
The type theory and type heker of GF

Petri M�aenp�a�a Aarne Ranta

Nokia Teleommuniations Chalmers & Gothenburg University

pmaenpaa�s.hut.� aarne�s.halmers.se

Abstrat

GF (Grammatial Framework) is a Logial Framework enrihed with onrete syntax spei�ations.

Ordinary type-theoretial judgements of typing and de�nitional equality speify a theory. In addition, a

judgement arries a desription of how to produe a string in onrete syntax. The intended prinipal

appliation area of GF is natural languages. It desribes formal languages just as well, although less

general tools exist that are optimized for them. Natural and formal languages an be ombined in an

interfae to a proof editor of a logial framework by means of GF. Indeed, suh an experimental interfae

has been made for Agda as an appliation of GF. This presentation fouses on matters familiar from

syntax-direted editors of logial frameworks, although GF also has other appliations: in semantially

preise multilingual natural language doumentation, and in ompiling the programming language Shines.

1 Overview of GF

This paper presents the type-theoretial struture and type heking priniples of GF (Grammatial Frame-

work). GF is a variant of Martin-L�of's higher-level type theory with metavariables and rules for onrete

syntax, based on type-theoretial grammar (Ranta 1994). We shall use the term type theory for Martin-L�of's

higher-level type theory. Setion 2 ontains the basi rules of type theory that GF uses.

Consider the following spei�ation of a fragment of arithmeti in type theory extended with de�nitions by

pattern equations, as in ALF.

Nat, Prop : set

zero : Nat

su : (x:Nat)Nat

sum : (x:Nat)(y:Nat)Nat

sum(x,zero) = x : Nat

sum(x,su(y)) = su(sum(x,y)) : Nat

EqNat : (x:Nat)(y:Nat)Prop

We would usually like to use a less formal onrete syntax instead of the above abstrat syntax. Logial

frameworks do not help here, although many have a user interfae with layout onventions. They might allow

a onrete syntax where 0 stands for zero, x' for su(x), (x+y) for sum(x,y), and x=y for EqNat(x,y).

In GF one may replae these layout onventions by logially rigorous onrete syntax de�nitions in the

framework itself. This is done by extending the above type-theoretial theory into the GF grammar

Nat, Prop : at

zero : Nat - "0"

su : (x:Nat)Nat - x "'"

sum : (x:Nat)(y:Nat)Nat - "(" x "+" y ")"

sum(x,zero) = x : Nat

sum(x,su(y)) = su(sum(x,y)) : Nat

EqNat : (x:Nat)(y:Nat)Prop - x "=" y

1

2 M�aenp�a�a and Ranta: The type theory and type heker of GF

The grammar �rst de�nes the syntati ategories (or ategories for short) Nat and Prop. They are types of

expressions, the syntati ounterpart of the \semanti" notion of type. The funtions zero, su, sum and

EqNat now form abstrat syntax trees. Their rules are annotated syntatially with linear patterns, whih

speify the string that orresponds to a syntax tree. The string is the linearization of the tree, and the tree

is a parse tree of the string.

A linear pattern spei�es the onrete syntax of an expression generated by a grammatial rule. The term

expression is in fat ambiguous: it an refer to syntax trees as well as the orresponding strings. We shall

let the ontext disambiguate whih is meant.

The grammar produes for example the strings 0, 0'' and (0''+0), whih denote natural numbers, as well

as the string 0 = 0'', whih denotes a proposition. The pattern equations imply that the strings (0''+0)

and (0+0'') denote the same natural number. This is beause the orresponding syntax trees ompute into

the same value su(su(zero)).

Moreover, GF ontains a generi parser, generator and type heker. They operate on an arbitrary GF

grammar, just as the type heker of a logial framework operates on an arbitrary theory.

A GF grammar an be seen as a syntatially annotated theory. A form of this idea appears already in Curry

(1963). It ontrasts to attribute grammar (Knuth 1968) and its relatives, for example Ya, that onsist

of syntati rules with semanti annotations. M�aenp�a�a (1998) is an earlier aount of formal languages in

terms of type-theoretial grammar, with a systemati omparison to attribute grammar.

One may also want to interfae a proof editor with English or some other natural language. GF allows this on

a par with its treatment of formal languages. It is instrutive to ompare a natural language grammar to the

one above with respet to syntax and semantis. We replae the syntati annotations with very simple ones

for mathematial English, disregarding deeper English grammatial struture (see the GF doumentation

for that). Only the following de�nitions hange.

zero : Nat - "zero"

su : (x:Nat)Nat - "the suessor of" x

sum : (x:Nat)(y:Nat)Nat - "the sum of" x "and" y

EqNat : (x:Nat)(y:Nat)Prop - x "is equal to" y

To illustrate the desriptive power of GF further, we enrih the grammar with another domain of individuals

besides natural numbers, namely non-negative rationals. This is done by representing Nat now as a set

expression, letting Rat be another, and delaring a new ategory Elem parametrized over Set. To de�ne

expressions for proofs of propositions, we furthermore delare a ategory Proof, parametrized over Prop.

Set, Prop : at ; Elem(X) : at (X:Set) ; Proof(X) : at (X:Prop)

These ategories represent the basi types of type theory. Elem must be parametri, beause the judgement

Elem : (set)type is malformed, and similarly for Proof.

The rules for natural numbers now take the following form, with some numerals de�ned by pattern mathing.

Nat : Set - "N"

zero : Elem(Nat) - "0"

su : (x:Elem(Nat))Elem(Nat) - x "'"

sum : (x:Elem(Nat))(y:Elem(Nat))Elem(Nat) - "(" x "+" y ")"

sum(x,zero) = x : Elem(Nat)

sum(x,su(y)) = su(sum(x,y)) : Elem(Nat)

EqNat : (x:Elem(Nat))(y:Elem(Nat))Prop - x "=" y

two : Elem(Nat) - "2"

two = su(su(zero)) : Elem(Nat)

four : Elem(Nat) - "4"

four = sum(two,two) : Elem(Nat)

eight : Elem(Nat) - "8"

eight = sum(four,four) : Elem(Nat)

M�aenp�a�a and Ranta: The type theory and type heker of GF 3

Rationals are represented as pairs of natural numbers that denote frations. The denumerator of a fration

is positive by onstrution. They also have an equality prediate.

