
JaLoF: A Development Environment for

Dedution Systems

Roderik Moten

Colgate Univesity

Extended Abstrat

1 Introdution

We may implement an automated dedution system for a logi using a general

purpose programming language or a logial framework. With a general purpose

programming language, suh as Lisp or Standard ML, we may reate an auto-

mated dedution system as a olletion of omponents. The primary omponent

is responsible for performing reasoning within the logi. The other omponents,

suh as editors, pretty printers, and tables for storing theorems, provide ser-

vies that make the system user{friendly. Alternatively, we may implement an

automated dedution system for a logi by enoding it as an objet logi of a

logial framework, suh as Twelf [10, 9℄ or Isabelle [8℄. With this approah, we

implement a dedution system by inherting all the omponents of the logial

framework. Clearly, implementing an automated dedution system using a log-

ial framework is easier than implementing it using a general purpose language.

However, an automated dedution system implemented with a general purpose

language may be easier to use than one implemented with a logial framework.

The former only requires the user to know how to reason within the objet logi.

The latter requires the user to know how to reason within the base logi and to

understand the enoding of the objet logi in the base logi. As a result, we

deided to reate a program development environment, alled the Java Logial

Framework (JaLoF), that supports rapid development of dedution systems in

whih users reason diretly within the objet logi. JaLoF is urrently under

development, and in this extended abstrat, we desribe is urrent status.

JaLoF onsists of an abstrat syntax for representing onstruts of an objet

language, a language for speifying the strutured operational semantis of an

objet language, and a language for speifying a proof system for reasoning

about entities of the objet language. JaLoF is implemented in Java as an

extendable ommand line interpreter. An objet logi is enoded into JaLoF by

de�ning a olletion of lasses that implement methods for onstruting terms

and assertions of the objet logi, evaluating terms of the objet logi, and

performing inferene on assertions of the objet logi.

1



Our motivation for reating JaLoF omes from disovering that the Nuprl

Proof Development System (Nuprl PDS) [2℄ is implemented as a program devel-

opment environment for building reasoning system for the Nuprl type theory [1℄.

With the Nuprl PDS, we an develop reasoning systems for logis without en-

oding them into the Nuprl type theory. We disovered this feature of the Nuprl

PDS when re-implementing Nuprl to exploit parallelism on a shared memory

multiproessor [7, 6℄. Jason Hikey has reently developed an arhiteture for

the Nuprl PDS, MetaPRL [4℄, to exploit the independene of the Nuprl PDS

from the Nuprl Type Theory.

The Nuprl PDS ontains an untyped abstrat syntax, the Nuprl term lan-

guage, that is used to enode the Nuprl type theory. Although the Nuprl PDS

only de�nes operational semantis rules for terms of the Nuprl type theory, we

an extend the semantis by de�ning new rules for terms independently of ex-

isting rules. We an enode an objet language by extending the semantis of

the Nuprl term language to inlude Nuprl terms representing onstruts of an

objet language. Unlike HOAS [3℄, this approah supports evaluation for an

objet language using strutural indution. However, the Nuprl term language

ontains features that we believe make it inadequate for our needs.

Nuprl de�nes two distint funtions to perform �rst order substitution and

seond order substitution. First order substitution replaes a �rst order variable

with a Nuprl term. Seond order substitution replaes a seond order variable

instane with a non-Nuprl term representing an abstration. A seond order

variable instane in Nuprl orresponds to a �-term in whih a variable is applied

to a term, for example (f a). In Nuprl, replaing a seond order variable instane

onsists of replaing the variable with an abstration and then performing �-

redution on the resulting term. Using Nuprl's seond order substitution in the

�-alulus, for example, to replae f with �x:(s x) in (f a) produes (s a). To

de�ne a single funtion for substitution, we hange the binding struture of the

Nuprl term language. In Nuprl, bindings are plaed on subterms. For instane,

�x:t is represented as the Nuprl term lambda(x:t). This term spei�es that x

only binds t beause it appears as a subterm of lambda(x:t). In other words,

lambda(x:t) is obtained by plaing t in the hole in lambda(x:2).

The Nuprl term language designates a spei� lass of terms as variables.

Substitution is de�ned with respet to this lass of terms. Therefore, an objet

language must enode its variables as Nuprl's variables to use Nuprl's substi-

tution. This requirement eliminates enoding objet languages whose variables

annot be represented as Nuprl variables, for example variables that are tagged

with a type. Enoding these languages into the Nuprl term language requires

de�ning substitution for eah of them.

