
Expli
it Substitutions for Linear Logi
al Frameworks:

Preliminary Results

�

Iliano Cervesato

Computer S
ien
e Department

Stanford University

Stanford, CA 94305{9045 | USA

iliano�
s.stanford.edu

Valeria de Paiva and Eike Ritter

S
hool of Computer S
ien
e

University of Birmingham

Birmingham, B15 2TT | UK

fV.DePaiva jE.Ritterg�
s.bham.a
.uk

Abstra
t

We present the
al
ulus xdLLF

�

and experiment with aspe
ts of its meta-theory. xdLLF

�

integrates

linear expli
it substitutions in de Bruijn notation into the simply-typed fragment of the linear logi
al

framework LLF. After observing that the expe
ted �-rules invalidate subje
t redu
tion, we devise

a spe
i�
ation of �-normalization inspired by the big-step semanti
s of programming languages, and

prove it
orre
t.

1 Introdu
tion

Expli
it substitutions [1℄ have been used to rationalize the implementation of many systems based on

various �-
al
uli, su
h as fun
tional languages, logi
al frameworks, and higher-order logi
 programming

languages. As linear �-
al
uli have grown in popularity, so has the need for solid and eÆ
ient support

for their implementation. A linear adaptation of expli
it substitution te
hniques is a prime
andidate.

The authors of this paper have separately explored this possibility in two distin
t settings:

� In [6℄, Ghani, de Paiva, and Ritter have designed the language xDILL, geared towards the imple-

mentation of fun
tional languages. It is based on Barber and Plotkin's DILL (Dual Intuitionisti

Linear Logi
) [2℄, and is
hara
terized, among other things, by variables of two di�erent kinds:

linear variables are used exa
tly on
e, and intuitionisti
 variables
an be a

essed arbitrarily many

times. The extra information about usage of linear variables makes it possible to apply various op-

timizations like update-in-pla
e of aggregate data stru
tures su
h as arrays, or savings in memory

allo
ation. This signi�
antly in
uen
ed the design de
isions of the
al
ulus in [6℄.

� On the other hand, Cervesato and Pfenning have based their implementation of the linear logi
al

framework LLF [4℄ on a form of linear expli
it substitution, although they did not thoroughly

investigate its meta-theory. LLF is a
lose relative of DILL (for example, both distinguish linear

and intuitionisti
 variables). LLF is however designed as a logi
al framework, whi
h for
es a set

of operations on terms that are not found in DILL. An implementation of LLF must support

�

The �rst author was partially supported by DoD MURI, \Semanti
 Consisten
y in Information Ex
hange" as ONR

Grant N00014-97-1-0505. The se
ond and third authors were partially funded by ESPSRC grant GR/28296, \The eXpli
it

Substitution Linear Abstra
t Ma
hine".

1

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

term re
onstru
tion to make meta-representation pra
ti
al, permit logi
 programming-style proof-

sear
h, and a

ommodate the forth
oming addition of theorem proving
apabilities. Ea
h of these

fun
tionalities relies on (higher-order) uni�
ation and therefore an expli
it substitution
al
ulus for

LLF must handle meta-variables and their manipulation.

In this paper, we bring our experien
es together in trying to isolate some of the issues that arise when

ombining linearity and expli
it substitutions in our di�erent settings. Although the results reported

here are very preliminary, this work had the e�e
t of furthering our understanding of these problems.

We start from the linear �-
al
ulus LLF

�

(Se
tion 2), whi
h in
ludes operators from both LLF and

DILL while ignoring
omplex features su
h as dependent types and an unrestri
ted \!" operator. LLF

�

enjoys properties su
h as subje
t redu
tion, normalization and
on
uen
e. Then, by using a standard

pro
ess [1℄, we
onstru
t the
al
ulus xdLLF

�

(Se
tion 3) whi
h in
orporates substitutions as a separate

synta
ti

ategory in LLF

�

(along the way, we also swit
h to a de Bruijn notation, motivated by our

interests in eÆ
ient implementations). This has the positive e�e
t of turning the meta-level substitutions

produ
ed by the �-redu
tions into expli
it substitutions that
an be manipulated within the
al
ulus. At

this point, the standard approa
h [1℄ would require us to express the impli
it pro
edure to
arry out the

appli
ation of a meta-level substitution as a set of rewrite rules about expli
it substitutions (�-rules):

the trans
ription is
orre
t if we
an prove that there is a redu
tion strategy whi
h eliminates all expli
it

substitutions and terminates with the �-term that would be produ
ed by making all expli
it substitutions

impli
it.

