
Pure Type Systems in Rewriting Logi

Mark-Oliver Stehr Jos�e Meseguer

Computer Siene Laboratory,

SRI International, Menlo Park, CA 94025, USA

Abstrat. The logial and operational aspets of rewriting logi as a logial framework are illustrated in detail by

representing pure type systems as objet logis. More preisely, we apply membership equational logi, the equational

sublogi of rewriting logi, to speify pure type systems as they an be found in the literature and also a new variant of

pure type systems with expliit names that solves the problems with losure under �-onversion in a very satisfatory

way. Furthermore, we use rewriting logi itself to give a formal operational desription of type heking, that diretly

serves as an eÆient type heking algorithm. The work reported here is part of a more ambitious projet onerned with

the development in Maude [7℄ of a proof assistant for OCC, the open alulus of onstrutions, an equational extension

of the alulus of onstrutions.

1 Introdution

This paper is a detailed ase study on the ease and naturalness with whih a family of higher-order formal

systems, namely pure type systems (PTS) [4, 32℄, an be represented in the �rst-order logial framework of

rewriting logi [25℄. PTS systems generalize the �-ube [1℄, whih already ontains important aluli like �!

[6℄, F [12, 29℄, F! [12℄, a system �P lose to the logial framework LF [13℄, and their ombination, the alulus of

onstrutions CC [8℄. PTS systems are onsidered to be of key importane, sine their generality and simpliity

makes them an ideal basis for representing higher-order logis either via the propositions-as-types interpretation

[11℄ or via their use as a higher-order logial framework in the spirit of LF [13, 10℄ or Isabelle [26℄.

Exploiting the fat that rewriting logi and its membership equational sublogi [5℄ have initial and free models,

we an de�ne the representation of PTS systems as a parameterized theory in the framework logi; that is, we

de�ne in a single parametri way all the representations for the in�nite family of PTS logis. Furthermore,

the representational versatility of rewriting logi, and of membership equational logi, are also exerised by

onsidering four di�erent representations of PTS systems at di�erent levels of abstration, from a more abstrat

textbook version in whih terms are identi�ed up to �-onversion, to a more onrete version with a alulus

of names and expliit substitutions, and with a type heking inferene system that an in fat be used as a

reasonably eÆient implementation of PTS systems by exeuting the representation in the Maude language [7℄.

This more onrete version is the basis of a proof assistant for OCC, the open alulus of onstrutions, an

equational extension of the alulus of onstrutions, that is under development.

This ase study omplements earlier work [20, 21, 22℄, showing that rewriting logi has good properties as a

logial framework to represent a wide range of logis, inluding linear logi, Horn logi with equality, �rst-order

logi, modal logis, sequent-based presentations of logis, and so on. In partiular, representations for the �-

alulus, and for binders and quanti�ers have already been studied in [20℄, but this is the �rst systemati study

on the representation of typed higher-order systems. One property shared by all the above representations,

inluding all those disussed in this paper, is that what might be alled the representational distane between

the logi being formalized and its rewriting logi representation is virtually zero. That is, both the syntax

and the inferene system of the objet logi are diretly and faithfully mirrored by the representation. This is

an important advantage both in terms of understandability of the representations, and in making the use of

enoding and deoding funtions unneessary in a so-alled adequay proof.

Besides the diretness and naturalness with whih logis an be represented in a framework logi, another

important quality of a logial framework is the sope of its appliability; that is, the lass of logis for whih

faithful representations preserving relevant struture an be de�ned. Typially, we want representations that

both preserve and reet theoremhood; that is, something is a theorem in the original logi if and only if its

translation an be proved in the framework's representation of the logi. Suh mappings go under di�erent

names and di�er in their generality; in higher-order logial frameworks representations are typially required to

be adequate mappings [10℄, and in the theory of general logis more liberal, namely onservative mappings of

entailment systems [24℄, are studied. In this paper we further generalize onservative mappings to the notion of
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a sound and omplete total orrespondene of sentenes between two entailment systems. In partiular, all the

representations of PTS systems that we onsider are orrespondenes of this kind. In fat, sound and omplete

total orrespondenes are systematially used not only to state the orretness of the representations of PTS

systems at di�erent levels of abstration, but also to relate those di�erent levels of abstration, showing that

the more onrete representations orretly implement their more abstrat ounterparts.

A systemati way of omparing the sopes of two logial frameworks F and G is to exhibit a sound and omplete

total orrespondene F  G, representing F in G. Sine suh orrespondenes form a ategory, and therefore

ompose, this then shows that the sope of G is at least as general as that of F . Sine pure type systems inlude

the system �P, lose to the logial framework LF, and the alulus of onstrutions CC, the results in this paper

indiate that the sope of rewriting logi is at least as general as that of those logis. Furthermore, sine there

are no adequate mappings from linear logi to LF in the sense of [10℄, but there is a onservative mapping of

logis from linear logi to rewriting logi [20℄, this seems to indiate that the LF methodology together with its

rather restritive notion of adequate mapping is more speialized than the rewriting logi approah.

2 Preliminaries

2.1 Entailment Systems

In the following setions we are onerned with a variety of di�erent interrelated formal systems whih an all

be viewed as entailment systems, a notion de�ned in [24℄ as a main omponent of general logis. Sine the

notion of entailment system is more general than what is needed for the purposes of the present paper, we work

with unary entailment systems. A unary entailment system (Sen;`) is a set of sentenes Sen, together with a

unary entailment prediate `� Sen.

In [24℄ maps between sentenes are used to relate di�erent logis. Here we introdue a more general notion of

morphism, namely a orrespondene between sentenes of di�erent entailment systems. Let (Sen;`), (Sen

0

;`

0

)

be unary entailment systems. A orrespondene between (Sen;`) and (Sen

0

;`

0

) is a relation  � Sen � Sen

0

.

Given suh a orrespondene  , we say that  is sound i� for all � �

0

, ` � implies `

0

�

0

. Similarly, we say

that  is omplete i� for all � �

0

, `

0

�

0

implies ` �. Moreover, is alled total i� for eah � 2 Sen there is

a �

0

suh that � �

0

. Correspondenes ompose in the obvious relational way, giving rise to a ategory CEnt.

Often a orrespondene of sentenes � Sen�Sen

0

takes the form of a funtion � : Sen �! Sen

0

, in whih ase

we speak of a map of sentenes. A map of entailment systems in the sense of [24℄ is a sound map of sentenes,

and a onservative map is preisely a sound and omplete map.

2.2 Rewriting Logi and Membership Equational Logi

A rewrite theory is a triple T = (�; E;R), with � a signature of funtion symbols, E a set of equations, and R a

set of (possibly onditional) rewrite rules of the form t �! t

0

(with t and t

0

�-terms) whih are applied modulo

the equations E. Rewriting logi (RWL) then has rules of dedution to infer all possible rewrites provable in a

given rewrite theory [25℄. Sine an equational theory (�; E) an be regarded as a rewrite theory (�; E; ;) with

no rules, equational logi is a sublogi of rewriting logi. In fat, rewriting logi is parameterized by the hoie

of its underlying equational logi, whih an be unsorted, many-sorted, and so on.

In this paper, and in the design of the Maude language, we have hosen membership equational logi (MEL)

[5℄ as the underlying equational logi. Membership equational logi is quite expressive. It has sorts, subsorts,

overloading of funtion symbols, and an express partiality very diretly by de�ning membership in a sort by

means of equational onditions. The atomi sentenes are equalities t = t

0

and memberships t : s, with s a

sort, and general sentenes are Horn lauses on the atoms. Both membership equational logi and rewriting

logi have initial and free models [25, 5℄. We denote by MEL � RWL the sublogi inlusion from membership

equational logi into rewriting logi.

Logis an be naturally represented as rewrite theories by de�ning the formulas, or other proof-theoreti stru-

tures suh as sequents, as elements of appropriate sorts in an abstrat data type spei�ed by an equational

theory (�; E). Then, eah inferene rule in the logi an be axiomatized as a, possibly onditional, rewrite

rule, giving rise to a representation as a rewrite theory (�; E;R). Alternatively, we an exploit the rih sort

struture of membership equational logi to represent the inferene rules of a logi not as rewrite rules, but as
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Horn lauses H expressing membership in an adequate sort of derivable sentenes, leading to a membership

equational logi representation of the form (�; E [H). In this paper we will use both forms of representations

for di�erent versions of PTS systems.