Rat : Set - "Q"

zeroRat : Elem(Rat) - "0"

fra : (x:Elem(Nat))(y:Elem(Nat))Elem(Rat) - x "/" y "'"

EqRat : (x:Elem(Rat))(y:Elem(Rat))Prop - x "=" y

This grammar shows that GF is able to desribe overloading, whereas ordinary logial frameworks support

it only by layout onventions. For instane, the string 0 is ambiguous. It an denote either a natural number

or a rational number. The ambiguity is resolved on the level of syntax trees: zero di�ers from zeroRat.

Deiding whih syntax tree an ambiguous string orresponds to requires type-heking in addition to parsing.

Another example of overloading is the string =, whih orresponds to the funtions EqNat and EqRat, as well

as to the general equality prediate

Eq : (A:Set)(x:Elem(A))(y:Elem(A))Prop - x "=" y

This rule furthermore illustrates overloading ombined with type argument hiding, a layout onvention fa-

miliar from logial frameworks. The �rst argument of Eq is hidden by its omission in the linear pattern.

Proof arguments an be omitted as well. The following de�nition of the inverse funtion illustrates this.

It also requires de�ning a non-zero prediate, a predeessor funtion, and a rule for proving that positive

rationals di�er from zero.

notZero : (x:Elem(Rat))Prop - x "<>" "0"

pred : (x:Elem(Nat))Elem(Nat) - "(" x "- 1)"

pred(zero) = zero : Elem(Nat)

pred(su(x)) = x : Elem(Nat)

positiveIsNotZero : (x:Elem(Nat))(y:Elem(Nat))Proof(notZero(fra(su(x),y))) -

x "'" "/" y "'" "<>" "0"

inv : (z:Elem(Rat))(h:Proof(notZero(z)))Elem(Rat) - "1" "/" "(" z ")"

inv(fra(x,y),h) = fra(su(y),pred(x)) : Elem(Rat)

The inv rule states that the inverse of a rational number z exists only z is not zero. The proof h of this

ondition is omitted in the onrete syntax 1 / (z) for the inverse, although it is a onstituent of the syntax

tree inv(z,h). This kind of omission of proofs is a ommonplae in informal mathematial language.

Yet another phenomenon illustrated by the grammar is permutation of arguments of a syntax tree in the

onrete syntax. This ours in the rule

sumList : (a:Elem(Nat))(d:Elem(Nat))(f:(x:Elem(Nat))Elem(Nat))Elem(Nat) -

"sum" "[" f "|" x "<-" "[" a ".." a "+" d "℄" "℄"

sumList(a,zero,f) = f(a) : Elem(Nat)

sumList(a,su(d),f) = sum(f(sum(a,su(d))),sumList(a,d,f)) : Elem(Nat)

where the arguments a, d and f, in left-to-right order, are permuted to f, a, d in the linear pattern. (The

onrete syntax is that of a list omprehension.)

The sumList rule also illustrates redupliation of arguments. The argument a ours twie in the linear

pattern. Moreover, the linear pattern ontains an ourrene of x, whih is a bound variable of the argument

f. This argument is a funtion from natural numbers to natural numbers. Setion 2 desribes the linearization

of bound variables in more detail.

The grammar illustrates how a linear pattern ontains the arguments of the orresponding syntax tree, with

possible omissions, permutations and redupliations, and strings inserted in between. GF allows all of these

operations in a logially rigorous way. They go beyond the expressive power of ontext-free grammar. The

4 M�aenp�a�a and Ranta: The type theory and type heker of GF

omission of arguments raises the question of how GF grammars an be parsed. As Setion 3 explains, parsing

is suessful in virtue of metavariables.

Also some other logial frameworks support forms of syntati annotation that are more restrited than

those of GF. Thus for example Isabelle (Paulson 1998, hapter 7) allows the use of priority grammars and

a mix�x notation to speify onrete syntax. An example is

"plus" : [exp, exp℄ -> exp ("_ + _" [0,1℄ 0)

Here 0 and 1 are preedene values. The left argument of plus is expeted to have preedene 0 and the right

argument 1. The whole expression reeives the preedene value 0. Parentheses are inserted into produed

strings aording to this preedene spei�ation.

GF also supports speifying preedene information and orresponding parentheses. This omes out as a

speial ase ofmorphologial information. Morphologial variation, although ubiquitous in natural languages,

is sant in formal languages: preedene is often the only example of it. Setion 2 desribes the formal rules

of morphologial variation, while the below GF de�nition of the Isabelle plus illustrates its use to de�ne

preedenes:

plus : (x:exp)(y:exp)exp -

lpar(0,Pre(x)) x rpar(0,Pre(x)) "+" lpar(1,Pre(y)) y rpar(1,Pre(y)) - 0

This de�nition uses a basi ategory exp of expressions, and the morphologial operations lpar and rpar.

They operate on a morphologial parameter for preedene, whose possible values are (at least) 0 and 1. By

omparing the preedenes m and n, lpar(m,n) produes either a left parenthesis or the empty string, and

rpar(m,n) produes either the right parenthesis or the empty string. (Cf. Appendix B for more examples.)

In ontrast to GF, the mix�x notation of Isabelle does not support argument hiding, permutation or redu-

pliation. The arguments of the funtion are represented by the harater _ in the linear pattern, and this

makes sense only if the arguments our exatly one and in exatly the same order as in the funtion

delaration. Isabelle does allow overloading, whih an be resolved by type inferene. Its use of preedenes

is a speial ase of the morphologial parameters of GF.

Some logial frameworks do support argument hiding. For example, in ALF one may speify a number of

arguments to be hidden in a funtion appliation, starting the ount from the left. This is a speial ase of

argument omission in GF. The Eq funtion above is an example with one argument hidden.

One an also ompare GF to L

A

T

E

X (Lamport 1985), whose maros orrespond to GF linear patterns without

parameters. The de�nition of a L

A

T

E

X maro allows for arbitraty permutations, repetitions, and omissions

of arguments. For instane, the inverse funtion ould be represented thus:

\newommand{\inv}[3℄{#1 / (#2)}

with the omission of the third argument. An important di�erene between GF and L

A

T

E

X is, of ourse, that

the latter only has one type of expressions: any piee of L

A

T

E

X ode may appear at any argument plae of

any maro.