We deviate from this path sin
e the �-rules we would obtain for xdLLF

�

interfere with linearity and

allow rewriting well-typed terms into ill-typed obje
ts. In [6℄, we solved this problem by splitting the

linear substitutions a

ording to the usage of the linear variables. This approa
h may
ause a signi�
ant

overhead when implemented, and does not s
ale up when extending xdLLF

�

with metavariables. We

instead explore a di�erent path (Se
tion 4): we give a synta
ti

hara
terization of the set of �-normal

terms (to whi
h no �-rule would be appli
able) as the language xdLLF

�

�

, outline a type-preserving pro
e-

dure that redu
es a typable xdLLF

�

term to its �-normal form, and prove its
orre
tness. Although this

approa
h deals
orre
tly with linearity, it still has several drawba
ks. First, it �xes the redu
tion strategy,

whi
h is instead open when �-rules are used. Se
ond, it does not allow interleaving �-normalization steps

with other redu
tions. Third, it does not s
ale up to handle meta-variables. Nonetheless, we see it as a

valuable �rst step toward addressing these issues more satisfa
torily (Se
tion 5).

2 LLF

�

The
al
ulus LLF

�

, that we use as our starting point, enri
hes the simply-typed fragment of the language

of the linear logi
al framework LLF [4℄ with multipli
ative pairs and unit. On the other hand, it extends

the language DILL [2, 6℄ with additives and with intuitionisti
 fun
tions, but sa
ri�
es its full-
edged

exponential \!". LLF

�

is de�ned as follows:

Types: A ::= a

j >

j A

1

&

A

2

j 1

j A

1

A

2

j A

1

�ÆA

2

j A

1

!A

2

Terms: M ::= x

j hi

j hM

1

;M

2

i j fstM j sndM

j � j letM

1

be � inM

2

j M

1

M

2

j letM

1

bex

1

x

2

inM

2

j

^

�x :̂A:M j M

1

^M

2

j �x :A:M j M

1

M

2

(additive unit)

(additive pairs)

(multipli
ative unit)

(multipli
ative pairs)

(linear fun
tions)

(intuitionisti
 fun
tions)

2

Expli
it Substitutions for Linear Logi
al Frameworks: Preliminary Results

Context splitting

llf1 dot

� = � 1 �

	 = 	

1

1 	

2

llf1 int

(; x :A) = (

1

; x :A) 1 (

2

; x :A)

	 = 	

1

1 	

2

llf1 lin1

(; x :̂A) = (

1

; x :̂A) 1 	

2

	 = 	

1

1 	

2

llf1 lin2

(; x :̂A) = 	

1

1 (

2

; x :̂A)

Typing

llf lvar

	; x :̂A;	

0

` x : A

llf ivar

	; x :A;	

0

` x : A

llf hi

	 ` hi : >

(No elimination rule for >)

	 `M : A 	 ` N : B

llf apair

	 ` hM;Ni : A

&

B

	 `M : A

&

B

llf fst

	 ` fstM : A

	 ` M : A

&

B

llf snd

	 ` sndM : B

llf �

	 ` � : 1

	 = 	

1

1 	

2

	

1

`M : 1 	

2

` N : B

llf let�

	 ` letM be � inN : B

	 = 	

1

1 	

2

	

1

`M : A 	

2

` N : B

llf

	 `M

N : A
B

	 = 	

1

1 	

2

	

1

`M : A

1

A

2

	

2

; x

1

:̂A

1

; x

2

:̂A

2

` N : B

llf let

	 ` letM bex

1

x

2

inN : B

	; x :̂A `M : B

llf llam

	 `

^

�x :̂A:M : A�ÆB

	 = 	

1

1 	

2

	

1

`M : A�ÆB 	

2

` N : A

llf lapp

	 `M^N : B

	; x :A `M : B

llf ilam

	 ` �x :A:M : A!B

	 `M : A!B 	 ` N : A

llf iapp

	 ` M N : B

Figure 1: Typing in LLF

�

Here x and a range over variables and base types, respe
tively. In addition to the names displayed above,

we will often use N and B for terms and types, respe
tively. As usual, we rely on a
ontext to assign

types to free variables.