JaLoF overomes these problems of the Nuprl term language by de�ning

the JaLoF abstrat syntax (JAS). We reated JAS by modi�ng the bindings

struture of the Nuprl term language to support abstrations. In other words,

we hanged the binding struture so that the bindings of a term our over

the entire term and not only the subterms. Therefore, we an de�ne a single

funtion for substitution of �rst order and higher order variables. Futhermore,

JAS has no terms designated as variables, but de�nes substitution to operate

2



on any lass of terms designated as variables. Therefore, an objet language

an use JAS's substitution regardless of the lass terms it uses as variables. To

de�ne the operational semantis of terms, JaLoF ontains a language dediated

for speifying operational semantis. In addition, we are urrently designing a

language for speifying inferene rules of an objet logi. This language resem-

bles the language for speifying the operational semantis exept it attempts

to model natural language spei�ations of inferene rules. This language al-

lows users to speify inferene rules intended for onstruting either top-down

or bottom-up proofs.

We organize this extended abstrat as follows. In Setion 2 we de�ne JAS.

In Setion 3 we desribe the language for speifying evaluation rules by en-

oding the typed �-alulus into JAS and then enoding its type system as

evaluation rules. In Setion 4 we give a brief overview of the language for spe-

ifying inferene rules. In Setion 5, we briey desribe the urrent status of the

development of JaLoF.

2 JAS: The JaLoF Abstrat Syntax

The JaLoF abstrat syntax, JAS, is an untyped language and supports higher

order substitution and a restrited form of higher order mathing. We begin

de�ning JAS by assuming that we have a set of ountably in�nite identi�ers

I. We use identi�ers to reate operators. An operator is an identi�er paired

with a list of zero or more identi�ers. In other words, if o is an identi�er and

p

1

; : : : ; p

n

, for n � 0, are identi�ers, then ofp

1

; : : : ; p

n

g is an operator: o is the

operator identi�er and eah p

i

is a parameter. Parameters provide the ability

to injet objets from a model, suh as a model for integers, into the abstrat

syntax. We use identi�ers to represent a parameter.

We use operators to onstrut terms. A term is an objet of the form

x

1

; : : : ; x

m

:a(t

1

; : : : ; t

n

) where

� a is an operator,

� m � 0 and eah x

i

is an operator with at least one parameter, and

� n � 0 and eah t

i

is a term.

A term is an abstration if m > 0.

We require that eah operator used as a binding have at least one parameter,

so that eah binding will have a name. Therefore, we may represent �x:(sx) in

JAS as

varfxg:lambda(app(varfsg(); varfxg())): (1)

In (1), the term varfxg() represents the lambda alulus variable x. JAS

does not designate any term as a variable beause some objet languages may

represent variables di�erently. For example, for a typed language, variables

may be tagged with a type. Therefore, we may represent variables in a typed

3



language as varfx; Tg(). In an untyped language, however, we may represent

variables as varfxg().

We use a term signature to identify a partiular lass of terms as vari-

ables. A term signature of a term x

1

; : : : ; x

r

:ofp

1

; : : : ; p

n

g(t

1

; : : : ; t

m

) is the

triple ho; n; ri. Variables of an objet language must have a term signature

where the number of parameters is greater than zero.

A variable is higher order if it has subterms. For example,

varffg(varfxg(); varfyg())

and

varfgg(varfxg:varfxg())

are higher order ourrenes. A higher order variable ourrene orresponds to

appliation of a variable to one or more terms in the �-alulus. Therefore, the

higher order ourrenes above represent the appliations f(x; y) and g(�x:x)

in the �-alulus.

In JAS, we substitute for free �rst and higher order variables. A variable

term with signature s is free if it does not our in the sope of a binding equal to

its operator. Two operators are equal if they have the same operator identi�er

and their parameters are pairwise equal. We use FV

s

(t) to denote the set of

operators of free variables in t with signature s. A variable term x of signature

s is bound in t if x is a subterm of t and x's operator is not a member of FV

s

(t).

We de�ne substitution for JAS below.

De�nition 2.1 Let t be a term and s a signature of variables. Let t

1

; : : : ; t

n

be

terms in whih no binding or variable of signature s in t ours in any t

i

. Let

x

1

; : : : ; x

n

be variables with signature s. Let � = [t

1

=x

1

; : : : ; t

n

=x

n

℄. Then �t is

the term de�ned indutively as follows.

1. Suppose t = o(t

0

1

; : : : ; t

0

m

). If m = 0 then �t = t

i

if t = x

i

; otherwise

�t = t. If m > 0 then if o = x

i

and t

i

= y

1

; : : : ; y

m

:t

00

, then �t =

[�t

0

1

=y

1

; : : : ; �t

0

m

=y

m

℄t

00

; otherwise �t = o(�t

0

1

; : : : ; �t

0

m

).