Finally, from the point of view of presenting proofs, GF an be ompared with the text generation fun-

tionality of Coq (Cosoy, Kahn, and Th�ery 1995). In Appendix C, some of the text formats from that work

are used in linearization rules for proof onstants. In Coq, natural language generation stops at the level of

proof struture, so that the propositions ontained in those proofs remain in formal notation. Moreover, the

text generation rules are hard-wired rather than user-de�nable. In fat, the emphasis of text generation in

Coq has been on \optimizing" proof texts so as to make them short and idiomati. This aspet of Coq has

no ounterpart in GF yet.

M�aenp�a�a and Ranta: The type theory and type heker of GF 5

2 Forms of judgement and rules of inferene

The starting point of GF was the higher-level type theory of Martin-L�of and the way in whih it was used

for linguisti analysis in Ranta (1994; see hapter 8 for the version of type theory used). Besides syntati

annotations, GF di�ers from Martin-L�of's type theory in two ways: it has no prede�ned basi types, and,

like ALF (Magnusson 1994), it has metavariables to stand for unde�ned onstrutions.

Metavariables are used in GF for type heking and user interation, and they will be disussed in more

detail in Setion 3. As for basi types, Martin-L�of's two rules

set : type; elem(A) : type (A : set)

are replaed by a sheme for basi type delarations:

C(x

1

; : : : ; x

n

) : type (x

1

: �

1

; : : : ; x

n

: �

n

);

that is, C(x

1

; : : : ; x

n

) is a type depending on the variables x

1

: �

1

; : : : ; x

n

: �

n

. Types are then formed by

instantiations of variables in basi types and by dependent funtion type formation,

� : type

(x : �)

� : type

(x : �)� : type

:

From the linguisti point of view, the basi types of GF play the role of syntati ategories. Basi type

delarations are annotated by de�nitions of linearization types, whih de�ne the behaviour of objets of those

types in linearization:

�

C(x

1

; : : : ; x

n

) : type (x

1

: �

1

; : : : ; x

n

: �

n

);

C

o

= L : lintype:

Linearization types have a struture of their own, de�nable in simple type theory. There is a type str of

strings, and user-de�nable parameter types, whih are �nite sets of parameter values. Examples of parameter

types are the English (or Frenh, German, or Latin) number, the German (or Latin) gender, and the Latin

ase:

Num = fsg; plg; Gen = fmas; fem; neutg; Cas = fnom; a; gen; dat; ablg:

Parametre types an be assoiated with syntati ategories either as variable features or as inherent features.

These orrespond respetively to the inherited and synthesized attributes of attribute grammar (Knuth 1968,

see M�aenp�a�a 1998 for a disussion of the distintion in terms of type-theoretial grammar). For instane,

German and Latin ommon nouns have variable number and ase, and inherent gender: verbum (\word")

has forms for di�erent numbers and ases, suh as verbum (sg. nom. and a.) and verborum (pl. gen.), but

not for di�erent genders|it is inherently of neuter gender. Adjetives have both gender, number, and ase

variable. Verbs in many languages have variable number, mode, and tense, but no ase.

The general form

1

of the linearization type of a ategory � is

((Var

�

)str; Inh

�

)

that is, a pair whose �rst omponent is a funtion from the variable features of � to strings, and the seond

omponent is a tuple of inherent features of �. For instane, Latin ommon nouns and adjetives have the

following linearization types:

CN

o

= ((Num;Cas)str; (Gen)); Adj

o

= ((Gen;Num;Cas)str; ()):

The grammatial rules of GF are funtion delarations annotated by linearization funtions.

�

F : (x

1

: �

1

) � � � (x

n

: �

n

)�;

F

o

= l : (x

1

: �

o

1

) � � � (x

n

: �

o

n

)�

o

:

1

The atual de�nition of linearization types is slightly more general than this, replaing strings by token lists, and reognizing

tuples of token lists as linearizations of so-alled disontinuous onstituents.

6 M�aenp�a�a and Ranta: The type theory and type heker of GF

Thus the linearization funtion F

o

orresponding to a funtion F is a funtion from the linearization types

of the arguments to the linearization type of the value.

A funtion type (x

1

: �

1

) � � � (x

n

: �

n

)� an always be seen in the form in whih � is a basi type (that is, not

a funtion type itself). GF uses this view to impose the rule of full appliation, that is, appliation whose

value is an objet of a basi type. Suh a funtion appliation an always be linearized into a string (whih

possibly depends on variable features), and its inherent features an be alulated. The full appliation rule

is ompleted by the generi linearization rule of GF:

F : (x

1

: �

1

) � � � (x

n

: �

n

)� a

1

: �

1

: : : a

n

: �

n

(x

1

= a

1

; : : : ; x

n�1

= a

n�1

)

�

F (a

1

; : : : ; a

n

) : �

n

(x

1

= a

1

; : : : ; x

n

= a

n

)

F (a

1

; : : : ; a

n

)

o

= F

o

(a

o

1

; : : : ; a

o

n

) : �

o

Linearization is thus ompositional, in the sense that the linearization of a funtion appliation is a funtion

of the linearizations of its immediate onstituents.

For example, the rule of adjetival modi�ation in Latin is formalized as follows:

�

Mod : (A : CN)(B : Adj(A))CN

Mod

o

((A; (g)); (B; ())) = ((n)()(A(n;) ++B(g; n;)); (g))

As for the funtion delaration, notie the dependene of the ategory of adjetives on ommon nouns:

semantially speaking, a ommon noun expresses a set, and an adjetive expresses a propositional funtion

over a set. As for the linearization funtion, we have used pattern mathing against the linearization types

of the arguments of the funtion. The result is a onatenation of the noun with the adjetive, both of whih

reeive the number and the ase of the whole onstrution. The adjetive also needs a gender, and it reeives

the inherent gender g of the noun. The inherent gender of the whole onstrution is likewise inherited from

the noun. Now, given appropriate rules for the simple nouns verbum (\word") and vita (\life"), and the

adjetive �ternus (\eternal"; assume it applies both to word and to life), we an form, for instane

vitam �ternam, \eternal life", feminine noun in the singular ausative,

verborum �ternorum, \of eternal words", neuter noun in the plural genitive.

The onrete GF notation that has been implemented is slightly di�erent from the rule shown above, al-

though it must, of ourse, ontain the same information. What we would in fat write for Latin adjetival

modi�ation is

Mod : (A:CN)(B:Adj(A))CN - ase (n,) -> A(n,) B(Gen(A),n,) - Gen(A)

A GF grammar is a sequene of ategory and funtion delarations syntatially annotated in the way

explained above. Given the parallel strutures of ordinary (\semanti") types and linearization types, it is

always possible to hek the well-formedness of a GF grammar, both in the semanti and in the syntati

sense. Semanti type heking, whih we inherit from Martin-L�of's type theory, is explained in Setion 3.