Membership equational logi together with its ategorial initial model semantis provides a very general sheme

for indutive de�nitions of equational theories whih is muh more powerful than the free algebrai data types

well-known from many funtional programming languages. Beyond that, rewriting logi generalizes equational

logi and gives us via its initial semantis a very general sheme for indutive de�nitions of rewrite systems.

3 Overview and Main Results

In Setion 4 we show how the de�nition of PTS systems an easily be formalized in membership equational

logi. The approah we use is not only less speialized than the one used in a higher-order logial framework

like LF [13℄ or Isabelle [26℄, but it has also more explanatory power, sine we explain higher-order aluli in

terms of a �rst-order system with a straightforward semantis.

In order to make the spei�ation of PTS systems more onrete, we introdue the notion of uniform pure type

systems (UPTS) [31℄, that do not abstrat from the treatment of names but use CINNI, a new and very simple

�rst-order alulus of names and substitutions. UPTS systems solve the problem of losure under �-onversion

in a simple and elegant way. Again, a membership equational logi spei�ation of UPTS systems an be given

that diretly formalizes the informal de�nition.

As an intermediate step we employ an optimized version of UPTS systems, namely UPTS with valid ontexts

(UPTS/VC). This system ontains an expliit judgement for valid ontexts, and an be seen as a re�nement

towards a more eÆient implementation of type heking.

Last but not least, we desribe how meta-operational aspets of an important lass of UPTS/VC systems, like

type heking and type inferene, an be seen as rewrite systems and an likewise be formalized in rewriting

logi. The result of this formalization is an exeutable spei�ation of UPTS/VC systems that is orret w.r.t.

the logial spei�ation given before in a very obvious way. Let us abbreviate the rewriting based presentation

of UPTS/VC by RUPTS/VC. A similar presentation is the basis of the proof assistant for the open alulus of

onstrutions mentioned above.

Formally, these di�erent presentations of PTS systems are families of unary entailment systems parameterized by

PTS spei�ations. We use the notation PTS

S

, UPTS

S

, UPTS/VC

S

and RUPTS/VC

S

to denote the entailment

systems assoiated with a PTS spei�ation S.

For appropriate PTS spei�ations S we obtain a hain of sound and omplete orrespondenes

PTS

S

 UPTS

S

 UPTS/VC

S

 RUPTS/VC

S

:

Atually we have two di�erent kinds of onnetions between the �rst two entailment systems leading to two

di�erent orrespondenes of the form PTS

S

 UPTS

S

. By omposing three orrespondenes of the form above

we �nally arrive at a total, sound and omplete orrespondene

PTS

S

 RUPTS/VC

S

whih shows the equivalene of the high-level spei�ation of PTS with the implementation of a type heker.

By internalizing derivability w.r.t. a rewrite theory T , rewriting logi an be seen as a unary entailment system

(Sen;`) with sentenes of the form T ` �, where � is an equation, a membership or a rewrite. Then, ` T ` �

means that � is derivable in the theory T . Membership equational logi an likewise be seen as the unary

entailment system obtained by restriting T to membership equational logi theories and � to equations and

memberships.

The entailment systems PTS

S

, UPTS

S

, UPTS/VC

S

and RUPTS/VC

S

an be easily spei�ed in membership

equational logi or in rewriting logi. Spei�ally, we have the following total, sound and omplete orrespon-

denes

PTS

S

 MEL; UPTS

S

 MEL; UPTS/VC

S

 MEL; RUPTS/VC

S

 RWL:



4 M.-O. Stehr, J.Meseguer Pure Type Systems in Rewriting Logi

In all ases the representational distane between eah type system and its representation is pratially zero,

that is, both the syntax and the inferene system of eah type theory are very diretly and faithfully represented

in the framework logi.

The �rst orrespondene is the representation of PTS systems in membership equational logi given in Setion

4. Let PTS

S

be the membership equational logi spei�ation of PTS

S

. Then, for all PTS judgements � of

PTS

S

and possible representations �

0

of � in membership equational logi, the sentene PTS

S

` �

0

is derivable

in membership equational logi i� the judgement � is derivable in PTS

S

. This de�nes a total, sound and

omplete orrespondene of the form PTS

S

 MEL. We are onerned with a orrespondene rather than a

map of sentenes, due to the fat that PTS systems abstrat from names, but in the membership equational

logi representation names are part of the desription of terms, although by adding appropriate equations an

equivalent abstration an be ahieved in membership equational logi.

In the remaining three systems UPTS

S

, UPTS/VC

S

, and RUPTS/VC

S

we do not abstrat from names. Hene,

the three assoiated representational orrespondenes atually take the form of onservative maps of entailment

systems, i.e., with eah judgement of the type system we an assoiate a unique sentene in membership

equational logi or rewriting logi, respetively.

4 The Metalogial View of PTS

A PTS spei�ation is a triple (S;A;R) where S is a set of sorts, A � S � S is the set of axioms, and

R � S � S � S is the set of rules. S will range over PTS spei�ations.

In PTS systems there is no a priori distintion between terms and types. PTS (pseudo-)terms are de�ned by

the following syntax with binders:

X j (M N) j [X : A℄M j fX : AgM j s

Here, and in the following, s ranges over S; M;N;A;B; T range over terms; and X ranges over names. We

should add that in [X : A℄M and fX : AgM the name X is bound in M , and we assume that �-onvertible

terms, i.e., terms that are equal up to renaming of bound variables, are identi�ed.

A PTS (pseudo-)ontext is a �nite list of delarations, eah of the form [X : A℄. The empty ontext is denoted

by [℄ and onatenation is written as juxtaposition. In the following, � ranges over PTS ontexts.

Given a PTS spei�ation S, the set of derivable typing judgements of the form � `M : T is de�ned indutively

by the following rules:

[℄ ` s

1

: s

2

(s

1

; s

2

) 2 A (AX)

� ` A : s

�[X : A℄ ` X : A

X =2 � (START)

� `M : A � ` B : s

�[X : B℄ `M : A

X =2 � (WEAK)

� ` A : s

1

�[X : A℄ ` B : s

2

� ` fX : AgB : s

3

(s

1

; s

2

; s

3

) 2 R (PI)

� ` A : s

1

�[X : A℄ `M : B �[X : A℄ ` B : s

2

� ` [X : A℄M : fX : AgB

(s

1

; s

2

; s

3

) 2 R (LDA)

� `M : fX : AgB � ` N : A

� ` (MN) : [X :=A℄B

(APP)

� `M : A � ` B : s � ` A � B

� `M : B

(CONV)
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X =2 � means that there is no [X : A℄ 2 � for any A. [X :=A℄ is the standard metatheoreti operator for apture-

free substitution. In the last rule, � is the usual notion of �-onvertibility whih ontains �-onvertibility (this

is trivially satis�ed in this presentation).

As an example, we an instantiate PTS systems by S = fProp;Typeg; A = f(Prop;Type)g; and

R = f(Prop;Prop;Prop); (Prop;Type;Type); (Type;Prop;Prop); (Type;Type;Type)g

to obtain the alulus of onstrutions CC.

This presentation of PTS systems is rather abstrat for two reasons: �rstly, we are working modulo �-onversion,

i.e., we identify �-equivalent terms, and seondly, we are onerned with an indutive de�nition of a set of

derivable judgements, but not with an algorithm to type-hek a partiular term.

Mathematially the abstrat presentation has an important bene�t: It allows us to reason about pure type

systems metalogially, without assuming anything about the onrete realization of names. This leads to very

general results [1, 33℄ and frees proofs from unneessary tehnial details.

4.1 PTS in Membership Equational Logi

In the following spei�ations, given in Maude syntax, we use the logial semantis of membership equational

logi for representing PTS systems exatly as given above; a more operational version suited for use as an

implementation is disussed in Setion 5.2.