Contexts: 	 ::= � j 	; x :A j 	; x :̂A

where x :̂A and x :A stand for a linear and a reusable (intuitionisti
) assumption of type A, respe
tively.

The notions of free and bound variables are adapted from the simply typed �-
al
ulus. As usual, we

identify terms that di�er only by the name of their bound variables. Contexts are treated as sequen
es,

we promote \;" to denote their
on
atenation and omit writing \�" when unne
essary. As usual, we

require variables to be de
lared at most on
e in a
ontext. Finally, we write 	 for the intuitionisti

part of
ontext 	. It is obtain by removing every linear de
laration x :̂A from 	. See [4℄ for a formal

de�nition.

The typing judgment for LLF

�

has the form 	 ` M : A (read \M has type A in 	") and is de�ned

in Figure 1. It relies on the auxiliary
ontext splitting judgment 	 = 	

1

1 	

2

. Due to spa
e reasons, we

shall refer the reader to [4℄ for a dis
ussion of these rules.

The rewriting semanti
s of LLF

�

is given by the usual �-redu
tions,
ommuting
onversions (generated

by the two forms of let), and, depending on one's taste, �-rules. We will only marginally be
on
erned

with these various rules in the sequel. De�nitions and properties of interest
an be extrapolated from [4℄

3

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

and [6℄, or found in [3℄.

A nameless variant of LLF

�

is obtained by straightforwardly extending the standard de Bruijn trans-

formation [5℄. As in the
ase of the �-
al
ulus, this translation preserves typing and redu
tions. The

resulting
al
ulus, dLLF

�

, is at the basis of our
urrent experimentation with expli
it substitutions. Spa
e

reasons prevent us from dis
ussing it further (see [3℄ for more). However, its language and typing rules

orrespond exa
tly to the term fragment of the �-normal
al
ulus xdLLF

�

�

dis
ussed in Se
tion 4.

3 xdLLF

�

In [6℄, we devised a
al
ulus of linear expli
it substitutions based on named variables. Here, we instead

investigate a variant in the style of [1℄ that uses the de Bruijn notation (this is mainly motivated by im-

plementation
onsiderations). Even in this restri
ted setting, there are many ways to in
orporate expli
it

substitution into LLF

�

(or dLLF

�

). In designing xdLLF

�

, we
hose to model (normal) substitutions on

the stru
ture of
ontexts. We mention other possibilities in Se
tion 5.

The types of xdLLF

�

are the same as LLF

�

. Its term
onstru
tors are adapted from this language

as done in [1℄. Substitutions may
ontain the linear extension operator \ :̂ " to a

ount for terms to be

substituted for linear variables. Sin
e de Bruijn numbers are positional indi
es in a substitution (and a

ontext), we use \ " to mark a term that has already been linearly substituted. Terms and substitutions

are de�ned by the following grammar:

Terms:

t ::= 1

j hi

j ht

1

; t

2

i j fst t j snd t

j � j let� t

1

in t

2

j t

1

t

2

j let

t

1

in t

2

j

^

�

A

: t j t

1

t̂

2

j �

A

: t j t

1

t

2

j t[�℄

(variable indi
es)

(additive unit)

(additive pairs)

(multipli
ative unit)

(multipli
ative pairs)

(linear fun
tions)

(intuitionisti
 fun
tions)

(substitution appli
ation)

Substitutions:

� ::= Id

j "

j t :̂ �

j :̂ �

j t : �

j �

1

Æ�

2

(identity)

(shift)

(linear extension)

(used linear extension)

(intuitionisti
 extension)

(
omposition)

In addition to t and �, we will use s and � to denote xdLLF

�

terms and substitutions, respe
tively.

Contexts in xdLLF

�

are the nameless variant of LLF

�

ontexts, with again the marker \ " to a

ount

for the positional nature of de Bruijn indi
es when dealing with used assumptions.

