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Abstrat

We present the alulus xdLLF

�

and experiment with aspets of its meta-theory. xdLLF

�

integrates

linear expliit substitutions in de Bruijn notation into the simply-typed fragment of the linear logial

framework LLF. After observing that the expeted �-rules invalidate subjet redution, we devise

a spei�ation of �-normalization inspired by the big-step semantis of programming languages, and

prove it orret.

1 Introdution

Expliit substitutions [1℄ have been used to rationalize the implementation of many systems based on

various �-aluli, suh as funtional languages, logial frameworks, and higher-order logi programming

languages. As linear �-aluli have grown in popularity, so has the need for solid and eÆient support

for their implementation. A linear adaptation of expliit substitution tehniques is a prime andidate.

The authors of this paper have separately explored this possibility in two distint settings:

� In [6℄, Ghani, de Paiva, and Ritter have designed the language xDILL, geared towards the imple-

mentation of funtional languages. It is based on Barber and Plotkin's DILL (Dual Intuitionisti

Linear Logi) [2℄, and is haraterized, among other things, by variables of two di�erent kinds:

linear variables are used exatly one, and intuitionisti variables an be aessed arbitrarily many

times. The extra information about usage of linear variables makes it possible to apply various op-

timizations like update-in-plae of aggregate data strutures suh as arrays, or savings in memory

alloation. This signi�antly inuened the design deisions of the alulus in [6℄.

� On the other hand, Cervesato and Pfenning have based their implementation of the linear logial

framework LLF [4℄ on a form of linear expliit substitution, although they did not thoroughly

investigate its meta-theory. LLF is a lose relative of DILL (for example, both distinguish linear

and intuitionisti variables). LLF is however designed as a logial framework, whih fores a set

of operations on terms that are not found in DILL. An implementation of LLF must support

�
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term reonstrution to make meta-representation pratial, permit logi programming-style proof-

searh, and aommodate the forthoming addition of theorem proving apabilities. Eah of these

funtionalities relies on (higher-order) uni�ation and therefore an expliit substitution alulus for

LLF must handle meta-variables and their manipulation.

In this paper, we bring our experienes together in trying to isolate some of the issues that arise when

ombining linearity and expliit substitutions in our di�erent settings. Although the results reported

here are very preliminary, this work had the e�et of furthering our understanding of these problems.

We start from the linear �-alulus LLF

�

(Setion 2), whih inludes operators from both LLF and

DILL while ignoring omplex features suh as dependent types and an unrestrited \!" operator. LLF

�

enjoys properties suh as subjet redution, normalization and onuene. Then, by using a standard

proess [1℄, we onstrut the alulus xdLLF

�

(Setion 3) whih inorporates substitutions as a separate

syntati ategory in LLF

�

(along the way, we also swith to a de Bruijn notation, motivated by our

interests in eÆient implementations). This has the positive e�et of turning the meta-level substitutions

produed by the �-redutions into expliit substitutions that an be manipulated within the alulus. At

this point, the standard approah [1℄ would require us to express the impliit proedure to arry out the

appliation of a meta-level substitution as a set of rewrite rules about expliit substitutions (�-rules):

the transription is orret if we an prove that there is a redution strategy whih eliminates all expliit

substitutions and terminates with the �-term that would be produed by making all expliit substitutions

impliit.

We deviate from this path sine the �-rules we would obtain for xdLLF

�

interfere with linearity and

allow rewriting well-typed terms into ill-typed objets. In [6℄, we solved this problem by splitting the

linear substitutions aording to the usage of the linear variables. This approah may ause a signi�ant

overhead when implemented, and does not sale up when extending xdLLF

�

with metavariables. We

instead explore a di�erent path (Setion 4): we give a syntati haraterization of the set of �-normal

terms (to whih no �-rule would be appliable) as the language xdLLF

�

�

, outline a type-preserving proe-

dure that redues a typable xdLLF

�

term to its �-normal form, and prove its orretness. Although this

approah deals orretly with linearity, it still has several drawbaks. First, it �xes the redution strategy,

whih is instead open when �-rules are used. Seond, it does not allow interleaving �-normalization steps

with other redutions. Third, it does not sale up to handle meta-variables. Nonetheless, we see it as a

valuable �rst step toward addressing these issues more satisfatorily (Setion 5).

