
1

1

ITI 1120
Introduction to Computing I

Class Notes
Winter 2008

A. Felty

(contributors: D. Amyot, G. Arbez, S. Boyd,
R. Holte, D. Inkpen, W. Li, S. Somé, A. Williams)

Not to be used or reproduced without permission of the authors

“I really hate this darn machine; I wish that they would sell it.
It won't do what I want it to, but only what I tell it.”

- The Programmer’s Lament

2

Historical note …

• Charles Babbage, British
mathematician and engineer,
designed and built, in 1833,
parts of a machine that
contained modern
components such as: central
processing unit, memory, and
a data input device with
punch cards.

• John von Neumann, Hungarian
mathematician, participated in the
development of the first computer:
ENIAC (1945)

• The principle of the Von Neumann
architecture: the data and the
programs are encoded in the
memory

2

3

Software

• This course is about solving problems using computer software.

– Real-life software can include tens of millions of lines of
program code, or it can be just a few lines of code in a life-
critical system.

– Software design teams can range from a single person to
over a thousand people.

– Software can live for decades (example: the SABRE airline
reservation system is over 50 years old) and must be
maintained to be successful.

– To produce successful software, a systematic and rigorous
development process is needed.

• Software engineering:

– The process of designing software that functions correctly,
and producing the software on time and within a budget.

4

Software Life Cycle

1. Requirements analysis
– What problem are you trying to solve?
– What are the needs of the users?
– What resources are available?

– Equipment, time, cost, people
– Develop a plan

2. Design
– Proposal for the solution of the problem within the

constraints of the requirements
– Model the software system

– Structure of the software (“architecture”)
– Organization of data

3. Algorithm development
– Determine the steps required to solve particular problems

or sub-problems.

3

5

Software Life Cycle

4. Implementation
– Creation of program code:

– Manually, or semi-automatically with tools.
5. Quality Assurance

– Verification and Validation: The process of
checking that a software system meets
specifications and that it fulfills its intended
purpose.

– Testing: Running experiments to see if the
software has the expected functionality and
performance.

– Debugging: The process of determining how to
modify software to remove problems.

6

Software Life Cycle

6. Deployment

– How does the software get to the customer?

– How is the software installed and configured in
the customer’s environment?

7. Maintenance

– As customers report problems, how are the fixes
developed, tested, and deployed?

– How are new features added?

– How are obsolete features retired

• Documenting is an activity that occurs throughout
the cycle.

4

7

Problem Analysis

• Our aim is to use a computer to solve problems.

• Problems are usually stated in a “natural language” (e.g. English),
and it is up to you, as a software designer, to extract the exact
problem specification from the informal problem statement.

• This involves understanding the problem, and clarifying:

– What data is “given” or “input” (available for use when the
problem-solving takes place)

– What results are required

– What assumptions are safe to make

– What constraints must be obeyed.

“Computers are good at following instructions, but not at reading your mind.”
- D. Knuth

8

Example 1: Average of three numbers

• Informal statement:
– John wants to know the total and average cost of

the three books he just bought.

• GIVENS: descriptions and names of the values that
are known
– Num1, Num2, Num3: numbers representing the

cost of each of John’s books

• RESULTS: descriptions and names of the values to be
computed from the givens
– Sum, the sum of Num1, Num2, Num3
– Avg, the average of Num1, Num2, Num3

5

9

What is an Algorithm?

• An algorithm is a sequence of well-defined steps for solving a
problem.

• Developing an algorithm for a problem is a creative process.

• Sometimes, part of this process involves problem decomposition,
which involves deciding how to break the problem into smaller
sub-problems.

• Keep in mind:

– There can be many algorithms for the same problem, and you
may have to choose the most appropriate solution.

– There are problems for which there is no algorithm that
solves the problem.

10

Algorithm models

• Before getting into the details of coding, you should build a
model of the algorithm.

• The algorithm model we will use in this course has the following
format:

GIVENS
– A list of the names of given values

RESULTS
– The name of the result (or a list of results)

HEADER <RESULTS> ← <algorithm name> (<GIVENS>)
– It specifies the name of the algorithm, an ordered list of the

givens, and an ordered list of the results.
BODY

– A sequence of instructions which, when executed, computes
the desired results from the givens.

6

11

Algorithm for Average

Informal statement:
– John wants to know the total and average cost of the

three books he just bought.
GIVENS: Num1, Num2, Num3

– (three numbers representing the cost of each of
John’s books)

RESULTS:
– Sum (the sum of Num1, Num2, and Num3)
– Avg (the average of Num1, Num2, and Num3)

HEADER:

BODY:

12

Data in Algorithm Models

• Literals: constant data values

– Two types: numeric data, and textual data

• Examples of numeric literals:

2, 3.14159, –14, –14.0

• A string is a sequence of characters enclosed in
double-quotes. The quotes are not part of the data.

• Examples of strings:

– Hello , foo , bar , 2 , ,

7

13

Storing values in a computer

• The computer’s memory consists of a large, but NOT
unlimited, number of storage locations, each of which has
an address to identify the location.

• Variables represent values stored in the computer.

• A variable has the following attributes:

– Name: Used by the computer as the address in the
memory.

– Value: The contents of the storage location.

– Type: Constraints on the values that can be stored in a
variable, or on the operations that can be performed.

• Example: X ← 4, Y ← 3, X ← Y

– What are the values of X and Y after the execution?

14

Assigning Values to Variables

• To give a value to a variable is called assignment.

– Example: X ← 3

• In our model notation, we use

AVariable ← AnExpression
to denote assigning the value of the expression
AnExpression to a variable named AVariable.

• On the right-hand side, AnExpression could be a
literal value, a variable (its value is taken), or an
expression involving both.

• The names (variables) of the GIVENS of an algorithm
are called parameters (or, formal parameters)

8

15

Expressions

• In our algorithm models, it is permitted to use any
mathematical expression to perform calculations on
numeric data values and values of variables.

• Examples:

3
3 + 5
3 + Y × 4
3 + (X ÷ 2) × Y
9.3 – 6.2

49

2−

()32log2

16

Operators

• Operators perform some sort of calculation on values.

• The number of values an operator uses may vary:

– Binary: has two operands

– Unary: has one operand

– Examples:

• Subtraction: a binary operator.

• Negation: a unary operator.

• Operators must be evaluated in a specific order, and
some operators may have precedence over others.

– For our algorithm models, we will use the order and
precedence rules from mathematics.

9

17

Division and remainders

• It is often useful to perform division in entirely within integers,
as opposed to using real numbers.

• Two types of division:

Real: 11.0 / 4.0 result: 2.75
Integer: 11 ÷ 4 result: 2

• The result of integer division is truncated; the fraction is
cut off.

• When doing division in integers, it is also very useful to obtain
the remainder from the division. This is done with the mod
operator.

11 mod 4: result: 3

• Finding the remainder has several important uses:

– The value of X mod Y is always in the range from 0 to Y − 1.

– The value of X mod 10 gives the last digit of X.

18

Models vs. Computation

• We are using mathematical operators and values as a model for
computation.

• A model is only an abstraction that captures the essentials of
the problem, but not all the details. When it comes to actual
computation, additional constraints may be introduced:

– Can we use numbers of unlimited range?

– What about types of values?

– How fast are the computations performed?

– Do we have enough memory for all of the variables?

– Does an operator in a programming language work exactly the
same way as in mathematics?

10

19

Coding

• Coding = translating an algorithm into a particular programming
language so it can be executed on a computer.

• Do not be too quick to code! It is much better to spend time on
your algorithm, mentally checking it, thinking about it, and
“tracing” it on test data to be sure that it is correct.

• Coding is largely a mechanical process, not a creative one.

• Both algorithm development and coding require very careful
attention to detail.

“The sooner you start to code,
the longer the program will take.” - R. Carlson

20

Programming Languages

• Inside the computer, the hardware understands only
sequences of electrical signals, represented by digits
0 and 1 (“machine language”).

– This language is usually specific to a particular
computer processor.

• Since long sequences of zeros are difficult for people
to work with, programs are normally created in a
programming language, and then translated to
machine language.

• Programming languages have a very precise grammar
(“syntax”) and unambiguous meanings of statements
(“semantics”).

11

21

Types of Programming Languages

• Machine-level languages
– Numbers. The only language computer understands

directly

• Assembly languages
– Instructions made up of symbolic instruction codes
– Assembler converts the source code to the machine

language

• High-level languages (third generation)
– Use a series of English-like words to write instructions

• Forth-generation languages:
– Syntax closer to human language (for databses, e.g., SQL)
– Provide visual or graphical interface for creating source

code (e.g., VisualBasic.Net)

22

Programming Paradigms

High-level languages:

• imperative / procedural programming

(e.g., Basic, Pascal, Fortran, C)

• object-oriented programming

(e.g., Java, C++, SmallTalk)

• functional programming (e.g., Lisp, ML)

• logic programming (e.g., Prolog)

12

23

Compilers vs. Interpreters

• Compiler = a program that translates source code into
machine code. At the end of the compilation the
machine code can be executed.

• Interpreter = a program that translates each line of
code into machine language and executes it before
translating the next line.

• Differences:

– Execution of compiled code is faster.

– Compilers can do optimization.

– Interpreters used for prototyping, multiplatform.

24

Basic Program Development

errors

errors

Edit andEdit andEdit andEdit and
save programsave programsave programsave program

Compile programCompile programCompile programCompile program

Execute program andExecute program andExecute program andExecute program and
evaluate resultsevaluate resultsevaluate resultsevaluate results

13

25

Testing, Debugging, and Maintenance

• Testing = looking for errors (“bugs”) in an algorithm
or program by executing it on test data (givens) and
checking the correctness of the results. Big
programs are usually impossible to test completely.

• Debugging = locating and correcting an error in an
algorithm or program.

• Maintenance = changing an algorithm or program that
is in use, updating, fixing errors.

26

Three Types of Errors

1. Syntax errors: These are illegal combinations of symbols that
do not obey the rules of the programming language.

• Symptom: the program will not compile.

2. Run-time errors: These are errors which result from the data
values used.

• Symptom: the program crashes while running.

3. Logic (semantic) errors: These are errors which result from
incorrect reasoning in the program. They probably occur
because the algorithm is wrong.

• Symptom: the program runs, but the results are wrong.

14

27

Documentation

• Documentation is all of the materials that make
software easy to understand for both software
designers, and users of the software.

• Internal documentation (such as comments,
descriptive variable names) occurs inside the
program.

• External documentation (such as models, user
manuals, etc.) is documentation which is outside of
the program.

“If you can't explain it simply, you don't understand it well enough.”
- A. Einstein

28

Another example

• Write an algorithm (ComputeP) that takes as input three values
(A, B, C) and returns the proportion of each value out of their
total.