Contexts: � ::= � j � ;̂ A j � ;̂ j �; A

As in LLF

�

, we write � to indi
ate the intuitionisti
 portion of �. It is obtain by repla
ing every linear

assumption with \ ".

The typing judgments for terms and substitutions are denoted � `

xd

t : A (read \t has type A in �")

and � `

xd

� : �

0

(read \� maps terms from �

0

to �"), respe
tively. As for LLF

�

, their de�nition relies on

the auxiliary
ontext splitting judgment � = �

1

1 �

2

. The rules for these three judgments are displayed

in Figure 2.

Rewrite rules in the �,
ommuting and possibly � families are adapted from LLF

�

. As we said, we

will not deal with them in this paper (see [3, 6℄ for more on this topi
).

At this point, papers on expli
it substitutions typi
ally present a long list of �-redu
tions aimed at

on�ning substitution appli
ation and
omposition to spe
i�
 positions in a term and a substitution,

4

Expli
it Substitutions for Linear Logi
al Frameworks: Preliminary Results

Context Splitting

xdllf1 dot

� = � 1 �

� = �

1

1 �

2

xdllf1 int

�; A = �

1

; A 1 �

2

; A

� = �

1

1 �

2

xdllf1 used

� ;̂ = �

1

;̂ 1 �

2

;̂

� = �

1

1 �

2

xdllf1 lin1

� ;̂ A = �

1

;̂ A 1 �

2

;̂

� = �

1

1 �

2

xdllf1 lin2

� ;̂ A = �

1

;̂ 1 �

2

;̂ A

Terms

xdllf lvar

� ;̂ A `

xd

1 : A

xdllf ivar

�; A `

xd

1 : A

xdllf hi

� `

xd

hi : >

(No elimination rule for >)

� `

xd

t : A � `

xd

s : B

xdllf apair

� `

xd

ht; si : A

&

B

� `

xd

t : A

&

B

xdllf fst

� `

xd

fst t : A

� `

xd

t : A

&

B

xdllf snd

� `

xd

snd t : B

xdllf �

� `

xd

� : 1

� = �

1

1 �

2

�

1

`

xd

t : 1 �

2

`

xd

s : B

xdllf let�

� `

xd

let� t in s : B

� = �

1

1 �

2

�

1

`

xd

t : A �

2

`

xd

s : B

xdllf

� `

xd

t

s : A
B

� = �

1

1 �

2

�

1

`

xd

t : A

1

A

2

�

2

;̂ A

1

;̂ A

2

`

xd

s : B

xdllf let

� `

xd

let

t in s : B

� ;̂ A `

xd

t : B

xdllf llam

� `

xd

^

�

A

: t : A�ÆB

� = �

1

1 �

2

�

1

`

xd

t : A�ÆB �

2

`

xd

s : A

xdllf lapp

� `

xd

t̂ s : B

�; A `

xd

t : B

xdllf ilam

� `

xd

�

A

: t : A!B

� `

xd

t : A!B � `

xd

s : A

xdllf iapp

� `

xd

t s : B

� `

xd

� : �

0

�

0

`

xd

t : A

xdllf sub

� `

xd

t[�℄ : A

Substitutions

xdllf Id

� `

xd

Id : �

xdllf uShift

� ;̂ `

xd

" : �

xdllf iShift

�; A `

xd

" : �

� = �

1

1 �

2

�

1

`

xd

t : A �

2

`

xd

� : �

0

xdllf ldot

� `

xd

t :̂ � : �

0

;̂ A

� `

xd

� : �

0

xdllf udot

� `

xd

:̂ � : �

0

;̂

� `

xd

t : A � `

xd

� : �

0

xdllf idot

� `

xd

t : � : �

0

; A

� `

xd

� : �

0

�

0

`

xd

� : �

00

xdllf
mp

� `

xd

� Æ � : �

00

Figure 2: Typing in xdLLF

�

respe
tively. Their systemati
 appli
ation yields �-normal forms. This is very
onvenient as �-rules
an

be interleaved with other redu
tions to eÆ
iently rea
h
anoni
al forms.

