelle/HOL’s automatic proof methods. And

otherwise the reasoning is identical to the one-level proof except for notational

differences, specifically the use of SL sequent notation for typing statements for

expressions and continuations.

The remaining cases are also similar to cases from Theorem 5.30, except that

they were all proved by automatic methods, with only three of them needing special
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treatment: a different automatic proof method was used for ev Suc I, and Lemmas

6.14 and 6.15 were given as rules for the auto method for op Deref I and op Assign2 I

respectively. 2



Chapter 7

Case Study:

Linear Specification Logic

The second two-level formalization adds linear-logic features to the specification logic.

The main objective of this change is to represent typing contexts for location variables

as logical assumptions, and represent the typing judgment for states in the SL. This

change is intended to further simplify the typing judgments and to remove some of

the complications of mixing the use of the SL context with explicit context arguments

(such as D in Definition 6.7).

This formalization was constructed by modifying the two-level formalization with

intuitionistic SL from Chapter 6. The parts of the formal theory reused there from

sections 5.1 (Syntax), 5.2 (Auxiliary predicates), and 5.3 (Evaluation) of the one-level

formalization, were again reused without modification.

7.1 Specification logic

The specification logic presented here is from [46, § 5.2], except that as we did in

Section 7.1, we allow an arbitrary Isabelle/HOL definition for prog in place of a specific

149
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syntax of clauses, and we omit the natural-number argument used as an induction

measure. We also include a multiplicative conjunction and truth constant, which

deviates somewhat from the logic-programming style usually used in specification

logics.

The type of logical formulas, prp, extends Definition 6.1 with new connectives:

Definition 7.1

datatype a prp =

at a (notation 〈A〉)∣∣ ttA (notation >)∣∣ ttM (notation 1)∣∣ conjA (a prp) (a prp) (notation B & C)∣∣ conjM (a prp) (a prp) (notation B ⊗ C)∣∣ impJ a (a prp) (notation A ⊃ B)∣∣ impL a (a prp) (notation A ( B)∣∣ forall (exp ⇒ a prp) (notation all x. B)

The linear SL has two truth constants (> and 1), two conjunctions (& and ⊗),

and two implications (⊃ and (). The differences between them will be explained

along with the corresponding rules. The universal quantifier (all) is not duplicated.

SL statements are expressed using a predicate SL entails on SL formulas that

has two context arguments, an intuitionistic context Γ and a linear context ∆, both

of type (a :: atm) list . The former will admit the usual structural rules of exchange,

weakening, and contraction, while the latter will admit only an exchange rule. (It

will sometimes be convenient to refer to Γ and ∆ together as “the context”.)

The purpose of having two contexts is to support both intuitionistic specification

as in Chapter 6 and specification using linear-logic features, and to allow them to

be combined without the need for “modal” connectives as used in some variants of

linear logic.
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Definition 7.2 (SL sequent rules)

class atm = type + fixes prog ::
[
a, a prp

]
⇒ bool (notation A ← B)

inductive SL entails ::
[

(a :: atm) list , a list , a prp
]
⇒ bool

(notation Γ, ∆ ` B)

where bc: Γ, ∆ ` 〈A〉 ⇐=
q

A ← B; Γ, ∆ ` B
y∣∣ axJ: Γ, · ` 〈A〉 ⇐= A ∈ set Γ∣∣ axL: Γ, [ A ] ` 〈A〉∣∣ ttA i : Γ, ∆ ` >∣∣ ttM i : Γ, · ` 1∣∣ conjA i : Γ, ∆ ` B & C ⇐=

q
Γ, ∆ ` B; Γ, ∆ ` C

y∣∣ conjM i : Γ, ∆ ` B ⊗ C ⇐=
q

Γ, ∆L ` B; Γ, ∆R ` C;

mset ∆L + mset ∆R = mset ∆
y∣∣ impJ i : Γ, ∆ ` A ⊃ B ⇐= A # Γ, ∆ ` B∣∣ impL i : Γ, ∆ ` A ( B ⇐= Γ, A # ∆ ` B∣∣ all i : Γ, ∆ ` all x. B x ⇐= (

∧
x. Γ, ∆ ` B x)

There are two new distinctions in the linear SL as compared with the intuitionistic

SL of Chapter 6, which are responsible for the splitting of connectives and rules. The

first affects rules that directly involve the context (ax and imp i): it is necessary to

specify which context to use, intutionistic or linear, and this is indicated by a suffix

of J or L respectively.

The second distinction affects rules that have more than one premise (conj i)

or no premises (tt i). The linear context can either be treated additively, requiring

all premises and the conclusion to agree, or multiplicatively, allowing the premises to

have separate linear contexts and merging them for the conclusion (with duplicates

retained). (See Girard, [26].) This distinction is indicated by suffixes of A or M.

The rules for backchaining (bc) and universal quantification (all i) are affected

by neither distinction, so they are reused from Definition 6.2 with the only change

being the use of two context arguments for each SL statement.

As in Chapter 6, the desired structural properties are built into the axiom rules.

This means that those rules allow arbitrary formulas in the intuitionistic context (in
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addition to the formula A in the case of axJ), but require the linear context to be

empty for axJ and to consist of the single atomic formula A for axL.

The additive vs. multiplicative distinction could be applied also to the intutionis-

tic context, but the intended structural properties would make it irrelevant. However,

to avoid the need for explicit structural rules, that context is always treated addi-

tively (as it was in Chapter 6). For the same reason, the rule conjM i builds in the

exchange property by using a multiset equality rather than a list equality to merge

the linear contexts from the premises.

When the linear context ∆ is empty, it will usually be omitted.

Lemma 7.3

SL structural :
q

Γ, ∆ ` B; set Γ ⊆ set Γ′; mset ∆ = mset ∆′ y =⇒ Γ′, ∆′ ` B

The lemma SL structural proves that the SL as defined here achieves the in-

tended structural properties stated prior to Definition 7.2: exchange, weakening, and

contraction for Γ, and exchange for ∆. All of these properties are combined in the

set inclusion and multiset equality premises of the lemma.

The intuitionistic vs. linear distiction applies to the (derived) cut rule as well,

so we have two lemmas SL cutJ and SL cutL.

Lemma 7.4

SL cutJ:
q

A # Γ, ∆ ` B; Γ ` 〈A〉
y

=⇒ Γ, ∆ ` B

SL cutL:
q

Γ, A # ∆1 ` B; Γ, ∆2 ` 〈A〉;
mset ∆1 + mset ∆2 = mset ∆

y
=⇒ Γ, ∆ ` B

In the case of a cut on a formula in the intuitionistic context (SL cutJ), that

formula should be provable from the remaining formulas in the intuitionistic context,

with an empty linear context.

For a cut on a formula in the linear context (SL cutL), the proof of that formula

may have its own linear context, which is combined multiplicatively with the linear

context from the first premise (excluding the cut formula) to form the linear context
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for the conclusion. This is expressed using a multiset-equality premise that builds in

the exchange property, as it was for conjM i, to facilitate backward reasoning.

Lemma 7.5

conjA e: Γ, ∆ ` B & C =⇒ Γ, ∆ ` B Γ, ∆ ` B & C =⇒ Γ, ∆ ` C

impJ e:
q

Γ, ∆ ` A ⊃ B; Γ ` 〈A〉
y

=⇒ Γ, ∆ ` B

impL e:
q

Γ, ∆1 ` A ( B; Γ, ∆2 ` 〈A〉
y

=⇒ Γ, ∆1 @ ∆2 ` B

all e : Γ, ∆ ` all x. Bp x =⇒ Γ, ∆ ` Bp x

The lemmas and e, imp e, impL e, and all e are derived SL rules that allow

natural-deduction-style elimination for most of the SL connectives. The one omission

is the multiplicative conjunction (⊗), for which the usual approach to elimination

involves putting both conjuncts into the linear context, which is incompatible with

the restriction of contexts to atomic formulas only. (For the same reason, sequent-

style left rules cannot even be stated for this SL.)

Definition 7.6

J B = (B & 1) ⊗ >

The derived connective J is used to convert instances of intuitionistic SL pred-

icates – i.e., predicates that make no use of the linear context and expect it to be

empty – into a form that ignores the linear context. This property is formalized by

the lemma SL J simp:

Lemma 7.7 (SL J simp)

(Γ, ∆ ` J B) = (Γ ` B)

An alternative approach would be to modify the axiom axJ to allow a non-empty

linear context. Then if intuitionistic SL predicates were built using > for truth, and

not allowed to appear as assumptions in the linear context, they would ignore the

linear context by default.
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7.2 Typing judgments, etc.

In this formalization, SL atoms are used for many different predicates and context

elements. The type of atomic formulas has eight constructors, as compared with just

two (Ofe and Ofk) in Definition 6.6.

Definition 7.8

datatype atm = IsTerm exp
∣∣ Ofe exp tp

∣∣ Ofk cont tp tp
∣∣ Ofc cell tp∣∣ OfcL cell tp

∣∣ OfsL state
∣∣ OffL final tp

∣∣ OffNewL cell final tp

In accordance with the stated objective of using a linear SL, the entire typing

context is represented in the SL context, so there are no explicit context arguments.

Types for program variables are specified by Ofe atoms in the intuitionistic context,

while types for location variables are specified twice, by Ofc atoms in the intuitionistic

context and by OfcL atoms in the linear context. (These correspond to the two

occurrences of the store typing, ∆ and ∆′, in the typing judgment for states given

in Table 4.3.) Ofe is also a judgment with introduction rules, while Ofc and OfcL

are only used as context elements and have no introduction rules. These atoms (and

IsTerm, discussed after Definition 7.9) are the only ones permitted to occur in the SL

context. (The structure of SL contexts will be formalized as a context invariant in

Section 7.3.)

There is also a distinction (although it is not formalized) between the atoms with

L suffixes, which make use of the linear context, and those without such suffixes, which

are purely intuitionistic and mostly ignore the linear context. (The exception is when

such atoms appear in the intuitionistic context, in which case the linear context must

be empty to apply axJ; for this reason, sequents with these atoms on the right-hand

side will always have empty linear contexts.)

The intuitionistic representations of typing for expressions (Ofe) and continua-

tions (Ofk) are retained from Chapter 6, while the linear features of the SL are used

in typing for states (OfsL) and answers (OffL). The atom OffNewL is an auxiliary
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predicate used by OffL to relativize a universal quantification over locations. The

atom IsTerm checks syntactic validity of expressions.

Definition 7.9 (Specification of SL atoms, part 1 of 5 – Ofe)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where ofe Zero I : Ofe eZero tNat ← >∣∣ ofe Suc I : Ofe (eSuc e) tNat ← 〈Ofe e tNat〉∣∣ ofe Pred I : Ofe (ePred e) tNat ← 〈Ofe e tNat〉∣∣ ofe IsZero I : Ofe (eIsZero e) tBool ← 〈Ofe e tNat〉∣∣ ofe True I : Ofe eTrue tBool ← >∣∣ ofe False I : Ofe eFalse tBool ← >∣∣ ofe IfThen I : Ofe (eIfThen c tt ff) t

← 〈Ofe c tBool〉 & 〈Ofe tt t〉 & 〈Ofe ff t〉∣∣ ofe Unit I : Ofe eUnit tUnit ← >∣∣ ofe Pair I : Ofe (ePair x y) (tPair t s) ← 〈Ofe x t〉 & 〈Ofe y s〉∣∣ ofe Fst I : Ofe (eFst p) t ← 〈Ofe p (tPair t s)〉∣∣ ofe Snd I : Ofe (eSnd p) s ← 〈Ofe p (tPair t s)〉∣∣ ofe App I : Ofe (f $ x) s ← 〈Ofe f (tFun t s)〉 & 〈Ofe x t〉∣∣ ofe Fn I : Ofe (eFn F) (tFun t s)

← all x. Ofe x t ⊃ 〈Ofe (F x) s〉 ⇐= abstr F∣∣ ofe Fix I : Ofe (eFix F) t

← all x. Ofe x t ⊃ 〈Ofe (F x) t〉 ⇐= abstr F∣∣ ofe Letv I : Ofe (eLetv v F) t

← 〈IsTerm (eLetv v F)〉 & 〈Ofe (F v) t〉 ⇐= abstr F∣∣ ofe Ref I : Ofe (eRef e) (tRef t) ← 〈Ofe e t〉∣∣ ofe Deref I : Ofe (eDeref m) t ← 〈Ofe m (tRef t)〉∣∣ ofe Assign I : Ofe (eAssign m e) t ← 〈Ofe m (tRef t)〉 & 〈Ofe e t〉∣∣ ofe Cell I : Ofe (eCell c) (tRef t) ← 〈Ofc c t〉

The typing rules for expressions are identical to those of Definition 6.7, except for

the removal of the context argument D, the use of IsTerm in the rule ofe Letv I, and

the rule ofe Cell I which now obtains a type for the location c from the intuitionistic

context using Ofc, where the previous formalization obtained it from D.



7.2. Typing judgments, etc. 156

For this formalization, the typing judgments were set up to imply syntactic valid-

ity of their subjects, so long as the same property holds for the context. This addresses

the issue noted after Definition 5.20. In the case of ofe Letv I, an auxiliary SL pred-

icate IsTerm was needed to achieve this property, since a rule similar to ofe Fn I

(using HOAS based on Ofe atoms in the context) would reject ML-polymorphic eLetv

expressions.

Definition 7.10 (Specification of SL atoms, part 2 of 5 – IsTerm)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where isterm Ofe I : IsTerm e ← 〈Ofe e t〉∣∣ isterm App I : IsTerm (f $ x) ← 〈IsTerm f〉 & 〈IsTerm x〉∣∣ isterm Fn I : IsTerm (eFn F)

← all x. IsTerm x ⊃ 〈IsTerm (F x)〉 ⇐= abstr F∣∣ isterm Fix I : IsTerm (eFix F)

← all x. IsTerm x ⊃ 〈IsTerm (F x)〉 ⇐= abstr F∣∣ isterm Letv I : IsTerm (eLetv v F)

← 〈IsTerm v〉 & (all x. IsTerm x ⊃ 〈IsTerm (F x)〉) ⇐= abstr F∣∣ . . .

The non-HOAS inductive cases are all straightforward, and only isterm App I

is shown as a representative example. The HOAS inductive cases resemble the

corresponding cases for Ofe with types elided, except for isterm Letv I which checks

v and F separately where ofe Letv I could not.

No base cases are necessary as they are covered by isterm Ofe I. In the case of

eCell, the combination of isterm Ofe I and ofe Cell I checks the location against the

context, which excludes syntactically invalid terms such as

eLetv (eLetv eUnit (λ x. eCell x)) (λ y. eUnit),

in which a bound program variable (x) appears in a context expecting a location, but

the offending subterm is never type-checked because it is located in the first argument

of an eLetv whose bound variable (y) does not occur in its body.



7.2. Typing judgments, etc. 157

The rule isterm Ofe I is also essential for IsTerm to work properly in ofe Letv I,

where there may be universally quantified Hybrid terms with corresponding Ofe

atoms in the context, introduced by ofe Fn I or ofe Fix I and representing bound

program variables. These terms must be treated as valid expressions even though

some instances will not fit the syntax of Mini-ML expressions.

Since isterm Ofe I matches IsTerm applied to an arbitrary expression, it compli-

cates inversion of the definition. However, that kind of reasoning will not be required

for IsTerm.

An alternative approach would be to define IsTerm separately from Ofe, with its

own base cases in place of isterm Ofe I, and instead modify Ofe to represent bound

variables using both Ofe and IsTerm atoms in the context. This approach would

support simpler inversion for IsTerm; but it would not be a good choice here, since

it would instead complicate reasoning about Ofe, which will be used extensively. It

would also fail to ensure the syntactic validity of expressions that pass type-checking,

unless combined with other changes. (One sufficient change, which is planned as

future work in any case, would be to introduce a constructor for locations to eliminate

their overlap with the other syntactic classes.)

