Explicit Substitutions for Linear Logical Frameworks:

1

Preliminary Results *

Iliano Cervesato Valeria de Paiva and Eike Ritter
Computer Science Department School of Computer Science
Stanford University University of Birmingham
Stanford, CA 94305-9045 — USA Birmingham, B15 2TT — UK
iliano@cs.stanford.edu {V.DePaiva| E.Ritter} @cs.bham.ac.uk
Abstract

We present the calculus xdLLF™ and experiment with aspects of its meta-theory. xdLLF ™ integrates
linear explicit substitutions in de Bruijn notation into the simply-typed fragment of the linear logical
framework LLF. After observing that the expected o-rules invalidate subject reduction, we devise
a specification of g-normalization inspired by the big-step semantics of programming languages, and
prove it correct.

Introduction

Explicit substitutions [1] have been used to rationalize the implementation of many systems based on
various A-calculi, such as functional languages, logical frameworks, and higher-order logic programming
languages. As linear A-calculi have grown in popularity, so has the need for solid and efficient support
for their implementation. A linear adaptation of explicit substitution techniques is a prime candidate.
The authors of this paper have separately explored this possibility in two distinct settings:

e In [6], Ghani, de Paiva, and Ritter have designed the language xDILL, geared towards the imple-

mentation of functional languages. It is based on Barber and Plotkin’s DILL (Dual Intuitionistic
Linear Logic) [2], and is characterized, among other things, by variables of two different kinds:
linear variables are used exactly once, and intuitionistic variables can be accessed arbitrarily many
times. The extra information about usage of linear variables makes it possible to apply various op-
timizations like update-in-place of aggregate data structures such as arrays, or savings in memory
allocation. This significantly influenced the design decisions of the calculus in [6].

On the other hand, Cervesato and Pfenning have based their implementation of the linear logical
framework LLF [4] on a form of linear explicit substitution, although they did not thoroughly
investigate its meta-theory. LLF is a close relative of DILL (for example, both distinguish linear
and intuitionistic variables). LLF is however designed as a logical framework, which forces a set
of operations on terms that are not found in DILL. An implementation of LLF must support

*The first author was partially supported by DoD MURI, “Semantic Consistency in Information Exchange” as ONR

Grant N00014-97-1-0505. The second and third authors were partially funded by ESPSRC grant GR/28296, “The eXplicit
Substitution Linear Abstract Machine”.

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

term reconstruction to make meta-representation practical, permit logic programming-style proof-
search, and accommodate the forthcoming addition of theorem proving capabilities. Each of these
functionalities relies on (higher-order) unification and therefore an explicit substitution calculus for
LLF must handle meta-variables and their manipulation.

In this paper, we bring our experiences together in trying to isolate some of the issues that arise when
combining linearity and explicit substitutions in our different settings. Although the results reported
here are very preliminary, this work had the effect of furthering our understanding of these problems.

We start from the linear A-calculus LLF~ (Section 2), which includes operators from both LLF and
DILL while ignoring complex features such as dependent types and an unrestricted “!” operator. LLF™
enjoys properties such as subject reduction, normalization and confluence. Then, by using a standard
process [1], we construct the calculus xdLLF ™ (Section 3) which incorporates substitutions as a separate
syntactic category in LLF™ (along the way, we also switch to a de Bruijn notation, motivated by our
interests in efficient implementations). This has the positive effect of turning the meta-level substitutions
produced by the S-reductions into explicit substitutions that can be manipulated within the calculus. At
this point, the standard approach [1] would require us to express the implicit procedure to carry out the
application of a meta-level substitution as a set of rewrite rules about explicit substitutions (o-rules):
the transcription is correct if we can prove that there is a reduction strategy which eliminates all explicit
substitutions and terminates with the A-term that would be produced by making all explicit substitutions
implicit.

We deviate from this path since the o-rules we would obtain for xdLLF ™ interfere with linearity and
allow rewriting well-typed terms into ill-typed objects. In [6], we solved this problem by splitting the
linear substitutions according to the usage of the linear variables. This approach may cause a significant
overhead when implemented, and does not scale up when extending xdLLF~ with metavariables. We
instead explore a different path (Section 4): we give a syntactic characterization of the set of g-normal
terms (to which no o-rule would be applicable) as the language xdLLF , outline a type-preserving proce-
dure that reduces a typable xdLLF ™~ term to its o-normal form, and prove its correctness. Although this
approach deals correctly with linearity, it still has several drawbacks. First, it fixes the reduction strategy,
which is instead open when o-rules are used. Second, it does not allow interleaving o-normalization steps
with other reductions. Third, it does not scale up to handle meta-variables. Nonetheless, we see it as a
valuable first step toward addressing these issues more satisfactorily (Section 5).