First, notie that we plan to desribe not a single type system but an in�nite family of type systems parameter-

ized by sorts, axioms and rules. All suh PTS spei�ations an be formalized as models of a single parameter

theory that an be spei�ed in Maude as follows:

fth PTS-SPEC is

sorts Sorts Axioms Axioms? Rules Rules? .

subsort Axioms < Axioms? .

subsort Rules < Rules? .

op (_,_) : Sorts Sorts -> Axioms? .

op (_,_,_) : Sorts Sorts Sorts -> Rules? .

endfth

As an example, the PTS spei�ation of CC is given by the following funtional module:

fmod CC-SPEC is

sorts Sorts Axioms Axioms? Rules Rules? .

subsort Axioms < Axioms? .

subsort Rules < Rules? .

op (_,_) : Sorts Sorts -> Axioms? .

op (_,_,_) : Sorts Sorts Sorts -> Rules? .

op Prop : -> Sorts .

op Type : -> Sorts .

mb (Prop,Type) : Axioms .

mb (Prop,Prop,Prop) : Rules .

mb (Prop,Type,Type) : Rules .

mb (Type,Prop,Prop) : Rules .

mb (Type,Type,Type) : Rules .

endfm

Pure type systems an then be spei�ed as a funtional module parameterized by the theory PTS-SPEC. Sine

funtional modules have an initial (in this ase free) model semantis, this formalization of PTS systems is in

fat an indutive de�nition that aptures in a preise model-theoreti way the indutive harater of PTS rules.
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fmod PTS[PAR :: PTS-SPEC℄ is

First we de�ne the sort Trm of terms as an algebrai data type. Notie that we distinguish between a sort of

identi�ers Qid, that are used in plaes where an identi�er is delared, and a sort of variables Var, that are used

to refer to an already delared identi�er.

sorts Var Trm .

subsort Qid < Var .

subsort Var < Trm .

subsort Sorts < Trm .

op __ : Trm Trm -> Trm .

op [_:_℄_ : Qid Trm Trm -> Trm .

op {_:_}_ : Qid Trm Trm -> Trm .

vars s s1 s2 s3 : Sorts .

vars X Y Z : Qid .

vars A B M N O P Q R T A' B' M' N' T' : Trm .

The usual deterministi version of apture-free substitution an be naturally de�ned in membership equational

logi as demonstrated in [20, 22℄. An important point is that we do not want to restrit ourselves to a partiular

hoie of fresh names, sine this would make the spei�ation overly onrete. This an be aomplished by

leaving unspei�ed the deterministi funtion for hoosing fresh variables suh that the atual funtion varies

with the hoie of the model; for details we refer to [20, 22℄. Here we only give the signature for set membership,

free variables and the substitution funtion:

op _in_ : Qid QidSet -> Bool .

op FV : Trm -> QidSet .

op [_:=_℄_ : Qid Trm Trm -> Trm .

We an use the substitution operator [_:=_℄_ to semantially identify terms that are �-onvertible (we refer

to the indued equality as �-equality) by means of the following equations.

eq [X : A℄ M = [Y : A℄ ([X := Y℄ M) if not(Y in FV(M)) .

eq {X : A} M = {Y : A} ([X := Y℄ M) if not(Y in FV(M)) .

We next de�ne the binary relation of �-onvertibility, whih is used in the CONV rule of PTS systems. The

following (onditional) memberships, together with the initiality ondition, de�ne �-onversion as the smallest

ongruene (w.r.t. the term onstrutors) ontaining one step �-redution.

sorts Convertible Convertible? .

subsort Convertible < Convertible? .

op _===_ : Trm Trm -> Convertible? .

mb M === M : Convertible .

mb M === N : Convertible if N === M : Convertible .

mb P === R : Convertible if P === Q : Convertible and Q === R : Convertible .

mb (M N) === (M' N') : Convertible if M === M' : Convertible and N === N' : Convertible .

mb ([X : A℄ M) === ([X : A'℄ M') : Convertible if A === A' : Convertible and M === M' : Convertible .

mb ({X : A} B) === ({X : A'} B') : Convertible if A === A' : Convertible and B === B' : Convertible .

mb (([X : A℄ M) N) === ([X := N℄ M) : Convertible .

The only judgements of PTS systems are of the form � ` M : A. We next de�ne the syntax of ontexts and

judgements. Also, we de�ne the funtion _in_ used in the side onditions of some PTS rules.
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sorts Context Judgement .

op [℄ : -> Context .

op [_:_℄ : Qid Trm -> Context .

op __ : Context Context -> Context [asso id : [℄℄ .

var G : Context .

op _|-_:_ : Context Trm Trm -> Judgement .

op _in_ : Qid Context -> Bool .

eq X in [℄ = false .

eq X in (G [Y : A℄) = (X in G) or (X == Y) .

We are now ready to de�ne the inferene rules. Formally the inferene rules de�ne an indutive subset of

derivable judgements. The derivability prediate is usually impliit in informal reasoning, where � ` M : A

refers either to the judgement itself or to the fat that it is derivable.

sort Derivable .

subsort Derivable < Judgement .

mb ([℄ |- s1 : s2) : Derivable if (s1,s2) : Axioms .

mb (G [X : A℄ |- X : A) : Derivable if

(G |- A : s) : Derivable and not(X in G) .

mb (G [X : B℄ |- M : A) : Derivable if

(G |- M : A) : Derivable and

(G |- B : s) : Derivable and not(X in G) .

mb (G |- {X : A} B : s3) : Derivable if

(G |- A : s1) : Derivable and

(G [X : A℄ |- B : s2) : Derivable and (s1,s2,s3) : Rules .

mb (G |- [X : A℄ M : {X : A} B) : Derivable if

(G |- A : s1) : Derivable and

(G [X : A℄ |- M : B) : Derivable and

(G [X : A℄ |- B : s2) : Derivable and (s1,s2,s3) : Rules .

mb (G |- (M N) : [X := A℄ B) : Derivable if

(G |- M : {X : A} B) : Derivable and

(G |- N : A) : Derivable .

mb (G |- M : B) : Derivable if

(G |- M : A) : Derivable and

(G |- B : s) : Derivable and A === B : Convertible .

endfm

In this formalization we have avoided any arbitrary enoding of syntax with binders that would require nontrivial

justi�ations. Also, we have seen that the �rst-order framework is suÆiently powerful to represent PTS systems

without making any ommitments. In partiular, there was no need to hange the syntax or the rules of PTS

systems to obtain a faithful representation.

4.2 Taking Names Seriously

Although the abstrat treatment of names in PTS systems leads to a general metatheory that an be used as

a high-level theoretial basis for quite di�erent implementations of PTS systems, there is a prie to be paid,

namely in that an abstrat view neessarily limits the expressivity of the theory. Indeed, we often need a

more onrete representation with more speialized results to deal, for example, with the implementation of a
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formal system, or with tools that use the formal system in an essential way. Also, for reasoning about a formal

system a more onrete spei�ation that is omputationally meaningful is either neessary or useful, e.g., for

formalizations in onstrutive type theories or logis with omputational sublanguages.

However, as soon as we give up the identi�ation of �-onvertible terms and take the inferene rules literally,

we enounter at least two problems �rst pointed out in [27℄.

1

The �rst problem is that the set of derivable judgements is not losed under �-onversion. For instane, adapting

an example given for �! in [27℄, we annot derive a judgment of the form

[A : Prop℄[P : fZ : AgProp℄ ` [X : A℄[X : PX ℄A : fX : AgfX : PXgProp;

say in CC, although an �-equivalent version where all bound variables are distint an be derived.

A seond diÆulty reported in [27℄ is that we want to derive

[A : Prop℄[P : fZ : AgProp℄ ` [X : A℄[X : PX ℄X : fX : AgfY : PXg(PX);

but we should not be able to derive

[A : Prop℄[P : fZ : AgProp℄ ` [X : A℄[X : PX ℄X : fX : AgfX : PXg(PX):

However, we annot derive the �rst judgement, sine the name X in the onlusion of the LDA rule is the same

on both sides of the olon.

To takle the �rst problem, Pollak proposed a type system `

lt

, a variation of �!. It uses a more liberal

notion of ontext that allows multiple delarations of the same identi�er, the most reent one being visible

inside the judgement. Unfortunately, he did not pursue this diretion further beause of the seond diÆulty,

whih appears in the ontext of PTS systems with dependent types but is not present in �!. Conerning `

lt

,

he remarks \I don't think we an do the same for PTS."

The solution �nally disussed in [27℄ is the solution employed in the onstrutive engine [14℄ used in proof

assistants suh as LEGO [18℄ and COQ [15℄ and formalized rigorously in [23℄. The idea is to use a hybrid

naming sheme whih employs distint names for global variables delared in the ontext of a judgement and

a de Bruijn representation of terms with bound loal variables. Clearly, PTS systems based on suh a hybrid

naming sheme are a orret implementation of (abstrat) PTS systems as desribed above. More preisely, PTS

systems using the hybrid naming sheme an be seen as partiular models of the membership logi spei�ation

of PTS systems in the sense that the orresponding model is isomorphi to the one given by the appropriately

instantiated funtional module PTS. Nevertheless, an approah whih maintains a distintion between global

and loal variables appears not to be very uniform, ompliating formal metatheoreti proofs and type heking.