Definition 7.11 (Specification of SL atoms, part 3 of 5 – Ofk)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where ofk Cons I : Ofk (kCons E k) t r

← 〈Ofe (eFn E) (tFun t s)〉 & 〈Ofk k s r〉 ⇐= abstr E∣∣ ofk Arg I : Ofk (kArg x k) (tFun t s) r ← 〈Ofe x t〉 & 〈Ofk k s r〉∣∣ ofk App I : Ofk (kApp E k) t r

← 〈Ofe (eFn E) (tFun t s)〉 & 〈Ofk k s r〉 ⇐= abstr E∣∣ ofk Pred I : Ofk (kPred k) tNat r ← 〈Ofk k tNat r〉∣∣ ofk IsZero I : Ofk (kIsZero k) tNat r ← 〈Ofk k tBool r〉∣∣ ofk IfThen I : Ofk (kIfThen tt ff k) tBool r

← 〈Ofe tt t〉 & 〈Ofe ff t〉 & 〈Ofk k t r〉∣∣ ofk Pair1 I : Ofk (kPair1 y k) t r ← 〈Ofe y s〉 & 〈Ofk k (tPair t s) r〉∣∣ ofk Pair2 I : Ofk (kPair2 v k) s r ← 〈Ofe v t〉 & 〈Ofk k (tPair t s) r〉
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∣∣ ofk Fst I : Ofk (kFst k) (tPair t s) r ← 〈Ofk k t r〉∣∣ ofk Snd I : Ofk (kSnd k) (tPair t s) r ← 〈Ofk k s r〉∣∣ ofk Ref I : Ofk (kRef k) t r ← 〈Ofk k (tRef t) r〉∣∣ ofk Deref I : Ofk (kDeref k) (tRef t) r ← 〈Ofk k t r〉∣∣ ofk Assign1 I : Ofk (kAssign1 e k) (tRef t) r ← 〈Ofe e t〉 & 〈Ofk k t r〉∣∣ ofk Assign2 I : Ofk (kAssign2 c k) t r ← 〈Ofc c t〉 & 〈Ofk k t r〉∣∣ ofk Done I : Ofk kDone r r ← >

The typing rules for continuations are identical to those of Definition 6.8, except

for the removal of the context argument D.

Definition 7.12 (Specification of SL atoms, part 4 of 5 – OfsL)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where ofsL Nil I : OfsL sNil ← 1∣∣ ofsL Cons I : OfsL (sCons c v s)

← 〈OfcL c t〉 ⊗ (J 〈Ofe v t〉 & 〈OfsL s〉) ⇐= s fresh c s

The typing rules for states correspond to Definition 6.9, but since store typings

have been moved to the SL context, they must be manipulated using SL connectives

rather than explicit list operations – a process that is best explained from an op-

erational point of view. The multiplicative truth constant 1 serves as a base case,

requiring the linear context to be empty. For the recursive case, the multiplicative

conjunction ⊗ is used to match and remove an OfcL atom from the linear context,

while J and the additive conjunction & are used to type-check v using the intuition-

istic SL predicate Ofe without affecting the linear context.

Definition 7.13 (Specification of SL atoms, part 5 of 5 – OffL, OffNewL)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where offL Val I : OffL (fVal s v) t ← 〈OfsL s〉 & J 〈Ofe v t〉∣∣ offL New I: OffL (fNew W) t ← all c. 〈OffNewL c (W c) t〉 ⇐= abstr W∣∣ offNewL I1: OffNewL c w t ← J 〈Ofc c t′〉∣∣ offNewL I: OffNewL c w t ← (Ofc c t′ ⊃ (OfcL c t′ ( 〈OffL w t〉))
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The typing rules for answers correspond to Definition 6.10, with some complica-

tions caused by the freshness condition (D fresh c D) found there. The corresponding

condition here is that the location c does not occur in an Ofc atom in the context.

This condition must not be represented by an SL atom on the left-hand side of an

implication, since that would put it into the context, where there are no SL rules that

would allow it to function as a defined predicate.

Instead, we use a classical-logic equivalence to transform the implication from

Definition 6.10 into a disjunction with the freshness condition negated. The latter

is represented by the premise J 〈Ofc c t′〉 of offNewL I1. The derived connective J

is used to make this rule applicable regardless of the linear context, and existential

quantification of t′ is simulated by the same method used for ofe App I.

The disjunction is also simulated, by defining an auxiliary SL predicate OffNewL

with a rule for each disjunct. These rules share the same conclusion, a generic instance

of OffNewL, unlike most of the other SL predicates whose rules have disjoint patterns

as their conclusions. (This technique is another example of the flexibility of the

backchaining rule as mentioned in Section 6.1.)

The premise of offNewL I corresponds to the recursive call of off in Definition

6.10, in which an element is added to the store typing. Since the store typing is now

represented by Ofc and OfcL atoms in the SL context, adding an element is done

using SL implications.

Operationally, statements of the form Γ, ∆ ` (OffL (fNew W) t) are proved by

backwards application of the rules bc, offL New I, and all i, followed by a case dis-

tinction on whether the universally quantified location c occurs (as an atom (Ofc c t′)

for some t :: tp) in the context. The rule offNewL I1 eliminates the case where it

does occur, while the other case provides a freshness condition to be used together

with offNewL I. (This freshness condition will take the form of a predicate Ofc fresh

defined in Definition 7.17.)
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7.3 Context invariants

Since the SL context can hold arbitrary atoms, including those that represent object-

language judgments, it is essential that it be used in a controlled way. The typing

rules defined in Section 7.2 maintain particular invariants on the context, e.g., that

the linear context consists only of OfcL atoms. To prove properties of the typing

judgments, we must formalize these context invariants.

Since the evaluation strategy of our object language never evaluates under an

fn or fix binder, for the purpose of subject reduction we will not encounter contexts

containing Ofe atoms. (This is the reason why we had empty contexts in Chapter 6.)

Definition 7.14

ctxt invar Γ ∆ =

(∀ A ∈ set Γ. ctxt elt J A Γ ∆) ∧ (∀ A ∈ mset ∆. ctxt elt L A Γ ∆)

The context invariant ctxt invar is defined in terms of conditions on the individual

atoms in the context, ctxt elt J for the intuitionistic context and ctxt elt L for the

linear context. These predicates also take the entire SL context as the arguments

Γ and ∆.

Definition 7.15

ctxt elt J A Γ ∆ =

(∃ c t. A = Ofc c t ∧ Ofc mem1 c t Γ ∧ OfcL mem1 c t ∆)

ctxt elt L A Γ ∆ =

(∃ c t. A = OfcL c t ∧ Ofc mem1 c t Γ ∧ OfcL mem1 c t ∆)

Each atom in the intuitionistic context is required to be of the form Ofc c t and

to have a matching atom OfcL c t in the linear context. Similarly, each atom in the

linear context is required to be of the form OfcL c t and to have a matching Ofc atom

in the intuitionistic context. Also, each location c must occur in at most one Ofc

atom and one OfcL atom.
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The predicates Ofc mem1 and OfcL mem1 check for both the presence of an

appropriate atom and its uniqueness for the location c.

Definition 7.16

Ofc mem1 c t Γ =

Ofc c t ∈ set Γ ∧ Ofc fresh c (remove1 (Ofc c t) Γ)

OfcL mem1 c t ∆ =

OfcL c t ∈ mset ∆ ∧ OfcL fresh c (remove1 (OfcL c t) ∆)

(The function remove1 takes two arguments x :: a and L :: (a list), and its value

is the list L with the first occurrence of x, if any, removed.)

The predicate Ofc fresh serves as the freshness condition for bound location

variables introduced with fNew, as mentioned after Definition 7.13.

Definition 7.17

Ofc fresh c Γ = (∀ c′ t′. Ofc c′ t′ ∈ set Γ −→ c′ 6= c)

OfcL fresh c ∆ = (∀ c′ t′. OfcL c′ t′ ∈ mset ∆ −→ c′ 6= c)

There is a second, weaker version of the context invariant called ctxt invar1:

Definition 7.18

ctxt invar1 Γ ∆ =

(∀ A ∈ set Γ. ctxt elt J1 A Γ) ∧ (∀ A ∈ mset ∆. ctxt elt L A Γ ∆)

ctxt elt J1 A Γ =

(∃ c t. A = Ofc c t ∧ Ofc mem1 c t Γ)

It differs from ctxt invar in that Ofc atoms are not required to have matching

OfcL atoms, so the set of locations given types by the linear context may be a subset

of the locations found in the unresticted context.

This variant is needed for proving properties of Ofs, since that typing judgment

removes OfcL atoms from the context as they are checked. (The stronger version

ctxt invar is only truly necessary for the op Assign2 I case of subject reduction, which

deals with assignment of a new value to a memory cell.)



7.3. Context invariants 162

Lemma 7.19 (SL atom ctxt1 inv)
q

Γ, ∆ ` 〈A〉; ctxt invar1 Γ ∆
y

=⇒(
∃ c t. (A = Ofc c t) ∧ (Ofc mem1 c t Γ) ∧ (∆ = ·)

)
∨

(
∃ c t. (A = OfcL c t) ∧ (∆ = [ A ])

)
∨

(
∃ B. (A ← B) ∧ (Γ, ∆ ` B)

)
The lemma SL atom ctxt1 inv inverts the derivation of an atom A under the

invariant ctxt invar1. Either it was derived by axJ, in which case it must be an

Ofc atom; it was derived by axL, in which case it must be an OfcL atom; or it

was derived by bc using one of the rules for OL judgments specified by prog (←). (In

Isabelle/HOL, it is actually stated in long goal format using obtains, and represented

internally as an elimination rule.)

This is much more informative than what we could deduce without a context

invariant, since the SL allows any atom to be taken from the context, which would

defeat any attempt to deduce required premises for an OL rule.

There are three other lemmas of this kind, differing in which of the two context

invariants is assumed and in whether the linear context is included in the SL statement

to be inverted.

Lemma 7.20 (SL atom ctxt inv)
q

Γ, ∆ ` 〈A〉; ctxt invar Γ ∆
y

=⇒(
∃ c t. (A = OfcL c t) ∧ (Ofc mem1 c t Γ) ∧ (∆ = [ A ])

)
∨

(
∃ B. (A ← B) ∧ (Γ, ∆ ` B)

)
Lemma 7.21 (SL atomJ ctxt1 inv)

q
Γ ` 〈A〉; ctxt invar1 Γ ∆

y
=⇒(

∃ c t. (A = Ofc c t) ∧ (Ofc mem1 c t Γ)
)

∨
(
∃ B. (A ← B) ∧ (Γ ` B)

)
Lemma 7.22 (SL atomJ ctxt inv)

q
Γ ` 〈A〉; ctxt invar Γ ∆

y
=⇒(

∃ c t. (A = Ofc c t) ∧ (Ofc mem1 c t Γ) ∧ (OfcL mem1 c t ∆)
)

∨
(
∃ B. (A ← B) ∧ (Γ ` B)

)
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Note that in the case of SL atomJ ctxt1 inv and SL atomJ ctxt inv, the linear

context ∆ does not actually appear in the given SL statement. However, the context

invariants defined for Γ and ∆ together are still usable for such cases, and defining

additional variants without ∆ was considered an unnecessary complication.

There are a few more properties that will be needed to prove some of the semantic

lemmas: the fact that ctxt invar is stronger than ctxt invar1 (ctxt invar invar1);

downward closure of ctxt invar1 for the linear context (ctxt invar1 dc); and the

existence of an OfcL atom corresponding to each Ofc atom under the stronger invariant

(ctxt invar trans).

Lemma 7.23

ctxt invar invar1: ctxt invar Γ ∆ =⇒ ctxt invar1 Γ ∆

ctxt invar1 dc:
q

ctxt invar1 Γ ∆; mset ∆′ v mset ∆
y

=⇒ ctxt invar1 Γ ∆′

ctxt invar trans :
q

ctxt invar Γ ∆; Ofc c t ∈ set Γ
y

=⇒ OfcL c t ∈ mset ∆

It is essential to be able to build up the context invariant recursively starting from

an empty context. This could be done by unfolding the definitions, but it is much more

convenient to provide introduction rules, ctxt invar Nil I and ctxt invar Cons I:

Lemma 7.24

ctxt invar Nil I : ctxt invar · ·
ctxt invar Cons I :

q
ctxt invar Γ ∆; Ofc fresh c Γ; OfcL fresh c ∆

y

=⇒ ctxt invar (Ofc c t # Γ) (OfcL c t # ∆)

7.4 Semantic lemmas and subject reduction

Lemma 7.25 (ofe isterm)
q

Γ ` 〈Ofe e t〉; ctxt invar1 Γ ∆
y

=⇒ Γ ` 〈IsTerm e〉

The lemma ofe isterm formalizes the fact that the typing judgment for expres-

sions implies syntactic validity of its subject. It was proved using a variant of the
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technique seen in Lemma 6.13, in which auxiliary functions are used to transform

an arbitrary SL sequent, the transformation is shown to preserve SL provability by

induction on SL entails (`), and then it is applied to the SL premise of the lemma to

obtain the conclusion.

Definition 7.26

fun ofe isterm atmL :: atm ⇒ atm

where ofe isterm atmL (Ofe e t) = IsTerm e∣∣ ofe isterm atmL A = A

The function ofe isterm atmL is used to transform negative occurrences of SL

atoms. It replaces (Ofe e t) with (IsTerm e) and leaves all other atoms untouched.

Definition 7.27

fun ofe isterm atmR :: atm ⇒ atm prp

where ofe isterm atmR (IsTerm e) = 〈IsTerm e〉∣∣ ofe isterm atmR (Ofe e t) = 〈IsTerm e〉∣∣ ofe isterm atmR (Ofc c t) = 〈Ofc c t〉∣∣ ofe isterm atmR A = >

The function ofe isterm atmR is used to transform positive occurrences of SL

atoms. It replaces (Ofe e t) with (IsTerm e), retains IsTerm and Ofc atoms, and

replaces all other atoms with >.

Definition 7.28

ofe isterm list ≡ map ofe isterm atmL

The function ofe isterm list is used to transform each of the two context argu-

ments of SL entails, by applying ofe isterm atmL to each SL atom found there.

Definition 7.29

consts ofe isterm prp :: atm prp ⇒ atm prp

primrec

ofe isterm prp 〈A〉 = ofe isterm atmR A
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ofe isterm prp > = >
ofe isterm prp 1 = 1

ofe isterm prp (B & C) = ofe isterm prp B & ofe isterm prp C

ofe isterm prp (B ⊗ C) = ofe isterm prp B ⊗ ofe isterm prp C

ofe isterm prp (A ⊃ B) = ofe isterm atmL A ⊃ ofe isterm prp B

ofe isterm prp (A ( B) = ofe isterm atmL A ( ofe isterm prp B

ofe isterm prp (forall F) = forall (λ x. ofe isterm prp (F x))

The function ofe isterm prp is used to transform the SL formula to be proved.

It uses ofe isterm atmR for atoms coerced to (sub)formulas, and ofe isterm atmL for

atoms on the left-hand side of implications.

Lemma 7.30 (ofe isterm seq)

Γ, ∆ ` B =⇒ ofe isterm list Γ, ofe isterm list ∆ ` ofe isterm prp B

The lemma ofe isterm seq is a strengthened form of ofe isterm (Lemma 7.25)

that is proved by induction on SL entails. To obtain ofe isterm as a corollary,

the context-invariant premise is used to show that the context Γ is unchanged by

ofe isterm list.

As in the previous formalizations, there are also several lemmas that are useful

in the proof of subject reduction.

Lemma 7.31

ofsL s func :
q

Γ, ∆ ` 〈OfsL s〉; ctxt invar1 Γ ∆
y

=⇒ s func s

ofsL s lookup:
q

s lookup s c v; ctxt invar1 Γ ∆;

Γ, ∆ ` 〈OfsL s〉; Γ ` 〈Ofc c t〉
y

=⇒ Γ ` 〈Ofe v t〉
ofsL s assign:

q
s assign s c v s′; ctxt invar1 Γ ∆;

Γ, ∆ ` 〈OfsL s〉; OfcL c t ∈ mset ∆; Γ ` 〈Ofe v t〉
y

=⇒ Γ, ∆ ` 〈OfsL s′〉
OfsL s fresh:

q
OfcL fresh c ∆; ctxt invar1 Γ ∆; Γ, ∆ ` 〈OfsL s〉

y
=⇒ s fresh c s
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The lemmas ofsL s func and ofsL s fresh correspond to ofs s func and (the

reverse direction of) ofs fresh equiv, respectively, from Lemma 5.23. The lem-

mas ofsL s lookup and ofsL s assign correspond to Lemma 6.14 (s lookup ofs) and

Lemma 6.15 (s assign ofs) respectively. Their statements differ from the previous

versions in essentially the same ways noted for Definition 7.9.

These lemmas were proved by induction on the size of the Hybrid term s :: state,

together with inversion of SL statements under the context invariant via Lemmas

7.19–7.22. This approach involved relatively long Isar proofs, including some multiset

reasoning that was not well automated by Isabelle/HOL, as well as application of the

induction hypothesis which tends to be difficult to automate for size induction.

For ofsL s func and OfsL s fresh, the only real alternative would be induction

on SL sequents. Using the structural-induction rule provided by Isabelle/HOL for

Definition 7.2, that would mean treating every SL rule as an induction step, not

just the backchaining steps that correspond to OL rules. This would be further

complicated by the need to strengthen each lemma to a property of arbitrary sequents

(in the manner of Lemma 7.30) for the purpose of induction.

An alternative approach will be seen in Chapter 8, in which the SL is modified to

support a form of size induction for SL sequents. This will produce proofs of similar

structure and length to those by size induction on terms. Its advantage is applicability

in cases where induction on terms cannot be used, and some form of induction on SL

sequents is unavoidable (notably subject reduction in Lemma 8.20).