Syntati type heking is easier, sine it is just a speial ase of Hindley-Milner type heking without

polymorphism. But it is vital for the proper funtioning of a GF grammar in its algorithmi use, whih

omprises linearization and its inverse, parsing. The language of syntati annotations is so designed that it

is always possible to generate a parsing algorithm orresponding to a GF grammar.

In addition to ategory and funtion delarations, GF grammars an also ontain de�nitions of parameter

types and of string-valued funtions on them (suh as verb onjugations). Furthermore, there an be semanti

de�nitions, whih are judgements of the form

a = b : � (x

1

: �

1

; : : : ; x

n

: �

n

)

just like in Martin-L�of's type theory. Semanti de�nitions are the basis of notions like omputation, normal

form, and paraphrase with respet to GF grammars. It should be noted that linearization is not invariant

under omputation: the semanti equality of a and b does not guarantee the equality of the strings a

o

and

M�aenp�a�a and Ranta: The type theory and type heker of GF 7

b

o

. This should not be surprising: just reall that 2+2, 2�2, and 4 are di�erent as expressions even though

equal as numbers.

It remains to say a word about the linearization of bound variables. As an intuitive example, take the

type-theoretial delaration of the universal quanti�er,

8 : (A : set)(B : (x : elem(A))prop)prop

and the ordinary expression of a universally quanti�ed proposition,

(8x : A)B(x):

There is a systemati onnetion between the two, a onnetion that GF annotations should be able to make

preise. In atual GF, the delaration of the universal quanti�er with its syntati annotation is

forall : (A:Set)(B:(x:Elem(A))Prop)Prop - "(\forall" x�B ":" A ")" B

In this delaration, the bound variable x is used in the linearization rule alongside with the ordinary argu-

ments A and B. The symbol B is used, not for an expression of the funtion type (x:Elem(A))Prop, but for

an expression of the type Prop, where the variable x may our free|the \body" of the funtion. In order

for linearization rules like this to work, we need to require that all funtions appear in their �-expanded

form. Then it makes sense to distinguish syntatially between the variables and the body of a funtional

expression. The requirement of �-expansion is losely assoiated with the previously explained rule of full

appliation.

One of the entral ideas of the higher-level type theory of Martin-L�of is to loalize all variable bindings in the

abstration rule. If a funtion delaration in GF has a funtion type among its argument types, the funtion

is likewise treated as a variable-binding operator, and the syntati annotation has to speify the way in

whih the variable binding is shown in the onrete expression. We have already seen two examples of this:

the 8 rule above, and the sumList rule in Setion 1. In order to make the annotation language ompletely

preise, we still have to de�ne the linearization types of funtion types, as well as the linearization of funtion

abstrats:

� : type

(x : �)

� : type

�

(x : �)� : type

((x : �)�)

o

= (str; �

o

)

;

(x : �)

b : �

�

(x)b : (x : �)�

((x)b)

o

= (x

o

; b

o

)

:

In other words, the linearization type of a funtion type (if used as an argument type of a syntati rule) is

the type of strings paired with the linearization type of the value type. The linearization of an abstrat is

the abstrated variable symbol paired with the linearization of the body. We have used the notation x

o

to

denote the variable symbol x.

The rule of universal quanti�er formation an now be formalized

�

8 : (A : set)(B : (x : elem(A))prop)prop

8

o

(A; (x;B)) = "(" ++"8"++x++" : " ++A++")" ++B

assuming there are no morphologial parameters for set and elem, and simplifying the notation for their

linearizations by ignoring empty tuples aordingly.

3 Type heking in GF

The starting point of GF's type heker is Coquand's (1996) algorithm for type heking dependent types.

GF extends this algorithm by a treatment of metavariables and onstraints. Furthermore, GF replaes the

axiom type : type by the parametri axiom sheme for basi types presented in the Setion 2. GF's type

heker is thus generi over languages with arbitrary basi types. Appendix A presents the type heker's

main funtions, in Haskell ode.

8 M�aenp�a�a and Ranta: The type theory and type heker of GF

Following Coquand's algorithm, the type heker operates in terms of a distintion between (semanti) values

and (syntati) terms (the datatypes Val and Term). Values arry loal expliit substitutions, wrapped

together with a term into a losure (formed by the onstrutor VClos). An example is the losure value

x(x = 1), whih onsists of the variable term x with the loal expliit substitution (x = 1).

Now we desribe the main di�erenes to Coquand's algorithm. One that is also present in the implementation

of Agda's proof heker, although in a di�erent form, is the introdution of metavariables. In heking

whether a metavariable ? has a type T , GF �rst looks up ? in the list of open goals of the urrent proof state.

If it ours there, with the type U , the algorithm adds the onstraint T = U to the proof state. Otherwise,

it adds the new open goal ? : T to the proof state. In the former ase, the loal ontext x

1

: �

1

; : : : ; x

m

: �

m

of U is mathed with the type environment y

1

: �

1

; : : : ; y

n

: �

n

of the proof state. The onstraints �

i

= �j

for all syntatially equal variables x

i

= y

j

are added to the proof state.

Perhaps the most signi�ant di�erene to Coquand's algorithm is type heking basi types. Coquand's

algorithm uses the basi type type, whereas GF has the parametri sheme for basi types. To hek

whether a basi type C(a

1

; : : : ; a

n

) is a valid type, GF looks up C in the list of delared ategories of a

grammar. A ategory delaration ontains a parameter list x

1

: �

1

; : : : ; x

n

: �

n

. GF type heks the atual

parameters a

1

: �

1

; : : : ; a

n

: �

n

(x

1

= a

1

; : : : ; x

n�1

= a

n�1

) of a ategory instantiation in turn (the funtion

hek args).

Category and onstant delarations make up the data type Theory. It is a omponent of the type heking

environment of type REnv, in addition to the value environment, type environment, goals and onstraints.

The last main di�erene to Coquand's algorithm is that GF type inferene and type heking return a list

of new open goals and onstraints (the funtions infer type and hek type). Type inferene of ourse

returns a type as well. Coquand's type inferene algorithm returns just a type upon suess, and his type

heking algorithm returns a boolean value. This di�erene is due to GF's introdution of metavariables and

onstraints into the algorithm.