2. If t = y

1

; : : : ; y

n

:t

0

then �t = �

0

t

0

where �

0

is � with t

i

=x

i

removed if y

i

= x

i

.

3 Speifying Evaluation

To demonstrate how to speify evaluation rules for an objet logi, we enode

the simply typed lambda alulus with natural numbers and addition in JAS.

There are three ways we an enode the natural numbers in JAS. One way is to

use a unary onstrutor, su, and a single onstant, 0. This approah leads to

a simple reursive de�nition of evaluation for addition. From a pragmati point

of view, however, this enoding is ineÆient beause it represents integers as

lists. A more eÆient enoding represents eah natural number distintively as

a onstant. However, to de�ne evaluation for addition requires a separate rule

4



Terms:

n natfbng()

v

T

varfv;

b

Tg()

a+ b add(a; b)

f(x) app(f; x)

�x

T

:t varfx;

b

Tg:lambda(t)

Types:

N nat()

T!T

0

arrow(T; T

0

)

Judgments:

t has type T typeof(t) + T

Figure 1: Enoding of �-alulus in JAS

for eah pair of onstants. For example, we would have to de�ne separate rules

for add(3; 4) and add(30; 40).

The third enoding uses only one evaluation rule for addition without rep-

resenting terms as lists. This enoding uses partial funtions to map identi�ers

to and from elements of a model of the natural numbers. We de�ne a model as

a semanti algebra M and the partial funtions �

D

: D!I and 	

D

: I!D for

eah domain D in M . A model also ontains a funtion 


D

for eah domain

D that maps elements of D to JAS terms. Eah funtion �

D

, 	

D

, and 


D

is

one-to-one. Furthermore, for eah d 2 D, 	

D

(�

D

(d)) = d. For the remainder

of this abstrat, we write �

D

(d) as

b

d where d 2 D.

natfng() : �! natfng()

add(t; t

0

) : t + natfng() & t

0

+ natfn

0

g() �! natf�

N

�

	

N

(n) + 	

N

(n

0

)

�

g()

varfv; Tg() : �! varfv; Tg()

app(f; x) : f + varfy; Tg:lambda(t) & x + x

0

�! t[x

0

℄

varfx; Tg:lambda(t) : �! varfx; Tg:lambda(t)

Figure 2: Redution Rules of � alulus in JAS

We give an enoding of the typed �-alulus with natural numbers based on

a model of natural numbers and a model of type tags in Figure 1. The model

of natural numbers ontains the domain N and operator + : N �N!N . The

model of type tags ontains the domain P of strings reated with the alphabet

fn; ->g. The olumn on the right in Figure 1 ontains the JAS version of the

lambda alulus objet on the left. We enode the judgment t has type T as an

evaluation rule. In partiular, we say that t has type T , if typeof(t) evaluates to

5



typeof(natfng()) : �! nat()

typeof(addft; t

0

g()) : typeof(t) + nat() & typeof(t

0

) + nat() �! nat()

typeof(varfv; Tg()) : �! (


P

Æ	

P

)(T )

typeof(app(f; x)) : typeof(f) + arrow(A;B) & typeof(x) + A �! B

typeof(varfx; Tg:lambda(t)) :

typeof(varfx; Tg()) + A & typeof(t) + B �! arrow(A;B)

Figure 3: Typing Rules of � alulus in JAS

T .

We de�ne the evaluation rules of our enoding of the �-alulus in Figure 2

using a spei�ation language. We omit the details of the language here, but

desribe omponents of the language as needed. The general form of an eval-

uation rule is t : lauses �! t

0

. Intuitively, an evaluation rule states that t

evaluates to t

0

if all the lauses are true. The lause r + r

0

is true if a term that

mathes r evaluates to a term that mathes r

0

. The expression t[x

0

℄ represents

substituting x

0

for the �rst binding of t. Notie that the evaluation rule for

addition uses addition from the model of natural numbers. More spei�ally,

the evaluation rule onverts the identifers n and n

0

into natural numbers, adds

them, and onverts the result into an identifer.

We speify the typing rules also as evaluation rules. We give the typing

rules in Figure 3. The typing rule for variables uses the funtion 


P

Æ 	

P

to

onvert the type tag on a variable into an atual term. For example, 


P

Æ	

P

onverts the identifer n{>n into the term arrow(nat(); nat()). The typing rule

for abstration makes the term varfx; ng:lambda(varfx; n{>ng()) typeable. This

term should be typeable beause varfx; ng() and varfx; n{>ng() are not equal.