2 LLF™

The calculus LLF ™, that we use as our starting point, enriches the simply-typed fragment of the language
of the linear logical framework LLF [4] with multiplicative pairs and unit. On the other hand, it extends
the language DILL [2, 6] with additives and with intuitionistic functions, but sacrifices its full-fledged
exponential “!”. LLF™ is defined as follows:

Types: A= a Terms: M := «x
| T | () (additive unit)
| A1 & Ay | (My, M) | fstM | snd M (additive pairs)
| 1 | o | let My beein M, (multiplicative unit)
| AL ® A, | Mi®Ms | let M7 be z1®x5 in My (multiplicative pairs)
| A —o Ay | \eTA M | Mi"M, (linear functions)
| A; — A | Az:A.M | My M, (intuitionistic functions)

[\)

EXPLICIT SUBSTITUTIONS FOR LINEAR LOGICAL FRAMEWORKS: PRELIMINARY RESULTS

Context splitting

U =v; X¥,
1fX _dot 1fX_int
=N (U,z:A) = (¥1,z: A) X (Uy,z: A)
\I/Z\IHM‘I’Q \IJ:\PIM‘IJZ
1FX _linl 1FX_lin2
(T,z7A) = (T1,2TA) X T, (T,z7A) =T X (Ty,27A)
Typing
— — 1If _lvar — — 1If _ivar
U, riA UV EFz: A Ur: AUV EFz: A
— ufy) (No elimination rule for T)
E(O):T
+-M:A YFN:B UHM:A&B UHM:A&B
1If _apair — lIf _fst —— lIf snd
U+ (M,N): A& B UFfstM: A UksndM:B
=9, X¥, ¥;-FM:1 ¥,-N:B
— 11f e 11f _lete
Uhe:l U let M beeinN: B
U=U XU U FM:A U>+-N:B UV=U, XU, U FM:4 QA \112,1'1?A1,£L'2?A2|—N:B
U+ MeN:AQB fhe-e Uk let M bez1®z5in N : B fif-tete
VA M: B V=0, XU, U, FM:A—oB U:FN:A
" 1If _llam 1If _lapp
UM A M:A—-oB v+MN:B
V,z:AFM:B VFM:A—-B TUFN:A
1If _ilam 1If _iapp
UhHX:AM:A—B V+-MN:B

Figure 1: Typing in LLF™

Here z and a range over variables and base types, respectively. In addition to the names displayed above,
we will often use N and B for terms and types, respectively. As usual, we rely on a context to assign
types to free variables.

Contexts: U= | ¥, z:A | ¥,z7A

where 7 A and z: A stand for a linear and a reusable (intuitionistic) assumption of type A, respectively.

The notions of free and bound variables are adapted from the simply typed A-calculus. As usual, we
identify terms that differ only by the name of their bound variables. Contexts are treated as sequences,
we promote “,” to denote their concatenation and omit writing “” when unnecessary. As usual, we
require variables to be declared at most once in a context. Finally, we write ¥ for the intuitionistic
part of context U. It is obtain by removing every linear declaration z% A from ¥. See [4] for a formal
definition.

The typing judgment for LLF™ has the form ¥+ M : A (read “M has type A in ¥”) and is defined
in Figure 1. It relies on the auxiliary context splitting judgment ¥ = ¥; X W,. Due to space reasons, we
shall refer the reader to [4] for a discussion of these rules.

The rewriting semantics of LLF ~ is given by the usual S-reductions, commuting conversions (generated
by the two forms of let), and, depending on one’s taste, n-rules. We will only marginally be concerned
with these various rules in the sequel. Definitions and properties of interest can be extrapolated from [4]

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

and [6], or found in [3].