Interative proof editing in GF represents the proof state in terms of values and terms. However, it displays

values to the user by �rst transforming them into terms, beause he works in the ontext of a grammar that

ontains only terms. A value is displayed by arrying out the loal expliit substitutions in the term. Agda

uses a similar approah, although it resolves onstraints in a di�erent way (Coquand and Coquand 1999).

An important ase of onverting a value into a term in interative proof editing is when a losure onsists of

a metavariable with loal expliit substitutions. An example is ?(x = 1), where the substitution x = 1 has

no diret e�et on the metavariable ?.

GF displays a metavariable without substitutions to the user. They have to be retained impliitly in the

proof state however, beause metavariables are onstants yet to be de�ned. Even if substitutions have

no diret e�et on a metavariable, beause it is a onstant, they may have an indiret e�et through the

onstraints that determine the possible values that a metavariable may ome to have. For instane, ? may

be an expression depending on x, and the variable may get instantiated before ? itself is resolved.

Type heking in GF has a speial funtion not present in ordinary logial frameworks: the type-theoretial

ontrol of overloading by resolving ambiguities. An ambiguous string may have several parse trees, whereas

a tree is always linearized in a determinate way. Parsing a string de�ned by means of argument omission

yields a syntax tree with metavariables in the omitted argument plaes. Type heking then determines their

value, if possible. Sometimes ordinary uni�ation does the job, but in general user interation is required.

A situation where uni�ation suÆes is parsing the string 0=0. Six possible syntax trees result: EqNat(zero,

zero), EqRat(zeroRat,zeroRat), Eq(?,zero,zero), Eq(?,zeroRat,zeroRat), Eq(?,zero,zeroRat) and

Eq(?,zeroRat,zero). Type heking rules out the last two, beause the seond and third arguments of Eq

are not of the same type. The use of dependent types in the grammar allows enforing this onstraint. It

enables the type heker to produe the unsolvable onstraint Nat = Rat. The uni�ation omponent of the

type heker automatially instantiates the third and fourth alternative syntax trees to Eq(Nat,zero,zero)

and Eq(Rat,zeroRat,zeroRat), respetively, so there are four type orret parses altogether.

Parsing ambiguous strings into syntax trees with metavariables also illustrates another ruial property of

parsing in GF. Namely, the ompleteness of parsing is ensured by letting it terminate in syntax trees that

may ontain metavariables. Finding their instantiations requires �nding proofs in general, and an hene

M�aenp�a�a and Ranta: The type theory and type heker of GF 9

be arbitrarily diÆult. Ensuring the ompleteness of the parsing algorithm makes metavariables neessary

in GF, whereas ordinary logial frameworks may hoose to do without them. This is beause they lak

overloading and make proofs always expliit in expressions.

The use of dependent types in a grammar rules out semantially malformed expressions like Eq(Nat,zero,

zeroRat) in a straightforward way. They simply annot be onstruted aording to the typing rules. Suh

restritions on forms of syntati ombination by means of dependent types an be ontrasted to approahes

like Higher Order Abstrat Syntax (Pfenning and Elliott 1988) that use simple types instead, and disard

suh semantially malformed expressions by heking whether separate semantial well-formedness prediates

hold.

4 Conlusion

We have presented Grammatial Framework's system of syntati annotations for Martin-L�of's higher-level

type theory. Its type-heker is generi with respet to grammars, rather than theories as in ordinary logial

frameworks. It also has a parsing and a linearization algorithm, generi over grammars as well. A GF

grammar is a theory with syntati annotations, together with a sheme for introduing basi types instead

of the single basi type of sets or propositions of type theory.

This system of syntati annotations is suÆient for a wide variety of notations. For example, the layout

onventions in implementations of logial frameworks, the priority grammars and mix�x notation of Isabelle,

and the maros of L

A

T

E

X are speial ases of onrete syntax annotations in GF. In fat, the GF annotations

suÆe for a \mathematial vernaular", a full natural language for mathematis.

GF an also be used as a prototyping tool for programming languages, as is done for Shines (Shines pro-

gramming language). A GF grammar for a language is apable of desribing its type-theoretial semantis,

both stati and dynami, at the same time as its syntax, both abstrat and onrete. Thus one GF �le is

suÆient for building the entire prototype of a new language.

Referenes

[1℄ Agda home page. http://www.s.halmers.se/ atarina/agda/

[2℄ GF home page. http://www.xre.xerox.om/researh/mltt/gf/gf-index/index.html

[3℄ Haskell B. Curry. Some logial aspets of grammatial struture. In Roman Jakobson (ed.), Struture of

Language and its Mathematial Aspets: Proeedings of the Twelfth Symposium in Applied Mathematis,

pp. 56{68. Amerian Mathematial Soiety, 1963.

[4℄ Thierry Coquand. An algorithm for type-heking dependent types. Siene of Computer Programming,

26:167{177, 1996.

[5℄ Catarina and Thierry Coquand. Strutured type theory. Preliminary version, June 1999. Available at

http://www.s.halmers.se/ oquand/type.html

[6℄ Yanne Cosoy, Gilles Kahn, and Laurent Th�ery. \Extrating text from proofs", Typed Lambda Calulus

and Appliations, Leture Notes in Computer Siene 902, Springer-Verlag, Heidelberg, 1995.

[7℄ Donald E. Knuth. Semantis of ontext-free languages. Mathematial Systems Theory, 2:127{145, 1968.

Errata 5:95{96, 1971.

[8℄ Leslie Lamport. L

A

T

E

X. A Doument Preparation System. User's Guide and Referene Manual. Addison-

Wesley, Reading, 1985.

[9℄ Petri M�aenp�a�a. Semantial BNF. In E. Gimenez and C. Paulin-Mohring (eds.), Types for Proofs and

Programs, International Workshop TYPES'96, LNCS 1512, pp. 196{215, Springer, 1998.

10 M�aenp�a�a and Ranta: The type theory and type heker of GF

[10℄ Lena Magnusson. An implementation of ALF, a proof editor based on Martin-L�of 's monomorphi type

theory with expliit substitutions. PhD thesis, Chalmers University of Tehnology, 1995.