2 LLF

�

The alulus LLF

�

, that we use as our starting point, enrihes the simply-typed fragment of the language

of the linear logial framework LLF [4℄ with multipliative pairs and unit. On the other hand, it extends

the language DILL [2, 6℄ with additives and with intuitionisti funtions, but sari�es its full-edged

exponential \!". LLF

�

is de�ned as follows:

Types: A ::= a

j >

j A

1

&

A

2

j 1

j A

1


A

2

j A

1

�ÆA

2

j A

1

!A

2

Terms: M ::= x

j hi

j hM

1

;M

2

i j fstM j sndM

j � j letM

1

be � inM

2

j M

1




M

2

j letM

1

bex

1




x

2

inM

2

j

^

�x :̂A:M j M

1

^M

2

j �x :A:M j M

1

M

2

(additive unit)

(additive pairs)

(multipliative unit)

(multipliative pairs)

(linear funtions)

(intuitionisti funtions)
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Context splitting

llf1 dot

� = � 1 �

	 = 	

1

1 	

2

llf1 int

(	; x :A) = (	

1

; x :A) 1 (	

2

; x :A)

	 = 	

1

1 	

2

llf1 lin1

(	; x :̂A) = (	

1

; x :̂A) 1 	

2

	 = 	

1

1 	

2

llf1 lin2

(	; x :̂A) = 	

1

1 (	

2

; x :̂A)

Typing

llf lvar

	; x :̂A;	

0

` x : A

llf ivar

	; x :A;	

0

` x : A

llf hi

	 ` hi : >

(No elimination rule for >)

	 `M : A 	 ` N : B

llf apair

	 ` hM;Ni : A

&

B

	 `M : A

&

B

llf fst

	 ` fstM : A

	 ` M : A

&

B

llf snd

	 ` sndM : B

llf �

	 ` � : 1

	 = 	

1

1 	

2

	

1

`M : 1 	

2

` N : B

llf let�

	 ` letM be � inN : B

	 = 	

1

1 	

2

	

1

`M : A 	

2

` N : B

llf 


	 `M




N : A
B

	 = 	

1

1 	

2

	

1

`M : A

1


A

2

	

2

; x

1

:̂A

1

; x

2

:̂A

2

` N : B

llf let


	 ` letM bex

1




x

2

inN : B

	; x :̂A `M : B

llf llam

	 `

^

�x :̂A:M : A�ÆB

	 = 	

1

1 	

2

	

1

`M : A�ÆB 	

2

` N : A

llf lapp

	 `M^N : B

	; x :A `M : B

llf ilam

	 ` �x :A:M : A!B

	 `M : A!B 	 ` N : A

llf iapp

	 ` M N : B

Figure 1: Typing in LLF

�

Here x and a range over variables and base types, respetively. In addition to the names displayed above,

we will often use N and B for terms and types, respetively. As usual, we rely on a ontext to assign

types to free variables.

Contexts: 	 ::= � j 	; x :A j 	; x :̂A

where x :̂A and x :A stand for a linear and a reusable (intuitionisti) assumption of type A, respetively.

The notions of free and bound variables are adapted from the simply typed �-alulus. As usual, we

identify terms that di�er only by the name of their bound variables. Contexts are treated as sequenes,

we promote \;" to denote their onatenation and omit writing \�" when unneessary. As usual, we

require variables to be delared at most one in a ontext. Finally, we write 	 for the intuitionisti

part of ontext 	. It is obtain by removing every linear delaration x :̂A from 	. See [4℄ for a formal

de�nition.

The typing judgment for LLF

�

has the form 	 ` M : A (read \M has type A in 	") and is de�ned

in Figure 1. It relies on the auxiliary ontext splitting judgment 	 = 	

1

1 	

2

. Due to spae reasons, we

shall refer the reader to [4℄ for a disussion of these rules.

The rewriting semantis of LLF

�

is given by the usual �-redutions, ommuting onversions (generated

by the two forms of let), and, depending on one's taste, �-rules. We will only marginally be onerned

with these various rules in the sequel. De�nitions and properties of interest an be extrapolated from [4℄
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and [6℄, or found in [3℄.

A nameless variant of LLF

�

is obtained by straightforwardly extending the standard de Bruijn trans-

formation [5℄. As in the ase of the �-alulus, this translation preserves typing and redutions. The

resulting alulus, dLLF

�

, is at the basis of our urrent experimentation with expliit substitutions. Spae

reasons prevent us from disussing it further (see [3℄ for more). However, its language and typing rules

orrespond exatly to the term fragment of the �-normal alulus xdLLF

�

�

disussed in Setion 4.