Unfortunately, linear expli
it substitutions are not as
ooperative. Indeed, pushing a substitution �

through a multipli
ative operator typi
ally requires splitting it non-deterministi
ally. This may be diÆ
ult

unless � is in �-normal form. Moreover, not every split is sound:
onstraints (e.g. typing information)

5

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

are needed to guarantee
orre
tness. In [6℄, we avoided unsound splits by
he
king for free variables and

splitting the substitution a

ordingly. A dire
t implementation of this approa
h requires either to
olle
t

them by visiting every subterm of a binary multipli
ative operator, or, less naively, to maintain a list of

free linear variables for every su
h term. This is not satisfa
tory sin
e both te
hniques involve a signi�
ant

overhead. Furthermore,
he
king for free variables does not s
ale up to languages with meta-variables

(needed in linear logi
al frameworks and higher-order linear logi
 programming).

The approa
h we propose here repla
es �-rules with a de
larative spe
i�
ation of how to transform

an arbitrary typable xdLLF

�

term or substitution into an equivalent obje
t in �-normal form. This

orresponds to using a big-step as opposed to a small-step semanti
s in programming language theory.

We handle substitution splitting by �-normalizing substitutions before applying them, and by using a

typing derivation to guide the splitting pro
ess. Although this approa
h deals
orre
tly with linearity, it

still has several drawba
ks. First, it �xes the �-redu
tion strategy, whi
h is instead left open when �-rules

are used. Se
ond, it does not allow interleaving �-normalization steps with other redu
tions. Third, as

for the proposal in [6℄, it does not s
ale up to handle meta-variables. Nonetheless, we see it as a valuable

�rst step toward addressing these issues more satisfa
torily.

4 �-Normalization

In a �-normal term, every substitution appli
ation has the form 1[" Æ : : : Æ "℄. If there are j instan
es of

", this e�e
tively implements the de Bruijn index j+1. Similarly, �-normal substitutions
onsist of a list

of linear or intuitionisti
 �-normal substitution-terms terminated by the
omposition of a number of ".

They
orrespond to environments in a fun
tional programming setting.

We formalize this des
ription as a language that we
all xdLLF

�

�

:

�-normal terms:

u ::= i

j hi

j hu

1

; u

2

i j fstu j sndu

j � j let�u

1

inu

2

j u

1

u

2

j let

u

1

inu

2

j

^

�

A

: u j u

1

û

2

j �

A

: u j u

1

u

2

�-normal substitutions:

� ::= "

j

j u :̂ �

j :̂ �

j u : �

(shifts)

(linear extension)

(used linear extension)

(intuitionisti
 extension)

where i is a positive integer, 1, 2, 3, : : : (de Bruijn index) and j is a non-negative integer ("

0

, "

1

, "

2

, et
.

are all legal substitutions). Types and
ontexts are as in xdLLF

�

. So are their operations. The typing

rules for xdLLF

�

�

are given in Figure 3. Redu
tions are adapted from xdLLF

�

.

We re
over xdLLF

�

terms and substitutions by rewriting i as 1["

i�1

℄, and then re
ursively expanding

"

j

to the
omposition of j shifts in an xdLLF

�

�

term or substitution. It
an be shown that this translation

preserves typing and redu
tions [3℄.

The �-normalization pro
edure we propose is partially displayed in Figure 4. It is arti
ulated in a num-

ber of judgments of the form L �� R where the right-hand side R is a �-normal term (or substitution),

while the left-hand side L is an xdLLF

�

term (resp. substitution) in the zones marked \
ongruen
es", or

a �-normal substitution �

0

applied to an xdLLF

�

term (resp.
omposed with an xdLLF

�

substitution) in

the zones labeled \redu
tions". We rely on several auxiliary operations and judgments. The intuitionisti

part � of a �-normal substitution � is obtained by repla
ing every linear substitution term in � with \ ",

6

Expli
it Substitutions for Linear Logi
al Frameworks: Preliminary Results

Terms

xdllf

�

lvar

� ;̂ A `

xd

�

1 : A

xdllf

�

ivar

�; A `

xd

�

1 : A

� `

xd

�

i : A

xdllf

�

lskip

�; `

xd

�

i+ 1 : A

� `

xd

�

i : A

xdllf

�

iskip

�; B `

xd

�

i+ 1 : A

xdllf

�

hi

� `

xd

�

hi : >

(No elimination rule for >)