For ofsL s lookup and ofsL s assign, there is another option, namely induction

on the predicates s lookup and s assign respectively. This would be a reasonable

alternative and perhaps easier than size induction on s, but it was not tried.

Theorem 7.32 (Subject reduction)
q

eval s k e w; ctxt invar Γ ∆;

Γ, ∆ ` 〈OfsL s〉; Γ ` 〈Ofe e t〉; Γ ` 〈Ofk k t r〉
y

=⇒ Γ, ∆ ` 〈OffL w r〉
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Proof. By induction on eval and cont (Definition 5.19), as in Theorem 6.16, together

with a corresponding property for cont:
q

cont s k v w; ctxt invar Γ ∆;

Γ, ∆ ` 〈OfsL s〉; Γ ` 〈Ofe v t〉; Γ ` 〈Ofk k t r〉
y

=⇒ Γ, ∆ ` 〈OffL w r〉.

Case op Ref I: In this case, k is of the form (kRef k′) where k′ :: cont , w is of

the form (fNew W) where W :: cell ⇒ final and (abstr W), and our induction

hypothesis is∧
c Γ ∆ t.

q
s fresh c s; ctxt invar Γ ∆;

Γ, ∆ ` 〈OfsL (sCons c v s)〉;
Γ ` 〈Ofe (eCell c) t〉; Γ ` 〈Ofk k′ t r〉

y

=⇒ Γ, ∆ ` 〈OffL (W c) r〉.

Let c be an arbitrary location. If it does not satisfy (Ofc fresh c Γ), then by

Definition 7.17, we must have (Ofc c t′) ∈ Γ for some t′ :: tp. Then by the rule

offNewL I1 from Definition 7.13, we have Γ, ∆ ` 〈OffNewL c (W c) r〉.

Otherwise, we must have (Ofc fresh c Γ), and together with (ctxt invar Γ ∆),

that implies (OfcL fresh c ∆) by unfolding the definitions. Together with the

OfsL premise, it also implies (s fresh c s) using ofsL s fresh from Lemma 7.31.

Let Γ′ = (Ofc c t) # Γ and ∆′ = (OfcL c t) # ∆. We extend the context

invariant to (ctxt invar Γ′ ∆′) using Lemma 7.24 and the freshness conditions

for c above.

From the Ofe premise, we deduce Γ, ∆ ` J 〈Ofe v t〉 by Lemma 7.7, and with

the OfsL premise, we deduce

Γ, (OfcL c t) # ∆ ` 〈OfcL c t〉 ⊗ (J 〈Ofe v t〉 & 〈OfsL s〉)

by the rules conjA i, conjM i, and axL from Definition 7.2. We then use the

rule ofsL Cons I from Definition 7.12, together with bc and the definition of ∆′,

to deduce Γ, ∆′ ` 〈OfsL (sCons c v s)〉.
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We have Γ′ ` 〈Ofe (eCell c) (tRef t)〉 by the rules bc, ofe Cell I, and axJ, since

(Ofc c t) ∈ set Γ′ by construction.

Using Lemma 7.22, the Ofk premise must have been deduced using bc, and

inverting Definition 7.11, the rule used must have been ofk Ref I. Thus we

have Γ ` 〈Ofk k′ (tRef t) r〉.

We now have all the premises needed to apply the induction hypothesis with

c 7→ c, Γ 7→ Γ′, ∆ 7→ ∆′, and t 7→ (tRef t); for two of them, Γ is weakened to

Γ′ using Lemma 7.3. Unfolding the definitions of Γ′ and ∆′, the conclusion is

(Ofc c t) # Γ, (OfcL c t) # ∆ ` 〈OffL (W c) r〉

from which we deduce Γ, ∆ ` 〈OffNewL c (W c) r〉 by the rules impL i and

impJ i from Definition 7.2 and offNewL I from Definition 7.13.

That is the same statement that we deduced in the case where (Ofc fresh c Γ)

is not true, so it must hold for arbitrary c without any assumption of freshness

or non-freshness for Γ. By the rule all i, we deduce

Γ, ∆ ` all c. 〈OffNewL c (W c) r〉,

and together with (abstr W), we apply the rules bc and offL New I to reach

the required conclusion Γ, ∆ ` 〈OffL (fNew W) r〉.

The remaining cases were covered by a single automatic proof method, ex-

cept for op Deref I and op Assign2 I which used the lemmas ofsL s lookup and

ofsL s assign respectively from Lemma 7.31. 2



Chapter 8

Case Study: Evaluation in the SL

The third two-level formalization uses the linear SL of the previous formalization, but

represents evaluation in the SL along with typing, rather than reusing the meta-level

evaluation predicates shared by the previous three formalizations. This change was

intended to further exploit the SL’s linear context as a way to represent the contents of

memory during evaluation, and as an intermediate step toward the use of an ordered

SL to represent continuations, which will be seen in Chapter 9.

It also led to changes in the SL. The subject reduction theorem and several

of its key lemmas have evaluation statements as premises, and representing these

statements in the unmodified SL from Chapter 7 would provide only awkward forms of

induction. Building on previous work [46] that uses a natural-number argument in SL

statements as an induction measure, the SL is augmented with an ordinal argument to

permit (transfinite) induction on the height of a derivation. The use of ordinals rather

than natural numbers allows the entire SL from Chapter 7 – including its infinitely-

branching all i rule – to be derived by existentially quantifying the derivation-height

argument.

This formalization was constructed by modifying the previous two-level linear

formalization from Chapter 7. The syntax used for the previous three formalizations

169
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and described in Section 5.1 (excluding the definition of typing contexts) is retained

here, along with the auxiliary predicate s fresh from Definition 5.9. The SL represen-

tation of typing judgments from Section 7.2 is also reused without modification. The

meta-level evaluation predicates from Section 5.3, on the other hand, will be replaced

by SL atoms in Section 8.2.

8.1 Specification logic

The type prp of SL formulas is unchanged from Definition 7.1, and is restated here

in abbreviated form:

datatype a prp = 〈A〉
∣∣ > ∣∣ 1

∣∣ B & C
∣∣ B ⊗ C

∣∣ A ⊃ B
∣∣ A ( B

∣∣ all x. B

where A :: a and B, C :: a prp.

The predicate SL entails from Definition 7.2, used to express SL statements, is

extended with an argument h :: ordinal that functions as a bound on derivation height

for the purpose of induction. (As in the previous chapter, the linear context may be

omitted when empty.) Lemma names are prefixed with “hSL” rather than “SL”,

and rule names primed, to distinguish them from the versions without the ordinal

argument that will be derived later.

Definition 8.1 (SL sequent rules)

class atm = type + fixes prog ::
[
a, a prp

]
⇒ bool (notation A ← B)

inductive hSL entails ::
[
ordinal , (a :: atm) list , a list , a prp

]
⇒ bool

(notation h, Γ, ∆  B)

where bc′ : h, Γ, ∆  〈A〉 ⇐=
q

A ← B; h′ < h; h′, Γ, ∆  B
y∣∣ axJ′ : h, Γ, ·  〈A〉 ⇐= A ∈ set Γ∣∣ axL′ : h, Γ, [ A ]  〈A〉∣∣ ttA i′ : h, Γ, ∆  >∣∣ ttM i′ : h, Γ, ·  1∣∣ conjA i′ : h, Γ, ∆  B & C ⇐=

q
h, Γ, ∆  B; h, Γ, ∆  C

y
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∣∣ conjM i′ : h, Γ, ∆  B ⊗ C ⇐=
q

h, Γ, ∆L  B; h, Γ, ∆R  C;

mset ∆L + mset ∆R = mset ∆
y∣∣ impJ i′ : h, Γ, ∆  A ⊃ B ⇐= h, A # Γ, ∆  B∣∣ impL i′ : h, Γ, ∆  A ( B ⇐= h, Γ, A # ∆  B∣∣ all i′ : h, Γ, ∆  all x. B x ⇐= (

∧
x. h, Γ, ∆  B x)

The ordinal argument h passes unchanged through all the rules except bc′.

This will be convenient in proofs by induction, because backchaining steps typically

correspond to OL rules. (A height measure that counts every SL rule could be

reconstructed as the lexical combination of h and the height of the formula to be

proved.)

The rule bc′ is written with the heights of both premise and conclusion as

variables, related by an inequality h′ < h. With natural-number derivation heights,

we could simply increment the height in passing from premise to conclusion; but

since there are limit ordinals (such as ω) that are not successors of any other ordinal,

that form of the rule would be weaker here and would not admit straightforward

height-weakening. (The inequality form also gives cleaner induction proofs.)

Lemma 8.2

hSL structural :
q

h, Γ, ∆  B; h 6 h′; set Γ ⊆ set Γ′; mset ∆ = mset ∆′ y =⇒ h′, Γ′, ∆′  B

With the additional argument h comes a new structural rule: height-weakening,

which allows the ordinal argument of an SL statement to be replaced with any larger

ordinal. This is combined with the other structural rules from Lemma 7.3 in the

lemma hSL structural.

Lemma 8.3

hSL cutJ:
q

hB, A # Γ, ∆  B; hA, Γ  〈A〉
y

=⇒ hA + hB, Γ, ∆  B

hSL cutL:
q

hB, Γ, A # ∆1  B; hA, Γ, ∆2  〈A〉;
mset ∆ = mset ∆1 + mset ∆2

y
=⇒ hA + hB, Γ, ∆  B
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For the derived cut rules, it is necessary to calculate a derivation-height bound

for the conclusion from similar bounds for the premises. The obvious approach is to

add the bounds, but ordinal addition is not commutative, so there is a choice between

hA + hB and hB + hA. Since the proof requires cancellation of hA, and ordinal sums

admit cancellation only on the left, only the former choice succeeds.

In more general terms, for lemmas like these that piece together a derivation of

the conclusion from derivations of the premises, the calculated bound must be strictly

monotonic with respect to the premise that contributes to the root of the derivation,

but need only be monotonic with respect to any other premises. This fits nicely with

the properties of ordinal addition, which is strictly monotonic in its right operand

but only monotonic in its left operand.

Definition 7.6 (J) is reused without modification, while Lemmas 7.5 (derived

elimination rules) and 7.7 (simplification for J) are reused with the addition of an h

argument to each SL statement.

Definition 8.4

A = B ≡ 〈A〉 ⊗ B

The derived connective = (called LCONS in the formal theory) is used opera-

tionally as the reverse of (: it removes the atom A from the linear context. This

atom should not have any backchaining rules, nor should it occur in the intuitionistic

context. Intro and elim rules are provided that demand these conditions as premises,

and are marked as “safe” so they can be applied without backtracking; as such, this

connective improves proof automation when used for its intended purpose, but would

lead proof search to a dead end if the conditions were not met.

Definition 8.5 (SL statements without h)

SL entails ::
[

(a :: atm) list , a list , a prp
]
⇒ bool (notation Γ, ∆ ` B)

where (Γ, ∆ ` B) = (∃ h. (h, Γ, ∆  B))
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With this definition, all the rules of Definition 7.2 are derivable from Defini-

tion 8.1. Most are straightforward; bc uses the successor function on ordinals. The

one interesting case is all i:

Lemma 8.6

all i : Γ, ∆ ` all x. B x ⇐= (
∧

x. Γ, ∆ ` B x)

Proof. By Definition 8.5, the premise is equivalent to

∀ x. ∃ h. (h, Γ, ∆  B x).

By the Axiom of Choice, h may be represented as a function H :: exp ⇒ ordinal

applied to x:

∃ H. ∀ x. (H x, Γ, ∆  B x).

Let h0 = (oSup H); by definition, we have (H x) 6 h0 for all x :: exp. By height-

weakening (Lemma 8.2), we have ∀ x. (h0, Γ, ∆  B x). Now we may apply the rule

all i′ to obtain h0, Γ, ∆  all x. B x, and using Definition 8.5 again, conclude

Γ, ∆ ` all x. B x

as was to be proven. 2

This proof makes essential use of the Axiom of Choice, so this kind of SL would

not work in a constructive setting. It also uses the supremum function

oSup :: ((x :: countable) ⇒ ordinal) ⇒ ordinal ,

which the Ordinal theory provides only for functions on countable domains1, so it

is necessary to prove that exp (Definition 5.2) is countable. This is done compo-

sitionally by proving that con is countable and that (a expr) is countable for any

a :: countable, which is straightforward but tedious, as the proofs involve actually

“counting” the constructors (i.e., mapping them to distinct natural numbers).

1Actually the Ordinal theory only provides a function oLimit :: (nat ⇒ ordinal) ⇒ ordinal ; we
define oSup in terms of oLimit.
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It would be possible to also derive a structural induction rule for SL entails, and

thus make it fully equivalent to the predicate of the same name in Section 7.1. But this

was considered unnecessary, since the purpose of the ordinal argument was to provide

a more convenient alternative to structural induction. However, a case-analysis lemma

was proved to allow inversion of the SL rules without unfolding Definition 8.5.

8.2 Evaluation judgments

The type of atomic formulas has 13 constructors, of which the first five are used to

represent evaluation and the other eight to represent typing. The latter are unchanged

from Definition 7.8.

Definition 8.7

datatype atm = EvalL cont exp final
∣∣ ContL cont exp final∣∣ OpRefL cell cont exp final

∣∣ PackStateL state
∣∣ CellL cell exp∣∣ IsTerm exp

∣∣ Ofe exp tp
∣∣ Ofk cont tp tp

∣∣ Ofc cell tp∣∣ OfcL cell tp
∣∣ OfsL state

∣∣ OffL final tp
∣∣ OffNewL cell final tp

The evaluation judgments (EvalL, ContL, OpRefL, and PackStateL) use their own

SL context, completely separate from that used for typing. It consists of CellL atoms

in the linear context, assigning values to distinct locations. This context will be

related to the typing context by the context invariant, or sometimes less directly via

shared terms in separate SL statements (e.g., the state arguments of PackStateL and

OfsL in Theorem 8.23).

The SL context for evaluation corresponds to the state arguments of eval and

cont in Definition 5.19. However, it is tricky to use the SL context for both the inputs

and outputs of evaluation. For this reason, the mapping of locations to values is

transformed by PackStateL into a state for output.

The specification of the typing judgments is unchanged from the previous for-

malization (Definitions 7.9 to 7.13). The SL predicates EvalL and ContL correspond
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to the meta-level eval and cont from Definition 5.19. OpRefL is an auxiliary predi-

cate used by ContL to relativize a universal quantification over locations, much like

OffNewL as used by OffL. PackStateL relates the contents of memory as represented

in the SL context with a state in the sense of Definition 5.6.