Our enoding of the �-alulus is not adequate beause there are JAS terms,

suh as varfx; ng:lambda(zoo()), that are not �-terms. Although we expeted

the enoding to be inadequate, our redution rules do not guarantee that they

will not produe values for invalid �-terms. For example, the redution rule for

abstration generates a value for varfx; ng:lambda(zoo()). Likewise the typing

rule for natfng() makes invalid � terms typeable. For example, suppose 	

N

is

unde�ned on the identi�er -3. Then natf-3g() is not a � term, but it is typeable.

Fortunately, we an deide whether a JAS term is a �-term. More spei�ally,

we an determine whether a JAS term t is a �-term if the term islamb(t) has a

value, namely tt(). We use the following evaluation rules to produe a value for

islamb(t).

islamb(natfng()) : (


N

Æ	

N

)(n) + x �! tt()

islamb(add(t; t

0

)) : islamb(t) + tt() & islamb(t

0

) + tt() �! tt()

islamb(varfv; Tg()) : (


P

Æ	

P

)(T ) + x �! tt()

islamb(app(f; x)) : islamb(f) + tt() & islamb(x) + tt() �! tt()

islamb(varfx; Tg:lambda(t)) : islamb(varfv; Tg()) + tt() & islamb(t) + tt() �! tt()

The use of the model funtions in the evaluation rules for islamb(natfng())

6



and islamb(varfv; Tg()) determine whether the parameters n and T are valid

representations of elements of N and P , respetively. Reall that 


N

Æ	

N

and




P

Æ 	

P

are partial funtions. Therefore, they will only return a value if the

parameter represents an element in N or P .

4 Speifying Inferene Rules

In addition to a language for speifying the operational semantis of an objet

language, JaLoF also ontains a language for speifying inferene rules of a

proof system. Currently, this language is still under development. However,

we intend the language to be able to adequately de�ne proof rules suh as the

following proof rule taken verbatim from [5℄.

The sequent P�!8

�

x:B is provable if and only if the sequent P�!B[y=x℄

is provable, where y is some (eigen)variable that does not our free

in P or in 8

�

x:B.

Although, JaLoF's spei�ation language for de�ning inferene rules is under

onstrution, it will meet the following requirements.

1. Support spei�ation of rules for top-down and bottom-up proofs.

2. Support mathing against JAS terms and parameters within JAS terms.

3. Provide a onstrut for term evaluation.

4. Provide a onstrut to invoke model funtions.

5. Provide a onstrut for referring to free variables of a term.

6. Provide a onstrut for stating a proviso.

7. Provide a onstrut for stating that a term belongs to a lass of terms.

8. Provide a onstrut for substitution.

9. Provide a onstrut to express that an inferene rule an ontain an arbi-

trary number of anteedents.

5 Implementation

We have begun implementing a prototype of JaLoF in Java. In addition to being

widely availiable and multi-threaded, we hoose Java beause of its ability to

dynamially load lasses. This feature makes it easier to extend our system with

new terms, evaluation rules, inferene rules, and models.

Our prototype of JaLoF is a ommand line interpreter that ontains four

separate environments that map names to ommands, term families, terms,

7



and models.

1

Eah ommand is represented as an instane of a sublass of the

lass Command. When a user types in a ommand, the runtime system obtains

the objet orresponding to the ommand from the ommand environment.

Afterwards, the runtime system exeutes the ommand invoking the ommand

objet's exeute method on the ommand line arguments. A user may de�ne

a new ommand by reating a sublass of Command and loading it into JaLoF.

JaLoF has a built{in ommand that loads a ommand sublass into JaLoF,

reates an instane of the sublass, and stores the instane in the ommand

environment.

JaLoF also ontains a built{in ommand for loading term family lasses. A

term family represents the set of terms that have the same term signature. Reall

from Setion 2 that a term signature is the operator identi�er of a term, the

number of parameters that our in its operator, and the number of bindings. A

lass representing a term family ontains methods to reate and evaluate terms

belonging to the term family. A term family is de�ned by a user by reating

a sublass of TermFamily that overrides the instaneOf and eval methods of

TermFamily . The instaneOf method reates a term in the term family and the

eval evaluates a term in the term family. We intend to develop a GUI that will

assist a user to reate a term family lass instead of expliitly programming it

in Java. Using the GUI, a user will reate a term family by ompleting a form.

The GUI will automatially generate Java ode for the instaneOf method based

upon the user's input. Also, the GUI will implement the language for speifying

evaluation rules desribed in Setion 3. The GUI will automatially onvert

spei�ations of the evaluation rules into Java ode for the eval method.