� `

xd

�

u : A � `

xd

�

v : B

xdllf

�

apair

� `

xd

�

hu; vi : A

&

B

� `

xd

�

u : A

&

B

xdllf

�

fst

� `

xd

�

fstu : A

� `

xd

�

u : A

&

B

xdllf

�

snd

� `

xd

�

sndu : B

xdllf

�

�

� `

xd

�

� : 1

� = �

1

1 �

2

�

1

`

xd

�

u : 1 �

2

`

xd

�

v : B

xdllf

�

let�

� `

xd

�

let�u in v : B

� = �

1

1 �

2

�

1

`

xd

�

u : A �

2

`

xd

�

v : B

xdllf

�

� `

xd

�

u

v : A
B

� = �

1

1 �

2

�

1

`

xd

�

u : A

1

A

2

�

2

;̂ A

1

;̂ A

2

`

xd

�

v : B

xdllf

�

let

� `

xd

�

let

u in v : B

� ;̂ A `

xd

�

u : B

xdllf

�

llam

� `

xd

�

^

�

A

: u : A�ÆB

� = �

1

1 �

2

�

1

`

xd

�

u : A�ÆB �

2

`

xd

�

v : A

xdllf

�

lapp

� `

xd

�

û v : B

�; A `

xd

�

u : B

xdllf

�

ilam

� `

xd

�

�

A

: u : A!B

� `

xd

�

u : A!B � `

xd

�

v : A

xdllf

�

iapp

� `

xd

�

u v : B

Substitutions

xdllf

�

Id

� `

xd

�

"

0

: �

� `

xd

�

"

j

: �

0

xdllf

�

uShift

� ;̂ `

xd

�

"

j+1

: �

0

� `

xd

�

"

j

: �

0

xdllf

�

iShift

�; A `

xd

�

"

j+1

: �

0

� = �

1

1 �

2

�

1

`

xd

�

u : A �

2

`

xd

�

� : �

0

xdllf

�

ldot

� `

xd

�

u :̂ � : �

0

;̂ A

� `

xd

�

� : �

0

xdllf

�

udot

� `

xd

�

:̂ � : �

0

;̂

� `

xd

�

u : A � `

xd

�

� : �

0

xdllf

�

idot

� `

xd

�

u : � : �

0

; A

Figure 3: Typing in xdLLF

�

�

as for
ontexts. The substitution splitting judgment � = �

1

1 �

2

is also de�ned similarly to the analogous

relation on
ontexts; noti
e that it operates only on xdLLF

�

�

substitutions; observe also that, like
ontext

splitting, this operation is non-deterministi
 (e.g. u :̂ "

0

an be split as either u :̂ "

0

= u :̂ "

0

1 :̂ "

0

or

u :̂ "

0

= :̂ "

0

1 u :̂ "

0

). Finally, we have the linear and intuitionisti
 binder
rossing operations:

^

+(�) and

+(�), and the asso
iated redu
tion judgment (not displayed). They are what it takes to push the sub-

stitution � through a binder: intuitively, they
orrespond to 1 :̂ (� Æ ") and 1 : (� Æ "), respe
tively. These

omitted de�nitions
an be found in [3℄.

The pro
edure in Figure 4 works as follows: it walks through an xdLLF

�

term using the
ongruen
e

rules till the �rst substitution appli
ation t[� ℄ is en
ountered. Then, it normalizes � to �

0

and swit
hes

to the redu
tion rules to push �

0

inside t. This re
ursive des
ent terminates when
onstru
tors without

arguments are pro
essed.

This pro
edure terminates sin
e ea
h
onstru
tor in an xdLLF

�

term or substitution is visited exa
tly

on
e by the
ongruen
e or redu
tion judgments. However, it
an fail unless it is guided by a typing

7

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

Terms;
ongruen
es

(The obvious
ases have been omitted)

� �� �

0

t[�

0

℄ ��

r

u

�

sub

t[�℄ �� u

. .