Of ourse, saling up Pollak's `

lt

to PTS systems would be muh more satisfying and this is the diretion we

pursue in the following.

4.3 Indexed Names and Named Indies

We believe that the root of the seond diÆulty disussed above is that the traditional notion of binding used

in logi and in programming reveals an undesirable property, whih may be alled aidental hiding, if the

language is re�ned in the most diret way, i.e., by giving up identi�ation by �-onversion.

Consider for instane the formula

8X:(A ^ 8Y:(B ) 8X:C(X)))

for distint names X and Y . C(X) is a formula that ontains X free. Eah ourrene of X in C(X) is aptured

by the inner 8 quanti�er, so that the outer 8 quanti�er is hidden from the viewpoint of C(X). Indeed there is

no way to refer to the outer 8 quanti�er within C(X).

Hene, we are faed with the following problem: a alulus without �-equality is not only less abstrat, whih is

an unavoidable onsequene of giving up identi�ation by �-onversion, but also, depending on the (aidental)

1

The problem of �-onversion also remains unsolved in [19℄, where a system with dependent types is presented that does not

enjoy this property.
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hoie of names, visibility of (bound) variables may be restrited. It is important to emphazise that visibility is

not restrited in the original alulus with �-equality, sine renaming an be performed taitly at any time.

Clearly, this phenomenon of hiding that ours in the example above is undesirable

2

, beause it is not present in

the original alulus with �-equality. It is merely an aident aused by giving up identi�ation by �-onversion

without adding a ompensating exibility to the language.

This suggests takling this general problem by migrating to a more exible syntax, where we express a binding

onstraint by annotating eah identi�er X with an index i 2 IN, written X

i

, that indiates how many X-binders

should be skipped before we reah the one that X

i

refers to. For instane we will write

8X:(A ^ 8Y:(B ) 8X:C(X

0

)))

to express that X

0

is bound by the inner 8 and

8X:(A ^ 8Y:(B ) 8X:C(X

1

)))

meaning that X

1

is bound by the outer 8. To make the language a onservative extension of the traditional

notation, we identify X and X

0

. This generalized syntax will be alled CINNI syntax, where CINNI refers to

Calulus of Indexed Names and Named Indies [31℄, a new and very simple alulus of expliit substitutions to

be introdued in the next setion.

It might appear that there is some similarity to a notation based on de Bruijn indies [9℄. But notie that there

is an essential di�erene: the index m in the ourrene X

m

is not the number of binders to be skipped; it states

that we have to skip m binders for the partiular name X , not ounting binders for other names. Still a formal

relation to de Bruijn's notation an be established: if we restrit ourselves to terms that ontain only a single

name X , then we an replae eah X

i

by the index i without loss of information and we arrive at de Bruijn's

purely indexed notation.

3

In other words, if we restrit the available identi�ers to a single one, we obtain de

Bruijn's notation as a very speial ase. In this sense, the CINNI syntax an be formally seen as a proper

generalization of de Bruijn's notation. Pragmatially, however, the relation to de Bruijn's syntax plays only a

minor role, sine a typial user will exploit the dimension of names muh more than the dimension of indies.

Hene, in pratie the notation an be used as a standard named notation, with the additional advantage that

aidental hiding and weird renamings

4

are avoided.

The pragmati advantage of CINNI notation is that it an be used to redue the distane between the formal

system and its implementation: it an be diretly employed by the user who wants to think in terms of names,

so that the need for a translation between an internal representation (e.g., using de Bruijn indies) and a user

friendly syntax (e.g., using ordinary names) disappears ompletely. As far as we know the CINNI substitution

alulus is the �rst alulus of expliit substitutions whih ombines named and index-based representations

and hene provides a link between these two worlds of expliit substitution aluli.

4.4 Expliit Substitutions

So far we have presented a simple �rst-order syntax for expressions whih ontains the onventional named

notation as well as de Bruijn's indexed notation as speial ases. The most important operation to be performed

on suh terms is apture-free substitution. Therefore, we now present the CINNI substitution alulus.

Stritly speaking, CINNI is a family of expliit substitution aluli, parameterized by the syntax (inluding

information about binding) of the language we want to represent. Below we present the instantiation of this

substitution alulus for the untyped �-alulus with terms in CINNI syntax, i.e.

X

m

j (M N) j [X ℄M

As a motivation for the substitution alulus given below, onsider the following example of a �-redution step

in the traditional �-alulus with distint names X and Y , again taking names literally, i.e., not presupposing

identi�ation by �-onversion:

(([X ℄[Y ℄X)Y )! [Z℄Y

2

Of ourse, in general hiding is important but it is not an issue of binding; it should be treated independently.

3

With the slight di�erene that de Bruijn's indies start at 1 instead of 0.

4

See the disussion on weird renaming in the next setion.
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Clearly, Z must be an identi�er di�erent from Y to avoid apturing. Unfortunately, there is no anonial hoie

if all identi�ers should be treated as being equal. We all this phenomenon weird renaming of bound variables.

It is atually a ombination of two undesirable e�ets: (1) names that have been arefully hosen by the user

have to be hanged, and (2) the enfored hoie of a new name ollides with the right of names to be treated

as equal itizens.

These e�ets are avoided in the CINNI alulus, when instantiated to the �-alulus. It is spei�ed by the �rst-

order equational theory given below. Indeed, the only operation assumed on names is equality. CINNI has also

an operational semantis viewing equations as rewrite rules. Apart from the two basi kinds of substitutions,

namely simple substitutions [X :=M ℄, and shift substitutions "

X

, substitutions an be lifted using *

X

(S), where

the variable S ranges over substitutions.

[X :=M ℄ X

0

= M

[X :=M ℄ X

m+1

= X

m

[X :=M ℄ Y

n

= Y

n

if X 6= Y

"

X

X

m

= X

m+1

"

X

Y

n

= Y

n

if X 6= Y

*

X

(S) X

0

= X

0

*

X

(S) X

m+1

= "

X

(S X

m

)

*

X

(S) Y

n

= "

X

(S Y

n

) if X 6= Y

S (MN) = (SM)(SN)

S ([X ℄M) = [X ℄(*

X

(S) M)

We an instantiate the CINNI alulus to give a more onrete treatment of di�erent formal systems. The only

equations spei� to the syntax of the language are the strutural equations. Here, the last two equations in

the right olumn are the strutural equations for the �-alulus.

Now we an de�ne �-redution by the rule

([X ℄N)M !

�

[X :=M ℄N:

Notie that weird renaming of bound variables as in the previous example is avoided with the new notion of

�-redution:

(([X ℄[Y ℄X)Y )!

�

([Y ℄Y

1

)

As another appliation of substitution, onsider the renaming of a bound variable X by � as in the following

rule of �-redution:

([X ℄N)!

�

([ � ℄[X := � ℄ "

�

N)

where � is an arbitrary but �xed name. Using this rule every CINNI term an be redued to a nameless �-

normal form whih is essentially its de Bruijn index representation. For terms M ,N we use M �

�

N to denote

that M and N are equal up to renaming of bound variables.

Just as CINNI syntax ontains de Bruijn's indexed notation as a very speial ase, the instantiation of CINNI

for the �-alulus redues to the alulus �� of expliit substitutions proposed by Pierre Lesanne [16, 17, 3℄,

but only in the degenerate ase where we only admit a single identi�er. It is noteworthy that �� is the smallest

known indexed substitution alulus enjoying good theoretial properties like onuene and preservation of

strong normalization. It seems that its simpliity is inherited by CINNI although in pratie the dimension of

names will be muh more important than the dimension of indies. Hene, we tend to think of CINNI more as

a substitution alulus with names than as one with indies.

4.5 Uniform Pure Type Systems

The appliation of CINNI to PTS turns out to be surprisingly simple, and indeed it leads to a system whih

an be seen as Pollak's `

lt

saled up to PTS systems.