[11℄ Per Martin-L�of. Intuitionisti Type Theory. Notes by G. Sambin of a series of letures given in Padua,

June 1980. Bibliopolis, Napoli, 1984.

[12℄ Lawrene C. Paulson. Isabelle Referene Manual. With ontributions by Tobias Nipkow and Markus

Wenzel, 1998. Available at

http://sunsite.do.i.a.uk/pub/0-Most-Pakages/smlnj/isabelle/ .

[13℄ Frank Pfenning and Conal Elliott. Higher-order abstrat syntax. In Proeedings of the ACM SIGPLAN

'88 Symposium on Language Design and Implementation, pp. 199{208, Atlanta, Georgia, June 1988.

[14℄ Aarne Ranta. Type-Theoretial Grammar. Oxford University Press, 1994.

[15℄ Shines programming language. Doumentation available at HiBase projet home page

http://hibase.s.hut.fi/hibase/hibase.html .

Appendix A: The type heker

type Ident = String

data Fun = Fun Ident

data Symb = Symb Ident

data Cat = Cat Ident

type MetaSymb = (Cat,Ident)

data Term = Cons Fun

| Var Symb

| Meta MetaSymb

| App Term Term

| Abs Symb Term

| Ground Cat [Term℄ - basi types

| Prod Symb Term Term - dependent funtion types

| Predef (Ident,Ident) - predefined onstants

data Val = VGen Int | VApp Val Val | VCons Fun | VClos Env Term | VType

| VPredef (Ident,Ident)

type Theory = ([(Cat, Env)℄, [(Fun, Val)℄)

type Env = [(Symb, Val)℄

type Goals = [((Cat, Ident), (Val, Env))℄

type REnv = (Theory, Env, Env, Goals, Constrs)

type Constrs = [(Val, Val)℄

update :: Env -> Symb -> Val -> Env

update env x u = (x, u) : env

app :: Val -> Val -> Val

eval :: Env -> Term -> Val

app u v =

ase u of

VClos env (Abs x e) -> eval (update env x v) e

_ -> VApp u v

M�aenp�a�a and Ranta: The type theory and type heker of GF 11

eval env e =

ase e of

Cons -> VCons

Var x -> ase lookup x env of

Just a -> a

_ -> error ("Unknown identifier: " ++ prTerm (Var x))

App e1 e2 -> app (eval env e1) (eval env e2)

Predef d -> VPredef d

_ -> VClos env e

whnf :: Val -> Val

whnf v =

ase v of

VApp u w -> app (whnf u) (whnf w)

VClos env e -> eval env e

_ -> v

infer_type :: Int -> REnv -> Term -> Err (Val, Goals, Constrs)

infer_type k env�((_, on), rho, o, qs, s) e =

ase e of

Cons ->

ase lookup on of

Just a -> Ok (a, [℄, [℄)

_ -> Bad ("Unknown onstant: " ++ prTerm (Cons))

Predef (,_) ->

ase lookup predefRules of

Just (a,_,_) -> Ok (term_val (predeftype2type a), [℄, [℄)

_ -> Bad ("Unknown predefined onstant: " ++ prTerm e)

Var x ->

ase lookup x o of

Just a -> Ok (a, [℄, [℄)

_ -> Bad ("Unknown variable: " ++ prTerm (Var x))

Meta s�(i, n) ->

ase (lookup s [(s1, t) | (s1, (t,)) <- qs℄) of

Just a -> Ok (a, [℄, [℄)

_ -> Bad ("Unknown subgoal: " ++ prMeta (i, n))

App f ->

ase (infer_type k env f) of

Ok (t, qs1, s1) -> ase whnf t of

VClos env1 (Prod x a b) ->

let (qs2, s2) = hek_type k env (VClos env1 a)

in Ok (VClos (update env1 x (VClos rho)) b,

qs2 ++ qs1, s2 ++ s1)

_ -> Bad "Produt expeted in appliation"

Bad s -> Bad s

_ -> Bad "Cannot infer type"

hek_type :: Int -> REnv -> Term -> Val -> (Goals, Constrs)

hek_type k env�((at, on), rho, o, qs, s) e v =

ase e of

Meta s ->

ase lookup s qs of

Just (a, t) ->

([℄, (a, v) : [(t1, t2) | (x1, t1) <- o, (x2, t2) <- t, x1 == x2℄)

_ -> ([(s, (v, o))℄, [℄)

12 M�aenp�a�a and Ranta: The type theory and type heker of GF

Abs x n ->

ase whnf v of

VClos env1 (Prod y a b) ->

let w = VGen k

in hek_type (k + 1)

((at,on), update rho x w, update o x (VClos env1 a), qs, s)

n

(VClos (update env1 y w) b)

_ -> error "Produt expeted in abstration"

Ground es ->

ase whnf v of

VType ->

ase lookup at' of

Just as -> if length as == length es

then hek_args k env [℄ es as

else ([℄,arityConstrs (length as) (length es))

_ -> error ("Unknown type identifier in: " ++ prTerm e)

where at' = at ++ [(Cat , [℄) | (,_) <- predefCats℄

_ -> error "Type expeted"

Prod x a b ->

ase whnf v of

VType ->

let (qs1, s1) = hek_type k env a VType

(qs2, s2) = hek_type (k + 1) ((at, on),

update rho x (VGen k),

update o x (VClos rho a),

qs,

s)

b VType

in (qs2 ++ qs1, s2 ++ s1)

_ -> error "Type expeted"

 -> ase infer_type k env e of

Ok (a, qs1, s1) -> (qs1, (a, v) : s1)

Bad s -> (typeProblem s, [℄)

hek_args :: Int -> REnv -> Env -> [Term℄ -> Env -> (Goals, Constrs)

hek_args k env�(_, rho, _, _, _) env1 es ont =

ase (es, ont) of

([℄, [℄) -> ([℄, [℄)

(a : l, (x, VClos [℄ t1) : m) ->

let (qs1, s1) = hek_type k env a (VClos env1 t1)

(qs2, s2) = hek_args k env (update env1 x (VClos rho a)) l m

in (qs2 ++ qs1, s2 ++ s1)

_ -> error "Malformed family of types"

Appendix B: A GF grammar of Mini ML

The following is a piee of real GF ode, desribing a funtional programming language with the basi types

of non-negative deimal integers and Boolean values, with funtion types and artesian produts, and with

let expressions. To give an example, the syntax tree

Prg(Prod(Bool,Int),

App(Int,Prod(Bool,Int),

M�aenp�a�a and Ranta: The type theory and type heker of GF 13

Abs(Int,Prod(Bool,Int),

(x)Pair(Bool,Int,True,RP(Int,Int,Pair(Int,Int,Zero,x)))),

UsePos(AddDig(UseDig(Dig2),Dig3))))

of type Prog is linearized into the string

(\ x -> (true, snd (0, x)))23 : Bool * Int

and an be omputed into (true, 23) : Bool * Int, by using the de�nitions of the grammar.