Terms; redu
tions

r

�

lvar

1[u :̂ �

0

℄ ��

r

u

r

�

ivar

1[u : �

0

℄ ��

r

u

r

�

shift

1["

j

℄ ��

r

j + 1

r

�

hi

hi[�

0

℄ ��

r

hi

t[�

0

℄ ��

r

u s[�

0

℄ ��

r

v

r

�

apair

ht; si[�

0

℄ ��

r

hu; vi

t[�

0

℄ ��

r

u

r

�

fst

(fst t)[�

0

℄ ��

r

fstu

t[�

0

℄ ��

r

u

r

�

snd

(snd t)[�

0

℄ ��

r

sndu

r

�

�

�[�

0

℄ ��

r

�

�

0

= �

1

1 �

2

t[�

1

℄ ��

r

u s[�

2

℄ ��

r

v

r

�

let�

(let� t in s)[�

0

℄ ��

r

let�u in v

�

0

= �

1

1 �

2

t[�

1

℄ ��

r

u s[�

2

℄ ��

r

v

r

�

(t

s)[�

0

℄ ��

r

u

v

�

0

= �

1

1 �

2

t[�

1

℄ ��

r

u

^

+(

^

+(�

2

)) ��

h

�

0

2

s[�

0

2

℄ ��

r

v

r

�

let

(let

t in s)[�

0

℄ ��

r

let

u in v

^

+(�

0

) ��

h

�

0

0

t[�

0

0

℄ ��

r

u

r

�

llam

(

^

�

A

: t)[�

0

℄ ��

r

^

�

A

: u

�

0

= �

1

1 �

2

t[�

1

℄ ��

r

u s[�

2

℄ ��

r

v

r

�

lapp

(t̂ s)[�

0

℄ ��

r

û v

+(�

0

) ��

h

�

0

0

t[�

0

0

℄ ��

r

u

r

�

ilam

(�

A

: t)[�

0

℄ ��

r

�

A

: u

t[�

0

℄ ��

r

u s[�

0

℄ ��

r

v

r

�

iapp

(t s)[�

0

℄ ��

r

u v

� Æ �

0

��

r

�

0

0

t[�

0

0

℄ ��

r

u

r

�

sub

(t[�℄)[�

0

℄ ��

r

u

Substitutions;
ongruen
es

(The obvious
ases have been omitted)

� �� �

0

� Æ �

0

��

r

�

�

mp

� Æ � �� �

. .

Substitutions; redu
tions

r

�

Id

Id Æ �

0

��

r

�

0

r

�

Shiftn

" Æ "

j

��

r

"

j+1

r

�

Shiftu

" Æ(:̂ �

0

) ��

r

�

0

r

�

Shifti

" Æ(u : �

0

) ��

r

�

0

�

0

= �

1

1 �

2

t[�

1

℄ ��

r

u � Æ �

2

��

r

�

r

�

ldot

(t :̂ �) Æ �

0

��

r

u :̂ �

� Æ �

0

��

r

�

r

�

udot

(:̂ �) Æ �

0

��

r

:̂ �

t[�

0

℄ ��

r

u � Æ �

0

��

r

�

r

�

idot

(t : �) Æ �

0

��

r

u : �

� Æ �

0

��

r

�

0

0

� Æ �

0

0

��

r

�

r

�

mp

(� Æ �) Æ �

0

��

r

�

Figure 4: �-Normalization of xdLLF

�

Terms and Substitutions

8

Expli
it Substitutions for Linear Logi
al Frameworks: Preliminary Results

derivation, even when starting from a typable term (or substitution). Indeed, obje
ts su
h as �

0

in

rule r

�

� (Figure 4) a
t as
onstraints on the terms (or substitutions) that
an be a

eptably pro
essed.

More pre
isely, in a given
ontext only a few (just one in the absen
e of hi) of the
hoi
es for splitting

a substitution will satisfy these
onstraints, namely the ones whi
h split the substitution a

ording to

the linear variables used in the
orresponding terms. The typing rules of xdLLF

�

�

ensure that only those

splits
an be used for redu
tion. The substitution splitting judgment
an generate substitutions that will

not pass this test, unless properly
ontrolled. However, no problem arises when �-redu
tion is supervised

by a typing derivation, as stated by the following theorem. (We abbreviate \D is a derivation of judgment

J" as D :: J .)