In ontrast to the hybrid approah to PTS systems adopted in the onstrutive engine [14℄ and in the formal-

ization [23℄, both distinguishing between global and loal variables, we use indexed identi�ers uniformly. This

suggests de�ning uniform pure type systems (UPTS) by modifying PTS in three steps:



Pure Type Systems in Rewriting Logi M.-O. Stehr, J.Meseguer 11

First, PTS terms are generalized to UPTS terms in the way explained before, i.e., UPTS (pseudo-)terms are

now given by the �rst-order CINNI syntax:

X

m

j (M N) j [X : A℄M j fX : AgM j s

As a seond step, we adapt the syntax-dependent part of the CINNI alulus to UPTS terms:

S s = s

S (MN) = (SM)(SN)

S ([X : A℄M) = [X : (S A)℄(*

X

(S) M)

S (fX : AgM) = fX : (S A)g(*

X

(S) M)

The third and �nal step is to de�ne the derivable typing judgements. Sine we do not want to identify �-

equivalent terms, this is a fundamental hange in the formal system. However, a areful inspetion of the typing

rules under the new reading shows that only minor hanges in the rules START and WEAK are needed. The

new rules are:

� ` A : s

�[X : A℄ ` X

0

: "

X

A

(START)

� `M : A � ` B : s

�[X : B℄ ` "

X

M : "

X

A

(WEAK)

It might appear that the UPTS systems we have de�ned above are a speialization of PTS systems, sine we

have ommitted ourselves to a partiular representation of names. But this is not the full truth, beause on the

other hand we have desribed a generalization of PTS systems where names may our multiple times in the

same ontext. Notie that in both rules above we have dropped the side ondition X =2 �, whih means that

we have ompletely eliminated the need for these side onditions in UPTS systems. We would also like to point

out, that, in partiular, we have not touhed the LDA rule: the only plae where �-onversion omes into play

is the CONV rule, where � subsumes �- and �- onversion, just as in the original PTS systems.

Finally, we desribe how these hanges are reeted in the membership equational logi spei�ation.

First, instead of using identi�ers as variables we use indexed identi�ers. So we replae subsort Qid < Var by

op _{_} : Qid Nat -> Var .

Seond, instead of onventional substitution [ := ℄ , we use CINNI for UPTS terms:

sort Subst .

op [_:=_℄ : Qid Trm -> Subst .

op [shift_℄ : Qid -> Subst .

op [lift__℄ : Qid Subst -> Subst .

op __ : Subst Trm -> Trm .

var S : Subst .

vars n m : Nat .

eq ([X := M℄ (X{0})) = M .

eq ([X := M℄ (X{su(m)})) = (X{m}) .

eq ([X := M℄ (Y{n})) = (Y{n}) if X =/= Y .

eq ([shift X℄ (X{m})) = (X{su(m)}) .

eq ([shift X℄ (Y{n})) = (Y{n}) if X =/= Y .

eq ([lift X S℄ (X{0})) = (X{0}) .

eq ([lift X S℄ (X{su(m)})) = [shift X℄ (S (X{m})) .
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eq ([lift X S℄ (Y{m})) = [shift X℄ (S (Y{m})) if X =/= Y .

eq (S s) = s .

eq (S (M N)) = ((S M) (S N)) .

eq S ([X : A℄ M) = [X : (S A)℄ ([lift X S℄ M) .

eq S ({X : A} M) = {X : (S A)} ([lift X S℄ M) .

Third, onversion now expliitly ontains �-onversion, that was impliit in the equality of the previous spei-

�ation:

mb [X : A℄ M === [Y : A℄ ([X := Y{0}℄ [shift Y℄ M) : Convertible .

mb {X : A} M === {Y : A} ([X := Y{0}℄ [shift Y℄ M) : Convertible .

Finally, the new versions of START and WEAK are:

mb (G [X : A℄ |- X{0} : [shift X℄ A) : Derivable if

(G |- A : s) : Derivable .

mb (G [X : B℄ |- [shift X℄ M : [shift X℄ A) : Derivable if

(G |- M : A) : Derivable and

(G |- B : s) : Derivable .

Again, we an see that the representational distane between the mathematial presentation of UPTS systems

and their membership equational logi spei�ation is pratially zero. In partiular, the equational nature of

the CINNI substitution alulus is diretly aptured by the membership equational logi spei�ation.

UPTS are more liberal than PTS, sine a derivable judgement � ` M : A may ontain multiple delarations

of the same identi�er in �. The set of derivable judgments � ` M : A of PTS an be reovered as the set of

derivable UPTS judgements � `

1

M : A generated by adding the following rule:

� `M : A

� `

1

M : A

if no variable is delared in � more than one. (CTXTRESTR)

The representation of judgements � `

1

M : A together with this rule in membership equational logi is

straightforward, and we omit it here and in all the following formalizations for sake of brevity.

Using the terminology introdued in Setion 2.1 for entailment systems, eah of the following two propositions

establishes a total, sound and omplete orrespondene of the form PTS

S

 UPTS

S

, where S is an arbitrary

PTS spei�ation.

Proposition 4.1 (Soundness and Completeness of UPTS I) For all PTS termsM ,A and PTS ontexts

�, if the PTS judgement � `

1

M : A is derivable in UPTS

S

then � ` M : A is derivable in PTS

S

and vie

versa.

5

This proposition implies that UPTS systems are onservative over PTS systems. A slightly weaker but more

omprehensive orrespondene between PTS and UPTS an be given modulo renaming of variables. For this

purpose one an extend the renaming equivalene �

�

to judgements suh that � ` M : A �

�

�

0

` M

0

: A

0

i�

�

0

` M

0

: A

0

and � ` M : A are equal up to renaming of delared and bound variables. Then we have the

following

Proposition 4.2 (Soundness and Completeness of UPTS II) For all UPTS terms M ,A, PTS terms

M

0

,A

0

, UPTS ontexts � and PTS ontexts �

0

with � ` M : A �

�

�

0

` M

0

: A

0

, if the UPTS judgement

� `M : A is derivable in UPTS

S

then �

0

`M

0

: A

0

is derivable in PTS

S

and vie versa.

The last proposition implies that, onerning judgements of the form � `M : A, PTS and UPTS are equivalent

modulo �-equivalene. Hene all (metatheoreti) results about PTS apply to UPTS after apropriate renaming.

5

Here we make use of the onvention introdued in Setion 4.3 that ordinary terms (here PTS terms) an be seen as CINNI

terms (here UPTS terms).
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The proposition also implies that the new form of judgement � `

1

M : A is not neessary to ensure soundness

and ould therefore be dropped. Sometimes, however, judgements of the form � `

1

M : A instead of � `M : A

are more onvenient, e.g., to formulate the thinning lemma, sine ontexts without multiple delarations of the

same name an be treated as sets. Hene, both kinds of judgements are useful for metatheoreti reasoning.

4.6 A Conservative Optimization

The presentations of pure type systems (PTS and UPTS) given above maintain a good eonomy in the number of

rules and are therefore well-suited for metatheoreti (indutive) reasoning: the judgement � `M : A impliitly

subsumes another judgement � `, stating that � is a well-typed ontext. Sine in pratie heking ontexts is as

important as heking types, we swith to a onservative extension of UPTS systems that is not biased towards

any of the two forms of judgement. From a pratial point of view, the addition of a separate judgement for valid

ontexts an be seen as an optimization whih avoids unneessary reheking of ontexts in eah subderivation.

We will refer to this optimized type system as UPTS with valid ontexts (UPTS/VC). The only modi�ations

we need are desribed below. We use judgements of the form � ` (valid ontext), � `M : A (weak typing) and

� M : A (strong typing) and we add the following rules:

[℄ `

(CEMPTY)

� ` � ` A : s

�[X : A℄ `

(CEXT)

� ` X

m

: lookup(�;X

m

)

if lookup(X

m

;�) 6= ? (LOOKUP)

� ` � `M : A

� M : A

(CTXT)

where ? denotes a failure and lookup(�;X

m

) is de�ned by

lookup([℄;X

m

) = ?

lookup(�[X : A℄;X

0

) = "

X

A

lookup(�[X : A℄;X

m+1

) = "

X

lookup(�;X

m

)

lookup(�[X : A℄;Y

m

) = "

X

lookup(�;Y

m

) if X 6= Y

Then we replae AX and CTXTRESTR by

� ` s

1

: s

2

(s

1

; s

2

) 2 A (AX)

� M : A

� 

1

M : A

if no variable is delared in � more than one. (CTXTRESTR)

respetively, and we remove the rules START and WEAK, sine they are admissible rules in the new system.

The system we have just obtained is similar to the system `

vtyp

, `

vxt

presented in [34℄, but here we are

onerned with UPTS systems instead of PTS systems and as a minor di�erene we make use of an expliit

lookup funtion. Also all freshness side onditions are eliminated thanks to CINNI.