Definition 8.8 (Specification of SL atoms, part 1 – EvalL, ContL, OpRefL)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where ev Zero I : EvalL k eZero w ← 〈ContL k eZero w〉∣∣ ev Suc I : EvalL k (eSuc e) w ← 〈EvalL (kCons (λ v. eSuc v) k) e w〉∣∣ ev Pred I : EvalL k (ePred e) w ← 〈EvalL (kPred k) e w〉∣∣ ev IsZero I : EvalL k (eIsZero e) w ← 〈EvalL (kIsZero k) e w〉∣∣ ev True I : EvalL k eTrue w ← 〈ContL k eTrue w〉∣∣ ev False I : EvalL k eFalse w ← 〈ContL k eFalse w〉∣∣ ev IfThen I : EvalL k (eIfThen c tt ff) w ← 〈EvalL (kIfThen tt ff k) c w〉∣∣ ev Unit I : EvalL k eUnit w ← 〈ContL k eUnit w〉∣∣ ev Pair I : EvalL k (ePair x y) w ← 〈EvalL (kPair1 y k) x w〉∣∣ ev Fst I : EvalL k (eFst p) w ← 〈EvalL (kFst k) p w〉∣∣ ev Snd I : EvalL k (eSnd p) w ← 〈EvalL (kSnd k) p w〉∣∣ ev App I : EvalL k (f $ x) w ← 〈EvalL (kArg x k) f w〉∣∣ ev Fn I : EvalL k (eFn F) w ← 〈ContL k (eFn F) w〉 ⇐= abstr F∣∣ ev Fix I : EvalL k (eFix F) w ← 〈EvalL k (F (eFix F)) w〉 ⇐= abstr F∣∣ ev Letv I : EvalL k (eLetv v F) w ← 〈EvalL k (F v) w〉 ⇐= abstr F∣∣ ev Ref I : EvalL k (eRef e) w ← 〈EvalL (kRef k) e w〉∣∣ ev Deref I : EvalL k (eDeref e) w ← 〈EvalL (kDeref k) e w〉∣∣ ev Assign I : EvalL k (eAssign m e) w ← 〈EvalL (kAssign1 e k) m w〉∣∣ ev Cell I : EvalL k (eCell c) w ← 〈ContL k (eCell c) w〉∣∣ op Cons I : ContL (kCons E k) v w ← 〈ContL k (E v) w〉 ⇐= abstr E∣∣ op Arg I : ContL (kArg x k) (eFn F) w ← 〈EvalL (kApp F k) x w〉 ⇐= abstr F∣∣ op App I : ContL (kApp E k) v w ← 〈EvalL k (E v) w〉 ⇐= abstr E∣∣ op Pred I1 : ContL (kPred k) eZero w ← 〈ContL k eZero w〉∣∣ op Pred I2 : ContL (kPred k) (eSuc v) w ← 〈ContL k v w〉∣∣ op IsZero I1 : ContL (kIsZero k) eZero w ← 〈ContL k eTrue w〉∣∣ op IsZero I2 : ContL (kIsZero k) (eSuc v) w ← 〈ContL k eFalse w〉∣∣ op IfThen I1 : ContL (kIfThen tt ff k) eTrue w ← 〈EvalL k tt w〉
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∣∣ op IfThen I2 : ContL (kIfThen tt ff k) eFalse w ← 〈EvalL k ff w〉∣∣ op Pair1 I : ContL (kPair1 y k) v w ← 〈EvalL (kPair2 v k) y w〉∣∣ op Pair2 I : ContL (kPair2 v k) v′ w ← 〈ContL k (ePair v v′) w〉∣∣ op Fst I : ContL (kFst k) (ePair v v′) w ← 〈ContL k v w〉∣∣ op Snd I : ContL (kSnd k) (ePair v v′) w ← 〈ContL k v′ w〉∣∣ op Ref I : ContL (kRef k) v (fNew W)

← all c. 〈OpRefL c k v (W c)〉 ⇐= abstr W∣∣ op Deref I : ContL (kDeref k) (eCell c) w

← (CellL c v = >) & 〈ContL k v w〉∣∣ op Assign1 I : ContL (kAssign1 e k) (eCell c) w ← 〈EvalL (kAssign2 c k) e w〉∣∣ op Assign2 I : ContL (kAssign2 c k) v w

← CellL c v′ = (CellL c v ( 〈ContL k v w〉)∣∣ op Done I : ContL kDone v (fVal s v) ← 〈PackStateL s〉∣∣ opRefL I1 : OpRefL c k v w ← CellL c v′ = >∣∣ opRefL I : OpRefL c k v w ← CellL c v ( 〈ContL k (eCell c) w〉

Most of the evaluation rules correspond directly to those of Definition 5.19, with

the state argument s removed since that information has been moved to the SL

context. There were no connectives to be translated, as continuation-style operational

semantics is non-branching; the work of evaluation is done by pattern-matching

and construction of terms, which are unaffected by the change from meta-level to

specification-level representation.

The interesting cases are the rules that deal specifically with reference cells.

op Deref I and op Assign2 I use the multiplicative conjunction and linear implica-

tion to look up and replace values for locations given by CellL atoms in the linear

context; in the case of op Deref I, the additive conjunction and truth constant are

also used, so that the CellL atom is not removed from the context for the next evalu-

ation step. op Ref I uses HOAS for the newly allocated location, and uses the same

technique as offL New I (Definition 7.13) to quantify over fresh locations only.

The finishing-up rule op Done I is also interesting, as it needs to return the final

state as a term s :: state in an answer of the form (fVal s v), but the contents of
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memory are represented in the SL context during computation. The translation from

SL context to state is performed by a separate SL predicate PackStateL.

Definition 8.9 (Specification of SL atoms, part 2 – PackStateL)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where ps Nil I : PackStateL sNil ← 1∣∣ ps Cons I : PackStateL (sCons c v s)

← CellL c v = 〈PackStateL s〉 ⇐= s fresh c s

The rule ps Cons I uses the multiplicative conjunction to extract a CellL atom

from the linear context, converting its location-value pair into an sCons constructor

applied to a term of type state. The rule ps Nil I uses the multiplicative truth

constant, which requires an empty linear context, to ensure that all such atoms are

processed.

CellL atoms can be processed in any order, in contrast to Definition 5.19 which

constructs the state in order of allocation. Since the resulting state is part of the

answer (output), and its use of an association list to represent a function is an

implementation detail, this difference is irrelevant.

8.3 Context invariants

As in Section 7.3, a context invariant is needed to reason about SL statements. It is

complicated by the need to relate separate SL contexts for evaluation and typing. To

deal with this complexity and improve proof automation, the context invariant was

built in a modular way using Isabelle’s locale mechanism.

Definition 8.10

locale ctxt abstr =

fixes S :: cell set and V :: cell ⇒ exp and T :: cell ⇒ tp

assumes finite S: finite S
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This statement defines ctxt abstr as a locale, i.e., a separate Isabelle context in

which lemmas and definitions may be stated. Within the locale, S, V, and T are

fixed parameters of the specified types (as if declared with consts), and finite S is an

axiom stating that S is finite. All the definitions and lemmas of the enclosing theory

are also available, whether stated before or after the locale definition.

It also defines a predicate ctxt abstr in the enclosing theory to represent the

locale axioms:

ctxt abstr S V T = finite S.

(In fact Isabelle 2008 optimizes away the arguments V and T that are not used in

the locale axioms, but we will use the unoptimized form.)

When a lemma is stated “(in ctxt abstr)”, it is exported to the enclosing the-

ory, by universally quantifying the locale parameters and introducing a premise

(ctxt abstr S V T). A proof of the lemma also proves its exported form, since the

locale parameters may be generalized and the locale axioms may be replaced with

use of the ctxt abstr premise. The locale axioms themselves are also exported, e.g.,

finite S:

ctxt abstr .finite s : ctxt abstr S V T =⇒ finite S.

In accordance with Isabelle’s definitional style of reasoning, this is a proven statement

rather than an axiom in the enclosing theory, thanks to its ctxt abstr premise.

Definitions may likewise be stated “(in ctxt abstr)”, and they are exported by

turning any occurrences of the locale parameters into additional parameters of the

definition. (The locale axioms are not involved, as Isabelle does not have dependent

types and explicit proof terms.)

The use of locales helps to improve proof automation, since Isabelle’s automatic

proof methods can be set up with rules within the locale that depend on the locale

parameters and axioms in ways that would not be supported for their exported forms.

However, to simplify the presentation of the formalization, the lemmas below will be
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given in exported form.

The locale ctxt abstr defines an “abstract context”, i.e., a straightforward Isabelle/

HOL representation of the information represented in the SL evaluation and typing

contexts. The parameter S represents the set of allocated locations; V is a function

assigning values to locations (corresponding to CellL atoms in the evaluation context);

and T is a function assigning types to locations (corresponding to Ofc and OfcL atoms

in the typing context).

Definition 8.11

locale ctxt D = ctxt abstr +

fixes ∆ :: atm list

assumes D eltm:

count (mset ∆) a =

nat of bool(case a of CellL c v ⇒ c ∈ S ∧ v = V c | ⇒ False)

The locale ctxt D relates the linear part of the SL evaluation context, ∆, to the

abstract context defined by ctxt abstr, stating that an SL atom a occurs in ∆ iff it is

of the form (CellL c v) where c ∈ S and v = (V c). (The function nat of bool maps

True to 1 and False to 0.) The intuitionistic part of the SL evaluation context is

empty, and this will be stated explicitly (as in Chapter 6) rather than via a context

invariant.

Definition 8.12

locale ctxt G′ = ctxt abstr +

fixes Γ′ :: atm list

assumes G′ eltm:

count (mset Γ′) a =

nat of bool(case a of Ofc c t ⇒ c ∈ S ∧ t = T c | ⇒ False)

locale ctxt D′ = ctxt abstr +

fixes ∆′ :: atm list

assumes D′ eltm:

count (mset ∆′) a =

nat of bool(case a of OfcL c t ⇒ c ∈ S ∧ t = T c | ⇒ False)
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The locale ctxt G′ relates the intutionistic part of the SL typing context, Γ′, to

the abstract context defined by ctxt abstr, stating that an SL atom a occurs in Γ′ iff

it is of the form (Ofc c t) where c ∈ S and t = (T c). The locale ctxt D′ similarly

relates the linear part of the SL typing context, ∆′, to the abstract context.

Definition 8.13

locale ctxt invar = ctxt D + ctxt G′ + ctxt D′ +

assumes type correct : c ∈ S =⇒ Γ′ ` 〈Ofe (V c) (T c)〉

The locale ctxt invar brings together the locales for the SL evaluation and typing

contexts, and adds the condition that for each location c ∈ S, the value (V c) must

have the type (T c) in the context Γ′. (That condition will stand in for the OfsL

premise of Theorem 7.32, in the inductive proof of subject reduction.) It defines a

predicate with six arguments, (ctxt invar S V T ∆ Γ′ ∆′).

Lemma 8.14

D S down:
q

ctxt D S V T ∆; mset ∆ = mset ∆s + {{CellL c v }}
y

=⇒
∃ Ss. S = Ss ∪ {c} ∧ c /∈ Ss ∧ v = V c ∧ ctxt D Ss V T ∆s

S D′ down:
q

ctxt D′ S V T ∆′; S = Ss ∪ {c}; c /∈ Ss

y
=⇒

∃ ∆′
s. mset ∆′ = mset ∆′

s + {{OfcL c (T c) }} ∧ ctxt D′ Ss V T ∆′
s

The lemma D S down allows a CellL atom to be removed from ∆, while main-

taining the invariant ctxt D by removing the corresponding location from S. The

lemma S D′ down similarly allows a location c to be removed from S, while main-

taining the invariant ctxt D′ by removing (OfcL c (T c)) from ∆′.

These lemmas will be used in reasoning about OfsL; by using ctxt D and ctxt D′

separately, it will not be necessary to define an analogue of ctxt invar1 from Sec-

tion 7.3. This is an advantage of the modular approach to specifying ctxt invar.
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Lemma 8.15

ctxt invar Cons I :
q

ctxt invar S V T ∆ Γ′ ∆′; Γ′ ` 〈Ofe v t〉; c /∈ S
y

=⇒
ctxt invar (S ∪ {c}) (V (c := v)) (T (c := t))

(CellL c v # ∆) (Ofc c t # Γ′) (OfcL c t # ∆′)

The lemma ctxt invar Cons I corresponds to the lemma of the same name in

Lemma 7.24, and allows the context invariant to be extended with a new location.

The use of ctxt abstr allows freshness to be checked in the simpler form c /∈ S. With

evaluation now represented in the SL along with typing, it is necessary to specify

both a value v and a type t for the new location c, and they are related by the Ofe

premise to satisfy the locale axiom type correct.

Lemma 8.16

structural :
q

ctxt invar S V T ∆ Γ′ ∆′;

mset ∆ = mset ∆p; mset Γ′ = mset Γ′p; mset ∆′ = mset ∆′
p

y
=⇒

ctxt invar S V T ∆p Γ′p ∆′
p

This lemma allows permutation of all of the SL-context arguments of ctxt invar.

It will be used to support reasoning about SL contexts as multisets rather than lists.

A set of inversion lemmas were proved for atomic SL statements in the contexts

(·, ∆), (Γ′, ·), and (Γ′, ∆′). These are similar to Lemmas 7.19 to 7.22, and their

statements are omitted here. They are provided for SL statements both with and

without ordinal arguments.

Lemma 8.17

ctxt value subst :
q

ctxt invar S V T (CellL c v # ∆) Γ′ ∆′; Ofc c t ∈ set Γ′; Γ′ ` 〈Ofe v′ t〉
y

=⇒
ctxt invar S (V (c := v′)) T (CellL c v′ # ∆) Γ′ ∆′
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The lemma ctxt value subst allows the replacement of one value v with another

value v′ for a location c in the context invariant, so long as the new value has the

appropriate type. It is used to prove type-soundness of assignment.

8.4 Semantic lemmas and subject reduction

Lemma 8.18

PackStateL OfsL:
q

ctxt invar S V T ∆ Γ′ ∆′; ·, ∆ ` 〈PackStateL s〉
y

=⇒ Γ′, ∆′ ` 〈OfsL s〉

The lemma PackStateL OfsL carries the type information in the locale axiom

type correct across the translation from SL evaluation context to state performed by

PackStateL, to conclude that the resulting state s satisfies OfsL.

It was proved by transfinite induction on the SL’s ordinal argument, after unfold-

ing Definition 8.5 in the PackStateL premise. This is reasonably straightforward, and

results in essentially the same proof structure that would be obtained with ordinary

induction on a natural-number derivation-height argument. However, as noted after

Lemma 7.31, size induction is more difficult to automate than structural induction;

a rather long Isar proof was needed. (Other complicating factors include multiset

reasoning, which is not as well-developed in Isabelle/HOL as set reasoning, and the

need to use ctxt D and ctxt D′ separately to allow ∆′ to shrink while Γ′ remains

unchanged.)

Lemma 8.19

subjRed op Ref :
q

ctxt invar S V T ∆ Γ′ ∆′;

h, ·, ∆  all c. 〈OpRefL c k v (W c)〉; Γ′ ` 〈Ofe v t〉; c /∈ S
y

=⇒
∃ Sa Va Ta. h, ·, CellL c v # ∆  〈ContL k (eCell c) (W c)〉 ∧

ctxt invar Sa Va Ta (CellL c v # ∆) (Ofc c t # Γ′) (OfcL c t # ∆′)
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subjRed op Deref :
q

ctxt invar S V T ∆ Γ′ ∆′;

Γ′ ` 〈Ofc c t〉; CellL c v ∈ mset ∆
y

=⇒ Γ′ ` 〈Ofe v t〉
subjRed op Assign2:

q
ctxt invar S V T ∆ Γ′ ∆′;

h, ·, ∆  CellL c v = (CellL c v′ ( B); Γ′ ` 〈Ofc c t〉; Γ′ ` 〈Ofe v′ t〉
y

=⇒
∃ Va ∆1. ctxt invar S Va T ∆1 Γ′ ∆′ ∧ h, ·, ∆1  B

subjRed op Done:
q

ctxt invar S V T ∆ Γ′ ∆′; ·, ∆ ` 〈PackStateL s〉; Γ′ ` 〈Ofe v t〉
y

=⇒
Γ′, ∆′ ` 〈OffL (fVal s v) t〉

These four lemmas provide key steps in the corresponding cases of the proof

of subject reduction. None of them require induction, though two of them use SL

statements with ordinal arguments for the benefit of the transfinite-induction proof

of subject reduction.

The lemma subjRed op Deref corresponds to ofsL s lookup from Lemma 7.31,

and follows easily from the context invariant (Definition 8.13), specifically from

type correct. The lemma subjRed op Assign2 corresponds to ofsL s assign, al-

though its conclusion is stated with existentially quantified variables where the

lemma ofsL s assign was more specific. It was proved with the help of Lemma 8.17

(ctxt value subst).

The lemma subjRed op Done is an easy corollary of PackStateL OfsL that cov-

ers most of the corresponding case of subject reduction. The lemma subjRed op Ref

was proved with the help of ctxt invar Cons I, and handles the actual insertion of a

new reference cell into the context, but not the HOAS aspects of the corresponding

case. Neither of these lemmas corresponds directly to a lemma in Chapter 7.

Lemma 8.20 (Subject reduction with context invariant)
q

ctxt invar S V T ∆ Γ′ ∆′;

·, ∆ ` 〈EvalL k e w〉; Γ′ ` 〈Ofe e t〉; Γ′ ` 〈Ofk k t r〉
y

=⇒ Γ′, ∆′ ` 〈OffL w r〉
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Proof. Unfolding Definition 8.5 in the EvalL premise, and adding a ContL case to

strengthen the induction hypothesis, we obtain h :: ordinal such that

h, ·, ∆  〈EvalL k e w〉 ∨ h, ·, ∆  〈ContL k e w〉.

The proof then proceeds by complete induction on h.

The EvalL or ContL statement must have been derived by bc′, since the context

invariant excludes these atoms from ∆; letting h′ be the derivation height of the

premise, we have h′ < h. Inverting Definition 8.8, there are 37 cases, one for each

evaluation rule. Most cases are straightforward, with the nontrivial parts of the

reasoning similar to previous formalizations; yet few were proved automatically, unlike

Theorem 7.32, at least in part because of the change from structural induction to

height induction. The details will not be given here. 2

Lemma 8.20, with its context-invariant premise, is not a satisfactory subject-

reduction theorem. Not only is the predicate ctxt invar needlessly complicated for

stating such a theorem, but it also amounts to exposing an “implementation detail”.

It should be possible to state subject reduction immediately after Section 8.2, with

only simple auxiliary definitions.

Thus, the subject-reduction theorem will replace the ctxt invar premise of this

lemma with other premises. The typing information contained in the locale axiom

type correct will be derived from the SL’s typing judgment for states, OfsL (Defini-

tion 7.12). This will require the use of PackStateL (Definition 8.9) to translate the

SL context into a term of type state.