• First solution:

GIVENS: A, B, C (three numbers)

RESULTS: PA, PB, PC (three proportions)

HEADER: (PA,PB,PC) ß ComputeP(A,B,C)

BODY:

1. PA ß A / (A+B+C)

2. PB ß B / (A+B+C)

3. PC ß C / (A+B+C)

NOTE: The computation of A+B+C is repeated three times.

15

29

Another example (cont.)

• Second solution:

GIVENS: A, B, C (three numbers)

INTERMEDIATES: Sum (their sum)

RESULTS: PA, PB, PC (three proportions)

HEADER: (PA,PB,PC) ß ComputeP(A,B,C)

BODY:

1. Sum ß A+B+C

2. PA ß A / Sum

3. PB ß B / Sum

4. PC ß C / Sum

There is no difference in logic and results, but the algorithm is
more clear and there is less computation to execute.

30

Intermediate Variables

• Often it is useful within an algorithm to use a variable
that is neither a given nor a result used to
temporarily hold a value.

• These INTERMEDIATE variables should be listed and
described along with the givens and results at the
start of an algorithm definition.

• Their values are not returned to the calling
statement, nor are they remembered from one call to
the next.

• Intermediate variables are used mainly for improving
readability of the algorithm or for the efficiency of
the algorithm.

16

31

More on INTERMEDIATES

• INTERMEDIATES have values that can vary.

– They may vary depending on the problem instance (in other
words, depending on the values of the GIVENS).

– They may change during computation.

• INTERMEDIATES that do not vary are called CONSTANTS.

– Their values are fixed.

• They are the same no matter what the values of the
GIVENS are.

• Their values will not change during the computation.

– They can be given names that help document the algorithm
and make it more readable.

– Representing constants by names reduces maintenance
effort.

32

Problem: Average out of 100

• Write an algorithm that takes three scores (each out
of 25) and computes their average (out of 100).

– (Idea: average the scores, then convert the result
to be out of 100.)

17

33

Summary of Variables

• GIVENS are the input data. They vary from one call
to another. In other words, their values can be
different for each problem instance.

• RESULTS are the answers that are generated by an
algorithm.

• INTERMEDIATES are everything else.

34

Historical note …

• In 1990, Tim Berners-Lee, researcher at
CERN in Geneva, developed the World Wide
Web technology, in order to facilitate
information access on the Internet.

• He initiated many standards, among which
the most utilised are HTTP, URL, and the
HTML language.

• Now he is working on the Semantic Web

In 1992, at Sun Microsystems, James Gosling
(born in Canada) and his team invented, the
programming language Oak, renamed Java in
1994.

18

35

Historical note …

• Ada Byron, countess of
Lovelace, mathematician and
collaborator of C. Babbage,
defined the principle of
successive iterations in the
execution of an operation (1840).

• She created the first computer
algorithm; she is considered the
first programmer.

• There is a programming language
named after her: Ada

36

Invoking an Algorithm

• To invoke an algorithm you use a “call” statement
which is identical to the header except for the names
of the givens and results.

TheAvg ← Average(10, 7, 4)

invokes our algorithm with givens Num1=10, Num2=7,
Num3=4 and returns the results in TheAvg (average).

• Information is passed between the call statement and
the algorithm based on the ORDER of the givens and
results, not their names.

19

37

Tracing an Algorithm

• To TRACE an algorithm is to execute it by hand, one
statement at a time, keeping track of the value of
each variable. The aim is either to see what results
the algorithm produces or to locate “bugs” in the
algorithm.

• Tracing always involves a single problem instance. You
may need to do several traces (with different givens)
of the same algorithm to find bugs.

38

Tracing Steps

1. Number every statement in the algorithm.

2. Make a table. The first column will say which statement
is being executed. The other columns each correspond
to a variable. There should be one column for each
given, result, and intermediate.

3. Fill in the first row of the table with the variables’
initial values.

– The givens will have the values supplied by the calling
statement; all other variables will have a “?”.

– Write “initial values” in column 1 of row 1.

20

39

Tracing Steps (continued)

4. The second row is for the first statement executed.
Put its number in column 1, and for every variable
whose value is changed by this statement put the
new value in the variable’s column. Leave the other
columns blank.

5. Proceed to the next statement, make a row for it,
and continue until you reach the end of the
algorithm.

• The values across a row represent the “state” of the
system at a particular point in time.

40

Tracing Example

AvgPct ← MarkResult(18, 23, 19)

21

41

Modified Parameters

• Some problems require the value of a given variable
to be changed. The variable is called a MODIFIED
parameter and is listed among the GIVENS and put in
the header like a GIVEN, but it is also described in a
list of MODIFIEDS separate from normal RESULTS.

• Example: Suppose we want to write an algorithm that
swaps the values of two variables .

• e.g. given X=7 and Y=3, the algorithm would
exchange the values, resulting in X=3 and Y=7.

42

Problem: Swap two values

GIVENS:
RESULTS:
MODIFIEDS:

INTERMEDIATES:

HEADER:

BODY:

22

43

Augmented Algorithm Template

GIVENS:
RESULTS:
MODIFIEDS:
INTERMEDIATES:
HEADER

(List of Results) ← Algorithm Name (List of Givens)
BODY

statement
statement

:
statement

44

Modified Parameters

Algorithm
Intermediates

X Y Z

Modifieds

Givens

P Q

Algorithm Black Box

Results

(P,Q) ← algorithm(X,Y,Z)

23

45

Using Algorithms

• When developing an algorithm, it is a good idea to make as much
use as possible of existing algorithms (ones you have written or
that are available in a library).

• You can put a CALL statement to any existing algorithm
wherever it is needed in the algorithm you are developing.

• Be sure you get the ORDER of the givens, modifieds, and results
correct.

• To call an algorithm you need to know its header but not how it
works – you must just trust that it works correctly.

• The values passed to an algorithm is called the arguments (or
actual parameters). The arguments (actual parameters) match
the parameters (formal parameters) according to their orders

46

Marks out of 100, again

• Redo the “marks out of 100” problem, but this time
use the algorithm developed for the “average”
problem:
Avg ← Average(Num1, Num2, Num3)

24

47

Algorithm calls

• When one algorithm calls another:

– The algorithm that is currently executing stops
and waits at the point of the call.

– Values may be “passed” to the called algorithm.

– The called algorithm executes.

– When the called algorithm finishes, result values
may be passed back to the calling algorithm.

– The calling method restarts and continues

Algorithm A

Statement A1
Call algorithm B
Statement A3

Algorithm B

Statement B1
Statement B2
Statement B3

1
2

3
4
5

6
7

3.5

6.2

48

• When calling an algorithm the call statement and the
header of the called algorithm must be identical
except for the names of the givens, modifieds, and
results. These are matched one-to-one in the order
they appear

CALL: AvgOutOf25 ← Average(Val1,Val2,Val3)

HEADER: Avg ← Average(Num1,Num2,Num3)

• The arrows show how information is passed.

Information Passing

25

49

Tracing a Call

• When tracing an algorithm, every time it calls another algorithm
whose body is known you must produce a trace of the called
algorithm on the givens provided by the call. The trace for each
call of each algorithm should be done on a separate page. Each
trace should say where it was invoked (“called from page X”).

• When the statement being executed is a call you put more in
column 1 of the trace table than just the statement number -
you say where to find the trace of the called algorithm (“see
page Y”), and you put in a complete picture of the information
passing. Just as on the previous slide, write the call statement
directly above the header of the algorithm being called and draw
arrows showing how the information is passed.

• Values (results, modifieds) that are passed back when the called
algorithm terminates should be written in the columns for the
variables in the results part of the call.

50

Tracing Example (page 1)

• Trace: AvgPct ← MarkResult(23, 16, 21)

26

51

Tracing Example (page 2)

52

Problem: Reverse Digits

• Given a 2-digit positive number, N, reverse its digits to obtain a
new number, ReverseN.

• Assume there is available an algorithm with the header

(High, Low) ← Digits(X)

which returns the left (High) and right (Low) digits of a given 2-
digit number X.

27

53

Trace

54

Problem: Join four numbers

• Write an algorithm that takes 4 positive integers and joins them
into one,
– e.g., given 11, 35, 200, and 7 it should produce 11352007.

• Trace your algorithm on these givens.

• You may assume there is available an algorithm:

C ← Join(A, B)

Givens: A, B, two positive integers
Result: C is the number having the digits

in A followed by the digits in B.

• Example: Join(120, 43) produces 12043

28

55

Variable scope and duration

• Scope: Where you can use a variable’s name.
– General rule: Variables can be only be accessed

inside their own algorithm.
– If you use the name X in two algorithms, the names

represent two different values in each algorithm.

• Duration: The “lifetime” of a variable’s value.
– When an algorithm finishes execution, the values

of all variables are forgotten.
• The values of the RESULTS will be passed back

to the calling algorithm.
– When you call an algorithm again, new values are

used for all variables.

56

Algorithm Refinement

• If an algorithm with a complex block nested inside
another block, make the inner block as a separate
algorithm, called a helper algorithm.

• Then the former algorithm “calls” the latter
algorithm.

• In this way, we can keep algorithms simpler, shorter
and clearer.

29

57

Historical note …

• Alan M.Turing, British mathematician
and father of modern computer
science, designed, in 1936, a logic
machine able to solve all the problems
that can be formulated in algorithms
for the modern computers: the Turing
machine.

• He also proposed the Turing test, for
artificial intelligence.

• The highest distinction in computer
science now, awarded by ACM, bears
his name: the Turing Award.

58

Translating to Code

• Our approach to programming is to first develop and
test algorithms using a model and then TRANSLATE
them into code in a programming language.

• Translating algorithms into code is very much a
mechanical process, involving only a few decisions.

• For each type of algorithm block we will see one way
of translating it to code. Algorithms are then
translated block by block.

30

59

Translating an Algorithm to a Program with a
single class and a single method

• A program consists of a single Java class with a single method
main that is the translation of the algorithm.

• Givens, Results, Modifieds, and Intermediates all get translated
to VARIABLES.

• They all must be declared and given a type. Their descriptions
are put in the program as comments (called the DATA
DICTIONARY).

• Initial values for Givens and Modifieds will be read in from the
keyboard.

• Final values for Modifieds and Results will be printed out.