Again, the representation in membership equational logi is quite diret. It niely illustrates the mixed spei�-

ation style using equations and memberships:

sort Trm? .

subsort Trm < Trm? .

op undefTrm : -> Trm? .

op lookup : Context Var -> Trm? .

eq lookup([℄, X{m}) = undefTrm .

eq lookup(G [X : A℄, X{0}) = [shift X℄ A .
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eq lookup(G [X : A℄, X{su(m)}) = [shift X℄ lookup(G,X{m}) .

eq lookup(G [X : A℄, Y{m}) = lookup(G,Y{m}) if (X =/= Y) .

op _|- : Context -> Judgement .

op _|-_:_ : Context Trm Trm -> Judgement .

op _||-_:_ : Context Trm Trm -> Judgement .

mb ([℄ |-) : Derivable .

mb (G [X : A℄ |-) : Derivable if

(G |-) : Derivable and (G |- A : s) : Derivable .

mb (G |- X{m} : lookup(G,X{m})) : Derivable if

lookup(G,X{m}) =/= undefTrm .

mb (G ||- M : A) : Derivable if

(G |- M : A) : Derivable and (G |-) : Derivable .

mb (G |- s1 : s2) : Derivable if (s1,s2) : Axioms .

UPTS/VC are equivalent to UPTS, i.e. there is total, sound and omplete orrespondene of the kind UPTS

S

 

UPTS/VC

S

for arbitrary PTS spei�ations S, in the following sense:

Proposition 4.3 (Soundness and Completeness of UPTS/VC) LetM ,A be UPTS terms and � a UPTS

ontext. If the judgement �  M : A (� 

1

M : A) is derivable in UPTS/VC then � ` M : A (� `

1

M : A) is

derivable in UPTS and vie versa.

This proposition is similar to Lemma 23 in [34℄, but here we are onsidering UPTS instead of PTS systems.

5 The Meta-Operational View of PTS

PTS systems an not only be equipped with a logial semantis, e.g., via the proposition-as-types interpretation

6

,

but, more fundamentally, PTS systems are usually equipped with an operational semantis, de�ned by an

internal notion of funtional omputation, like �-redution. The operational view of PTS systems is onerned

with their internal notion of omputation, but here we are interested in the meta-operational view, whih deals

with the question of how to embed PTS systems in a formal system with an operational semantis, so that

typial omputational tasks like type heking and type inferene beome possible by exploiting the operational

semantis of the metalanguage. In the following we employ for this purpose the eÆiently exeutable sublanguage

of rewriting logi that is supported by Maude.

We introdue below several lasses of PTS spei�ations giving rise to orresponding PTS systems that are

pratially interesting and enjoy partiulary good properties.

De�nition 5.1 A PTS spei�ation S is deidable i�: (1) S is denumerable, (2) A and R are deidable, and

(3) for all s

1

; s

2

2 S the prediates 9s

0

2

: (s

1

; s

0

2

) 2 A and 9s

0

3

: (s

1

; s

2

; s

0

3

) 2 R are deidable.

Deidability of a PTS spei�ation is a reasonable requirement to ensure that type inferene and type heking

do not beome undeidable beause of a too omplex spei�ation S.

De�nition 5.2 A PTS spei�ation S is funtional i� (1) (s

1

; s

2

) 2 A and (s

1

; s

0

2

) 2 A implies s

2

= s

0

2

, and

(2) (s

1

; s

2

; s

3

) 2 R and (s

1

; s

2

; s

0

3

) 2 R implies s

3

= s

0

3

.

In funtional PTS spei�ations, the relations A and R an be viewed as funtions A : S ! S? and R : S�S !

S? where S? := S [f?g. Funtionality ensures that every term has a unique type (up to onversion). The lass

of funtional PTS systems

7

inludes, for example, all systems of the �-ube.

6

Of ourse, we must be areful, sine many PTS systems are inonsistent under the propositions-as-types interpretation.

7

The attributes for PTS spei�ations are naturally lifted to the orresponding entailment systems.
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De�nition 5.3 A PTS spei�ation S is full i� for all s

1

; s

2

2 S there is an s

3

suh that (s

1

; s

2

; s

3

) 2 R. A

PTS spei�ation S is semi-full i� (s

1

; s

2

; s

3

) 2 R implies that for eah s

0

2

there is an s

0

3

suh that (s

1

; s

0

2

; s

0

3

) 2 R.

Full PTS systems allow us to form fX : AgB types very liberally by avoiding those restritions on the sorts of

A and B that are imposed by the side ondition (s

1

; s

2

; s

3

) 2 R of the PI rule. As an example, CC is a full PTS

system.

De�nition 5.4 Given a PTS spei�ation S, a top sort is a sort s suh that there is no sort s

0

with (s; s

0

) 2 A.

The set of top sorts is denoted by S

top

. S is topless i� S

top

is empty.

Topless PTS disallow top sorts, whih introdue some kind of non-uniformity in the set of sorts. Just as in full

PTS spei�ations R an be seen as a funtion R : S � S ! S, in funtional, topless PTS spei�ations A an

be viewed as a funtion A : S ! S.

Semi-full PTS systems have the nie property that we an get rid of the third premise in the LDA rule by

replaing it with the following rule:

� ` A : s

1

�[X : A℄ `M : B

� ` [X : A℄M : fX : AgB

(s

1

; s

2

; s

3

) 2 R and B =2 S

top

(LDA')

The premises together with the side onditions in LDA' imply that fX : AgB is a well-formed type (f. rule

PI). Indeed, as explained in [34℄ in the ontext of PTS systems, replaing LDA by LDA' does not hange the set

of derivable judgements in semi-full UPTS systems.

For full and topless UPTS systems we an eliminate the side onditions in the rule LDA', and we obtain LDA"

without hanging the set of derivable judgements:

� ` A : s �[X : A℄ `M : B

� ` [X : A℄M : fX : AgB

(LDA")

The alulus of onstrutions has Type as a top sort and therefore is not topless. However, it is straightforward

to extend CC by an in�nite universe hierarhy yielding a topless PTS.

Together with the introdution of UPTS in the previous setion, we have now presented three families of

inferene systems whih only di�er in the hoie of the rule LDA. For a full and topless PTS spei�ation S all

of them de�ne the same unary entailment system, whih is denoted by UPTS

S

.

In the remainder of this paper we will present a type heking algorithm for a lass of UPTS using rewriting

logi as a formal spei�ation language. Type heking for PTS is not trivial, but in spite of some unsolved

theoretial questions suh as the expansion postponement problem, eÆient algorithms for the important lasses

of funtional PTS and semi-full PTS (satisfying appropriate deidability and normalization properties) have

been presented in [34℄. In order to avoid exessive tehnial details and to make lear the general way we use

rewriting logi to represent type heking algorithms, we restrit ourselves in the following to UPTS that are

deidable, normalizing

8

, funtional, full and topless. The lass of UPTS systems that are deidable, normalizing,

funtional and semi-full an be treated along the same lines (using the rule LDA' instead of LDA").

The use of UPTS instead of PTS is motivated by our desire to obtain a formal representation that takes names

seriously and makes type heking more uniform. This is di�erent from [34℄ that uses names informally for

presentation purposes but atually assumes identi�ation by �-onversion as justi�ed by the formalization [23℄

whih abstrats from loal names by representing them using de Bruijn indies.

5.1 UPTS in Membership Equational Logi

The standard way to implement type heking is to ast the inferene rules into an equivalent syntax-direted

indutive de�nition, and to de�ne a type-inferene funtion on the basis of this new system. Formally and

tehnially this ould be done in the exeutable sublanguage of membership equational logi or in any other

funtional programming language, but the use of membership equational logi is attrative, sine it allows us to

formulate the logial and operational versions of PTS systems in a single uniform language with an extremely

8

w.r.t. �-redution
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simple semantis, whih in partiular does not presuppose higher-order onstruts, but is used to explain them

in more elementary terms. Also, data strutures and funtions of the spei�ation an be diretly used in the

implementation.

In our setting there is another reason why membership equational logi is more natural than the use of a (higher-

order) funtional programming language: the equational spei�ation of the alulus of substitutions presented

above is naturally equipped with an operational semantis just by viewing the equations as rewrite rules. By

ontrast, in a funtional programming language that is not based on equational rewriting, the substitution

alulus has to be enoded, whih essentially means that a (speialized) rewrite engine for this alulus has

to be implemented in the funtional language itself and, what is even more umbersome, this engine has to

be expliitly invoked when needed. In this sense, a spei�ation/programming style based on rewriting is

more abstrat and loser to mathematial pratie for appliations of this kind than a higher-order funtional

programming approah.