A nameless variant of LLF ™ is obtained by straightforwardly extending the standard de Bruijn trans-
formation [5]. As in the case of the A-calculus, this translation preserves typing and reductions. The
resulting calculus, dLLF 7, is at the basis of our current experimentation with explicit substitutions. Space
reasons prevent us from discussing it further (see [3] for more). However, its language and typing rules
correspond exactly to the term fragment of the o-normal calculus xdLLF discussed in Section 4.

3 xdLLF~

In [6], we devised a calculus of linear explicit substitutions based on named variables. Here, we instead
investigate a variant in the style of [1] that uses the de Bruijn notation (this is mainly motivated by im-
plementation considerations). Even in this restricted setting, there are many ways to incorporate explicit
substitution into LLF™ (or dLLF ™). In designing xdLLF ~, we chose to model (normal) substitutions on
the structure of contexts. We mention other possibilities in Section 5.

The types of xdLLF™ are the same as LLF~. Its term constructors are adapted from this language
as done in [1]. Substitutions may contain the linear extension operator “2” to account for terms to be
substituted for linear variables. Since de Bruijn numbers are positional indices in a substitution (and a
context), we use “_” to mark a term that has already been linearly substituted. Terms and substitutions
are defined by the following grammar:

Terms: Substitutions:
tu= 1 (variable indices) o= Id (identity)
| () (additive unit) | 1 (shift)
| (ti,t2) | fstt | sndt (additive pairs) | tio (linear extension)
| o | letetyinty (multiplicative unit) | _To (used linear extension)
| t19ts | let®t;inty (multiplicative pairs) | t.o (intuitionistic extension)
| Xat | (linear functions) | 01002 (composition)
| Aa.t | tits (intuitionistic functions)
| t[o] (substitution application)

In addition to t and o, we will use s and 7 to denote xdLLF ™~ terms and substitutions, respectively.
Contexts in xdLLF™ are the nameless variant of LLF™ contexts, with again the marker “_” to account
for the positional nature of de Bruijn indices when dealing with used assumptions.

Contexts: r == . | I'fA | I';_ | IA

As in LLF~, we write I to indicate the intuitionistic portion of I'. It is obtain by replacing every linear
assumption with “_”.

The typing judgments for terms and substitutions are denoted I' izg ¢ : A (read “t has type A in)
and I' kg o : T (read “o maps terms from I to T”), respectively. As for LLF ™, their definition relies on
the auxiliary context splitting judgment I' = I'y M I'y. The rules for these three judgments are displayed
in Figure 2.

Rewrite rules in the 3, commuting and possibly 7 families are adapted from LLF™. As we said, we
will not deal with them in this paper (see [3, 6] for more on this topic).

At this point, papers on explicit substitutions typically present a long list of o-reductions aimed at
confining substitution application and composition to specific positions in a term and a substitution,

EXPLICIT SUBSTITUTIONS FOR LINEAR LOGICAL FRAMEWORKS: PRELIMINARY RESULTS

Context Splitting
=TI XTIy =TI XTIy
—— xdlIf X _dot xdIlIf X _int xdIlIf X _used
=N D,A=T;, AN, A D =015 XDy,
F:F1I><1F2 F:FIMF2
xdlIfX_linl xdIlIf X _lin2
DSA=T7AND, [TA=TD1 _MDy A
Terms
— xdIIf _lvar — xdlIf _ivar
MNAksl1: A AR 1: A
— xdlIf() (No elimination rule for T)
Pha (): T
kyt: A Thkys:B lkat: A& B lkat: A& B
xdlIf _apair ———— xdlIf _fst ——— xdlif _snd
Dy (t,s)y: A& B Dy fstt: A I'kgsndt: B
F=F1|>4F2 Fl I;dt:]. FdeS:B
- xdlIf e xdlIf _lete
Ikge:1 I'kyletetins: B
=01 NIy Tihkgt:A I'okgs: B F=T1XI DMikat: A1i®Ay T2lA1TAskas: B
Thatos: A@B 0 Thyletotins: B xlifete
ITAkat: B D=0 X[y Dihkyt:A—oB Tokgs:A
" xdllIf _llam xdlif _lapp
ki Aa.t: A—oB I'ket's: B
FyAlidt:B 'kt: A—> B rl;dS:A
xdlIIf _ilam xdlIf _iapp
I'kg Aa.t: A—B I'kqts: B
Phyo:I" D'igt: A
xdlIf _sub
Ikatlo]: A
Substitutions
— xdlIf _.Id —— xdlIf _uShift — xdIIf _iShift
held:T [_kgt:T D Akgt:T
P=T;XT> Tikat:A Tokgo:T Ikyo: T Thit: A T'hgo: I’
xdllf 1dot —— xdllf_udot xdlIf _idot
Fkytto:T'7A Py %o : TV _ Fkyt.o:T' A
Phy7: IV TVhkyo:T"
xdIlIf .cmp
Fhkyoor: T

Figure 2: Typing in xdLLF~

respectively. Their systematic application yields o-normal forms. This is very convenient as o-rules can
be interleaved with other reductions to efficiently reach canonical forms.