The grammar starts with the spei�ation of a Tokenizer, followed by a delaration of morphologial

Parametres and their values, de�nitions of morphologial Operations, delarations of Categories with

their dependenies and linearization types, delarations of expliit Variables, and, �nally, Rules and

Definitions. For full details of the grammar format, we refer to the doumentation on GF home page.

Tokenizer ode Tokens "->" ;

Parametres Pre(p1,p2,p3) ; (* preedene *)

Categories Prog ; Type - - Pre ; Exp(Type) - - Pre ; Dig ; Pos ;

Variables x, y, z, X, Y, Z (Exp) ; (* variables of type Exp *)

Operations (* parentheses as funtion of preedene *)

par(Pre,Pre) =

ase (p1,p) -> ("",""),

(p2,p1) -> ("(",")"), (p2,p2) -> ("",""), (p2,p3) -> ("",""),

(p3,p1) -> ("(",")"), (p3,p2) -> ("(",")"), (p3,p3) -> ("","") ;

Rules

Dig1. Dig -> 1 ; (* deimal integers, using ontext-free notation *)

Dig2. Dig -> 2 ;

Dig3. Dig -> 3 ;

Dig4. Dig -> 4 ;

Dig5. Dig -> 5 ;

Dig6. Dig -> 6 ;

Dig7. Dig -> 7 ;

Dig8. Dig -> 8 ;

Dig9. Dig -> 9 ;

UseDig. Pos -> Dig ;

AddDig. Pos -> Pos Dig ;

AddZero. Pos -> Pos 0 ;

Prg : (A:Type)(a:Exp(A))Prog - a ":" A ; (* program with its type *)

Int : Type - "Int" - p3 ; (* the type of integers *)

Zero : Exp(Int) - "0" - p3 ;

UsePos : (p:Pos)Exp(Int) - p - p3 ;

Bool : Type - "Bool" - p3 ; (* the type of truth values *)

True : Exp(Bool) - "true" - p3 ;

False : Exp(Bool) - "false" - p3 ;

Fun : (A:Type)(B:Type)Type - (* the funtion type *)

par.1(p2,Pre(A)) A par.2(p2,Pre(A)) "->" B - p1 ;

Abs : (A:Type)(B:Type)(b:(x:Exp(A))Exp(B))Exp(Fun(A,B)) -

14 M�aenp�a�a and Ranta: The type theory and type heker of GF

"\\" x "->" b - p1 ;

App : (A:Type)(B:Type)(:Exp(Fun(A,B)))(a:Exp(A))Exp(B) -

par.1(p2,Pre()) par.2(p2,Pre()) par.1(p3,Pre(a)) a par.2(p3,Pre(a)) - p2 ;

Prod : (A:Type)(B:Type)Type - (* the artesian produt *)

par.1(p2,Pre(A)) A par.2(p2,Pre(A)) "*" par.1(p2,Pre(B)) B par.2(p2,Pre(B)) -

p2 ;

Pair : (A:Type)(B:Type)(a:Exp(A))(b:Exp(B))Exp(Prod(A,B)) -

"(" a "," b ")" - p3 ;

LP : (A:Type)(B:Type)(:Exp(Prod(A,B)))Exp(A) -

"fst" par.1(p3,Pre()) par.2(p3,Pre()) - p2 ;

RP : (A:Type)(B:Type)(:Exp(Prod(A,B)))Exp(B) -

"snd" par.1(p3,Pre()) par.2(p3,Pre()) - p2 ;

Let : (A:Type)(B:Type)(a:Exp(A))(b:(x:Exp(A))Exp(B))Exp(B) -

"let" x "=" a "in" b - p1 ; (* loal definition *)

Definitions

Int = {Zero,UsePos} : Type ;

Bool = {True,False} : Type ;

App(A,B,Abs(A,B,b),a) = b(a) : Exp(B) ;

LP(A,B,Pair(A,B,a,b)) = a : Exp(A) ;

RP(A,B,Pair(A,B,a,b)) = b : Exp(B) ;

Let(A,B,a,b) = b(a) : Exp(B) ;

Appendix C: English and Frenh GF grammars for mathematial

proofs

The following two grammars give rules for a fragment of many-sorted prediate alulus, suh as de�ned in

Martin-L�of (1984). The grammars have both proposition formation and proof rules. An example syntax

tree is

ThmWithProof(Neg(Abs),NegI(Abs,(x)Hypo(Abs,x)))

of the type Text. Its English and Frenh linearizations are

Theorem. It is not the ase that we have a ontradition.

Proof. Assume we have a ontradition. By hypothesis, we have a ontradition. Hene, it is

not the ase that we have a ontradition.

Th�eor�eme. Il n'est pas vrai que nous ayons une ontradition.

D�emonstration. Supposons que nous avons une ontradition. Par hypoth�ese, nous avons une

ontradition. Don, il n'est pas vrai que nous ayons une ontradition.

The struture of GF grammars is summarized in the Appendix B above. We start with the English grammar.