It will not be possible to entirely eliminate the use of meta-level predicates on

SL contexts, because arbitrary SL contexts could contain defined SL atoms and in

effect claim them without proof, making them meaningless as premises.
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Definition 8.21 (Context validity predicates)

fun valid L elt :: atm ⇒ bool

where valid L elt (CellL c v) = True∣∣ valid L elt (OfcL c t) = True∣∣ valid L elt = False

fun valid L ctxt :: atm list ⇒ bool

where valid L ctxt · = True∣∣ valid L ctxt (h # t) = valid L elt h ∧ valid L ctxt t

definition valid J typing ctxt Γ′ ∆′ =

(∀ a. count (mset Γ′) a =

(case a of Ofc c t ⇒ count (mset ∆′) (OfcL c t) | ⇒ 0))

The predicate valid L elt specifies what atoms may occur in SL linear contexts:

CellL atoms and OfcL atoms. It is left to SL predicates (e.g., OfsL and PackStateL)

to specify which atoms may occur in the evaluation context vs. the typing context.

The predicate valid L ctxt simply maps valid L elt over lists.

The predicate valid J typing ctxt is more complicated, because SL predicates

cannot check non-monotonic properties of the intuitionistic context. For this reason,

valid J typing ctxt must check not only that the intuitionistic typing context consists

of Ofc atoms, but also that they correspond one-to-one with OfcL atoms in the linear

typing context. It is defined using mset and a case construct, much like ctxt invar.

Lemma 8.22

PackStateL OfsL ctxt :
q
·, ∆ ` 〈PackStateL s〉; Γ′, ∆′ ` 〈OfsL s〉;
valid L ctxt ∆; valid L ctxt ∆′; valid J typing ctxt Γ′ ∆′ y =⇒
∃ S V T. ctxt invar S V T ∆ Γ′ ∆′

The lemma PackStateL OfsL ctxt “bootstraps” the context invariant from OfsL

and PackStateL premises together with the context validity predicates of Defini-

tion 8.21. It is the only lemma in this formalization that has a context invariant

as its conclusion but none among its premises.



8.4. Semantic lemmas and subject reduction 186

It was proved by transfinite induction on the PackStateL premise. There were

far fewer cases and auxiliary lemmas than the proof of subject reduction, but the

Isar proof text was nonetheless long compared with the other auxiliary lemmas; it

was more technical and tedious rather than nontrivial, with multiset reasoning, a

complicated induction hypothesis, etc. being responsible for much of its size.

Theorem 8.23 (Subject reduction)
q
·, ∆ ` 〈EvalL k e w〉; Γ′ ` 〈Ofe e t〉; Γ′ ` 〈Ofk k t r〉;
·, ∆ ` 〈PackStateL s〉; Γ′, ∆′ ` 〈OfsL s〉;
valid L ctxt ∆; valid L ctxt ∆′; valid J typing ctxt Γ′ ∆′ y =⇒ Γ′, ∆′ ` 〈OffL w r〉

Proof. From the PackStateL and OfsL premises together with the context validity

premises, we obtain (ctxt invar S V T ∆ Γ′ ∆′), for some S, V, and T, by Lemma 8.22.

Together with the EvalL, Ofe, and Ofk premises, we may then apply Lemma 8.20 to

deduce Γ′, ∆′ ` 〈OffL w r〉, as was to be proven. 2



Chapter 9

Case Study:

Ordered Specification Logic

The final formalization adds ordered-logic features to the specification logic. The

main objective of this change is to represent continuations in the SL context, treating

their stack structure as another logical feature of the OL to be abstracted by the use

of an SL.

This formalization was constructed by modifying the previous two-level linear

formalization from Chapter 8. Most of the syntax and typing judgments are reused

without modification, except for the parts relating to continuations (cont and Ofk).

9.1 Syntax

To represent continuations in the SL context, it is necessary to define syntax for

individual elements of a continuation, which will be called instructions. They will be

represented as Hybrid terms as in Section 5.1.

187
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Definition 9.1 (Instructions)

types

insn = con expr

constdefs

iCons, iApp :: (exp ⇒ exp) =⇒ insn

iCons E ≡ CON c iCons $$ LAM E (iApp similar)

iArg, iPair1, iPair, iAssign1 :: exp =⇒ insn

iArg e ≡ CON c iArg $$ e (others similar)

iPred, iIsZero, iFst, iSnd, iRef, iDeref :: insn

iPred ≡ CON c iPred (others similar)

iIfThen ::
[
exp, exp

]
=⇒ insn

iIfThen tt ff ≡ CON c iIfThen $$ tt $$ ff

iAssign :: cell =⇒ insn

iAssign c ≡ CON c iAssign $$ c

The constructors for insn correspond directly to those for cont in Definition 5.5,

without the recursive argument k, except that there is no constructor corresponding

to the base case kDone, which will be represented as an empty list of instructions.

9.2 Specification logic

The specification logic presented here is from [21, § 5.1], with some exceptions as in

the previous formalizations: we allow an arbitrary Isabelle/HOL definition for prog

in place of a specific syntax of clauses, we replace the natural-number argument used

as an induction measure with an ordinal argument, and we include multiplicative

connectives that are foreign to the usual logic-programming style of SLs. We also

include the linear context from Sections 7.1 and 8.1, and include both left and right

ordered implications, though we only use left ordered implication in formalizing the

object logic.

The type of logical formulas, prp, extends Definition 7.1 with new connectives:
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Definition 9.2

datatype a prp =

at a (notation 〈A〉)∣∣ ttA (notation >)∣∣ ttM (notation 1)∣∣ conjA (a prp) (a prp) (notation B & C)∣∣ conjM (a prp) (a prp) (notation B ⊗ C)∣∣ impJ a (a prp) (notation A ⊃ B)∣∣ impL a (a prp) (notation A ( B)∣∣ impO l a (a prp) (notation A � B)∣∣ impO r a (a prp) (notation A � B)∣∣ forall (exp ⇒ a prp) (notation all x. B)

The ordered SL has all the connectives of the linear SL, plus two new implications

(� and �) that will discharge assumptions from opposite ends of the ordered context.

SL statements take the form of a predicate hSL entails with an ordinal argument,

as in Definition 8.1. For this formalization there are three contexts: the intuitionistic

and linear contexts seen previously, and an ordered context Ω. The ordered context

will admit no structural rules at all.

Definition 9.3 (SL sequent rules)

class atm = type + fixes prog ::
[
a, a prp

]
⇒ bool (notation A ← B)

inductive hSL entails ::
[
ordinal , (a :: atm) list , a list , alist, a prp

]
⇒ bool

(notation h, Γ, ∆, Ω  B)

where bc′ : h, Γ, ∆, Ω  〈A〉 ⇐=
q

A ← B; h′ < h; h′, Γ, ∆, Ω  B
y∣∣ axJ′ : h, Γ, ·, ·  〈A〉 ⇐= A ∈ set Γ∣∣ axL′ : h, Γ, [ A ], ·  〈A〉∣∣ axO′ : h, Γ, ·, [ A ]  〈A〉∣∣ ttA i′ : h, Γ, ∆, Ω  >∣∣ ttM i′ : h, Γ, ·, ·  1∣∣ conjA i′ : h, Γ, ∆, Ω  B & C ⇐=

q
h, Γ, ∆, Ω  B; h, Γ, ∆, Ω  C

y∣∣ conjM i′ : h, Γ, ∆, Ω  B ⊗ C ⇐=
q

h, Γ, ∆L, ΩL  B; h, Γ, ∆R, ΩR  C;

mset ∆ = mset ∆L + mset ∆R;

Ω = ΩL @ ΩR

y
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∣∣ impJ i′ : h, Γ, ∆, Ω  A ⊃ B ⇐= h, A # Γ, ∆, Ω  B∣∣ impL i′ : h, Γ, ∆, Ω  A ( B ⇐= h, Γ, A # ∆, Ω  B∣∣ impO l i′ : h, Γ, ∆, Ω  A � B ⇐= h, Γ, ∆, A # Ω  B∣∣ impO r i′ : h, Γ, ∆, Ω  A � B ⇐= h, Γ, ∆, Ω @ [ A ]  B∣∣ all i′ : h, Γ, ∆, Ω  all x. B x ⇐= (
∧

x. h, Γ, ∆, Ω  B x)

The additive/multiplicative distinction applies to the ordered context as well as

the linear context, but in the multiplicative case, the ordered contexts of the premises

are concatenated as lists, without allowing rearrangement as is done for the linear

context.

The rules directly involving contexts now have a third possibility, the ordered

context. There are thus three axiom rules, one for each context. However, there are

four implication rules, because the ordered context brings yet another distinction:

where in the ordered context the discharged assumption is located. There are two

reasonable possibilities, the left end or the right end; thus we have two rules impO l i′

and impO r i′, with their respective implication connectives � and �.

Lemma 9.4

hSL structural :
q

h, Γ, ∆, Ω  B;

h 6 h′; set Γ ⊆ set Γ′; mset ∆ = mset ∆′ y =⇒ h′, Γ′, ∆′, Ω  B

With no structural rules for the ordered context, the lemma hSL structural has

the same ordered context Ω in both premise and conclusion. For the other contexts

it is the same as Lemma 8.2.

Lemma 9.5

hSL cutJ:
q

hB, A # Γ, ∆, Ω  B; hA, Γ  〈A〉
y

=⇒ hA + hB, Γ, ∆, Ω  B

hSL cutL:
q

hB, Γ, A # ∆1, Ω  B;

hA, Γ, ∆2  〈A〉;
mset ∆ = mset ∆1 + mset ∆2

y
=⇒ hA + hB, Γ, ∆, Ω  B
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hSL cutO:
q

hB, Γ, ∆1, Ω1 @ A # Ω3  B;

hA, Γ, ∆2, Ω2  〈A〉;
mset ∆ = mset ∆1 + mset ∆2

y
=⇒ hA + hB, Γ, ∆, Ω1 @ Ω2 @ Ω3  B

There are now three derived cut rules, one for each context. For a cut on a

formula in the intuitionistic context, the cut formula must be derived with empty

linear and ordered contexts; for a cut on a formula in the linear context, it must be

derived with an empty ordered context; and for a cut on a formula in the ordered

context, all three contexts may be nonempty.

Definition 7.6 (J) is again reused without modification; operationally, it serves to

empty out the ordered context as well as the linear context. Definition 8.4 (LCONS,

=) is also reused without modification; operationally, its intro and elim rules are still

set up to remove an atom from the linear context (never the ordered context).

Definition 9.6

A �# B ≡ 〈A〉 ⊗ B

The derived connective �# (called OCONS in the formal theory), though defini-

tionally identical to =, is used operationally as the reverse of �: that is, to remove

the atom A from the left end of the ordered context. Intro and elim rules are provided

as for =, so that Isabelle’s automatic proof methods will assume that �# is used as

stated here (and as a consequence, will fail if it is used otherwise).

Definition 9.7 (SL statements without h)

SL entails ::
[

(a :: atm) list , a list , a list , a prp
]
⇒ bool

(notation Γ, ∆, Ω ` B)

where (Γ, ∆, Ω ` B) = (∃ h. (h, Γ, ∆, Ω  B))

As in Section 8.1, the rules and lemmas of the SL, as well as a case-analysis

lemma, are all derived in this form without an ordinal argument. The rule names

match those of Definition 8.1 without primes, while the lemmas use an SL prefix in
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place of the hSL prefix used for the versions with ordinal arguments. The process is

straightforward, consisting mostly of unfolding the definition above, except for all i

whose proof is essentially the same as for Lemma 8.6; the details are omitted here.

9.3 Evaluation and typing judgments

The type of atomic formulas has 14 constructors. EvalL, ContL, OpRefL, and Ofk have

lost their cont arguments, and will manipulate instructions in the ordered context

instead; ContL was renamed StepL, and Ofk was renamed OfkL. InsnL is a new context

element representing instructions. The rest of the constructors are unchanged from

Definition 8.7.

(We continue to use L suffixes for atoms that use substructural features, without

distinguishing between those that use the linear context and those that use the ordered

context.)

Definition 9.8

datatype atm = EvalL exp final
∣∣ StepL exp final

∣∣ OpRefL cell exp final∣∣ PackStateL state
∣∣ CellL cell exp

∣∣ InsnL insn∣∣ IsTerm exp
∣∣ Ofe exp tp

∣∣ OfkL tp tp
∣∣ Ofc cell tp∣∣ OfcL cell tp

∣∣ OfsL state
∣∣ OffL final tp

∣∣ OffNewL cell final tp

In addition to using the intuitionistic and linear contexts as in Section 8.2, some

of the evaluation judgments (EvalL, StepL, and OpRefL but not PackStateL) use the

ordered context to represent a stack of instructions (in the form of InsnL atoms), i.e.,

a continuation. The typing judgment for continuations, OfkL, also uses the ordered

context for this purpose. (It functions as a fairly direct replacement for the cont

argument from previous formalizations.) None of the other SL predicates use the

ordered context.

The specification of PackStateL (Definition 8.9) and the typing judgments other



9.3. Evaluation and typing judgments 193

than OfkL (Definitions 7.9, 7.10, 7.12, and 7.13) are unchanged from previous formal-

izations.

Definition 9.9 (Specification of SL atoms, part 1 – EvalL, StepL, OpRefL)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where ev Zero I : EvalL eZero w ← 〈StepL eZero w〉∣∣ ev Suc I : EvalL (eSuc e) w ← InsnL (iCons (λ v. eSuc v)) � 〈EvalL e w〉∣∣ ev Pred I : EvalL (ePred e) w ← InsnL iPred � 〈EvalL e w〉∣∣ ev IsZero I : EvalL (eIsZero e) w ← InsnL iIsZero � 〈EvalL e w〉∣∣ ev True I : EvalL eTrue w ← 〈StepL eTrue w〉∣∣ ev False I : EvalL eFalse w ← 〈StepL eFalse w〉∣∣ ev IfThen I : EvalL (eIfThen c tt ff) w ← InsnL (iIfThen tt ff) � 〈EvalL c w〉∣∣ ev Unit I : EvalL eUnit w ← 〈StepL eUnit w〉∣∣ ev Pair I : EvalL (ePair x y) w ← InsnL (iPair1 y) � 〈EvalL x w〉∣∣ ev Fst I : EvalL (eFst p) w ← InsnL iFst � 〈EvalL p w〉∣∣ ev Snd I : EvalL (eSnd p) w ← InsnL iSnd � 〈EvalL p w〉∣∣ ev App I : EvalL (f $ x) w ← InsnL (iArg x) � 〈EvalL f w〉∣∣ ev Fn I : EvalL (eFn F) w ← 〈StepL (eFn F) w〉 ⇐= abstr F∣∣ ev Fix I : EvalL (eFix F) w ← 〈EvalL (F (eFix F)) w〉 ⇐= abstr F∣∣ ev Letv I : EvalL (eLetv v F) w ← 〈EvalL (F v) w〉 ⇐= abstr F∣∣ ev Ref I : EvalL (eRef e) w ← InsnL iRef � 〈EvalL e w〉∣∣ ev Deref I : EvalL (eDeref e) w ← InsnL iDeref � 〈EvalL e w〉∣∣ ev Assign I : EvalL (eAssign m e) w ← InsnL (iAssign1 e) � 〈EvalL m w〉∣∣ ev Cell I : EvalL (eCell c) w ← 〈StepL (eCell c) w〉∣∣ op Cons I : StepL v w ← InsnL (iCons E) �# 〈StepL (E v) w〉 ⇐= abstr E∣∣ op Arg I : StepL (eFn F) w

← InsnL (iArg x) �# InsnL (iApp F) � 〈EvalL x w〉 ⇐= abstr F∣∣ op App I : StepL v w ← InsnL (iApp E) �# 〈EvalL (E v) w〉 ⇐= abstr E∣∣ op Pred I1 : StepL eZero w ← InsnL iPred �# 〈StepL eZero w〉∣∣ op Pred I2 : StepL (eSuc v) w ← InsnL iPred �# 〈StepL v w〉∣∣ op IsZero I1 : StepL eZero w ← InsnL iIsZero �# 〈StepL eTrue w〉∣∣ op IsZero I2 : StepL (eSuc v) w ← InsnL iIsZero �# 〈StepL eFalse w〉∣∣ op IfThen I1 : StepL eTrue w ← InsnL (iIfThen tt ff) �# 〈EvalL tt w〉∣∣ op IfThen I2 : StepL eFalse w ← InsnL (iIfThen tt ff) �# 〈EvalL ff w〉
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∣∣ op Pair1 I : StepL v w ← InsnL (iPair1 y) �# InsnL (iPair v) � 〈EvalL y w〉∣∣ op Pair I : StepL v′ w ← InsnL (iPair v) �# 〈StepL (ePair v v′) w〉∣∣ op Fst I : StepL (ePair v v′) w ← InsnL iFst �# 〈StepL v w〉∣∣ op Snd I : StepL (ePair v v′) w ← InsnL iSnd �# 〈StepL v′ w〉∣∣ op Ref I : StepL v (fNew W)

← InsnL iRef �# (all c. 〈OpRefL c v (W c)〉) ⇐= abstr W∣∣ op Deref I : StepL (eCell c) w

← InsnL iDeref �# (CellL c v = >) & 〈StepL v w〉∣∣ op Assign1 I : StepL (eCell c) w

← InsnL (iAssign1 e) �# InsnL (iAssign c) � 〈EvalL e w〉∣∣ op Assign I : StepL v w

← InsnL (iAssign c) �# CellL c v′ = (CellL c v ( 〈StepL v w〉)∣∣ op Done I : StepL v (fVal s v) ← 〈PackStateL s〉∣∣ opRefL I1 : OpRefL c v w ← CellL c v′ = >∣∣ opRefL I : OpRefL c v w ← CellL c v ( 〈StepL (eCell c) w〉

All of the evaluation rules correspond straightforwardly to those of Definition 8.8,

by replacing construction and matching of continuations with insertion and match-

ing/removal of instructions in the ordered context using the connectives � and �#

respectively.