Unfortunately, linear explicit substitutions are not as cooperative. Indeed, pushing a substitution 7
through a multiplicative operator typically requires splitting it non-deterministically. This may be difficult
unless 7 is in o-normal form. Moreover, not every split is sound: constraints (e.g. typing information)

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

are needed to guarantee correctness. In [6], we avoided unsound splits by checking for free variables and
splitting the substitution accordingly. A direct implementation of this approach requires either to collect
them by visiting every subterm of a binary multiplicative operator, or, less naively, to maintain a list of
free linear variables for every such term. This is not satisfactory since both techniques involve a significant
overhead. Furthermore, checking for free variables does not scale up to languages with meta-variables
(needed in linear logical frameworks and higher-order linear logic programming).

The approach we propose here replaces o-rules with a declarative specification of how to transform
an arbitrary typable xdLLF™ term or substitution into an equivalent object in g-normal form. This
corresponds to using a big-step as opposed to a small-step semantics in programming language theory.
We handle substitution splitting by o-normalizing substitutions before applying them, and by using a
typing derivation to guide the splitting process. Although this approach deals correctly with linearity, it
still has several drawbacks. First, it fixes the o-reduction strategy, which is instead left open when o-rules
are used. Second, it does not allow interleaving o-normalization steps with other reductions. Third, as
for the proposal in [6], it does not scale up to handle meta-variables. Nonetheless, we see it as a valuable
first step toward addressing these issues more satisfactorily.

4 o-Normalization

In a o-normal term, every substitution application has the form 1[fo...01]. If there are j instances of
1, this effectively implements the de Bruijn index j 4+ 1. Similarly, o-normal substitutions consist of a list
of linear or intuitionistic o-normal substitution-terms terminated by the composition of a number of 1.
They correspond to environments in a functional programming setting.

We formalize this description as a language that we call xdLLF :

o-normal terms: o-normal substitutions:

wn= i pu= (shifts)
| () | ulp (linear extension)
| (ui,u2) | fstu | sndu | _Tp (used linear extension)
| o | letewsinus | u.p (intuitionistic extension)
| wi®us | let®wu; inus
| Aa.u | wi"us
| Aa.u | wius

where i is a positive integer, 1, 2, 3, ... (de Bruijn index) and j is a non-negative integer (TO, 1,12, ete.

are all legal substitutions). Types and contexts are as in xdLLF™. So are their operations. The typing
rules for xdLLF are given in Figure 3. Reductions are adapted from xdLLF™.

We recover xdLLF™ terms and substitutions by rewriting ¢ as I[T"*l], and then recursively expanding
M to the composition of j shifts in an xdLLF_ term or substitution. It can be shown that this translation
preserves typing and reductions [3].

The o-normalization procedure we propose is partially displayed in Figure 4. It is articulated in a num-
ber of judgments of the form L —» R where the right-hand side R is a o-normal term (or substitution),
while the left-hand side L is an xdLLF ™~ term (resp. substitution) in the zones marked “congruences”, or
a o-normal substitution py applied to an xdLLF ™~ term (resp. composed with an xdLLF ™~ substitution) in
the zones labeled “reductions”. We rely on several auxiliary operations and judgments. The intuitionistic
part p of a g-normal substitution p is obtained by replacing every linear substitution term in p with “_7”,