Tokenizer text ;

Parametres Num(sg,pl) ;

Operations nomReg(Num) = ase (sg) -> "", (pl) -> "s" ;

Categories Text ; Set - Num ; Prop ; Elem(Set) ; Proof(Prop) ;

M�aenp�a�a and Ranta: The type theory and type heker of GF 15

Variables x,y,z,k,l,m,n,a,b, (Elem) ; h,r,t (Proof) ;

Rules

ThmWithProof : (A:Prop)(a:Proof(A))Text - (* theorem with a proof *)

"Theorem ." A ". Proof ." a "." ; (* shows the proof *)

ThmWithTrivialProof : (A:Prop)(a:Proof(A))Text -

"Theorem ." A ". Proof . Trivial ." ; (* hides the proof *)

Conj : (A:Prop)(B:Prop)Prop -

A "and" B ;

Univ : (A:Set)(B:(x:Elem(A))Prop)Prop -

"for all" A(pl) x�B "," B ;

Abs : Prop -

"we have a ontradition" ;

Neg : (A:Prop)Prop -

"it is not the ase that" A ;

ConjI : (A:Prop)(B:Prop)(a:Proof(A))(b:Proof(B))Proof(Conj(A,B)) - (* proofs *)

a "." b ". Hene" A "and" B ;

ConjEl : (A:Prop)(B:Prop)(:Proof(Conj(A,B)))Proof(A) -

 ". A fortiori," A ;

ConjEr : (A:Prop)(B:Prop)(:Proof(Conj(A,B)))Proof(B) -

 ". A fortiori," B ;

NegI : (A:Prop)(b:(x:Proof(A))Proof(Abs))Proof(Neg(A)) -

"assume" A "." b ". Hene, it is not the ase that" A ;

NegE : (A:Prop)(:Proof(Neg(A)))(a:Proof(A))Proof(Abs) -

a ". But" ". We have a ontradition" ;

UnivI : (A:Set)(B:(x:Elem(A))Prop)(b:(x:Elem(A))Proof(B(x)))Proof(Univ(A,B)) -

"onsider an arbitrary" A(sg) x�b "." b ". Hene, for all" A(pl) x�B "," B ;

UnivE : (A:Set)(B:(x:Elem(A))Prop)(:Proof(Univ(A,B)))(a:Elem(A))Proof(B(a)) -

 ". Hene" B "for" x�B "set to" a ;

AbsE : (C:Prop)(:Proof(Abs))Proof(C) -

 ". We may onlude" C ;

Hypo : (A:Prop)(a:Proof(A))Proof(A) -

"by hypothesis," A ;

Definitions

ConjEl(A,B,ConjI(A,B,a,b)) = a : Proof(A) ;

ConjEr(A,B,ConjI(A,B,a,b)) = b : Proof(B) ;

NegE(A,NegI(A,b),a) = b(a) : Proof(Abs) ;

UnivE(A,B,UnivI(A,B,b),a) = b(a) : Proof(B(a)) ;

Neg(A) = Impl(A,Abs) : Prop ;

NegI(A,b) = ImplI(A,Abs,b) : Prop ;

The following Frenh grammar has exatly the same type-theoretial (abstrat) part as the previous English

grammar. In the linearization (onrete) part, it has a muh riher morphology, even for this very limited

fragment of language.

Tokenizer text ;

Parametres Gen(mas,fem) ; Num(sg,pl) ; Mod(ind,subj) ; Cas(nom,aa,dd) ;

Operations

nomReg(Num) = ase (sg) -> "", (pl) -> "s" ;

adjReg(Gen,Num) = ase (mas,n) -> nomReg(n), (fem,n) -> "e" + nomReg(n) ;

elision = "e", "'" ("a", "e", "i", "o", "u", "y", "\\'e") ;

ne = "n" + elision ;

que = "qu" + elision ;

16 M�aenp�a�a and Ranta: The type theory and type heker of GF

indef(Gen) = ase (g) -> "un" + adjReg(g,sg) ;

tout(Gen,Num) = ase (mas,sg) -> "tout", (mas,pl) -> "tous",

(fem,n) -> "tout" + adjReg(fem,n) ;

etre(Num,Mod) = ase (sg,ind) -> "est", (sg,subj) -> "soit",

(pl,ind) -> "sont", (pl,subj) -> "soient" ;

Categories

Text ; Set - Num - Gen ; Prop - Mod ; Elem(Set) - Cas - Gen ; Proof(Prop) ;

Variables x,y,z,k,l,m,n,a,b, (Elem) ; h,r,t (Proof) ;

Rules

ThmWithProof : (A:Prop)(a:Proof(A))Text - (* theorem with a proof *)

"Th\\'eor\\`eme ." A(ind) ". D\\'emonstration ." a "." ; (* shows the proof *)

ThmWithTrivialProof : (A:Prop)(a:Proof(A))Text -

"Th\\'eor\\`eme ." A(ind) ". D\\'emonstration . Triviale ." ; (* hides proof *)

Conj : (A:Prop)(B:Prop)Prop - (* logial onstants *)

ase (m) -> A(m) "et" B(m) ;

Univ : (A:Set)(B:(x:Elem(A))Prop)Prop -

ase (m) -> "pour" tout(Gen(A),pl) "les" A(pl) x�B "," B(m) ;

Abs : Prop -

ase (ind) -> "nous avons une ontradition",

(subj) -> "nous ayons une ontradition" ;

Neg : (A:Prop)Prop -

ase (m) -> "il" ne etre(sg,m) "pas vrai" que A(subj) ;

ConjI : (A:Prop)(B:Prop)(a:Proof(A))(b:Proof(B))Proof(Conj(A,B)) - (* proofs *)

a "." b ". Don" A(ind) "et" B(ind) ;

ConjEl : (A:Prop)(B:Prop)(:Proof(Conj(A,B)))Proof(A) -

 ". A fortiori," A(ind) ;

ConjEr : (A:Prop)(B:Prop)(:Proof(Conj(A,B)))Proof(B) -

 ". A fortiori," B(ind) ;

NegI : (A:Prop)(b:(x:Proof(A))Proof(Abs))Proof(Neg(A)) -

"supposons" que A(ind) "." b ". Don , il n'est pas vrai" que A(subj) ;

NegE : (A:Prop)(:Proof(Neg(A)))(a:Proof(A))Proof(Abs) -

a ". Mais" ". Nous avons une ontradition" ;

UnivI : (A:Set)(B:(x:Elem(A))Prop)(b:(x:Elem(A))Proof(B(x)))Proof(Univ(A,B)) -

"onsid\\'erons" indef(Gen(A)) A(sg) x�b "arbitraire." b ". Don , pour"

tout(Gen(A),pl) "les" A(pl) x�B "," B(ind) ;

UnivE : (A:Set)(B:(x:Elem(A))Prop)(:Proof(Univ(A,B)))(a:Elem(A))Proof(B(a)) -

 ". Don" B(ind) "ave" x�B "rempla\\'e par" a(nom) ;

AbsE : (C:Prop)(:Proof(Abs))Proof(C) -

 ". Nous onluons" que C(ind) ;

Hypo : (A:Prop)(a:Proof(A))Proof(A) -

"par hypoth\\`ese," A(ind) ;

(* Definitions as in English *)

