COS201V/101

Page 88:	The solution for problem 9 on page 29 in <i>Cohen</i> 's 1997 edition is not entirely correct. The smallest number of steps for generating $x^8 + x^4$ is 5. The steps are:
	XX XXX XXXX
	xxxxxxxx xxxxxxxx + xxxx
D 02	$T_{1} = -1$

Page 92:The solution for problem 9(ii) on page 49 in
Cohen's 1997 edition is incorrect. The
regular expression should be $a^*(baa^*)^*(b + A)$.

5.2 ERRATA IN *Cohen* 1997 edition

- **Page 56:** The transition function should be $*(q_i, x_j) = q_k$ instead of $*(q_i, x_j) = x_k$.
- Page 86:This error is indicated on page 48 of the
study guide.
- Page 98:On line 5, the word unless should be
replaced with useless.
- Page 131:Line 11 reads, "If we are in z_2 ...". It should
read, "If we are in z_4 ...".
- **Pages 139 & 140:** There are some errors in each of the three examples. If we apply the algorithm correctly, all three resulting FA's are

different from those in the book to a greater or lesser extent.

- (i) The first NFA on page 139 does indeed change into the given FA but the edge from state x_4 to the dead-end state should have *a*, *b* as label (not *a* alone).
- (ii) The second NFA on page 139 changes to an FA with **four** states: The state on the right-hand side of the FA in the book should be marked as

 $x_2 \text{ or } x_3 \text{ or } +x_1$ and the label of the loop should be *b* (and not *a*, *b*). There should be an edge with label *a* from this state to a new state marked

 $x_1 \text{ or } + x_3.$

At this new state there should be a loop with label an *a* and an edge returning to the $(x_2 \text{ or } x_3 \text{ or } +x_1)$ state with label *b*.

Thus, the correct FA has one state more than the FA in the textbook and one of the other three states has a different composition.

(iii) The NFA at the top of page 140 changes to an FA with two states

COS201V/101

New state	Old states	Read an a	Read a b
-z1	1	$z^2 = 1 \text{ or } 2$	z3 = 1 or 5
z2	1 or 2	z4 = 1 or 2 or 3	z3 = 1 or 5
z3	1 or 5	$z^2 = 1 \text{ or } 2$	z5 = 1 or 5 or 6
z4	1 or 2 or 3	+z6 = 1 or 2 or 3 or 4	z3 = 1 or 5
z5	1 or 5 or 6	z2 = 1 or 2	+z7 = 1 or 5 or 6 or 4
+z6	1 or 2 or 3 or 4	+z6 = 1 or 2 or 3 or 4	+z8 = 1 or 5 or 4
+z7	1 or 5 or 6 or 4	+z9 = 1 or 2 or 4	+z7 = 1 or 5 or 6 or 4
+z8	1 or 5 or 4	+z9 = 1 or 2 or 4	+z7 = 1 or 5 or 6 or 4
+z9	1 or 2 or 4	+z6 = 1 or 2 or 3 or 4	+z8 = 1 or 5 or 4

more than the NFA itself. We obtain the following:

6. ASSIGNMENT QUESTIONS

We summarise the due dates for the four assignments and the scope of each assignment in the following table:

Assignment	Due date	Covers chapters
01 - compulsory	11 April	1, 2, 3 and 4
02	16 May	3, 4, 5 and 6
03	13 June	7 and 8
04	11 July	9, 10 and 11

14