60

Translation Example

• Algorithm to translate:

GIVENS: Num1, Num2, Num3 (three numbers)
RESULT: Avg (the average of Num1, Num2,

Num3)

INTERMEDIATE:

Sum (the sum of Num1, Num2,
Num3)

HEADER:

Avg ← Average(Num1, Num2, Num3)
BODY

Sum ← Num1 + Num2 + Num3

Avg ← Sum / 3

31

61

Translated to a Program (Scanner class)

// PROGRAM Average--reads 3 real numbers and comput es their average.
import java.util.Scanner;
class Average
{

public static void main (String[] args)
{

// SET UP KEYBOARD INPUT
Scanner keyboard = new Scanner(System.in);
// DECLARE VARIABLES/DATA DICTIONARY
double num, num2, num3 ; // Given numbers
double sum ; // Intermediate, sum of num1, num2, and num3
double avg ; // Result, average of num1, num2, and num3
// READ IN GIVENS
System.out.println ("Please enter 3 real values: ") ;
num1 = keyboard.nextDouble();
num2 = keyboard.nextDouble();
num3 = keyboard.nextDouble();
// BODY OF ALGORITHM
sum = num1 + num2 + num3;
avg = sum / 3.0;
// PRINT OUT RESULTS
System.out.println("The average is " + avg);

}
}

62

Translated to a Program (ITI1120 class)

// PROGRAM Average--reads 3 real numbers and comput es their average.
// The file ITI1120.java has to be in the same dire ctory

class Average
{

public static void main (String[] args)
{

// DECLARE VARIABLES/DATA DICTIONARY
double num1,num2, num3 ; // Given numbers
double sum ; // Intermediate, sum of num1, num2, and num3
double avg ; // Result, average of num1, num2, and num3
// READ IN GIVENS
System.out.println ("Please enter 3 real values: ");
num1 = ITI1120.readDouble();
num2 = ITI1120.readDouble();
num3 = ITI1120.readDouble();
// BODY OF ALGORITHM
sum = num1 + num2 + num3;
avg = sum / 3.0;
// PRINT OUT RESULTS
System.out.println("The average is " + avg);

}
}

32

63

Translating Statements to Java

• Assignment statement

– Model: X ← expression
– Java: X = expression ;

• Call statement – we’ll see later

• Translating algorithms to Java methods (other than
the main method) – we’ll see later

64

Tracing Java Programs

• When you are tracing an actual program, a useful tool is a
“debugger”. This tool can perform a trace on a running program.

– Often this requires telling the compiler to add extra
information to help the debugger.

• Two modes of operations:

– Run up to a breakpoint: the program will run at full speed up
to a pre-defined point in the source code, and then stop.

– “Single step” mode: the program will execute one statement
and stop.

• When the program stops, you can inspect the current values of
variables

– You can check if the variables’ values correspond to the
equivalent row of a manual trace.

33

65

Using a debugger

• Many debuggers come with four options for execution
of a stopped program.
– Step Into: If the next statement involves a call to

another algorithm, execution will go to the first
statement of the algorithm body and stop.

– Step Over: If the next statement involves a call to
another algorithm, the other algorithm will be
completely executed, and debugger will stop at the
next line in the current algorithm.

– Step Out: Execute all statements up to the end of
the current algorithm.

– Resume: Begin normal execution from the next
statement.

66

Historical note …

• 1945: An insect in the circuits
blocked the computer Mark I.
The computer scientist Grace
Murray Hopper decided to call
any program malfunction
« bug »!

• 1951: Invented the first
compiler (A0) for generating
machine code from a program
source code.

• She was one of the main
creators of one of the first
programming languages: COBOL.

34

67

Branching Control Structure

• So far in the bodies of our algorithms, we have used:

– a simple statement

– a straight sequence of simple statements

• Sometimes, we need more than a straight sequence in
our solutions, as we sometimes need to do different
computations depending on certain conditions.

68

Problem: Larger of Two Numbers

• Write an algorithm to compute the larger of two
given numbers.

GIVENS: X, Y (two numbers)

RESULT: M (the larger of X and Y)

HEADER: M ← Max2(X, Y)

• We will represent this with a Branching Control
Structure

35

69

Branching Control Structure

• The shaded boxes are BLOCKS.

– There are several types of blocks, any type can be put in any
box.

truefalse
Test?

70

Algorithm Model Diagrams

• Provides visual description of algorithms.

• Composed of nodes connected with arrows.

• Instruction block:

– Represents a simple instruction or a sequence of simple
instructions

• Test node:

– Represents the testing of a condition (Boolean expression
with question mark)

• Block node:

– Indicates where another block node (of any block type) can
be inserted

Instruction

Test?

Block

36

71

Types of Blocks

• Simple statement (call, assignment)

• Empty statement (Ø = “do nothing”)

• Branching control structure

• Loop control structure (coming soon…)

• Sequential control structure (next…)

• Important: Each block has exactly one entrance (one
arrow in) and one exit (one arrow out).

72

Diagram of a Sequential Block

37

73

Back to the Larger of Two Numbers

• How would the following algorithm for finding the
larger (Max) of two values X and Y be written in a
model diagram ?

– Set M to X
– If Y is bigger than M, set M to Y

74

Problem: Maximum of 3 numbers

• Given three numbers X, Y, and Z, find the maximum of the three
values.

– Version 1: nested tests

– Version 2: sequence of tests

38

75

Tracing algorithms with branching

• When tracing an algorithm with tests (branches or
loops) number the tests as well as the statements and
include a row in the trace indicating which test is
being done and whether it is true or false.

76

Trace of Maximum of 3 numbers

• Trace: MAX3(5, 11, 8)

• Do both versions.

39

77

Problem: Movie Tickets

• Calculate the amount to charge for a person’s movie ticket given
that the charge is $7 for a person 16 or under, $5 for a person
65 or older, and $10 for anyone else.

– Version 1: nested tests

– Version 2: sequence of tests

78

Boolean Variables

• A Boolean variable is one which can have only 2
possible values: TRUE or FALSE. (These are not
numbers.)

• An assignment statement is used to put a value into a
Boolean variable, e.g.,

X ←TRUE
Y ← FALSE

• The outcome of a test (Boolean expression) can be
assigned to a Boolean variable:

X ← (A < 0)

40

79

Problem: Positive Value

• Write an algorithm which checks if a given number X
is positive.

80

Compound Boolean Expressions

• A compound Boolean expression consists of two or
more Boolean expressions connected by operators
AND and/or OR.

• Example: Write a compound Boolean expression that
is true if a given age is between 16 and 65 (not
including 16 or 65) and false otherwise.

41

81

Truth Tables

• A TRUTH TABLE for a compound Boolean expression
shows the results for all possible combinations of the
simple expressions:

FALSEFALSE

TRUEFALSE

FALSETRUE

TRUETRUE

X OR YX AND Y YX

82

Operator NOT

TRUEFALSE

FALSETRUE

NOT X X

• NOT is an operator to negate the value of a simple or compound
Boolean expression:

• Example. Suppose Age = 15. Then:

– Expression Age > 16 has a value FALSE, and NOT (Age > 16)
has a value TRUE.

– Expression Age < 65 has a value TRUE, and NOT (Age < 65)
has a value FALSE.

42

83

FALSE
NOT ((X > 0) OR ((X < Y) AND (Y = 0)))

FALSE
(NOT (X > 0)) OR ((X < Y) AND (Y = 0))

TRUE
(X > 0) AND ((X < Y) OR (Y = 0))

TRUE
(X > 0) AND (NOT (Y = 0))

ValueExpression

Examples of
Compound Boolean Expressions

Suppose X = 5 and Y = 10.

84

Translating Branches to Java

• Empty statement

Java: semicolon followed by comment

; // do nothing

block2block1

truefalse
Test?

Java : if (Test)
{

block2
}
else
{

block1
}

43

85

Example

Givens: X, Y, Z (three numbers)
Result: M (the largest given value)
Header: M←Max3(X, Y, Z)

• Two solutions:
– sequence of branch structures
– nested branch structures

• Translate the latter into Java:

86

Nested Branches

false

M ← Z M ← Y

false true

true

X > Y ?

Y > Z ?

M ← Z M ← X

false trueX > Z ?

44

87

Translation

88

Translating Sequences

Java:
{

block1
block2

block3

}

block1

block2

block3

45

89

Example

false

∅ A ← 4

false true

trueX > 0 ?

Y > X ?

A ← 5

B ← A + 1

A ← 0

B ← 0

B ← 0

90

Translation

46

91

Expressions in Tests

• The TEST in a Branch or Loop may be any Boolean expression:
– Boolean variable
– Negation of a Boolean expression

• NOT (Java: !)
– Comparison between two values

• Java operators: == != < > <= >=
• The data being compared may not necessarily be

boolean , but the result of the comparison is boolean
– Join two Boolean expressions

• AND (Java: &&)
• OR (Java: ||)

• Watch out for
– confusing = with ==
– confusing AND with OR

• e.g. test if x is in the range 12..20:
(x >= 12) && (x <= 20)

92

Historical note …

• Donald Knuth, American computer
scientist, a pioneer of the domain of
algorithm analysis.

• He is the author of the very respected
book The Art of Computer Programming
and of the scientific text editor TeX.

• Edsger Dijkstra, computer scientist from
Netherlands, developed the algorithm of the
shortest path (that bears his name) and the
concept of sentinel for programming and for
parallel processing.

• His 1968 article, "Go To Statement Considered
Harmful" revolutionized the utilization of the
instruction GOTO to the profit of the control
structures such as the while loop.

47

93

• Sometimes we need to repeat a set of statements. In our
algorithm diagrams, we use a loop block:

• The body of the loop is itself a block (or set of blocks). It is
repeated over and over until the test becomes false.

The Loop Block

Loop Body

true
false

Test?

94

Designing a loop block

1. Initialization

– Are there any variables to initialize?

– These variables will be updated in the loop.

2. Test condition

– A condition to determine whether or not to
repeat the loop body

3. Loop body

– What are the steps to repeat?

48

95

Examples of “counting” loops

• Write an algorithm to find the sum of the numbers
1…N (1+2+…+N).

• Write an algorithm to find the factorial of a number
N, denoted as N!
– Definition of factorial:

N! = 1 × 2 × … × N

96

Arrays

• “Simple” variables hold one value.
• An array has many positions, each able to hold one

value.
• If array A has 10 positions, we refer to them using

the integers 0-9, called indices or subscripts.
– e.g. A[2] is the THIRD position with index 2.

• Since we might only have put values into some of A’s
positions, when we pass A to an algorithm we’ll
normally also have to pass one or more variables
saying which positions have values.
– e.g. if the values are in the first 5 positions, we

might pass 5 in a variable ALength (or 4, since the
positions are indexed 0-4).

49

97

• The index (subscript) of an array of length L may be any integer
expression that returns a value in the range 0...(L-1).

– Suppose K =2, and A (length 4) is

A[2] = 5
A[K] = 5
A[2*K-1] = 7
A[A[0]+1] = 7

• A[expression] is just like any ordinary variable and can be used
anywhere an ordinary variable can be used.

Array Indexing

2 -1 5 7

"Should array indices start at 0 or 1? My compromise of 0.5
was rejected without, I thought, proper consideration."