Theorem 4.1 (Subje
t redu
tion for��)

i . If T :: � `

xd

t : A, then there exist u, R, and U su
h that R :: t �� u and U :: � `

xd

�

u : A.

ii . If S :: � `

xd

� : �

0

, then there exist �, R, and V su
h that R :: � �� � and V :: � `

xd

�

� : �

0

.

Proof

After proper generalization of the statement, the proof pro
eeds by stru
tural indu
tion on S and T . It relies on

several auxiliary results omitted for spa
e reasons. See [3℄ for details. 2

X

We expe
t our �-normalization pro
edure to be a fun
tion (even when no a

ompanying typing

derivation is given), but we have not had the time yet to verify this
onje
ture. Further results about

this pro
edure
an be found in [3℄.

5 Future Developments

We have des
ribed the linear �-
al
ulus with expli
it substitutions xdLLF

�

, whi
h appears to be a

reasonable playground for experimenting with linear expli
it substitutions as it isolates some of the most

deli
ate intera
tions between expli
it substitutions and linearity. This paper analyzed one approa
h to

oping with them, although it has several drawba
ks that make it unsuitable as a foundational
al
ulus

for a linear logi
al framework: in parti
ular, it
annot be dire
tly extended to handle meta-variable

(essential for logi
al framework implementations), and it does not allow interleaving �-redu
tions with

other redu
tion steps (making it very rigid). Nonetheless, we see it as a valuable �rst step toward

addressing these issues more satisfa
torily. A few immediate questions arise from this endeavor:

- What happens if we use dual
ontexts as in xDILL?

- What if we make substitutions dual too?

- How do named variables in
uen
e the result (see also [7℄ on this)?

- Do we still get
orre
t �-normal terms if we omit splitting substitutions?

- Can we de�ne a usable notion of weak �-normal forms?

- How do meta-variables �t into all this?

Answers to some of these questions should prove highly relevant to the implementation of linear logi
al

frameworks, linear fun
tional languages and other systems based on linear �-
al
uli. We are
urrently

experimenting with languages that in
orporate ea
h of these ideas.

9

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

Referen
es

[1℄ Mart��n Abadi, Lu
a Cardelli, Pierre-Louis Curien, and Jean-Ja
ques L�evy. Expli
it substitutions. Journal of

Fun
tional Programming, 1(4):375{416, O
tober 1991.

[2℄ Andrew Barber. Linear Type Theories, Semanti
s and A
tion Cal
uli. PhD thesis, Laboratory for Foundations

of Computer S
ien
e, University of Edinburgh, 1997.

[3℄ Iliano Cervesato, Valeria de Paiva, and Eike Ritter. Expli
it substitution for linear logi
al frameworks. Un-

published manus
ript, http://www.stanford.edu/~iliano/papers/Forth
oming/xdllf.ps.gz.

[4℄ Iliano Cervesato and Frank Pfenning. A linear logi
al framework. In E. Clarke, editor, Pro
eedings of the

Eleventh Annual Symposium on Logi
 in Computer S
ien
e | LICS'96, pages 264{275, New Brunswi
k, New

Jersey, July 1996. IEEE Computer So
iety Press.

[5℄ N.G. de Bruijn. Lambda-
al
ulus notation with nameless dummies, a tool for automati
 formula manipulation.

Indagationes Mathemati
ae, 34:381{392, 1972.

[6℄ Neil Ghani, Valeria de Paiva, and Eike Ritter. Linear expli
it substitutions. In Pro
eedings of the First Interna-

tional Workshop on Expli
it Substitutions: Theory and Appli
ations to Programs and Proofs | WESTAPP'98,

Tsukuba, Japan, Mar
h 1998.

[7℄ Eike Ritter and Valeria de Paiva. On expli
it substitution and names (extended abstra
t). In P. Degano,

R. Gorrieri, and A. Mar
hetti-Spa

amela, editors, Pro
eedings of the 24th International Colloquium on Au-

tomata, Languages and Programming, pages 248{258. Springer-Verlag LNCS 1256, 1997.

10