Using the spei�ation of the above substitution alulus, a purely equational exeutable spei�ation of a

type heker for UPTS systems with deidable type heking an be written in membership equational logi

using standard equational/funtional programming tehniques. The ore of this spei�ation onsists of a

type-inferene funtion

op type : Context Trm -> Trm? .

that omputes a type for eah typable term and yields undefTrm otherwise. The funtion an be de�ned in a

way similar to the one given in [30℄, but using CINNI, instead of abstrating from the treatment of names.

Thanks to CINNI, freshness onditions are avoided. Therefore, an implementation based on this spei�ation

appears to be more elegant than the onstrutive engine with its hybrid treatment of names. As an additional

advantage, multiple delarations of the same identi�er are naturally admitted in ontexts (if we use judgement

�  M : A). However, it is also easy to disallow these more general ontexts if desired (by implementing the

more onventional judgement � 

1

M : A).

Instead of disussing this purely equational approah in more detail, we present an alternative approah in the

following setion that exploits features of rewriting logi that are beyond equational and funtional languages.

Our experiene shows that this alternative approah sales up to more omplex type theories (e.g., extensions

of UPTS systems) in a more satisfatory way than the purely funtional and equational approahes to type

heking.

5.2 UPTS in Rewriting Logi

As shown by an extensive olletion of examples in [20, 21, 22℄, rewriting logi an be used as a logial framework

that an naturally represent inferene systems of di�erent kinds in a logially and operationally satisfying way.

In the present setion we view a type heker as a partiular inferene system. In ontrast to a (higher-order)

funtional programming approah that would require us to enode the inferene system in terms of a type

heking funtion, the rewriting logi approah o�ers the lear advantage that inferene rules an be expressed

diretly, namely, as rewrite rules. We will in fat make use of a type inferene system expressed as a olletion of

rewrite rules that transform a onjuntion of judgements into a simpli�ed form, in the style of onstraint solving

systems. This yields a rewrite system that is eÆiently exeutable, while still maintaining a lose orrespondene

to the logial spei�ation of UPTS systems.

The rewriting logi spei�ation represents RUPTS/VC systems and is able to perform type heking, i.e., to

deide derivability of judgements of the form � ` M : A and � `, for the lass of deidable, normalizing,

funtional, full and topless UPTS/VC systems disussed before. As in PTS systems, type heking redues to

type inferene, that is, to solving inomplete queries of the form � `M !: ?T .

Instead of giving an informal aount we diretly disuss the formal spei�ation in rewriting logi.

First, we exploit our assumption that the PTS spei�ation is deidable, funtional, full and topless, whih

means that the relations A and R an be spei�ed by equationally-de�ned funtions Axioms and Rules:
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fth PTS-SPEC is

sort Sorts .

op Axioms : Sorts -> Sorts .

op Rules : Sorts Sorts -> Sorts .

endfth

As in the syntax-direted approah, we \invert" the inferene rules in order to obtain a goal-direted algorithm

from the generating indutive de�nition. In ontrast to a purely equational and funtional approah, the

rewriting logi spei�ation we aim at has rewrite transition systems as models, and an therefore be seen

as an operational generalization of the equational and funtional paradigms. In ontrast to [34℄, the type-

heking algorithm itself reeives a diret formal status, whih is a prerequisite for reasoning formally about its

orretness.

The indutive de�nition of UPTS systems, e.g., the one in membership equational logi, an also be seen as

a stati desription of a set of judgements that we would like to equip with a dynami interpretation. More

preisely, a (stati) logial impliation

A

1

^ � � � ^ A

n

) B

an be seen as an inferene rule or (dynami) state transition re�ning a goal B into subgoals A

1

; : : : ; A

n

, and

an be diretly represented as a rewrite rule

B ! A

1

^ � � � ^ A

n

in rewriting logi. Eah state onsists of a �nite set of subgoals that remain to be solved.

The stati desription an be seen as induing the following invariant that our dynami system should always

satisfy: for eah state, the empty set of goals is reahable i� the logial interpretation (given by the stati

desription) of the state is true.

Although the inferene rules of a formal system typially take the form of Horn lauses that an be operationally

re�ned to rewrite rules, there may be funtional and equational parts (e.g., auxiliary funtions or substitution

aluli) that are more naturally expressed in the membership equational logi fragment. It is this mix of di�erent

paradigms in a uniform framework that allows us to express the type-heking algorithm in a way that is very

lose to the logial spei�ation.

In the re�ned spei�ation we make use of a number of auxiliary judgements:

Judgement Meaning

A Sort there is an s 2 S suh that A � s

(A;B; s) Rule there are s

1

; s

2

2 S suh that A � s

1

, B � s

2

and (s

1

; s

2

; s) 2 R

A = B A = B literally

A$ B A � B (for A and B normalizing)

� `M !: A there is an A

0

with A � A

0

suh that � `M : A

0

� ` ((M !: A)(N !: B))!: C � `M !: A, � ` N !: B and � ` (MN)!: C

We disuss below the rewriting logi spei�ation of the UPTS type heker in some detail. Instead of a (purely)

funtional module, introdued by fmod, the spei�ation takes the form of a system module, introdued by mod,

that has a rewrite system as its initial semantis:

mod PTS[PAR :: PTS-SPEC℄ is

We reuse most omponents of the funtional module de�ned before, but we add the auxiliary judgements:

op _Sort : Trm -> Judgement .

op `(_,_,_`)Rule : Trm Trm Trm -> Judgement .

op _=_ : Trm Trm -> Judgement .

op _<->_ : Trm Trm -> Judgement .

op _|-_->:_ : Context Trm Trm -> Judgement .

op _|-`(_->:_`)`(_->:_`)->:_ : Context Trm Trm Trm Trm Trm -> Judgement .
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In order to express intermediate goals or queries, like � ` M !: ?T , that are present in the operational

re�nement but not in the abstrat presentation, we extend terms by expliit metavariables:

sort MetaVar .

subsort MetaVar < Trm .

op ? : Qid -> MetaVar .

var ?T : MetaVar .

The use of weak head normal form, alulated by the following funtion whnf, is an eÆient way to hek

whether a term is onvertible to the form s or fX : AgM . We also use sorts WhNf and WhReduible ontaining

terms in weak head normal form and weak head reduible terms, respetively. For sake of brevity we omit the

straightforward de�nitions in membership equational logi.

sort WhNf WhReduible .

subsort WhNf < Trm .

subsort WhReduible < Trm .

op whnf : Trm -> Trm? .

A on�guration is a onjuntive set of judgements that have to be solved or veri�ed by the type heker:

sort JudgementSet .

op emptyJudgementSet : -> JudgementSet .

subsort Judgement < JudgementSet .

op __ : JudgementSet JudgementSet -> JudgementSet

[asso omm id: emptyJudgementSet℄ .

var JS : JudgementSet .

sort Configuration .

op {{_}} : JudgementSet -> Configuration .

Replaement of metavariables by terms (that is, textual replaement) has the obvious de�nition, not spelled

out here, exept for its syntax:

op <_:=_>_ : MetaVar Trm Trm -> Trm .

op <_:=_>_ : MetaVar Trm Subst -> Subst .

op <_:=_>_ : MetaVar Trm Context -> Context .

op <_:=_>_ : MetaVar Trm Judgement -> Judgement .

op <_:=_>_ : MetaVar Trm JudgementSet -> JudgementSet .

It is used only in the following rule, that instantiates a metavariable throughout the entire on�guration if it is

uniquely determined by an equality:

rl {{ (?T = A) JS }} => {{ < ?T := A > JS }} .

A rule like this is typial of a onstraint-based programming approah, and indeed the on�guration an be

seen as a set of onstraints that should be simpli�ed using the subsequent rules [20, 22℄. Instead of deteting

an inonsisteny, the goal is to eliminate all onstraints. In addition to simpli�ation of onstraints by general

rewrite rules, simpli�ation by equational rewriting also plays a major role in our approah.