-- Stan Kelly-Bootle

98

Problem: Value in Middle of an Array

• Write an algorithm that returns the value in the
middle of an array A containing N numbers, where N
is odd.

50

99

Problem: Swap Values in an Array

• Write an algorithm that swaps the values in positions
I and J of array A.

100

Loop and Array Examples

1. Find the sum of the numbers 1…N (1+2+…+N).

2. Find the sum of the values in an array containing N values.

3. Given a value T and an array X containing N values, check if
the sum of X’s values exceeds T.

– Use algorithm from Example 2.
– Efficient version which exits as soon as the sum exceeds

T.

4. Count how many times K occurs in an array containing N values.

5. Given an array X of N values and a number K, see if K occurs in
X or not.

– Use algorithm from Example 4.
– Efficient version which exits as soon as K is found.

51

101

More Loop and Array Examples

6. Given an array X of N values and a number K, find the position
of the first occurrence of K. (If K does not occur, return –1 as
the position.)

7. Find the maximum value in an array containing N values.

8. Find the position of the first occurrence of the maximum value
in an array containing N values.

– Use algorithm from Example 7.

– Use algorithms from any examples.

– Version using one loop and no other algorithms.

9. Check if an array of N values contains any duplicates.

– Strategies?

102

Creating an Array

• Create an array containing the integers 1 to N in reverse order.

• Assume there is an algorithm

A ← MakeNewArray(L)
that creates an array A having L positions with no values in them.

52

103

Trace for N=3

104

Translating Loops to Java

• Java
while (Test)

{

Body

}

Body

true

false

Test?

53

105

Algorithm: Sum from 1 to N

true

false

Count
≤

N ?

Count ← 1

Sum ← 0

Sum ← Sum + Count

Count ← Count + 1

GIVEN: N (a positive integer)

INTERMEDIATE: Count (index going from 1 to N)
RESULT: Sum (sum of integers 1 to N)

HEADER: Sum ← Sum1ToN(N)
BODY:

106

Translate to Program

import java.io.*;

class Sum1ToN
{

public static void main (String args[])
{

// read the input
System.out.println("Enter a positive integer N.");
int n = CSI1100.readInt();
// initialize counter and accumulator sum
int count = 1;
int sum = 0;
// loop
while (count <= n)
{

sum = sum + count;
count = count + 1;

}
// output the result
System.out.println("The sum from 1 to N is " + sum);

}
}

54

107

The FOR loop diagram

true
false

Test Condition? (involving Index)

Initialization (of Index)
Any loop diagram can
be translated using
WHILE, but the
looping pattern to
the right is best
translated into a
FOR loop.

for (<initialization>; <test_condition>; <increment >)
{

Body // excluding Increment Index
}

Body

Increment (Index)

108

FOR loop to add 1 to N

Count ← 1

Count ≤ N ?
true

false Sum ← Sum + Count

Count ← Count + 1

Sum ← 0

Translate to Java using a FOR loop:

55

109

FOR Loop in Java: Summary

• Any FOR loop can always be formed as a WHILE loop
– It does not give us any extra capability.
– However, the notation is often more convenient.

• The FOR loop is usually used when we know how many times the loop
body is to be executed.

• The FOR loop:

for (<initialization>; <test_condition>; <increment >)

{

// body

}

• In most cases, the initialization part initializes a counter, the test
condition tests if the counter is within the limit, and the increment part
modifies the counter.

110

Arrays in Java

• An array variable is declared with the type of the
members.

– For instance, the following is a declaration of a
variable of an array with members of the type
double:

double[] anArray;

• When an array variable is declared, the array is NOT
created. What we have is only a name of an array.

– anArray will have the special value null until it is
created.

56

111

Creating an array

• To create the array, operator new is used.

• We must provide the number of members in the
array, and the type of the members. These cannot be
changed later.
double[] anArray;
anArray = new double[5];

or, combining the declaration and the array creation:
double[] anArray = new double[5];

• When an array is created, the number of positions
available in the array can be accessed using a field
called length with the dot operator. For instance,
anArray.length has a value 5.

112

Memory for Arrays

double[] anArray ;

anArray: null

anArray = new double[3]

anArray:

? ? ?

length 3

“Thou shalt not follow
the NULL pointer,

for chaos and madness
await thee at its end.”

– H. Spencer

0 1 2

57

113

Accessing array members in Java

• Array members are accessed by indices using the
subscript operator [] . The indices are integers
starting from 0. (This is the same as in our algorithm
models.)

• For instance, if anArray is an array of three
integers, then:
– the first member is anArray[0]
– the second member is anArray[1] ,
– and the third member is anArray[2] .

• The indices can be any expression that has an integer
value.

– If an index is out of range, i.e., less than 0 or
greater than length-1 , a run-time error occurs.

114

Initializing array members

• Array members can be initialized individually using
the indices and the subscript operator.

int [] intArray = new int[3];

intArray[0] = 3;

intArray[1] = 5;

intArray[2] = 4;

• Array members may also be initialized when the array
is created:

int [] intArray;

intArray = new int [] { 3, 5, 4 };

58

115

Partial initialization of an Array

• An array may be partially initialized.
int [] intArray = new int [5];

intArray[0] = 3;

intArray[1] = 5;

intArray[2] = 4;

– In this case, intArray[3] and intArray[4] are
undefined.

• When an array is processed, we may need another
variable (or variables) to keep track of the indices
for which we have assigned values.

116

Reference Types

• An array type is a reference type, because of the
“pointer” to the array.

• It is important to distinguish the reference (pointer)
from the “item being pointed to”.

– In the diagram below, A is the reference, and the
array is what is being pointed to.

• Java does not allow us to peek inside A to see
what is in the pointer.

A

5 2 17

length 3

0 1 2A

59

117

Reference Types

• What happens with assignment and comparison of
reference types?

– It is the references that are compared or
assigned, not the arrays.

0 3

length 2

A == B is true

A

B

A

B

A == B is false
0 3

length 2

0 3

length 2

118

Reference Types

• Assignment only copies a reference, not the object to
which is points.

• How can we make a copy of an array?

B = A
results in:

A

B

NOT:

A

B

0 3

length 2

0 3

length 2

0 3

length 2

60

119

Lost references

• With reference types, be careful that you don’t “lose” an object to
which a reference points.

• After the assignment, there is no reference to the second array. The
second array will be forgotten by Java and cannot be recovered.

BEFORE
B = A

A

B

0 3

length 2

5 6

length 3

19

AFTER
B = A

A

B

0 3

length 2

5 6

length 3

19

“Objects can be classified scientifically into three major categories:
those that don't work, those that break down

and those that get lost.” – R. Baker

120

Algorithm: Maximum in Array

GIVENS: N (a positive integer)
A (array containing N values)

INTERMEDIATE: Index (indices for A)
RESULT: Max (maximum member of A)
HEADER Max ← MaxInArray(A, N)
BODY

Max ← A[Index]

Index ← Index + 1

true
Index < N ?

false

Ø

false true

Max ← A[0]

Index ← 1

A[Index] > Max ?

61

121

Translated to a Program

import java.io.* ;

class

{

public static void main (String args[]) throws IOE xception

{

}

}

Code to read givens (next slide) goes here.

122

Code to Read Givens

Option 1: ITI1120.readDoubleLine

62

123

Code to Read Givens

Option 2: read the values one by one

124

Historical note …

• 1976: Steve Jobs and Steve
Wozniak created the first
personal computer called Apple I.

• The computer sold for 666.66 $;
it had 256 bytes of ROM, 4 K
bytes of RAM and video output on
the television set.

• In June 1975, Bill Gates and
Paul Allen renamed their
company Traf-O-Data into
Microsoft.

• Produced MS-DOS, Windows,
Basic-Microsoft, and later
Visual Basic.

63

125

Translating an Algorithm to a Method

• Most algorithms are translated into METHODS, not
programs, so they can be called by other algorithms.

• The program starts with a main method, which may
read in some values and output the result. Method
main calls one or more methods, each of which
implements an algorithm.
– In this way, method main acts as a dispatcher.

126

Java Methods

• Every method in Java has
– a return type, a name, a parameter list, a body

• Return type: It specifies what is the type of the result of the
method. If there is no result, this type is void . Final values of
RESULTS and MODIFIEDS are passed back to the calling method,
not printed out.

• Name: The same as the name of an algorithm.

• Parameter list: It specifies the name and the type of the
parameters, in order. Initial values for GIVENS and MODIFIEDS
are passed in as parameters.

• Body: Translation of the body of an algorithm exactly as before.
INTERMEDIATES become local variables.

64

127

Differences in Methods between
Java and Algorithm Models

• A Java method may return zero or one value.

– It is not possible to return more than one value in
Java, as can be done with our algorithm models.
However...

• This value may be a primitive type or a
reference type. For example, a method may
return an array.

• Java does not allow parameters of a primitive type to
be MODIFIED.

– Only reference types created with new can be
modified.

128

Example

GIVENS: A, B, C (three values)
RESULT: Avg (average of A, B, C)
INTERMEDIATE: Sum (sum of A, B, C)
HEADER Avg ←Avg3(A,B,C)
BODY Sum ← A + B + C

Avg ← Sum / 3

// METHOD avg3--Finds the average of 3 values
// a,b,c are 3 given numbers

public static double avg3(int a, int b, int c)
{ // DECLARE VARIABLE/DATA DICTIONARY

int sum ; // Intermediate, sum of a, b, and c
double avg ; // result, average of a, b, c
// BODY OF ALGORITHM
sum = a + b + c ;
avg = sum / 3.0 ;
// RETURN RESULT
return avg ;

}

65

129

Method Template

public static double avg3(int a, int b, int c)

{

// DECLARE VARIABLES/DATA DICTIONARY

// intermediates and the result, if you give it a n ame

// BODY OF ALGORITHM

// RETURN RESULT

return (a+b+c)/3.0 ;

}

Method nameReturn type

expression
(value to return)

// METHOD Name: Short description of what the metho d does,
// plus a description of the variables in the param eter list

Parameter list

130

Method Accessibility

• If a method is public , it can be called from
anywhere in a program.

• If a method is private , it can only be called from
inside the class where it is defined.

• There are two other levels of access: protected
and “package”, that are between public and private.
We will not use them in this course.

66

131

The CALL statement

Model: X ← Avg3(10, J, K)

Java: X = avg3(10, J, K) ;

• Here, avg3(10, J, K) is a method call statement. The
method call statement evaluates to the value returned from
the method, which can be assigned to a variable or used in any
expression (of the right type).

– Example:

Y = 10.2 * avg3(A, B, C) + avg3(P, Q, -11)

132

A method with return type void

• If a method does not return a value, i.e., return type
void , then a call activates the method to do
whatever it is supposed to do.

public static void print3(int x, int y, int z)
{

System.out.println("This method does not return any value.");
System.out.println(x);

System.out.println(y);

System.out.println(z);
}

• When the method is called by
print3(3, 5, 7);

it simply prints these arguments to the screen.