Definition 9.10 (Specification of SL atoms, part 2 – OfkL)

inductive prog atm ::
[
atm, atm prp

]
⇒ bool (notation A ← B)

where ofkL Cons I :

OfkL t r ← InsnL (iCons E) �# J 〈Ofe (eFn E) (tFun t s)〉 & 〈OfkL s r〉
⇐= abstr E∣∣ ofkL Arg I : OfkL (tFun t s) r ← InsnL (iArg x) �# J 〈Ofe x t〉 & 〈OfkL s r〉∣∣ ofkL App I :

OfkL t r ← InsnL (iApp E) �# J 〈Ofe (eFn E) (tFun t s)〉 & 〈OfkL s r〉
⇐= abstr E∣∣ ofkL Pred I : OfkL tNat r ← InsnL iPred �# 〈OfkL tNat r〉∣∣ ofkL IsZero I : OfkL tNat r ← InsnL iIsZero �# 〈OfkL tBool r〉∣∣ ofkL IfThen I :

OfkL tBool r ← InsnL (iIfThen tt ff) �# J 〈Ofe tt t〉 & J 〈Ofe ff t〉 & 〈OfkL t r〉
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∣∣ ofkL Pair1 I : OfkL t r ← InsnL (iPair1 y) �# J 〈Ofe y s〉 & 〈OfkL (tPair t s) r〉∣∣ ofkL Pair I : OfkL s r ← InsnL (iPair v) �# J 〈Ofe v t〉 & 〈OfkL (tPair t s) r〉∣∣ ofkL Fst I : OfkL (tPair t s) r ← InsnL iFst �# 〈OfkL t r〉∣∣ ofkL Snd I : OfkL (tPair t s) r ← InsnL iSnd �# 〈OfkL s r〉∣∣ ofkL Ref I : OfkL t r ← InsnL iRef �# 〈OfkL (tRef t) r〉∣∣ ofkL Deref I : OfkL (tRef t) r ← InsnL iDeref �# 〈OfkL t r〉∣∣ ofkL Assign1 I : OfkL (tRef t) r ← InsnL (iAssign1 e) �# J 〈Ofe e t〉 & 〈OfkL t r〉∣∣ ofkL Assign I : OfkL t r ← InsnL (iAssign c) �# J 〈Ofc c t〉 & 〈OfkL t r〉∣∣ ofkL Done I : OfkL r r ← 1

The typing rules for continuations (as represented in the ordered SL context) also

correspond straightforwardly to those of Definition 7.11 (for continuations represented

as Hybrid terms of type cont), in the same way as for the evaluation rules, except

that instructions are only ever matched and removed, never inserted, in the ordered

context.

9.4 Context invariants

The partial context invariants ctxt abstr, ctxt D, ctxt G′, and ctxt D′ from Definitions

8.10 to 8.12 were reused without modification.

Definition 9.11

locale ctxt Z =

fixes Ω :: atm list

assumes Z mem: a mem Ω =⇒ (case a of InsnL i ⇒ True | ⇒ False)

The locale ctxt Z merely requires that the ordered context Ω consist of InsnL

atoms. This condition is sufficient to apply the typing judgment OfkL, which imposes

more specific conditions on the ordered context.

There is no dependency on ctxt abstr, indeed the predicate ctxt Z is simple

enough that it would be an acceptable premise for subject reduction.
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Definition 9.12

locale ctxt invar = ctxt D + ctxt G′ + ctxt D′ + ctxt Z +

assumes type correct : c ∈ S =⇒ Γ′ ` 〈Ofe (V c) (T c)〉

The locale ctxt invar adds ctxt Z, with its ordered context Ω, to Definition 8.13.

This results in a predicate (ctxt invar S V T ∆ Γ′ ∆′ Ω) with seven arguments. There

is no interaction between the ordered context and the other locale parameters.

Lemmas 8.14 to 8.17 (properties of the context invariant) were reused with only

one trivial change, the addition of an argument Ω to each instance of the predicate

ctxt invar. Additional inversion lemmas were proved for SL statements involving the

ordered context Ω, as well as lemmas allowing the addition or removal of instructions

in Ω while preserving the context invariant. These were all straightforward and their

statements are omitted here.

9.5 Semantic lemmas and subject reduction

Lemmas 8.18 (PackStateL OfsL) and 8.19 (subjRed op Ref, subjRed op Deref,

subjRed op Assign2, and subjRed op Done) were reused with only trivial changes:

the addition of an Ω argument to each instance of ctxt invar, and the addition of Ω

as ordered context in each SL statement involving the evaluation context ∆, except

for the PackStateL premise of PackStateL OfsL.

Lemma 9.13

PackStateL Z empty :
q

ctxt Z Ω; h, ·, ∆, Ω  〈PackStateL s〉
y

=⇒ Ω = ·

This lemma was proved by an easy transfinite induction on h; it shows that

a PackStateL statement implies that its ordered context is empty. This ensures

that a StepL statement can be derived starting with op Done I only when there
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are no instructions remaining to be executed. (It is also the reason why the lemma

PackStateL OfsL could be reused without adding an Ω argument.)

Unusually, this lemma requires no validity condition on ∆, since the axL′ rule

(Definition 9.3) cannot apply unless Ω is empty as required.

Lemma 9.14 (Subject reduction with context invariant)
q

ctxt invar S V T ∆ Γ′ ∆′ Ω;

·, ∆, Ω ` 〈EvalL e w〉;
Γ′ ` 〈Ofe e t〉; Γ′, ·, Ω ` 〈OfkL t r〉

y
=⇒ Γ′, ∆′ ` 〈OffL w r〉

The proof of this subject reduction lemma was surprisingly similar to that of

the corresponding lemma from the previous formalization (Lemma 8.20). The only

significant differences were the replacement of matching and construction of Hybrid

terms of type cont with manipulation of the ordered context using the connectives �#

and �, requiring different patterns of inversion and application of rules, and the need

to use the lemma PackStateL Z empty in the case op Done I in place of matching

the base case kDone.

The context validity predicates from Definition 8.21 were reused without mod-

ification; the lemma PackStateL OfsL ctxt (Lemma 8.22) was reused with only the

addition of an empty ordered-context argument to ctxt invar in the conclusion.

Theorem 9.15 (Subject reduction)
q
·, ∆ ` 〈EvalL e w〉; Γ′ ` 〈Ofe e t〉;
·, ∆ ` 〈PackStateL s〉; Γ′, ∆′ ` 〈OfsL s〉;
valid L ctxt ∆; valid L ctxt ∆′; valid J typing ctxt Γ′ ∆′ y =⇒ Γ′, ∆′ ` 〈OffL w r〉

This form of subject reduction follows from Lemma 9.14 and PackStateL OfsL ctxt

by the same reasoning used for Theorem 8.23.

The subject reduction theorem stated here is weaker than Theorem 8.23, because

it does not allow a nonempty continuation. It would be straightforward to strengthen

it, with the help of an additional context-validity predicate for the ordered context.
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Case Study:

Observations and Related Work

The one-level formalization of Chapter 5 and the two-level formalization with intu-

itionistic SL of Chapter 6 were both reasonably concise, and successful in automating

most of the cases of the subject reduction proof, except for those involving mutable

references.1

Comparing these two formalizations, the differences start with the typing judg-

ments, as the same representation of syntax and evaluation was used. The one-level

formalization required a context argument C for typing of program variables, where

the two-level formalization used hypothetical judgments, with types for program vari-

ables given by Ofe assumptions in the SL context.

The two-level intuitionistic formalization was roughly 10–20% larger that the

one-level formalization (depending on how it is measured), including the definition

and properties of the specification logic itself, which can be reused. Excluding the SL,

the difference is much smaller, and the residual difference is largely due to the use of

an awkward form of induction to prove weakening for the remaining context argument

1These formalizations required more detail than the corresponding informal treatment (Chap-
ter 4), but that is generally true of contemporary formal proofs.

198
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D (for location variables) in Lemma 6.13. There was some notational overhead for

the use of SL statements in the two-level formalization, but it was minimal and it

could be further reduced by Isabelle syntax definitions if desired. On the other hand,

the one-level formalization had to prove weakening and substitution lemmas for its

context argument C, where the two-level intuitionistic formalization used (reusable)

properties of the SL.

The same three cases of subject reduction – dereferencing, assignment, and

allocation of mutable references – required nontrivial (i.e., not fully automated) Isar

proofs in both of these formalizations. (In all of the formalizations, the total number

of cases contributed far less to to the complexity of the proof of subject reduction

than the presence of mutable references did.)

Moving on to the formalization of Chapter 7 with its use of linear logic in

the SL, we find more significant differences due to the representation of types for

location variables in the SL’s linear context. The typing rules that do not involve

variables are now entirely free of context arguments, though typing statements must,

of course, include an SL context. The typing rules that do involve variables contain

SL connectives, which is a minor notational overhead in most cases, but a more

significant one for the rule offL New I which must simulate a disjuction using an

auxiliary predicate.

In the two-level intuitionistic formalization, the proof of subject reduction in-

volved SL statements with empty contexts only. However, with typing of location

variables in the SL context, this is no longer the case for the two-level linear formal-

ization. This requires us to use a context invariant, as described in Section 7.3, to

constrain the form of SL statements. The definition and properties of context invari-

ants added significantly to the length and complexity of the formalization. The loss

of a convenient form of structural induction on typing judgments (for Lemma 7.31)

had a similar effect.

With a little fine-tuning (discussed in Section 10.1 below), the two-level linear
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formalization achieved automatic proof of the same cases of subject reduction as the

previous two formalizations, with moderately longer Isar proofs for the three cases

related to mutable references.

In total, this third formalization was nearly twice the size of either of the previous

formalizations, and was significantly more difficult to construct. To remedy this

situation, we believe it will be necessary to provide general tools (lemmas, etc.) for

working with SL contexts, as well as a form of induction on SL statements that

follows the structure of the OL judgments encoded in the SL. Such improvements

would change the formalization to such an extent that we cannot make an informed

speculation on how well the result would compare with the formalizations of Chapters

5 and 6.

Turning now to the formalization of Chapter 8, we find the first change to the

representation of evaluation, which is moved from the meta-level to the SL. This

only compounded the difficulties encountered in the previous formalization, and is

better viewed as an attempt to push the limits of Hybrid rather than a practical

way of formalizing an object language. We had little choice but to seek a more

convenient form of induction, and we found one in the use of an ordinal argument in

SL statements as an induction measure in Section 8.1. This improves on the use of a

natural-number argument for this purpose, by allowing even infinitely-branching SL

rules to be used in a form without the induction measure. This allowed us to avoid

the tedious task of tracking the induction measure for typing statements throughout

the proof of subject reduction by induction on an evaluation statement, which would

have been needed for the sake of a single use of all i in the op Ref I case had we

used a natural-number induction measure.

We also developed a modular approach to defining context invariants, based on

Isabelle’s locale mechanism, in Section 8.3. Automatic proof of the easy cases of

subject reduction was lost, and the resulting Isar proof was long and tedious. The

formalization was completed, but it does not represent anything close to a practical
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approach; its value lies mainly in the development of useful techniques for formal

proof.

Finally, we consider the formalization of Chapter 9, which added ordered logic

features to the SL and used the ordered-logic context to represent continuations.

Somewhat surprisingly, this had very little effect on the structure of the formalization,

amounting to little more than a syntactic change as compared with the linear-SL

formalization of Chapter 8.

In general, the use of Hybrid’s HOAS worked well, eliminating the need for

technical lemmas related to variable binding. The two-level approach was also quite

usable in Chapter 6, with an intuitionistic SL and evaluation still represented at

the meta-level. The formalizations based on sub-structural SLs, on the other hand,

were heavily burdened with technical lemmas and proof steps related to contexts and

induction; further work would be needed to determine to what extent these problems

can be alleviated.

Of the improvements to Hybrid from Chapter 3, the elimination of proper and

the stronger injectivity property for LAM were directly useful. The adequacy result

from Section 3.4, which made use of many of the other improvements, addresses most

of the adequacy issue for the case study’s representations of OL syntax, although the

details as well as adequacy for OL judgments remain as future work.

10.1 Proof Automation

In developing the formalizations of Mini-ML with references presented here, various

techniques were used to facilitate automation of the formal proofs in Isabelle/HOL.

Most of these techniques did not appear in Chapters 5 to 9, either because of the

omission of proofs, or because the lemmas or definitions involved were considered too

technical to present there. Some of the more notable ones are listed here:
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• When making auxiliary definitions, their basic properties were stated in the

form of natural-deduction style introduction and elimination rules for the use

of Isabelle’s classical reasoner, as well as rewrite rules for the use of Isabelle’s

simplifier. This is a standard technique in Isabelle/HOL, but there are some

subtleties. For instance, even trivial elimination rules are useful, to remove

meaningless premises from subgoals. Also, some care is required with simplifier

rules to avoid nonterminating sequences of rewrites. These came up in surprising

places, such as Definitions 6.7 and 6.7: proof of the elimination rules (not

shown) involved 510 cases, all of which should have been trivial, but one of

which required a manual proof step to prevent a simplifier loop!

• Isabelle’s automatic proof methods had trouble finding even obvious instantia-

tions, e.g., in proving existentially-quantified statements. Sometimes the use of

a different proof method, such as “best” (named for its search strategy) rather

than the more usual “auto” in Theorem 6.16, dealt with the problem. In other

cases, such as Theorem 7.32, increasing the search depth limits was successful.

However, at other times these approaches did not produce any result in a rea-

sonable length of time. In inductive proofs, it often helped to treat the IH as

an introduction rule rather than a premise.

In the formalizations of Chapters 8 and 9, an attempt was made to solve the

problem in general using a trivial predicate to suggest instantiations for the

automatic proof methods: (try x) was defined equal to True but used to trigger

the use of rules instantiating quantifiers with x. However, this approach met

with only limited success.

The combination of instantiation and unsafe intro/elim rules (for which the

automatic proof methods must be prepared to backtrack), even when not in

the same proof step, tended to cause particular trouble. In Chapter 7, the

OL typing rules were combined with the SL’s backchaining rule and declared
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as safe introduction rules, and a similar combination was used to obtain safe

elimination rules, which was essential for the automation of the “easy” cases of

subject reduction.

• Isabelle/HOL’s Multiset library was missing several basic properties that are

useful in reasoning about multisets. We proved some such properties as part

of the formalizations with linear and ordered SLs; even so, proofs involving

multisets often caused trouble for automation. We speculate that the use of

more advanced features such as simplifier procedures may be needed to properly

support multiset reasoning in Isabelle/HOL.

10.2 Related Work

We discuss some of the related work in two main areas: formalizations of programming

languages with mutable state (including functional languages with references, and

imperative languages) in other systems, and formalizations of other object languages

and properties in Hybrid.

Other formalizations of languages with mutable state

• An example by Simmons on the Twelf Project website [71, 72] formalizes type

safety for a minimal language with mutable state. The formalization is nonethe-

less quite large; Felty and Momigliano [21] note that it is much larger than a

similar example for (purely functional) Mini-ML.

• Cervesato and Pfenning [9] formalize Mini-ML with references in a linear log-

ical framework. (Our object language is from that paper, as mentioned in

Chapter 4.) This approach seems to be reasonably successful in avoiding the

complications that arise in the Twelf example.
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• Nipkow [55] formalizes several kinds of semantics for a small imperative pro-

gramming language in Isabelle/HOL, proves their equivalence, and proves sev-

eral other properties. State is represented using functions from locations to

values. The reported sizes of the theory files are quite reasonable given the

amount of metatheory covered.

It seems that the combination of working in a logical framework (as opposed

to a proof assistant such as Isabelle/HOL) and not having linear-logic features is

particularly problematic.

Other examples and case studies in Hybrid

• In their paper presenting Hybrid [2], Ambler, Crole, and Momigliano formalized

two small examples: negation normal form for quantified propositional logic,

and operational semantics for a lazy λ-calculus. Object-language judgments

were represented directly in Isabelle/HOL (a one-level approach).