For example, the judgement of onvertibility between normalizing terms an be heked as follows. In order to

avoid redundant redutions we redue the general problem to heking onvertibility between weak head normal

forms (whih are treated by the last three rules below). In the ase of binders we perform renaming to equalize

names.
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rl (T <-> T) => emptyJudgementSet .

rl (M <-> N) => (whnf(M) <-> N) if M : WhReduible .

rl (M <-> N) => (M <-> whnf(N)) if N : WhReduible .

rl (M N) <-> (M' N') => (M <-> M') (N <-> N') if (M N) : WhNf and (M' N') : WhNf .

rl ({X : A} T <-> {Y : A'} T') => (A <-> A') (T <-> [Y := X{0}℄ [shift X℄ T') .

rl ([X : A℄ M <-> [Y : A'℄ M') => (A <-> A') (M <-> [Y := X{0}℄ [shift X℄ M') .

We use two auxiliary judgements to implement side onditions:

rl (s Sort) => emptyJudgementSet .

rl ((s1,s2,?T) Rule) => (?T = Rules(s1,s2)) .

Eah inferene rule of UPTS/VC systems gives rise to a rewrite rule obtained by reversing the diretion of

inferene:

rl (G |- s ->: ?T) => (?T = Axioms(s)) .

rl (G |- X{m} ->: ?T) => (?T = lookup(G,X{m})) if lookup(G,X{m}) =/= undefTrm .

rl (G |- {X : A} B ->: ?T) =>

(G |- A ->: ?(NEW1))

(G [X : A℄ |- B ->: ?(NEW2))

((?(NEW1), ?(NEW2), ?T) Rule) .

rl (G |- [X : A℄ M ->: ?T) =>

(G |- A ->: ?(NEW1)) (?(NEW1) Sort)

(G [X : A℄ |- M ->: ?(NEW2))

(?T = {X : A} ?(NEW2)) .

rl (G |- (M N) ->: ?T) =>

(G |- (M ->: ?(NEW1))(N ->: ?(NEW2)) ->: ?T)

(G |- M ->: ?(NEW1)) (G |- N ->: ?(NEW2)) .

rl (G |- (M ->: {X : A} B)(N ->: A') ->: ?T) =>

(A <-> A') (?T = [X := N℄ B) .

The terms ?(NEW1) and ?(NEW2) above denote fresh metavariables. Hene rewriting has to be ontrolled by a

simple strategy, that onstraints the possible rewrites by instantiating the variables NEW1 and NEW2 only with

fresh identi�ers eah time a rule is applied. Notie that, in ontrast to ordinary variables, where names are

taken seriously, we abstrat from (i.e. we do not are about) metavariable names, sine they do not have a

formal status inside UPTS systems, but belong instead to the metalevel.

9

Aording to the explanations given before, the new judgements have ertain onversion losure properties. The

following partial normalization rules allow us to work with normalized judgements in the above rules:

rl (T Sort) => (whnf(T) Sort) if T : WhReduible .

rl ((A,B,T) Rule) => ((whnf(A),B,T) Rule) if A : WhReduible .

rl ((A,B,T) Rule) => ((A,whnf(B),T) Rule) if B : WhReduible .

rl (G |- (M ->: A)(N ->: B) ->: T) => (G |- (M ->: whnf(A))(N ->: B) ->: T) if A : WhReduible .

This ompletes the de�nition of the type-inferene system for judgements of the form � ` M !: A. Sine our

goal was to de�ne the operational ounterpart of � `M : A, i.e., to give a type-heking algorithm, we redue

type heking to type inferene in the standard way using the onditional rules:

9

By a straightforward re�nement of the present spei�ation we an obtain a system with takes even metavariables seriously,

but this is not neessary for the purpose of the present paper.
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rl (G |- M : A) => (G |- M ->: ?(NEW2)) (?(NEW2) <-> A)

if {{ A Sort }} => {{ emptyJudgementSet }} .

rl (G |- M : A) => (G |- M ->: ?(NEW2)) (?(NEW2) <-> A)

if {{ (G |- A ->: ?(NEW1)) }} => {{ emptyJudgementSet }} .

Atually these two rules onstitute an operational formulation of Lemma 3 (Charaterization of PTS) proved

in [28℄ for PTS. Finally, we add rules in reversed form to hek valid ontexts and the strong typing judgement:

rl ([℄ |-) => emptyJudgementSet .

rl (G [X : A℄ |-) =>

(G |- A ->: ?(NEW)) (?(NEW) Sort)

if {{ (G |-) }} => {{ emptyJudgementSet }} .

rl (G ||- M : A) => (G |- M : A)

if {{ (G |-) }} => {{ emptyJudgementSet }} .

endm

Again we have omitted the straightforward rule orresponding to CTXTRESTR, whih allows us to hek deriv-

ability of strong judgements � 

1

M : A that disallow multiple ourrenes of the same variable in �.

To verify a judgement J we start with an initial on�guration ffJgg. Either this on�guration an be redued

to ffemptyJudgementSetgg, meaning that the judgement has been proved, or the �nal on�guration ontains

unsolved onstraints that an be seen an informative indiation of a type-heking error.

Notie that we have not only used indutive de�nitions to speify PTS systems and UPTS systems logially,

but that, in addition, the operational version of UPTS systems given by the rewrite rules above is essentially

an indutive de�nition of a rewrite system whih gives us a more re�ned view of the type-heking proess.

The most important property of a type heker is soundness. The soundness of eah of the rewrite rules above is

obvious and an be veri�ed by inspetion (even by a user of the algorithm who would like to obtain on�dene

in its orretness) without resorting to diÆult metatheoretial proofs.

Let S range over deidable, normalizing, funtional, full and topless PTS spei�ations. RUPTS/VC denotes

the rewrite based version of UPTS/VC that has been presented above in terms of rewriting logi. Then the

next proposition gives a sound and omplete orrespondene UPTS/VC

S

 RUPTS/VC

S

.

Proposition 5.5 (Soundness and Completeness of RUPTS/VC) Let M ,A be UPTS terms, let � be

a UPTS ontext, and let J be one of the judgements � `, �  M : A, or � 

1

M : A. If the sentene

ffJgg �! ffemptyJudgementSetgg is derivable in RUPTS/VC

S

, then J is derivable in UPTS/VC

S

and vie

versa.

Completeness as stated above does not immediately imply ompleteness of the implementation, sine the rewrite

theory is usually exeuted using a strategy that restrits the rewrites to those that are atually hosen. Ideally,

and this is the ase in our spei�ation, there is no additional restrition on the strategy beyond the freshness

requirement for metavariables mentioned before.

6 Conlusions

In this paper we give presentations of PTS systems at di�erent levels of abstration. Moreover we have dis-

ussed very natural representations of these systems in membership equational logi or rewriting logi. Both,

abstrations and representations are uniformly aptured by the notion of a orrespondene between entailment

systems. Apart from this more general ontribution that demonstrates how pure type systems an be formally

spei�ed using rewriting logi as a logial framework, there are more tehnial ontributions, namely CINNI, a
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simple and general alulus of expliit substitutions, and UPTS, a new variant of pure type systems that an be

seen as a new approah to the problems with losure under �-onversion in systems with dependent types.

Furthermore, we would like to point out that the tehniques presented in this paper are urrently being applied

in the design and implementation of a proof assistant for OCC, the open alulus of onstrutions, an extension

of the alulus of onstrutions that inorporates equational logi as a omputational sublanguage. Similar to

membership equational logi, OCC supports onditional equations and onditional assertions together with an

operational semantis based on onditional rewriting modulo equations. Using the Maude rewriting engine and

its reetive apabilities, we have developed with a modest amount of e�ort an experimental version of a proof

assistant for OCC of aeptable performane that is based on the ideas on CINNI and UPTS presented here.

We onlude with the remark that we have emphasized the representational aspets in this paper, sine the

hoie of the right formal representation is important in its own right and should preeed attempts to give

formal metatheoretial proofs. There are many interesting properties that should not require omplex proofs.

For example, soundness is a property that an often be made easy to verify using spei�ation tehniques like

those employed above. On the other hand, membership equational logi and rewriting logi together with their

initial model semantis provide very general notions of equational indutive de�nitions, a fat that has been

exploited for representing (indutively de�ned) formal systems in this paper. The remaining problem of arrying

out metatheoretial proofs about suh losed formal systems { ompleteness proofs are one example { requires

the development of useful indution priniples on the basis of possibly di�erent but related presentations of the

formal system. One appropriate indution priniples are found, they an be formulated using either higher-

order logi, e.g., simply by using a formal system suh as OCC as a metalogi, or using reetive tehniques (f.

the approah to reetive metalogial frameworks presented in [2℄).
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