67

133

Program with Two Methods (p. 1)

// PROGRAM MethodExample --- This program illustrate s a
// main method that uses (calls, invokes) the me thod avg3 twice

class MethodExample
{

public static void main (String[] args)
{

// DECLARE VARIABLES / DATA DICTIONARY
int b,y; // intermediates
double z, c; // intermediates

// BODY OF ALGORITHM
b = 15;
y = 7;
z = avg3(b, -4, y); // FIRST CALL
c = avg3(9, y, 2 + b); // SECOND CALL

// PRINT OUT RESULTS
System.out.println("The sum of the averages is: " + (z + c));

} // end of main

// continue on the next page

134

Program with Two Methods (p. 2)

// continue from previous page

// METHOD avg3 --Finds the average of 3 doubles.
// a,b,c are the 3 given integers.
private static double avg3(int a, int b, int c)
{

// DECLARE VARIABLES / DATA DICTIONARY
int sum; // Intermediate, sum of a, b and c
double avg; // Result, average of a, b and c

// BODY OF ALGORITHM
sum = a + b + c;
avg = sum / 3.0;

// RETURN RESULT
return avg;

}
} // end of class

68

135

When a CALL is made ...

1. Execution of the calling method is suspended.

2. Memory is allocated for parameters and local variables of
primitive types (int , double , char , boolean) in the called
method.

3. Initial values for parameters of primitive types are COPIED
from the corresponding arguments of the call.

4. Parameters of reference types are associated to the arrays or
objects that the corresponding arguments refer to.

5. Execution of method body begins.

• When the method body finishes, the return value is COPIED
back to the calling method and the calling method resumes
execution. All other values in the called method are forgotten.

136

Trace the Program with 2 Methods

69

137

Passing primitive and reference types
to a method

anInt

4

anArray

5 3 2

length 3

4

At caller:
m(anInt,anArray):

At called method:
m(int x, int[] y)

copy copy

yx

138

Arrays as Parameters

• An array is a reference type.

• When an array is passed from one method to another method, it
is the reference that is passed to the method, not the array.

• The result is that there are (temporarily) two references to the
same array.

• While we cannot modify the reference, we can modify the
contents of the array. These changes to the array contents will
remain after the method returns.
– The copy of a variable of a primitive type is trashed when

the method returns.
– For an array, it is the copy of the reference that is trashed

on return.

70

139

Trace this Program

class SwapTilYouDrop
{

public static void main (String args[])
{ int i = 0;

int[] a = { 2, 4, 6, 8, 10, 12 } ;
while (i <= 2)
{

arraySwap(a, i, 5 - i) ;
i = i + 1;

}
for (i = 0 ; i <= 5 ; i = i + 1)
{ System.out.println("A[" + i + "] is " + a[i]); }

}
// arraySwap : swaps values of x at positions i,j
// Givens: x, an array, i,j, 2 indices in x
public static void arraySwap(int[] x,int i,int j)
{

// DECLARE VARIABLES/DATA DICTIONARY
int temp ; // Intermediate, holds x[i]
// BODY OF ALGORITHM
temp = x[i] ;
x[i] = x[j] ;
x[j] = temp;

}
}

140

Trace this Program

class SwapExample
{

public static void main (String args[])
{ int i = 7; // declare i and initialize it to 7

int x = 3;
swap(i, x);
System.out.println("i = " + i);
System.out.println("x = " + x);

}
// swap : tries to swap 2 numbers
// Givens: i,j, 2 numbers
public static void swap(int i,int j)
{

// DECLARE VARIABLES/DATA DICTIONARY
int temp ; // Intermediate, holds i
// BODY OF ALGORITHM
temp = i ;
i = j ;
j = temp;

}
}

71

141

Type char (1)

• Characters are individual symbols, enclosed in single
quotes

• Examples
– letters of the alphabet (upper and lower case are

distinct) 'A' , 'a'

– punctuation symbol (e.g. comma, period, question
mark)

– single blank space
– parentheses '(' ,')' ; brackets '[' ,']' ;

braces '{' ,'}'
– single digit ('0' , '1' , … '9')
– special characters such as '@' , '$' , '*' , and so

on.

142

Type char (2)

• Each character is assigned its own numeric code:

– ASCII character set (ASCII = American Standard
Code for Information Interchange)

• 128 characters

• most common character set (if you speak
American English J)

• used in older languages and computers

– UNICODE character set

• over 64,000 characters (international)

• includes ASCII as a subset

• used in Java

72

143

Collating Sequence

• In the computer, a character is stored using a numeric code.
– The most commonly used characters in Java have codes in

the range 0 through 127.
– For these characters the UNICODE code is the same as the

ASCII code.
• Examples:

• The numerical order of the character codes is called the
collating sequence. It determines how the comparison operator
works on characters:

'A' < 'a' is
while

'?' < ' ' is

6348326597UNICODE value

'?''0'' ''A''a'character

144

Digit and Letter Codes

• Important features of the ASCII/UNICODE codes:

– Codes for the digits are consecutive and ordered in the
natural way (the codes for '0' to '9' are 48 through 57
respectively). Thus

'2' < '7' is true

– The same is true of the codes for the lower case letters
('a' to 'z' have codes 97 through 122 respectively). Thus

'r' < 't' is true

– The same is true of the codes for the upper case letters
('A' to 'Z' have codes 65 through 90 respectively).

• Note they are smaller than the codes for the lower case
letters.

73

145

Test for Upper case

• Suppose the variable x contains a value of type char .

• Write a Boolean expression that is TRUE if the value
of x is an upper case letter and is FALSE otherwise.

– Note that you don't need to know the actual code
value of the characters!

146

Arithmetic on Characters

• Because the characters are stored as numbers,
characters can be used in arithmetic expressions.

• Example: given N, compute the Nth letter (lower
case) of the alphabet.
(e.g. given N=1, return ‘a’, given N=5, return ‘e’)

• Java:
int n ;

char c ;// put the result in here

... // code to get n’s value

74

147

Convert Upper Case to Lower Case

• Given a variable, UC, containing an upper case
character, convert the character to lower case and
store the result in variable LC.

148

Special characters

• Some characters are treated specially because they cannot be
typed easily, or have other interpretations in Java.

– new-line character '\n'

– tab character '\t'

– single quote character '\''

– double quote character '\"'

– backslash character '\\'

• All of the above are single characters, even though they appear
as two characters between the quotes.

• The backslash is used as an escape character: it signifies that
the next character is not to have its “usual” meaning.

75

149

Type conversion

• In general, one CANNOT convert a value from one type to
another in Java, except in certain special cases.

• When a type conversion is allowed, you can ask for a type
conversion as follows (this is called “casting”):

(double) 3 gives 3.0
(int) 3.5 gives 3 (note loss of precision!)
(int) 'A' gives 65 (this is the UNICODE value)
(char) 65 gives 'A'

• WARNING: Type conversions with unexpected results have
resulted in serious software problems.
– One such error caused the self-destruction of the Ariane

501 rocket in 1996.

• The best strategy: DON’T mix types or values, unless absolutely
necessary!

150

String Variables

• String variables have always presented a challenge
for programming languages.

– They have varying sizes, and for internal storage
purposes, the computer would prefer to predict in
advance the amount of storage needed for the
value of a variable.

• As a result, strings have often been a “special case” in
a programming language.

76

151

Strings

• String literals (constants) can be used to help make your
program output more readable.
– String literals are enclosed in double quotes:

"This is a string”

• Watch out for:
– "a" (a string) versus 'a' (a character)
– " " (a string literal with a blank that has length 1) versus

"" (an empty string: a string literal of length 0)
– "257" (a string) versus 257 (an integer)
– “ ” « » are not valid quotes in Java!

152

String Concatenation

• Strings can be CONCATENATED (joined) using the +
operator:
– "My name is" + "Diana" gives

"My name isDiana"

• String values can also be concatenated to values of
other types with the + operator.
– "The speed is " + 15.5 gives

"The speed is 15.5"

– Because one of the values for the + operator is a
String , the double is temporarily converted to a
String value "15.5" before doing the
concatenation.

77

153

Strings in Java

• Strings in Java are also a reference type.

– They are similar to an array of characters.

– EXCEPT:

• You don’t need to use new to create a string

• You don’t use [] to access the characters in the
string.

• There is a class (data type) String that provides
many useful methods.

154

Useful String methods

• Suppose we have
String message = "Hello World!";

Then:
– To find the length of a string:

int theStringLength = message.length();

– To find the character at position i (numbered from 0):
int i = 4;
char theChar = message.charAt(i);

• To change any primitive data type to a String :
int anInteger = 17;
String aString = String.valueOf(anInteger);

// works for int, double, boolean, char

• To append one string after another (concatenation):
String joinedString = string1 + string2;

78

155

Comparing Strings

• A String is a reference type and so they are NOT compared
with ==.

• The String class has a method compareTo() to compare 2
strings.

– The characters in each string are compared one at a time
from left to right, using the collating sequence.

• The comparison stops after a character comparison
results in a mismatch, or one string ends before the
other.

– If str1 < str2, then compareTo() returns an int < 0

– If str1 > str2, then compareTo() returns an int > 0

• If the character at every index matches, and the strings
are the same length, the method returns 0

156

Comparing Strings

• What is the value of result for these examples?

• Example 1:
String str1 = "abcde" ;

String str2 = "abcfg" ;

int result = str1.compareTo(str2);

• Example 2:
String str1 = "abcde" ;

String str2 = "ab" ;

int result = str1.compareTo(str2);

79

157

Problem Decomposition

• The best way to develop algorithms for all but the
simplest problems is by Problem Decomposition (also
called Top Down Design).

• An algorithm for problem P is developed by these
steps:
1. Identify subproblems (P1, P2, …, Pn), simpler

than P, whose results would be useful in solving P.
2. Finalize the header information (givens, results,

etc., header) for P1…Pn but do not design their
algorithms yet.

3. Write the algorithm for P assuming algorithms
exist for P1…Pn.

4. Develop algorithms for P1…Pn.

158

Structure Chart

• A structure chart shows which other algorithms are
used by each algorithm.

• Example: MarkResult uses SumAndAverage

• In general we draw a box for each algorithm, with
the box for an algorithm above and connected to
the boxes of the algorithms it uses.

MarkResult

SumAndAverage

80

159

Example

• What would the structure chart be if

– P1 uses P2, P3, and P4
– P4 uses P3 and P5

160

Bigger than Average

• Given a list of class marks, find out how many are
bigger than the class average and return an array
containing those that are bigger.