• Momigliano, Ambler, and Crole [50] prove that bisimulation for the lazy λ-

calculus is a congruence. This paper also used a one-level approach, with

reasoning over open terms using Hybrid’s VAR.

• Momigliano and Ambler [49] prove correctness of compilation as well as subject

reduction for a small fragment of Mini-ML. This paper introduces the two-level

approach in Hybrid for the first time, inspired by Felty’s axiomatic treatment

of HOAS in Coq [19]. (We use the same specification logic in Chapter 6.)

• Felty and Momigliano [21] prove subject reduction for a fragment of Mini-ML,

using the same approach that Momigliano and Ambler used [49]. They also

prove subject reduction using a continuation-style operational semantics repre-

sented in an ordered SL. (We use a similar SL and similar encoding techniques

in Chapter 9.)
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• Felty and Momigliano [20] prove type unicity for PCF (a functional language

similar to Mini-ML), using a natural-number argument as an induction measure

for SL statements, and reasoning about open terms using Hybrid’s VAR. PCF

is a larger object language than those of previous formalizations, but it is still

a purely functional language without mutable references.

These publications are listed on the Hybrid website [39], and some of them are

accompanied by corresponding formal theory files.



Chapter 11

Conclusion and Future Work

11.1 Summary of Work and Results

In this thesis, we presented an improved version of Hybrid, a system for higher

order abstract syntax in Isabelle/HOL. One set of improvements centered on the

modification of the type of terms expr to exclude terms with dangling de Bruijn

indices. This small change paved the way for a stronger injectivity property, which

allows abstr conditions put into an inductively-defined predicate via introduction

rules to be brought out again in the elimination rules, rather than required again

as premises. It also facilitated the use of Isabelle’s simplifier to convert between

HOAS and de Bruijn indices without the use of special-purpose tactics.

We formally proved that a generalization of abstr to binary functions can be de-

fined in terms of abstr on unary functions. A corollary of this result (abstr LAM)

enabled abstr conditions to be proved compositionally instead of by converting from

HOAS to de Bruijn syntax. This corollary and another one (abstr nchotomy) also

completed Hybrid’s characterization of its type expr , in such a way that the subse-

quent proof of adequacy did not need to refer to de Bruijn syntax.

Another direction of work on Hybrid concerned induction and the representation
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of open terms. We generalized Hybrid’s predicate abstr to n-ary functions, and proved

an induction principle for such functions that maintains a HOAS representation even

for open terms. This work was experimental and integration into Hybrid remains as

future work.

Improving on prior work, we proved representational adequacy of Hybrid’s HOAS

for a λ-calculus-like fragment of Isabelle/HOL syntax. This result was stated in terms

of set-theoretic semantics for higher-order logic, and thus applied directly to Hybrid

as an Isabelle/HOL formal theory. It was also based solely on Hybrid’s type expr

and its properties, making the adequacy result independent of the details of Hybrid’s

definition of HOAS in terms of de Bruijn indices.

We also presented a case study of the formalization of a small programming lan-

guage, Mini-ML with references, in Hybrid. We developed five variant formalizations

of the operational semantics, type system, and subject reduction theorem for this

language, using the two-level approach with various specification logics as well as a

one-level formalization for comparison purposes. Both the one-level approach and

the two-level approach with intuitionistic SL were found to be reasonably successful

ways of formalizing this object language, where the use of Hybrid avoided the need

for technical lemmas relating to variable binding, and other overhead was minimal.

Variants with sub-structural (linear and ordered) SLs were found to cause consider-

able difficulties with proof automation in Isabelle/HOL. While there is likely to be

much room for improvement, the overhead of these approaches presently makes them

unattractive for practical formalization tasks as compared with the other approaches

that we tried. The process of constructing these formalizations did yield some useful

insights regarding the structuring of formal proofs based on Hybrid.
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11.2 Future Work

Hybrid

There are several directions in which our work on Hybrid could be continued.

One is to integrate our work on n-ary syntactic functions into Hybrid. This is

a promising direction for further improvement of Hybrid, but many technical details

remain to be worked out. (The use of type classes to generalize abstr to curried n-ary

functions is an interesting alternative; while it does not lead to an induction principle

that would be well-typed in Isabelle/HOL, it might be useful in combination with the

approach of Section 3.3.)

Another is to attempt to apply some of our improvements to the versions of Hy-

brid for Coq. As described in [21], however, the difference between higher-order logic

and dependent type theory requires some differences in approach. Some divergence

between the versions of Hybrid for different proof assistants is thus likely to persist.

On the other hand, some of our improvements may actually be more effective in

Coq. We could represent the hierarchy of de Bruijn levels as a type family indexed by

natural numbers, internalizing not just the proper predicate but also the level predicate

into the type system. Also, internalizing abstr as a type would be more attractive, as

we could represent it using dependent pairs consisting of a function together with a

proof that it is of the desired form.

Finally, an important objective is to extend Hybrid to a typed system provid-

ing an interface similar to Isabelle/HOL’s datatype package or Urban’s nominal

datatype package [73]. There has been some work in this direction by Capretta and

Felty [7] for Hybrid in Coq; we could attempt to adapt the ideas there to Isabelle/

HOL, though again some differences in approach may be appropriate.
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Case Study

While there is much room for technical improvement in the formalizations of our case

study, other directions appear to be more interesting.

One such direction is to formalize in Isabelle/HOL and Hybrid properties that

require the use of induction on Hybrid terms possibly containing LAM. Our work has

so far avoided that form of induction, though providing it is considered an important

goal of Hybrid. Proving the equivalence of HOAS representations based on Hybrid

with first-order representations of the same object logics would be a good example.

Some experiments in this direction inspired our work on n-ary syntactic functions in

Hybrid.

However, the main direction in which we believe this work should be continued

concerns adequacy. While adequacy of the representation of object-language terms

should follow easily from the adequacy result that we have established for Hybrid,

the representation of object-language judgments using a SL also raises questions of

adequacy. A provability-preserving bijection should be established between the set

of statements for each OL judgment and a set of corresponding SL statements. The

latter set would be specified by a particular atom in the conclusion together with a

context invariant, and it is expected that context invariants might be better explained

in the context of adequacy.

Experience has shown that if such properties are not verified for a large formal-

ization, such as those presented in this thesis, then they are not likely to be true. On

several occasions, problems were found that would clearly break any form of adequacy;

they were fixed, but it seems likely that similar problems may remain. However, we

believe that only minor changes to the formalizations will be required for a proof of

adequacy to succeed.

Another direction for future work is the development of general techniques and

tools for handling contexts, perhaps along the lines of Twelf’s “blocks” and “worlds”.
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This would further the goal of simulating Twelf’s approach in the definitional setting

of Isabelle/HOL, and it is expected to offer simplifications for both the formalizations

and the proofs of adequacy.
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Appendix A

Isabelle/HOL Formal Theories

The Isabelle/HOL theory corresponding to Section 3.3 (HybridV.thy) is given here

for reference. It is an experimental and somewhat unpolished formal theory, although

the proofs are mostly proper Isar.

The other formal theories presented in this thesis are available online [45].

HybridV.thy

(* A generalization of Hybrid to n-ary functions, by Alan J. Martin. *)

theory HybridV imports Hybrid begin (* Isabelle 2008 *)

declare to_expr_inject [iff] expr_ABS’_LAM [simp del]

types
ind = nat
’a iexp = "ind => ’a expr"
’a ndB = "’a iexp => ’a dB"
’a nexp = "’a iexp => ’a expr"

abbreviation (input) INDn’ :: "ind => ’a ndB"
-- {* This is only an (input) abbreviation because

it matches in too many unintended places when printing. *}
where "INDn’ i == (%v. dB (v i))"

abbreviation CONn’ :: "’a => ’a ndB"
where "CONn’ a == (%v. CON’ a)"

abbreviation VARn’ :: "var => ’a ndB"
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where "VARn’ n == (%v. VAR’ n)"
abbreviation APPn’ :: "[’a ndB, ’a ndB] => ’a ndB"
where "APPn’ S T == (%v. S v $$’ T v)"

abbreviation ERRn’ :: "’a ndB"
where "ERRn’ == (%v. ERR’)"

abbreviation BNDn’ :: "bnd => ’a ndB"
where "BNDn’ j == (%v. BND’ j)"

abbreviation ABSn’ :: "’a ndB => ’a ndB"
where "ABSn’ S == (%v. ABS’ (S v))"

abbreviation (input) INDn :: "ind => ’a nexp"
-- {* This is only an (input) abbreviation because

it matches in too many unintended places when printing. *}
where "INDn i == (%v. v i)"

abbreviation CONn :: "’a => ’a nexp"
where "CONn a == (%v. CON a)"

abbreviation VARn :: "var => ’a nexp"
where "VARn n == (%v. VAR n)"

abbreviation APPn :: "[’a nexp, ’a nexp] => ’a nexp"
where "APPn S T == (%v. S v $$ T v)"

abbreviation ERRn :: "’a nexp"
where "ERRn == (%v. ERR)"

abbreviation LAMn2 :: "[ind, ’a nexp] => ’a nexp"
-- {* An alternate version of LAMn; it should work, but

proving the necessary properties would be more difficult. *}
where "LAMn2 i S == (%v. LAM x. S (v (i := x)))"

lemma dB_n:
shows dB_INDn: "dB o (INDn i) = INDn’ i"
and dB_CONn: "dB o (CONn a) = CONn’ a"
and dB_VARn: "dB o (VARn n) = VARn’ n"
and dB_APPn: "dB o (APPn S T) = APPn’ (dB o S) (dB o T)"
-- {* no dB_LAMn, yet... *}
and dB_ERRn: "dB o ERRn = ERRn’"
unfolding o_def by simp_all

lemma expr_n’:
shows expr_INDn’: "expr o (INDn’ i) = INDn i"
and expr_CONn’: "expr o (CONn’ a) = CONn a"
and expr_VARn’: "expr o (VARn’ n) = VARn n"
and expr_APPn’: "[| Level 0 S; Level 0 T |] ==>

expr o (APPn’ S T) = APPn (expr o S) (expr o T)"
and expr_ERRn’: "expr o ERRn’ = ERRn"
-- {* no expr_BNDn’ (result is undefined) *}
-- {* no expr_ABSn’, yet... *}
by (simp_all add: expand_fun_eq expr_transpose)

text {* Simplifier rules specific to ’a ndB. *}
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lemma INDn’_neq_const [iff]: "INDn’ i ~= (% v. s)"
by (cases s)

(auto simp add: expand_fun_eq intro: exI [of _ "%v. expr ERR’"]
exI [of _ "%v. expr (CON’ a)"])

lemmas const_neq_INDn’ [iff] = INDn’_neq_const [symmetric]
lemma [simp]:
shows INDn’_neq_APP’: "INDn’ i ~= APPn’ S T"
and INDn’_neq_ABS’: "INDn’ i ~= ABSn’ S"
and APP’_neq_INDn’: "APPn’ S T ~= INDn’ i"
and ABS’_neq_INDn’: "ABSn’ S ~= INDn’ i"
by (auto simp add: expand_fun_eq intro: exI [of _ "%v. expr ERR’"]

exI [of _ "%v. expr (CON’ a)"])

lemma nordinary_INDn’ [iff]: "~ordinary (INDn’ i)"
by (simp add: ordinary_def)

text {* n-ary generalization of "abstr". *}

function Abstr_n :: "’a ndB => bool"
where "Abstr_n (CONn’ a) = True"
| "Abstr_n (VARn’ n) = True"
| "Abstr_n (APPn’ S T) = (Abstr_n S & Abstr_n T)"
| "Abstr_n (ERRn’) = True"
| "Abstr_n (BNDn’ j) = True"
| "Abstr_n (ABSn’ S) = Abstr_n S"
| "~ordinary S ==> Abstr_n S = (? i. S = INDn’ i)"
unfolding ordinary_def by atomize_elim auto

termination by (relation "measure (%S. size (S arbitrary))") auto

lemmas Abstr_n_cases = Abstr_n.cases [case_names CON VAR APP ERR BND ABS BASE]
and Abstr_n_induct = Abstr_n.induct [case_names CON VAR APP ERR BND ABS BASE]

definition abstr_n :: "’a nexp => bool"
where "abstr_n S = Abstr_n (dB o S)"

text {* Simplify abstr_n, except for LAMn (yet to be defined). *}

lemma Abstr_n_const: "Abstr_n (%v. s)"
by (induct s) simp_all

lemma abstr_n_simps_part1 [iff]:
shows abstr_n_INDn: "abstr_n (INDn i)"
and abstr_n_const: "abstr_n (%v. s)"
and abstr_n_APPn: "[| abstr_n S; abstr_n T |] ==> abstr_n (APPn S T)"
by (auto simp add: abstr_n_def o_def Abstr_n_const)

text {* n-ary generalization of LAM *}

function Lbind_n :: "[ind, bnd, ’a ndB] => ’a ndB"
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where "Lbind_n i j (CONn’ a) = CONn’ a"
| "Lbind_n i j (VARn’ n) = VARn’ n"
| "Lbind_n i j (APPn’ S T) = APPn’ (Lbind_n i j S) (Lbind_n i j T)"
| "Lbind_n i j ERRn’ = ERRn’"
| "Lbind_n i j (BNDn’ k) = BNDn’ k"
| "Lbind_n i j (ABSn’ S) = ABSn’ (Lbind_n i (Suc j) S)"
| "~ordinary S ==> Lbind_n i j S = (if S = INDn’ i then BNDn’ j else S)"
unfolding ordinary_def by atomize_elim auto

termination by (relation "measure (%(i,j,S). size (S arbitrary))") auto

definition Lambda_n :: "[ind, ’a ndB] => ’a ndB"
where "Lambda_n i S = (if Abstr_n S then ABSn’ (Lbind_n i 0 S) else ERRn’)"

definition LAMn :: "[ind, ’a nexp] => ’a nexp"
where [unfolded Lambda_n_def]: "LAMn i S = expr o (Lambda_n i (dB o S))"

lemma Abstr_n_Lbind_n [simp]: "Abstr_n S ==> Abstr_n (Lbind_n i j S)"
by (induct S arbitrary: j rule: Abstr_n_induct) simp_all

lemma Level_Lbind_n [simp]: "Level j S ==> Level (Suc j) (Lbind_n i j S)"
by (induct S arbitrary: j rule: Abstr_n_induct) simp_all

lemma dB_LAMn:
"dB o LAMn i S = (if abstr_n S

then ABSn’ (Lbind_n i 0 (dB o S))
else ERRn’)"

unfolding LAMn_def abstr_n_def o_def by simp

lemma abstr_n_LAMn [simp]: "abstr_n S ==> abstr_n (LAMn i S)"
by (simp add: abstr_n_def LAMn_def o_def)

text {* Injectivity of LAMn *}

lemma dB_o_inject: "dB o S = dB o T ==> S = T"
by (simp add: expand_fun_eq dB_inject)

lemma Lbind_n_inject:
assumes "Abstr_n S" and "Abstr_n S’" and "Level j S" and "Level j S’"
shows "Lbind_n i j S = Lbind_n i j S’ <-> S = S’"

using assms proof (induct S arbitrary: j S’ rule: Abstr_n_induct)
apply_end (case_tac [!] S’ rule: Abstr_n_cases)

qed auto

lemma LAMn_inject_E:
assumes "LAMn i S = LAMn i T" "abstr_n S | abstr_n T"
obtains "S = T"

proof -
{ fix S T :: "’a nexp"
assume p: "LAMn i S = LAMn i T" "abstr_n S"
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have "S = T"
proof (cases "abstr_n T")
case True -- {* abstr_n T *}
let ?S = "dB o S" and ?T = "dB o T" note o_def [simp]
from ‘abstr_n S‘ and ‘abstr_n T‘
have aS: "Abstr_n ?S" and aT: "Abstr_n ?T"
unfolding abstr_n_def by simp_all

with ‘LAMn i S = LAMn i T‘ [unfolded LAMn_def abstr_n_def]
have "expr o (ABSn’ (Lbind_n i 0 ?S)) = expr o (ABSn’ (Lbind_n i 0 ?T))"
by simp

with aS aT have "?S = ?T"
by (simp add: expand_fun_eq Lbind_n_inject [unfolded expand_fun_eq])

thus "S = T" by (simp add: expand_fun_eq dB_inject)
next
case False with p show ?thesis unfolding LAMn_def and abstr_n_def
by (simp add: o_def expand_fun_eq expr_transpose)

qed }
note r = this
show ?thesis using assms by (auto intro: that r sym)

qed

text {* Datatype-like distinctness and injectivity lemmas for type nexp. *}

lemma nexp_distinct_E_part1:
"CONn a = VARn n ==> P"
"CONn a = APPn S T ==> P"
"CONn a = ERRn ==> P"
"VARn n = CONn a ==> P"
"VARn n = APPn S T ==> P"
"VARn n = ERRn ==> P"
"APPn S T = CONn a ==> P"
"APPn S T = VARn n ==> P"
"APPn S T = ERRn ==> P"
"ERRn = CONn a ==> P"
"ERRn = VARn n ==> P"
"ERRn = APPn S T ==> P"
by (simp_all add: expand_fun_eq)