EXPLICIT SUBSTITUTIONS FOR LINEAR LOGICAL FRAMEWORKS: PRELIMINARY RESULTS

Terms
— xdlIf, _lvar S — xdlIf, _ivar
MNMAks, 1: A NAKg, 1: A
MNkq, t: A kg, i: A
— xdllf, _Iskip — xdllIf, _iskip
T, b, i+1:A4 I,Bhy, i+1:A
— xdlif, () (No elimination rule for T)
Pha, (}: T
Tha, u: A Thy, v:B Tk, u: A& B Tk, u: A& B
xdllf, _apair _— xdlIf, _fst —_— xdllf, _snd
Ik, (u,v): A& B Ik, fstu: A k4, sndu: B
F=F1|>4F2 Fllyd,u:l F2|7dU’UZB
— xdlif, _e xdlif, _lete
Nkq, @: 1 I'kg, leteuwinv: B
F:F1|>4F2 FllydU’LLZA F2|7dU’UZB F:F1I>4F2 Fllydau:A1®A2 Fz:Al:AzdeU:B
ke, u®v: A® B xdlifo -© I'kq, let®uinv: B xdllf et
Ak, w: B =01 M0y Tihky, u:A—oB Toky, v:A
- xdllf, _llam xdllf, _lapp
I, Aa.u:A—oB T, wv:B
I'NAky, u: B Pha, u: A-B Thy, v:A
xdllf, _ilam xdllf, _iapp
Mke, Aa.u: A— B I'kg, uv:B
Substitutions)]
Tha, tV: T Tha, ¥ : T
— xdlif,_Id _— xdllf, _uShift _— xdllf, _iShift
Chy, 1°:T 05 kg, VT D, Ak, .1
F=F1|>4F2 Fllydv’u,:A le;dvp:r‘, F';dap:r‘, fl;dau:A F';dapirl
<dlIIf, Jldot xdlIf, _udot xdlIf, _idot

Tha, u'p:T'A Tha, _tp:T'5_ Pha, u.p: T A

Figure 3: Typing in xdLLF

as for contexts. The substitution splitting judgment p = p; X ps is also defined similarly to the analogous
relation on contexts; notice that it operates only on xdLLF . substitutions; observe also that, like context
splitting, this operation is non-deterministic (e.g. u>1° can be split as either uw>1° = w71 X _71° or
w1t =_"1"x uTTO). Finally, we have the linear and intuitionistic binder crossing operations: +(p) and
+(p), and the associated reduction judgment (not displayed). They are what it takes to push the sub-
stitution p through a binder: intuitively, they correspond to 17(po1) and 1. (po1), respectively. These
omitted definitions can be found in [3].

The procedure in Figure 4 works as follows: it walks through an xdLLF™ term using the congruence
rules till the first substitution application ¢[7] is encountered. Then, it normalizes 7 to pp and switches
to the reduction rules to push pg inside ¢. This recursive descent terminates when constructors without
arguments are processed.

This procedure terminates since each constructor in an xdLLF™ term or substitution is visited exactly
once by the congruence or reduction judgments. However, it can fail unless it is guided by a typing

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

Terms, congruences

(The obvious cases have been omitted) co-sub

Terms, reductions

- r._lvar - r__ivar —_ r,_shift
1ulp5] —»r u l u. 7] —ru 1] —»p j+ 1
ro ()
Olpo] —» ()
tlpo] —»» u s[po] —», v . tlpo] —>» u tlpo] —»r u
t)po] —r w0y (st D) lpo] —mr fotu (ond)po] —rr st
po=p1™Mpz tlpr] —ru slp2] —r v
o[po] —» ® i (letetins)[po] —», letewinv e

po=p1™Mpz tlpr] —ru slp2] —r v

re-®

(t®s)[po] —»» uev

po=p1Xpz tlpr] —ru F(FH(p2)) —>n py s[pb] —r v

ro-let®
(let® tin s)[po] —>» let®winw
F(po) —>n po tlpo] —>r u - po=p1Xps tp1] —ru s[p2] —r v .
(\a-t)lpo] —> Aavu (£5)[po] —>r "o T
+(po) —»n po t[po] —>r u) tlpo] —»r u s[po] —»rv
(alpl — Asw ol —r wo

l l
oopo —»r py tlpo] —>r u
ro-sub

(tle])lpo] —>+ u

Substitutions, congruences
. , T—>py TOpy—>rp
(The obvious cases have been omitted) co—cmp