81

161

Validating numbers (example)

• Some credit cards use the following method to determine the
validity of a card number: the number is valid if its last digit is
equal to the last digit of the sum of the other digits.

• For example:

– 5792 is invalid (5+7+9 = 21)

– 4231628 is valid (4+2+3+1+6+2 = 18)

• Problem: Write a program that checks if a card number given
by the user is valid. Use a loop to check more than one card,
until the user enters the number zero.

• Note: The credit card numbers usually have 16 digits; the type
int is not sufficient for representing such numbers. An int can
only represent 4 digits.

• Assumption: The first 4 digits of the credit card number are
not all zero.

162

Data structure for the numbers

• A data structure is used to organize the data used in
a program.

• In this problem, we use an array of 4 integers (int) to
represent the credit card number.

– The real numbers don’t have the desired precision.

82

163

Designing the program

• A possible algorithm needs to do the following (not
all the details are provided here):

1. Read the card number input by the user (in a
separate method).

2. Check if the number is 0 (the first 4 digits).

3. If the number is not 0, check if the number is
valid or not (in a separate method).

4. In order to check the validity of the number, call
a method (sub-algorithm) that computes to sum
of its first 15 digits.

5. Display the result.

6. Read another number input by the user.

164

Structure diagram

main

readIntLine

isZero validreadDigits

sumDigits

83

165

Programs with more than one Class

• A program may have more than one class. If you save
all classes in a program in one directory, any class may
call a public method in any other class in the same
directory.

• When a (static) method is called from another
class, use the name of the class with the dot
operator.
– For example, if we include class Library in the

same directory in an assignment program, you may
call a method such as aMethod() by

Library.aMethod();

166

Library Classes

• Instead of putting all our methods in the same class
as main (the class that contains our program) it is
better to separate them into coherent groups and put
each group in a class of its own.

• These classes will not be programs - they have no
main method. Each will be a small library of methods
that can be used by other methods.

• Such classes can be compiled on their own but cannot
be run as standalone programs. They must be
compiled before attempting to compile any other
class that uses them.

84

167

Structure diagram again

main

readIntLine

isZero validreadDigits

sumDigits

ValidCardNumber.java

DigitsLib.javaITI1120.java

168

Historical note …

• Charles Antony Richard (Tony)
Hoare, British computer
scientist, developed, in 1960,
the sorting algorithm (recursive)
the most used: Quicksort.

• He also developed the Hoare
logic used in software
engineering for program
verification and for
programming by contracts.

• He is at the origin of the
concurrent programming
language CSP (Communicating
Sequential Processes).

85

169

Recursion

• Recursion is a problem-solving technique. Like problem
decomposition, recursion involves finding sub-
problems of problem P that are simpler than P to
solve.

• In recursion the sub-problems are the same type of
problem as P, but are simpler versions of it.

• Recursion Example 1 (basic idea): what is the sum of
the numbers in positions 0…(N-1) of array X?

8
0 N-1X

170

Recursion Example 2: basic idea

• What is the maximum value in positions
0…(N-1) of array X?

• (the maximum value in the shaded area is M)

8
0 N-1X

86

171

Example for X = {2, 5, 4, 8}

{2, 5, 4, 8} 11 + 8 = 19

{2, 5, 4} 7 + 4 = 11

{2, 5} 2 + 5 = 7

{2} 2

reduce

reduce

reduce result

result

result

solve directly

172

Components of Recursion

There are 3 components to recursion:

1. A test to see if the problem is simple enough to
solve directly (i.e. non-recursively): the “base case”

2. The solution for this simple problem.

3. A solution to the problem which involves solving one
(or more) smaller versions of the same problem.

87

173

Template for Recursion

• Recursive algorithms usually have this form:

Directly Solve
the Base Case

General Case
(one or more recursive calls)

false true

Test for
the base

case

174

Recursion: The General Case

• On the previous slide, the general case can be further
decomposed into these steps:

Find solution to simpler
case using one or more
recursive calls

Create solution for larger
case using results from
the simpler case

Reduce problem
to simpler case

88

175

Recursion Examples

1. What is the sum of the numbers in positions 0…(N-1) of array
X?

2. What is the maximum value in positions 0…(N-1) of array X?

3. Find XN where X and N are integers and N ≥ 0, X ≥1.

– Direct algorithm

– Alternative algorithm based on fact:
XN = XI * XN-I

– Choose I to get most efficient version.

4. Given an array A of more than N numbers, return TRUE if all
the numbers in positions 0…N of A are equal, and false
otherwise.

176

More Recursion Examples

5. Calculate N !

6. Find the sum of 1+2+…+N.

7. Given an array A of N characters, reverse the values
stored in positions Start to Finish.

8. Sort an array of numbers. (Put its values in
increasing order.)

89

177

• Write a recursive algorithm to find the sum of the
values in array positions 0…(N-1):

GIVENS:

INTERMEDIATES:

RESULT:

HEADER:
BODY:

S ß

Sum ß S + X[N-1]

Recursive Sum of Array

178

Trace for this value of X:

5 8 -4 length 3
X

90

179

Recursive Algorithms and
Recursive Methods

• An algorithm that calls itself, with different
GIVENS, is called a recursive algorithm.

• A Java method that calls itself, with different
arguments, is called a recursive method.

180

Translate the Recursive
Sum of Array to Java

91

181

Historical note …

• 1998: Larry Page and
Sergey Brin, founded a
company that revolutionized
the world of search engines
and the Internet: Google!

• Many applications, such as
GoogleMaps.

• 450 000 servers.

• More than a milliard queries
per day!

182

Matrices

• An R × C matrix has R rows and C columns.

• Example. A 4 x 6 matrix of integers

M[r][c] is the entry at row r and column c.
(Indices start from 0).



















=

737657667258

8892901087

727084756568

748589336271

M

92

183

Matrices and
2-dimensional Arrays

• A matrix is represented in algorithms by a 2-dimensional array,
i.e., an array of arrays.

• The matrix M is an array of 4 arrays, each with 6 members. If
M is regarded as a 2-dimensional array, then

M[1][2] is

M[2][5] is

M[4][1] is

M[3] is



















=

737657667258

8892901087

727084756568

748589336271

M

184

Max value in a matrix

GIVENS:

INTERMEDIATES:

RESULT:
HEADER:
BODY:

93

185

Alternative Algorithm

186

Diagonal Matrices

• A square matrix has the same number of rows and
columns. If all its “off-diagonal” values are 0 it is a
diagonal matrix.

• For example, in the following matrices,

• M1 is a diagonal matrix and M2 is not a diagonal
matrix.

• Write an algorithm that checks if a given square
matrix is diagonal.

















=
















=
100

053

042

2

000

050

002

1 MM

94

187

Diagonal-check algorithm

188

Efficient Version

95

189

2D Arrays in Java

• A 2D array in Java is literally an array of arrays
(each entry in the array is itself an array).

M 68 75 65

71 63 -9

87 0 90

66 57 74

length 3

length 3

length 3

length 4

length 3

190

Declaring a 2D Array

• To declare mto be a 2-dimensional array of integers:
int [][] m;

• To create a 2x3 instance of a 2D array (i.e. allocate memory for
the array and all the sub-arrays) and assign it to m:

m = new int[2][3];

• To create an initialized 2 x 3 2-dimensional array :
int [][] m;
m = new int[][] { {1, 2, 3}, {4, 5, 6} };

• You may use length to find the dimension of a 2-dimensional
array, or any sub-array:

m.length is
m[0].length is
What about m[0][0].length ?

96

191

Max value in a matrix (1)

• Translate the algorithm for the maximum value in a matrix to
Java:

– Note: Integer.MIN_VALUE is the most negative allowable
integer for a Java int , and can be used for –∞∞∞∞.

192

Max value in a matrix (2) in Java

• The header for the method for finding the maximum value in an
array is:

public static int arrayMax(int[] a, int n)

97

193

Reading a Matrix

• Write Java code to read in a matrix row by row (first it reads
in the number of rows and columns, then it asks for the values
in row 0, then it asks for the values in row 1, etc.). All values
are read one per line.

194

Adjacency Matrix

• Escape Airlines has flights between certain cities.
The flights and their costs can be represented as a
graph in which an edge between city X and city Y with
a weight (label) of W means Escape Airlines has a
flight between X and Y costing W dollars.

Ottawa (0)

400

Madrid (4)

Toronto (3)

Singapore
(1)

Paris (2)

450

300

300
700

500

900

98

195

Matrix Representation

• This graph can be represented with an adjacency matrix. There
is a row and a column for each city, and COST[X][Y] is the cost
of a flight from X to Y if one exists and is infinity (∞) if there
is no such flight.

• Here, “infinity” is actually a very large number, greater than any
number.
– In Java: a predefined constant is available for the largest

possible integer: Integer.MAX_VALUE























∞∞

∞∞
∞∞

=

0300700

3000400900300

4000450

9000500

7003004505000

COST

196

Find Cheap Direct Flights

• Suppose you live in one of Escape’s cities and have $D
to spend. Write an algorithm that returns an array of
the cities you can afford to fly to directly (and how
many there are).

99

197

Translate to Java

198

Deleting rows and columns

• Escape Airlines has decided to stop flying to and
from city X (e.g. Paris, X=2), and the city numbers
greater than X have all been reduced by 1 (e.g.
Madrid is now city 3).

– This problem can be solved by deleting a row and a
column that correspond to the city.

• Write two algorithms, one to delete a row from a
matrix, the other to delete a column.

• We are not going to change the size of the matrix,
but we are going to shift the rows and columns up and
put zeros in the last row and column.

100

199

Historical note …

• Barbara Liskov was the first women
to have obtained her Ph.D. in
computer science in US (in 1968,
from Stanford University).

• She was at the origin of CLU, the
first language that supported
abstract data types (1975), that
influenced many object-oriented
languages, including Java.

• In 1993, she and Janette Wing have
developed a specific definition of
sub-types, the Liskov principle of
substitution, used in object-
oriented programming.

200

Student Information

• Suppose we want to store a collection of information
about each student in a course.

• How to store all the information for one student?

– ID (student number) (integer)

– midterm mark (real)

– final exam mark (real)

– is taking this course for credit (Boolean)

• Why can’t we use an array?

101

201

Records

• Like an array, a “record” allows several values to be stored in
one variable.

• Records differ from arrays in 2 ways:
– The values (called fields) in a record can be of different

types.
– Each field in a record has a NAME. A value is accessed by

specifying the field name (not a subscript).
• Example (a single record with 4 fields):

TRUEforCredit

80.0exam

60.0midterm

1234567id

field name field value

202

Using Records

• Suppose the preceding record was stored in a variable
named R.