lemma nexp_distinct_E_part2:
"CONn a = INDn i ==> P"
"VARn n = INDn i ==> P"
"APPn S T = INDn i ==> P"
"ERRn = INDn i ==> P"
"INDn i = CONn a ==> P"
"INDn i = VARn n ==> P"
"INDn i = APPn S T ==> P"
"INDn i = ERRn ==> P"
by (auto simp add: expand_fun_eq)
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lemma nexp_distinct_E_part3:
"INDn i = LAMn j S ==> P"
"CONn a = LAMn j S ==> P"
"VARn n = LAMn j S ==> P"
"APPn S T = LAMn j S ==> P"
"[| ERRn = LAMn j S; ~P ==> abstr_n S |] ==> P"
"LAMn j S = INDn i ==> P"
"LAMn j S = CONn a ==> P"
"LAMn j S = VARn n ==> P"
"LAMn j S = APPn S T ==> P"
"[| LAMn j S = ERRn; ~P ==> abstr_n S |] ==> P"
by (auto simp add: expand_fun_eq dB_inject [symmetric]

dB_LAMn [unfolded o_def, THEN fun_cong]
split: if_splits elim: allE [where x = "%i. VAR 0"])

lemmas nexp_distinct_E [elim!] =
nexp_distinct_E_part1 nexp_distinct_E_part2 nexp_distinct_E_part3

lemma nexp_inject_E_part1:
"[| CONn a1 = CONn a2; a1 = a2 ==> P |] ==> P"
"[| VARn n1 = VARn n2; n1 = n2 ==> P |] ==> P"
"[| APPn S1 T1 = APPn S2 T2; [| S1 = S2; T1 = T2 |] ==> P |] ==> P"
by (simp_all add: expand_fun_eq)

lemma nexp_inject_E_part2:
"[| INDn i1 = INDn i2; i1 = i2 ==> P |] ==> P"
by (auto simp add: expand_fun_eq elim: allE [where x = "%i. VAR i"])

lemmas nexp_inject_E [elim!] =
nexp_inject_E_part1 nexp_inject_E_part2 LAMn_inject_E

lemma nexp_distinct [simp]:
" INDn i ~= CONn a"
" INDn i ~= VARn n"
" INDn i ~= APPn S T"
" INDn i ~= LAMn j S"
" INDn i ~= ERRn"
" CONn a ~= INDn i"
" CONn a ~= VARn n"
" CONn a ~= APPn S T"
" CONn a ~= LAMn j S"
" CONn a ~= ERRn"
" VARn n ~= INDn i"
" VARn n ~= CONn a"
" VARn n ~= APPn S T"
" VARn n ~= LAMn j S"
" VARn n ~= ERRn"
" APPn S T ~= INDn i"
" APPn S T ~= CONn a"
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" APPn S T ~= VARn n"
" APPn S T ~= LAMn j S"
" APPn S T ~= ERRn"
" LAMn j S ~= INDn i"
" LAMn j S ~= CONn a"
" LAMn j S ~= VARn n"
" LAMn j S ~= APPn S T"
"abstr_n S ==> LAMn j S ~= ERRn"
" ERRn ~= INDn i"
" ERRn ~= CONn a"
" ERRn ~= VARn n"
" ERRn ~= APPn S T"
"abstr_n S ==> ERRn ~= LAMn j S"
by auto

lemma nexp_inject [simp]:
" (INDn i1 = INDn i2) <-> (i1 = i2)"
" (CONn a1 = CONn a2) <-> (a1 = a2)"
" (VARn n1 = VARn n2) <-> (n1 = n2)"
" (APPn S1 T1 = APPn S2 T2) <-> (S1 = S2 & T1 = T2)"
"abstr_n S ==> (LAMn i S = LAMn i T) <-> (S = T)"
"abstr_n T ==> (LAMn i S = LAMn i T) <-> (S = T)"
by auto

text {* Size induction support for type nexp *}

definition "size_n (S :: ’a nexp) = size (S (%i. ERR))"
definition "size_n’ (S :: ’a ndB) = size (S (%i. ERR))"

lemma size_Lbind_n:
"Abstr_n S ==> size_n’ S < Suc (size_n’ (Lbind_n j k S))"
unfolding less_Suc_eq_le and size_n’_def

proof (induct S arbitrary: k rule: Abstr_n_induct)
apply_end (erule_tac [3] x = k in meta_allE)
apply_end (erule_tac [3] x = k in meta_allE)

qed auto

lemma Level_dB_o: "Level i (dB o S)"
unfolding o_def by simp

lemma size_n_monos [simp]:
"size_n (INDn i) = 0"
"size_n (CONn a) = 0"
"size_n (VARn n) = 0"
"size_n (APPn S T) = Suc (size_n S + size_n T)"
"abstr_n S ==> size_n S < size_n (LAMn j S)"
"size_n ERRn = 0"

proof -
show "abstr_n S ==> size_n S < size_n (LAMn j S)"
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by (simp add: size_n_def LAMn_def abstr_n_def o_def expr_size_def
size_Lbind_n [unfolded size_n’_def, of "%x. dB (S x)"])

qed (simp_all add: size_n_def)

text {* Structural induction for type nexp *}

function Linv_n :: "[ind, bnd, ’a ndB] => ’a ndB"
where "Linv_n i j (CONn’ a) = CONn’ a"
| "Linv_n i j (VARn’ n) = VARn’ n"
| "Linv_n i j (APPn’ S T) = APPn’ (Linv_n i j S) (Linv_n i j T)"
| "Linv_n i j ERRn’ = ERRn’"
| "Linv_n i j (BNDn’ k) = (if k = j then INDn’ i else BNDn’ k)"
| "Linv_n i j (ABSn’ S) = ABSn’ (Linv_n i (Suc j) S)"
| "~ordinary S ==> Linv_n i j S = S"
unfolding ordinary_def by atomize_elim auto

termination by (relation "measure (%(i,j,S). size (S arbitrary))") auto

text {*
I would like to say that Lbind_n and Linv_n are inverses.
However, there will be conditions on both sides: Linv_inverse will require
choice of a fresh index, while Lbind_inverse will have a level condition.
(Which is essentially a freshness condition, and I’m considering changing
the treatment of fresh indices to something more conventional.)

*}

lemma Lbind_n_inverse:
assumes "Level j S" shows "Linv_n i j (Lbind_n i j S) = S"
using assms by (induct S arbitrary: j rule: Abstr_n_induct) simp_all

text {*
I *really* need a better convention for the various "equivalent" predicates
on terms, functions, etc., and for the corresponding theorems.

I could certainly overload the predicates, but it may be unwise to do so in
the absence of an axiomatic scheme allowing the theorems to be overloaded
as well. I’ll try it for the freshness predicates and see how it works.

Observations so far:
- The need for a separate name in definitions is unfortunate, but tolerable.
- Type inference may assign overly general types to the arguments of
overloaded predicates. (This happened in fresh_to_func below.)

*}

consts fresh :: "[ind, ’a] => bool"

overloading Fresh_n == fresh begin
function Fresh_n :: "[ind, ’a ndB] => bool"
where " Fresh_n i (CONn’ a) <-> True"
| " Fresh_n i (VARn’ n) <-> True"
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| " Fresh_n i (APPn’ S T) <-> Fresh_n i S & Fresh_n i T"
| " Fresh_n i ERRn’ <-> True"
| " Fresh_n i (BNDn’ j) <-> True"
| " Fresh_n i (ABSn’ S) <-> Fresh_n i S"
| "~ordinary S ==> Fresh_n i S <-> S ~= INDn’ i"
unfolding ordinary_def by atomize_elim auto

termination by (relation "measure (%(i,S). size (S arbitrary))") auto
end

lemma INDn’_inject [iff]: "(INDn’ i1 = INDn’ i2) <-> (i1 = i2)"
by (auto simp add: expand_fun_eq elim: allE [where x = VAR])

lemma dB_not_INDn’ [iff]: "~(! t v. dB t = INDn’ i v)"
by (auto intro!: exI [where x = "VAR 0"] exI [where x = "%j. VAR 1"])

lemma Fresh_n_INDn’ [iff]: "fresh i (INDn’ j) <-> j ~= i"
by (auto simp add: expand_fun_eq intro!: exI [where x = "%j. VAR j"])

lemma Fresh_n_subst:
"Abstr_n S ==> fresh i S <-> (! t v. S (v (i := t)) = S v)"

proof (induct S rule: Abstr_n_induct)
case (BASE S) then obtain j where "S = INDn’ j" by auto
thus ?case
by (auto simp add: expand_fun_eq intro!: exI [where x = "%j. VAR j"])

qed auto

lemma Abstr_n_fresh_cofinite:
assumes "Abstr_n S" shows "finite {i. ~fresh i S}"
using assms by (induct S rule: Abstr_n_induct)

(auto simp del: disj_not1
simp add: finite_Un [unfolded Un_def mem_def],

simp_all add: Collect_def)

lemma Abstr_n_ex_fresh:
assumes "Abstr_n S"
obtains i where "fresh i S"

proof -
have "? i. i ~: {j. ~fresh j S}"
proof (rule ex_new_if_finite)
show "~finite (UNIV :: nat set)" by (rule infinite_UNIV_nat)
show "finite {i. ~fresh i S}" using ‘Abstr_n S‘
by (rule Abstr_n_fresh_cofinite)

qed
with that show thesis by auto

qed

lemma Linv_n_inverse:
assumes "fresh i S" shows "Lbind_n i j (Linv_n i j S) = S"
using assms by (induct S arbitrary: j rule: Abstr_n_induct) auto
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lemma Linv_n_0_cases [consumes 1]:
"[| fresh i S; S = Lbind_n i 0 (Linv_n i 0 S) ==> P |] ==> P"
by (simp add: Linv_n_inverse)

lemma Level_Linv_n [simp]:
"[| Abstr_n S; Level (Suc j) S |] ==> Level j (Linv_n i j S)"
by (induct S arbitrary: j rule: Abstr_n_induct) auto

lemma Abstr_n_Linv_n [simp]: "Abstr_n S ==> Abstr_n (Linv_n i j S)"
by (induct S arbitrary: j rule: Abstr_n_induct) auto

lemma expr_o_inverse: "Level 0 S ==> dB o (expr o S) = S"
unfolding o_def expand_fun_eq by auto

lemma expr_ABSn’_LAMn_l1:
assumes "Abstr_n S" and "Level 0 S"
shows "expr o (ABSn’ (Lbind_n i 0 S)) = LAMn i (expr o S)"

proof -
from ‘Level 0 S‘ and ‘Abstr_n S‘ have "abstr_n (expr o S)"
by (simp add: abstr_n_def expr_o_inverse)

thus ?thesis using ‘Level 0 S‘ unfolding LAMn_def abstr_n_def
by (simp add: expr_o_inverse)

qed

lemma expr_ABSn’_LAMn:
assumes "fresh i S" and "Abstr_n S" and "Level (Suc 0) S"
shows "expr o (ABSn’ S) = LAMn i (expr o (Linv_n i 0 S))"

using ‘fresh i S‘ proof (cases rule: Linv_n_0_cases)
assume S_expand: "S = Lbind_n i 0 (Linv_n i 0 S)"
have "expr o (ABSn’ (Lbind_n i 0 (Linv_n i 0 S)))

= LAMn i (expr o (Linv_n i 0 S))"
using ‘Abstr_n S‘ and ‘Level (Suc 0) S‘
by (simp add: expr_ABSn’_LAMn_l1)

thus "expr o (ABSn’ S) = LAMn i (expr o (Linv_n i 0 S))"
using S_expand [symmetric] by simp

qed

lemma nexp_nchotomy_l1:
assumes "Abstr_n S" and "Level (Suc 0) S"
shows "? i T. abstr_n T & ABSn’ S = dB o (LAMn i T)"

proof -
obtain i where "fresh i S" using ‘Abstr_n S‘ by (rule Abstr_n_ex_fresh) auto
let ?T = "expr o (Linv_n i 0 S)"
from ‘fresh i S‘ and ‘Abstr_n S‘ have a: "LAMn i ?T = expr o (ABSn’ S)"
by (rule expr_ABSn’_LAMn [symmetric])

from ‘Abstr_n S‘ and ‘Level (Suc 0) S‘
have l0: "Level 0 (Linv_n i 0 S)" and l0a: "Level 0 (ABSn’ S)" by simp_all
from a and ‘Abstr_n S‘ have "abstr_n ?T"
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by (simp add: abstr_n_def expr_o_inverse [OF l0])
moreover from a have "ABSn’ S = dB o (LAMn i ?T)"
by (simp add: expr_o_inverse [OF l0a])

ultimately show ?thesis by auto
qed

lemma nexp_nchotomy_l2:
assumes "Abstr_n Y" and "Level 0 Y"
shows "(? i. Y = (INDn’ i)) | (? a. Y = CONn’ a) | (? n. Y = VARn’ n)

| (? S T. Abstr_n S & Abstr_n T
& Level 0 S & Level 0 T & Y = APPn’ S T)

| (? i T. abstr_n T & Y = dB o (LAMn i T)) | Y = ERRn’"
proof (cases Y rule: Abstr_n_cases)
case (ABS S) with assms show ?thesis
using nexp_nchotomy_l1 [where S = S] by simp

qed (insert assms, simp_all)

lemma dB_expr_o_transpose: "Level 0 T ==> dB o S = T <-> S = expr o T"
unfolding o_def by auto

lemma six_cases_E:
"[| A’ | B’ | C’ | D’ | E’ | F’;

A’ ==> A; B’ ==> B; C’ ==> C; D’ ==> D; E’ ==> E; F’ ==> F |]
==> A | B | C | D | E | F" by auto

lemma dB_o_inverse: "expr o dB = id"
by (simp add: expand_fun_eq)

lemma nexp_nchotomy:
assumes "abstr_n Y"
shows "(? i. Y = INDn i) | (? a. Y = CONn a) | (? n. Y = VARn n)

| (? S T. Y = APPn S T) | (? i S. abstr_n S & Y = LAMn i S) | Y = ERRn"
proof -
from‘abstr_n Y‘ have "Abstr_n (dB o Y)"
unfolding abstr_n_def .

moreover have "Level 0 (dB o Y)" by auto
ultimately have
"(? i. (dB o Y) = INDn’ i) | (? a. (dB o Y) = CONn’ a)

| (? n. (dB o Y) = VARn’ n)
| (? S T. Abstr_n S & Abstr_n T

& Level 0 S & Level 0 T & (dB o Y) = APPn’ S T)
| (? i T. abstr_n T & (dB o Y) = (dB o LAMn i T))
| (dB o Y) = ERRn’" by (rule nexp_nchotomy_l2)
thus ?thesis
by (rule six_cases_E)

(auto simp add: dB_expr_o_transpose expr_n’ o_assoc LAMn_def
dB_o_inverse)

qed



232

lemma abstr_n_APPn_simp [simp]:
"abstr_n (APPn S T) <-> abstr_n S & abstr_n T"
by (simp add: abstr_n_def o_def)

lemma nexp_exhaust:
assumes abstr_n: "abstr_n Y"
obtains (INDn) i where "Y = INDn i"
| (CONn) a where "Y = CONn a"
| (VARn) n where "Y = VARn n"
| (APPn) S T where "Y = APPn S T" and "abstr_n S" and "abstr_n T"
| (LAMn) i S where "Y = LAMn i S" and "abstr_n S"
| (ERRn) "Y = ERRn"
using nexp_nchotomy [where Y = Y] and abstr_n
by auto auto -- {* why? *}

lemma nexp_induct [consumes 1, case_names INDn CONn VARn APPn LAMn ERRn]:
assumes "abstr_n U"
and "!! i. P (INDn i)"
and "!! a. P (CONn a)"
and "!! n. P (VARn n)"
and "!! S T. [| P S; P T |] ==> P (APPn S T)"
and "!! i S. P S ==> P (LAMn i S)"
and "P ERRn"
shows "P U"

using ‘abstr_n U‘ proof (induct U rule: measure_induct [of size_n])
case (1 U) from ‘abstr_n U‘ show ?case
proof (cases rule: nexp_exhaust)
case (APPn S T)
hence "P S" and "P T"
by (auto intro!: "1.hyps" [unfolded ‘U = APPn S T‘, rule_format])

thus "P U" unfolding ‘U = APPn S T‘ by (rule assms)
next
case (LAMn i S)
hence "P S"
by (auto intro!: "1.hyps" [unfolded ‘U = LAMn i S‘, rule_format])

thus "P U" unfolding ‘U = LAMn i S‘ by (rule assms)
qed (insert assms, simp_all)

qed

declare to_expr_inject [iff del] expr_ABS’_LAM [simp]

end