3 xdLLF

�

In [6℄, we devised a alulus of linear expliit substitutions based on named variables. Here, we instead

investigate a variant in the style of [1℄ that uses the de Bruijn notation (this is mainly motivated by im-

plementation onsiderations). Even in this restrited setting, there are many ways to inorporate expliit

substitution into LLF

�

(or dLLF

�

). In designing xdLLF

�

, we hose to model (normal) substitutions on

the struture of ontexts. We mention other possibilities in Setion 5.

The types of xdLLF

�

are the same as LLF

�

. Its term onstrutors are adapted from this language

as done in [1℄. Substitutions may ontain the linear extension operator \ :̂ " to aount for terms to be

substituted for linear variables. Sine de Bruijn numbers are positional indies in a substitution (and a

ontext), we use \ " to mark a term that has already been linearly substituted. Terms and substitutions

are de�ned by the following grammar:

Terms:

t ::= 1

j hi

j ht

1

; t

2

i j fst t j snd t

j � j let� t

1

in t

2

j t

1




t

2

j let




t

1

in t

2

j

^

�

A

: t j t

1

t̂

2

j �

A

: t j t

1

t

2

j t[�℄

(variable indies)

(additive unit)

(additive pairs)

(multipliative unit)

(multipliative pairs)

(linear funtions)

(intuitionisti funtions)

(substitution appliation)

Substitutions:

� ::= Id

j "

j t :̂ �

j :̂ �

j t : �

j �

1

Æ�

2

(identity)

(shift)

(linear extension)

(used linear extension)

(intuitionisti extension)

(omposition)

In addition to t and �, we will use s and � to denote xdLLF

�

terms and substitutions, respetively.

Contexts in xdLLF

�

are the nameless variant of LLF

�

ontexts, with again the marker \ " to aount

for the positional nature of de Bruijn indies when dealing with used assumptions.

Contexts: � ::= � j � ;̂ A j � ;̂ j �; A

As in LLF

�

, we write � to indiate the intuitionisti portion of �. It is obtain by replaing every linear

assumption with \ ".

The typing judgments for terms and substitutions are denoted � `

xd

t : A (read \t has type A in �")

and � `

xd

� : �

0

(read \� maps terms from �

0

to �"), respetively. As for LLF

�

, their de�nition relies on

the auxiliary ontext splitting judgment � = �

1

1 �

2

. The rules for these three judgments are displayed

in Figure 2.

Rewrite rules in the �, ommuting and possibly � families are adapted from LLF

�

. As we said, we

will not deal with them in this paper (see [3, 6℄ for more on this topi).

At this point, papers on expliit substitutions typially present a long list of �-redutions aimed at

on�ning substitution appliation and omposition to spei� positions in a term and a substitution,
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Context Splitting

xdllf1 dot

� = � 1 �

� = �

1

1 �

2

xdllf1 int

�; A = �

1

; A 1 �

2

; A

� = �

1

1 �

2

xdllf1 used

� ;̂ = �

1

;̂ 1 �

2

;̂

� = �

1

1 �

2

xdllf1 lin1

� ;̂ A = �

1

;̂ A 1 �

2

;̂

� = �

1

1 �

2

xdllf1 lin2

� ;̂ A = �

1

;̂ 1 �

2

;̂ A

Terms

xdllf lvar

� ;̂ A `

xd

1 : A

xdllf ivar

�; A `

xd

1 : A

xdllf hi

� `

xd

hi : >

(No elimination rule for >)