• To access the midterm mark:

R.midterm
• This refers to one field inside record R. A field can

be used anywhere a variable of that type is allowed,
e.g.,

T ← R.midterm + R.exam
R.forCredit ← false

• The whole record can be used in an assignment
statement or passed as a parameter:

X ← R

102

203

Defining a Record Type

• When we discussed primitive types, we looked at:
– What values does the type allow?
– What operations one can do with values of that

type?

• A record is a “user-defined” type that is built using
types we have already:
– Primitive types
– Other user-defined types.

• Creating a record also has the two elements of
primitive types:
– What are the components of a record value?
– What operations can we do with the record?

204

Classes and Objects

• An object can be considered to be like a record, in that there is
a set of “attributes” – named data values stored in the object.

• Each object is created from a class.

• A “class” can be used as a template to create objects with
identical sets of attributes.

– The class can also contain methods (algorithms) to perform
calculations on the attributes of objects created from the
class (and/or external data).

• A method is called on an object using the . operator, in a similar
manner to accessing a record field

result ← anObject.aMethod(aParameter)

103

205

Class Diagrams

• This form of diagram is from a notation called the
“Unified Modelling Language” or UML

NameOfClass

attribute1: type1
attribute2: type2

“Attributes” are like
the field variables in
a record

method1(parameter1 : type1) : returnType1
method2(parameter2 : type2) : returnType2

206

First version of a Student Class

• For each student, we want to store their ID number,
their midterm score, their exam score, and whether
or not the student is taking the course for credit.

Student

(no methods yet!)

104

207

Translation to Java

public class Student

{

public int id;

public double midterm;

public double exam;

public boolean forCredit;

}

• The class is a “template” for how to construct
Student objects.

– Objects must be created using the new statement

Student aStudent;

aStudent = new Student();

208

Two Student objects

trueforCredit

80.0exam

60.0midterm

1234567id

falseforCredit

79.0exam

73.0midterm

81069665id

aStudent : Student

meToo : Student

format:
<object name> : <class name>

(the underlining shows
that this is an instance
diagram)

105

209

Object usage in Java

Student aStudent; // declare variable

aStudent = new Student(); // create new object

aStudent.id = 1234567;

aStudent.midterm = 60.0;

aStudent.exam = 80.0;

aStudent.forCredit = true;

Student meToo;

meToo = new Student();

meToo.id = 81069665;

meToo.midterm = 73.0;

meToo.exam = 77.0;

meToo.forCredit = false;

210

Java objects are references

trueforCredit

80.0exam

60.0midterm

1234567id

falseforCredit

79.0exam

73.0midterm

81069665id

aStudent

meToo

106

211

Information hiding

• Suppose we want to modify the Student class to keep the course
final mark, which is 20% of the midterm mark plus 80% of the
final mark.
– We could add a field finalMark to our class.

• We want to make sure that
finalMark = (0.2 × midterm + 0.8 × exam)
is always true for consistency.

• It would be useful to prevent anyone else from setting the value
of finalMark arbitrarily.
– Instead, if the final mark is to change, it should be done by

changing the value of either midterm or exam.

• Restricting access to data is called “information hiding”.

212

Private fields in a class

• The – in front of the variable indicates that the attribute is
private.

• By declaring a field to be private, only methods declared inside
the class are allowed access to the field value (either for
viewing the value, or changing the value).

Student

– id : int
– midterm : double
– exam : double
– forCredit : boolean
– finalMark : double

107

213

Accessors and Modifiers

• To allow access to private values from outside a class, we can
use methods for this purpose:

– “accessor”: ask to view the value of a private field.

• General form: No input parameters, returns the field
value.

– “modifier”: ask to change the value of a private field.

• General form: One input parameter (the new value for the
field), and no return value.

• A naming convention that is often used:

– accessor for name: the method getName()
– modifier for name: the method setName(newName)

214

Accessors and Modifiers

• Examples for the forCredit field in the class:

+ getForCredit() : boolean

– method to return the value of forCredit
– the + indicates that the method has public visibility
– the return type is boolean, and in UML notation,

appears at the end of the method.

+ setForCredit(newValue : boolean)

– method to change the value of forCredit
– one parameter newValue, of type boolean
– no return value

108

215

Class diagram with accessors and modifiers

Student

– id : int
– midterm : double
– exam : double
– forCredit : boolean
– finalMark : double

+ getForCredit() : boolean
+ setForCredit(newValue : boolean)

216

Back to Information Hiding

• To implement our strategy of hiding the finalMark field, we can
do the following:

– We will provide an accessor method for finalMark, but NOT a
modifier method.

– We can provide a helper method recalculateFinalMark() to
recalculate the final mark if the midterm or exam marks are
changed.

– The modifier methods setMidterm() and setExam() will call
recalculateFinalMark() so that they automatically update the
final mark.

• We should also restrict access to recalculateFinalMark() because
it isn’t meant for use outside the class.

109

217

Student class with Information Hiding

Student

– id : int
– midterm : double
– exam : double
– forCredit : boolean
– finalMark : double

+ getId() : int
+ setId(newID : int)
+ getMidterm() : double
+ setMidterm(newMark: double)
+ getExam() : double
+ setExam(newMark: double)
+ getForCredit() : boolean
+ setForCredit(newValue : boolean)
+ getFinalMark(): double
– recalculateFinalMark()private

method

no modifier
for this value

218

Translation to Java

public class Student
{

// Attributes

private int id;
private double midterm;
private double exam;
private boolean forCredit;
private double finalMark;

// Methods

public int getId()
{

// insert code here
}
public void setId(int newId)
{

// insert code here
}
public double getMidterm()
{

// insert code here
}
public void setMidterm(double newMark)
{

// insert code here
}
// continued at right

// continued from left side

public double getExam()
{

// insert code here
}
public void setExam(double newMark)
{

// insert code here
}
public boolean getForCredit()
{

// insert code here
}
public void setForCredit(boolean newValue)
{

// insert code here
}
public double getFinalMark()
{

// insert code here
}

private void recalculateFinalMark()
{

// insert code here
}

} // end of class Student

110

219

Using Java Accessor and Modifier Methods

• If we now try the following:
Student aStudent = new Student();

aStudent.id = 1234567; // error here

int myId = aStudent.id; // error here

System.out.println(myId);

the compiler will give us two errors, because we no longer have
access to id outside the class.

• The compiler enforces the private access to id .

• Instead, use the modifier and accessor methods.
Student aStudent = new Student();

aStudent.setId(1234567); //ok!

int myId = aStudent.getId(); //ok!

System.out.println(myId);

220

Implementing Java accessors and modifiers

public class Student // not all attributes/methods shown!
{

// attribute
boolean forCredit;

// accessor: return the requested value
public boolean getForCredit()
{

return this .forCredit ;
}

// modifier: save the requested value in object’s
// attribute

public void setForCredit(boolean newValue)
{

this . forCredit = newValue;
}

}

111

221

Where did this come from?

• When the fields of our Student class were public, we
distinguished between the same field in two record objects with
the variable name and the dot operator:
– aStudent.forCredit versus meToo.forCredit

• Likewise, when a method inside the class wants to work with “the
value of the field for the object on which I was called”, this
refers to the called object.

• During the call aStudent.getForCredit() ,
this is a reference to aStudent
– … and so this.forCredit is aStudent.forCredit,

which is true.

• During the call meToo.getForCredit() ,
this is a reference to meToo
– … and so this.forCredit is meToo.forCredit , which

is false.

222

Implementing Information Hiding

• The following implements our strategy where the final mark can
only be changed by modifying the midterm or exam values.

public class Student
{

// attributes and other methods would go here
public void setMidterm(double newValue)
{

this .midterm = newValue;
this .recalculateFinalMark();

}
public void setExam(double newValue)
{

this .exam = newValue;
this .recalculateFinalMark();

}
private void recalculateFinalMark()
{

this .finalMark = 0.2 * this .midterm + 0.8 * this .exam;
}

}

112

223

Benefits of Information Hiding (1)

• A common cause of problems is when all parts of a
program have access to all program variables.

– For example, when someone makes a change to a
large program, the new code may make changes to
data that some other part of the program assumed
would not be modified.

• With information hiding, we can keep the code better
partitioned so that changes will be less likely to cause
unwanted side effects.

“Successful software always gets changed.” - F. Brooks

224

Benefits of Information Hiding (2)

• We can also make changes inside a class that will not affect users of
the class.

• Example: Suppose we decide that the finalMark field really doesn’t need
to be stored in the Student class.
– Instead, we can calculate the final mark when anyone asks for it:

public double getFinalMark()
{

return 0.2 * this.midterm + 0.8 * this.exam;
}

– This means we can remove the helper method recalculateFinalMark(),
and the calls to it in setMidterm() and setFinal().

• Making these changes will not affect any user of the class:
– For example, meToo.getFinalMark() still behaves as it did before.
– Since recalculateFinalMark() was private, code outside the class was

not able to call this method, and therefore it can be safely
removed.

• So we don’t have to change any code outside the class!

113

225

Compare Versions

Student

– id : int
– midterm : double
– exam : double
– forCredit : boolean
– finalMark : double

+ getId() : int
+ setId(newID : int)
+ getMidterm() : double
+ setMidterm(newMark: double)
+ getExam() : double
+ setExam(newMark: double)
+ getForCredit() : boolean
+ setForCredit(newValue : boolean)
+ getFinalMark(): double
– recalculateFinalMark()

Student

– id : int
– midterm : double
– exam : double
– forCredit : boolean

+ getId() : int
+ setId(newID : int)
+ getMidterm() : double
+ setMidterm(newMark: double)
+ getExam() : double
+ setExam(newMark: double)
+ getForCredit() : boolean
+ setForCredit(newValue : boolean)
+ getFinalMark(): double

226

this , again

• In most cases, we don’t actually have to use this to
refer to the object on which a method is called.

– Inside the Student class:

• exam can be used instead of this.exam .

• recalculateFinalMark() can be used
instead of this.recalculateFinalMark() .

• There are 2 occasions when we really do need this :

1. An object wants to pass itself as a parameter to
a method of another class.

2. An object wants to return a reference to itself
as the result of a method.

114

227

Historical note …

• The Xerox Palo Alto Research Center (PARC), founded in 1970,
is at the origin of many important contributions:
– The first workstation (Alto) with graphical user interface

(GUI, with windows and icons) and mouse
– The first text editor WYSIWYG
– The InterPress language (predecessor of PostScript) for

describing pages to be printed
– The Ethernet protocol for local area networks
– The Smalltalk object-oriented programming language, with

graphical development environment (designed by Alan Kay)
– The laser printer
– ...

228

Object-orientation

• The approach we have taken with our student class is an “object
oriented” approach:
– We have a class that is a template for the creation of objects.

• Student objects can be referred to as INSTANCES of the
CLASS Student.