Substitutions, reductions
_ ry-cld
Ido PO —>r PO

— ry—cShiftn ————————— r,_cShiftu —————— r,_cShifti
tot —, T o(=%po) —>r po To(u. po) =+ po

po=p1Xpy tlpr] —»ru copy —»,p o0po —>r p
ro-ldot r,—udot

(t o)opo —r ulp (=7g)opo —»r _Tp

—— ’ ’
t[po] —r u copy —»y p TOpPy —»r Py TOPY —Hp P
ro,-idot ro_cmp

(t.c)ops —»r u.p (coT)0ps —r p

Figure 4: o-Normalization of xdLLF~ Terms and Substitutions

EXPLICIT SUBSTITUTIONS FOR LINEAR LOGICAL FRAMEWORKS: PRELIMINARY RESULTS

derivation, even when starting from a typable term (or substitution). Indeed, objects such as pg in
rule r,_e (Figure 4) act as constraints on the terms (or substitutions) that can be acceptably processed.
More precisely, in a given context only a few (just one in the absence of ()) of the choices for splitting
a substitution will satisfy these constraints, namely the ones which split the substitution according to
the linear variables used in the corresponding terms. The typing rules of xdLLF_ ensure that only those
splits can be used for reduction. The substitution splitting judgment can generate substitutions that will
not pass this test, unless properly controlled. However, no problem arises when o-reduction is supervised
by a typing derivation, as stated by the following theorem. (We abbreviate “D is a derivation of judgment
J” as D J.)

Theorem 4.1 (Subject reduction for —»)

i. If T =T Rkat: A, then there exist u, R, and U such that R =t —u and U T kg, u: A.
it. If ST kg o : 1", then there exist p, R, and V such that R0 —» p and V =Tky p:T".

Proof
After proper generalization of the statement, the proof proceeds by structural induction on § and 7. It relies on
several auxiliary results omitted for space reasons. See [3] for details. i

We expect our o-normalization procedure to be a function (even when no accompanying typing
derivation is given), but we have not had the time yet to verify this conjecture. Further results about
this procedure can be found in [3].

5 Future Developments

We have described the linear A-calculus with explicit substitutions xdLLF~, which appears to be a
reasonable playground for experimenting with linear explicit substitutions as it isolates some of the most
delicate interactions between explicit substitutions and linearity. This paper analyzed one approach to
coping with them, although it has several drawbacks that make it unsuitable as a foundational calculus
for a linear logical framework: in particular, it cannot be directly extended to handle meta-variable
(essential for logical framework implementations), and it does not allow interleaving o-reductions with
other reduction steps (making it very rigid). Nonetheless, we see it as a valuable first step toward
addressing these issues more satisfactorily. A few immediate questions arise from this endeavor:

What happens if we use dual contexts as in xDILL?

- What if we make substitutions dual too?

- How do named variables influence the result (see also [7] on this)?

- Do we still get correct o-normal terms if we omit splitting substitutions?
- Can we define a usable notion of weak o-normal forms?

- How do meta-variables fit into all this?

Answers to some of these questions should prove highly relevant to the implementation of linear logical
frameworks, linear functional languages and other systems based on linear A-calculi. We are currently
experimenting with languages that incorporate each of these ideas.

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

References

[1]
[2]
[3]
[4]

[5]

[7]

Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions. Journal of
Functional Programming, 1(4):375-416, October 1991.

Andrew Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Laboratory for Foundations
of Computer Science, University of Edinburgh, 1997.

Iliano Cervesato, Valeria de Paiva, and Eike Ritter. Explicit substitution for linear logical frameworks. Un-
published manuscript, http://www.stanford.edu/~iliano/papers/Forthcoming/xd11f.ps.gz.

Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke, editor, Proceedings of the
Eleventh Annual Symposium on Logic in Computer Science — LICS’96, pages 264—275, New Brunswick, New
Jersey, July 1996. IEEE Computer Society Press.

N.G. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for automatic formula manipulation.
Indagationes Mathematicae, 34:381-392, 1972.

Neil Ghani, Valeria de Paiva, and Eike Ritter. Linear explicit substitutions. In Proceedings of the First Interna-
tional Workshop on Explicit Substitutions: Theory and Applications to Programs and Proofs — WESTAPP’98,
Tsukuba, Japan, March 1998.

Eike Ritter and Valeria de Paiva. On explicit substitution and names (extended abstract). In P. Degano,
R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings of the 24th International Colloquium on Au-
tomata, Languages and Programming, pages 248-258. Springer-Verlag LNCS 1256, 1997.

10