Users reate terms using the def-term built{in ommand. The arguments of

this ommand is a name and the onrete syntax of a term. From the onrete

syntax, the def-term ommand determines the signature of the term and uses

it to invoke the instaneOf method of the term family with the same signature.

The term produed by the instaneOf method is stored in the term environment.

Models are represented as instanes of sublasses of the lass Model. In our

implementation, eah model lass ontains only one domain and three methods

representing the marshalling funtions �, 	, and 
. To reate a model, a user

develops a sublass of Model and loads it into JaLoF using the built{in ommand

for loading model lasses. When a model lass is loaded into JaLoF an instane

of the lass is reated and stored in the model environment. One a model

objet is stored in the model environment, the eval method of a term family

lass an aess any of its publi methods.

6 Conlusion

We are urrenlty developing JaLoF, a program development environment imple-

mented in Java for rapid development of dedution systems. Unlike most logial

frameworks, dedution systems reated with JaLoF will allow users to reason

1

We do not have an environment for proof objets beause we have not determined how

we will represent them in JaLoF.

8



diretly within the objet logi. Our motivation for reating JaLoF omes from

disovering that the Nuprl Proof Development System is implemented as a pro-

gram development environment for building reasoning system for the Nuprl type

theory. We believe that Nuprl is inadequate as a general purpose development

environment for automated dedution systems for the following reasons. Nuprl

de�nes two separate funtions for performing substitution, designates a spe-

i� lass of variables as terms, and does not provide users with the apability

to extend the semantis of the Nuprl term language. JaLoF overomes these

problems by reating a modi�ation of the Nuprl term language alled JAS.

The binding struture of JAS permits the de�nition of a single funtion for

substitution of �rst order and higher order variables. Futhermore, JAS de�nes

substitution to operate over any lass of terms that a user designates as vari-

ables of an objet langauge. JaLoF also allows users to extend the operational

semantis of JAS with evaluation rules for onstruts of an objet langauge.

JaLoF utitlizes Java's ability to load lasses dynamially to make it extendable.

An objet logi is de�ned as a olletion of lasses whih are loaded dynamially

into JaLoF. These lasses are used to reate Java objets that JaLoF uses for

reasoning within the objet logi.

7 Aknowledgement

I thank Jesus Christ for giving me the ability to pursue this work.

Referenes

[1℄ Robert Constable. The Struture of Nuprl's Type Theory .

http://www.s.ornell.edu/Info/Projets/NuPrl/douments/Constable/1st�le.ps,

1997.

[2℄ Robert L. Constable et al. Implementing Mathematis with the Nuprl Proof

Development System. Prentie Hall, Englewood Cli�s, NJ, 1986.

[3℄ Jo�elle Despeyroux, Frank Pfenning, and Carsten Shrmann. Primitive

reursion for higher-order abstrat syntax. In Proeedings of the Third

International Conferene on Typed Lambda Calulus and Appliations

(TLCA'97), number 1210 in Leture Notes in Computer Siene, pages

147{163. Springer-Verlag, April 1997.

[4℄ Jason J. Hikey. Nuprl-Light: An implementation framework for higher-

order logis. In Logi and Computer Siene. Springer Verlag, 1997.

[5℄ Raymond MDowell and Dale Miller. A logi for reasoning with higher-

order abstrat syntax. In Proeedings of the Twelfth Annual Symposium on

Logi in Computer Siene, pages 434 { 445, 1997.

[6℄ Roderik Moten. Conurrent Re�nement in Nuprl. PhD thesis, Cornell

University, 1997.

9



[7℄ Roderik Moten. Exploiting parallelism in interative theorem provers. In

Proeedings of the Eleventh International Conferene, TPHOLs 98, number

1479 in Leture Notes In Computer Siene, pages 315{330, 1998.

[8℄ Lawrene C. Paulson. Isabelle: A Generi Theorem Prover. Number 828

in Leture Notes in Computer Siene. Springer-Verlag, Berlin, 1994.

[9℄ Frank Pfenning and Carsten Sh�urmann. System desription: Twelf { a

meta-logial framework for dedutive systems. In Proeedings of the 16th

International Conferene on Automated Dedution (CADE-16), number

1632 in Leture Notes in Arti�ial Intelligene, pages 202{206. Springer-

Verlag, July 1999.

[10℄ Carsten Sh�urmann and Frank Pfenning. Automated theorem proving in a

simple meta-logi for LF. In Proeedings of the 15th International Confer-

ene on Automated Dedution (CADE-15), number 1421 in Leture Notes

in Arti�ial Intelligene, pages 286{300. Springer-Verlag, July 1998.

10