– Object instances have instance methods that use the field
values for a specific object

• e.g. getFinalMark() will have different results for different
objects because this.exam is different for different
objects

– If you want the object to do something for you, you have to
ask it by calling a method on that object.

• That is, you can’t sneak inside an object from outside the
class and change the field values.

– You also can’t call an instance method, without having an object
to call it on:

X ← 3.0 + getFinalMark() is meaningless. Whose final mark
are we referring to?

115

229

Initialization of Objects

• When we create a new Student, we will usually want to
provide values for all the fields in the object.

aStudent ← new Student()
aStudent.id ← 1234567

aStudent.midterm ← 60.0
aStudent.exam ← 80.0
aStudent.forCredit ← True

• A special kind of method called a CONSTRUCTOR,
can be used to initialize values inside an object as the
object is being created.
aStudent ← new Student(1234567, 60,0, 80.0, True)

230

Constructors

• A constructor is a special method in a class used to
create an object.

– the name of the method is the same as the class;

– no return type

– usually public;

– may or may not have parameters.

• The parameters, if any, in a constructor are used to
initialize the values of the object.

• Because there may be different ways to initialize an
object, a class may have any number of constructors,
distinguished from each other by different
parameter lists.

116

231

Implementation in Java

• The following is a constructor that sets a value for all of the
fields in the Student :

class Student
{

// ... fields would be defined here ...
public Student(int theId, double theMidterm, double theExam, boolean

isForCredit)
{

this.id = theId;
this.midterm = theMidterm;
this.exam = theExam;
this.forCredit = isForCredit;

}
// ... Other methods ...

}

• This constructor could be used as follows:

Student aStudent = new Student(1234567, 60.0, 80.0, true);

232

Constructors of class Student

• If we are doing course registrations, we may only want to
provide the ID number and whether the student is taking the
course for credit. (We don’t know the student’s marks yet!)

• We could also provide the following constructor:

+ Student(theID : int, isForCredit : boolean)

public Student(int theID, boolean isForCredit)
{

this.id = theID;
this.midterm = 0.0; // a “safe” value

this.exam = 0.0; // a “safe” value
this.forCredit = isForCredit;

}

• When there is more than one constructor, they must have
parameter lists that can be distinguished by the number, order,
and type of parameters.

117

233

Add Constructors to the Class

Student

– id : int
– midterm : double
– exam : double
– forCredit : boolean

+ Student(theID : int, theMidterm : double, theExam : double, isForCredit: boolean)
+ Student(theID : int, isForCredit: boolean)

+ getId() : int
+ setId(newID : int)
+ getMidterm() : double
+ setMidterm(newMark: double)
+ getExam() : double
+ setExam(newMark: double)
+ getForCredit() : boolean
+ setForCredit(newValue : boolean)
+ getFinalMark(): double

234

Constructors of class Student

• Here is a constructor with no parameters:

+ Student()

public Student()

{

this.id = 0;

this.midterm = 0.0;

this.exam = 0.0 ;

thisl forCredit = false;

}

• A constructor without parameters is called a default constructor.
– It is recommended to always define a default constructor that sets

every field to a “safe” value.

• If, and only if, a class does not define any constructor, the Java
compiler invisibly creates a default constructor that does nothing.

118

235

Array Fields in Classes

• A field of a class may
have any type. In
particular, a class may
have a field of an
array type.

• Add an array of
double to class
Student representing
assignment marks:

• Remember, arrays are
not created
automatically! The
array assignments will
have to be created
after a Student
object is created.

Student

– id : int
– midterm : double
– exam : double
– forCredit : boolean
– assignments : double[]

+ Student(theID : int, theMidterm : double,
theExam : double, isForCredit: boolean)

+ Student(theID : int, isForCredit: boolean)

+ getId() : int
+ setId(newID : int)
+ getMidterm() : double
+ setMidterm(newMark: double)
+ getExam() : double
+ setExam(newMark: double)
+ getForCredit() : boolean
+ setForCredit(newValue : boolean)
+ getFinalMark(): double

236

Array Fields in Classes

public class Student

{

private int id ;

private double midterm ;

private double exam ;

private boolean forCredit;

private double[] assignments;

// methods

}

• The array assignments is still null .

119

237

Array field initialization

• Here is a constructor that creates and initializes an array in an
object. The constructor has a parameter that is the number of
assignments.

public Student(int numberOfAssignments)
{

this.id = 0;
this.midterm = 0.0;
this.exam = 0.0 ;
this.forCredit = false;
this.assignments = new double[numberOfAssignments];

// loop to initialize each item in array
int index;
for (index=0; index < numberOfAssignments; index = index+1)
{

this.assignments[index] = 0.0;
}

}

238

Accessors for an Array Field

• An accessor for an array field could:
– Return a reference to the entire array

+ getAssignments() : double[]

– Return one of the values in the array, with an
extra parameter to select the array index.

+ getAssignment (assignmentNumber: int) : double

• Which approach is better?

• Write an accessor for the length of an array
numAssignments, that returns the number of
assignments of a given Student.

120

239

Calculation of the Final Mark

• Write a Java method getFinalMark() for our Student class
that returns a double with a student’s final mark, where:

– The final mark is 55% of the exam, plus 20% of the midterm,
plus 25% of the average of 5 assignments.

240

Course information

• Now that we have a class that stores information
about one Student, how can we use this create a class
Course that stores information about all students?

121

241

Array of Students

students

length 2

assignments

trueforCredit

80.0exam

60.0midterm

1234567id

assignments

falseforCredit

79.0exam

73.0midterm

81069665id

[0]

[1]

aCourse : Course

242

Accessing the Data(1)

• Change the 3rd student’s midterm to 77.

• Change the 1st student’s 2nd assignment mark to 99.

• Use the getFinalMark method to compute the term work
mark of the 2nd student.

• Suppose arrayMax(A,N) is a class method that finds the
maximum value in the first N positions of array A. Use this to
compute the 2nd student’s maximum assignment mark.

122

243

Accessing the Data(2)

• Count the number of students taking the course for
credit.

244

Searching in an Array of Records

• Write a method that returns the position in a given
course C of the student with ID = X (return -1 if
there is no such student).

public __________

findID(______________________)

{

}

123

245

Memory Allocation Method

• As before, it is handy to put the code for memory
allocation into a constructor

public Course

(int numberOfStudents, int numberOfAssignments)

{

int i ;

students = new StudentRecord[numberOfStudents] ;

for (i=0 ; i < numberOfStudents ; i=i+1)

students[i] = new Student(numberOfAssignments);

}

246

Creating and Accessing the Data

• Declare variable C to be a Course object (instance of the Course
class):

• Allocate memory for C (137 students, each with 10 assignments):

• Compute the term work mark for the 3rd student in C:

124

247

Class Methods

• Object instances have instance methods that use the field
values for a specific object, e.g.,

public double getFinalMark(){…}

• Before introducing objects to represent records, all methods
were class methods, e.g.,
public static double avg3(int a, int b, int c)

• A class method is called as follows:

ClassName . aMethodName()
– Just like the Math class!

• A class method CANNOT use any instance variables, because it
is not associated with any particular object.

248

Summary of Class Design

• In an object-oriented language such as Java, designing a class is
a large part of the effort to create software.

• Decisions have to be made as to:

– What information should be in the class?

• What values should each object have?

• What type are the values?

• How do we initialize, set, and change the values?

– What are the operations we may want to ask the class to
perform?

• What other instance methods are needed?

• What other class methods are needed?

• What are the algorithms for all of these methods?

“Classes struggle, some classes triumph, others are eliminated.” --Mao Zedong

125

249

Class case study: Fractions

• Specification for a Fraction class:
– A fraction consists of a numerator and a denominator.
– The numerator of a fraction can be any integer.
– The denominator of a fraction can be any integer other than

0.
• If the denominator is not specified at creation, it is

assumed to be 1.
– A fraction is always in “standard form”; that is

• The greatest common divisor (GCD) of the numerator and
denominator is always 1

• The denominator is always positive.
– Example: 6/-9 should be represented as -2/3
– Special case: if the numerator is 0, the fraction is

represented as 0/1
– A fraction with denominator 1 should be displayed as the

equivalent integer; otherwise in the form
numerator/denominator.

250

Designing a Fraction class

• What information do we need to store in a Fraction?

– numerator

– denominator

• What operations do we need?
– [Aside from creating fractions, the only mathematical operation we

will implement is addition of two fractions]

– constructor(s)

• When constructing a Fraction, we may need some helper
methods

– display()

– addTo()

126

251

Putting the Fraction in Standard Form

• To make sure that each Fraction instance will be in lowest terms, a
helper method simplify will be used.

• Assume that you have a method gcd(a,b) that will return the greatest
common divisor of two integers.

• Write a Java method to put a fraction into standard form.

private void simplify()
{

int f;
f = gcd(numerator, denominator);
if (f != 0)
{

numerator = numerator / f;
denominator = denominator / f;

}
else
{

; // do nothing
}

if (denominator < 0)
{

numerator = -numerator;
denominator = -denominator;

}
else
{

; // do nothing
}

}

252

Algorithm for GCD

• A recursive GCD algorithm for gcd(a,b):
– If a mod b is 0, gcd(a, b) is b

• a mod b is the remainder when a is divided by b
– Otherwise, gcd(a,b) is gcd(b, a mod b)

• Question: will this algorithm always reach the base case?
– Note that a mod b is at most b – 1.

• Write a recursive Java method to calculate gcd(a,b)

private static int gcd (int a, int b) // a class meth od
{ int result;

int remainder;
remainder = a % b;
if (remainder == 0)
{

result = b;
}
else
{

result = gcd(b, remainder);
}
return result;

}

127

253

Fraction Constructors

• Write constructors for a Fraction that:
– take 2 integers: the numerator and the denominator
– takes 1 integer, representing an integer that is to be

converted to a Fraction

254

Displaying Fractions

• Write a Java method to display a Fraction .
• Sample usage:

– Fraction f1 = new Fraction (6, -9);

– f1.display();

• Result: -2/3
public void display()

{

if (denominator != 1)

{

System.out.print(numerator + " / " + denominator);

}

else

{

System.out.print(numerator);

}

}

128

255

Adding Fractions

• Write a Java method that will add two Fractions.
– Sample usage:

Fraction f1 = new Fraction(1, 2);

Fraction f2 = new Fraction(1, 3);

Fraction sum = f1.addTo(f2);

sum.display();

– Result: 5/6

256

Some final words…

• "At the source of every error which is blamed on the
computer, you will find at least two human errors, one
of which is the error of blaming it on the computer. "

– Anonymous

• "We shall do a much better programming job,
provided we approach the task with a full appreciation
of its tremendous difficulty, provided that we
respect the intrinsic limitations of the human mind
and approach the task as very humble programmers. "

– Alan Turing