� `

xd

t : A � `

xd

s : B

xdllf apair

� `

xd

ht; si : A

&

B

� `

xd

t : A

&

B

xdllf fst

� `

xd

fst t : A

� `

xd

t : A

&

B

xdllf snd

� `

xd

snd t : B

xdllf �

� `

xd

� : 1

� = �

1

1 �

2

�

1

`

xd

t : 1 �

2

`

xd

s : B

xdllf let�

� `

xd

let� t in s : B

� = �

1

1 �

2

�

1

`

xd

t : A �

2

`

xd

s : B

xdllf 


� `

xd

t




s : A
B

� = �

1

1 �

2

�

1

`

xd

t : A

1


A

2

�

2

;̂ A

1

;̂ A

2

`

xd

s : B

xdllf let


� `

xd

let




t in s : B

� ;̂ A `

xd

t : B

xdllf llam

� `

xd

^

�

A

: t : A�ÆB

� = �

1

1 �

2

�

1

`

xd

t : A�ÆB �

2

`

xd

s : A

xdllf lapp

� `

xd

t̂ s : B

�; A `

xd

t : B

xdllf ilam

� `

xd

�

A

: t : A!B

� `

xd

t : A!B � `

xd

s : A

xdllf iapp

� `

xd

t s : B

� `

xd

� : �

0

�

0

`

xd

t : A

xdllf sub

� `

xd

t[�℄ : A

Substitutions

xdllf Id

� `

xd

Id : �

xdllf uShift

� ;̂ `

xd

" : �

xdllf iShift

�; A `

xd

" : �

� = �

1

1 �

2

�

1

`

xd

t : A �

2

`

xd

� : �

0

xdllf ldot

� `

xd

t :̂ � : �

0

;̂ A

� `

xd

� : �

0

xdllf udot

� `

xd

:̂ � : �

0

;̂

� `

xd

t : A � `

xd

� : �

0

xdllf idot

� `

xd

t : � : �

0

; A

� `

xd

� : �

0

�

0

`

xd

� : �

00

xdllf mp

� `

xd

� Æ � : �

00

Figure 2: Typing in xdLLF

�

respetively. Their systemati appliation yields �-normal forms. This is very onvenient as �-rules an

be interleaved with other redutions to eÆiently reah anonial forms.

Unfortunately, linear expliit substitutions are not as ooperative. Indeed, pushing a substitution �

through a multipliative operator typially requires splitting it non-deterministially. This may be diÆult

unless � is in �-normal form. Moreover, not every split is sound: onstraints (e.g. typing information)

5
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are needed to guarantee orretness. In [6℄, we avoided unsound splits by heking for free variables and

splitting the substitution aordingly. A diret implementation of this approah requires either to ollet

them by visiting every subterm of a binary multipliative operator, or, less naively, to maintain a list of

free linear variables for every suh term. This is not satisfatory sine both tehniques involve a signi�ant

overhead. Furthermore, heking for free variables does not sale up to languages with meta-variables

(needed in linear logial frameworks and higher-order linear logi programming).

The approah we propose here replaes �-rules with a delarative spei�ation of how to transform

an arbitrary typable xdLLF

�

term or substitution into an equivalent objet in �-normal form. This

orresponds to using a big-step as opposed to a small-step semantis in programming language theory.

We handle substitution splitting by �-normalizing substitutions before applying them, and by using a

typing derivation to guide the splitting proess. Although this approah deals orretly with linearity, it

still has several drawbaks. First, it �xes the �-redution strategy, whih is instead left open when �-rules

are used. Seond, it does not allow interleaving �-normalization steps with other redutions. Third, as

for the proposal in [6℄, it does not sale up to handle meta-variables. Nonetheless, we see it as a valuable

�rst step toward addressing these issues more satisfatorily.

4 �-Normalization

In a �-normal term, every substitution appliation has the form 1[" Æ : : : Æ "℄. If there are j instanes of

", this e�etively implements the de Bruijn index j+1. Similarly, �-normal substitutions onsist of a list

of linear or intuitionisti �-normal substitution-terms terminated by the omposition of a number of ".

They orrespond to environments in a funtional programming setting.

We formalize this desription as a language that we all xdLLF

�

�

:

�-normal terms:

u ::= i

j hi

j hu

1

; u

2

i j fstu j sndu

j � j let�u

1

inu

2

j u

1




u

2

j let




u

1

inu

2

j

^

�

A

: u j u

1

û

2

j �

A

: u j u

1

u

2

�-normal substitutions:

� ::= "

j

j u :̂ �

j :̂ �

j u : �

(shifts)

(linear extension)

(used linear extension)

(intuitionisti extension)

where i is a positive integer, 1, 2, 3, : : : (de Bruijn index) and j is a non-negative integer ("

0

, "

1

, "

2

, et.

are all legal substitutions). Types and ontexts are as in xdLLF

�

. So are their operations. The typing

rules for xdLLF

�

�

are given in Figure 3. Redutions are adapted from xdLLF

�

.

We reover xdLLF

�

terms and substitutions by rewriting i as 1["

i�1

℄, and then reursively expanding

"

j

to the omposition of j shifts in an xdLLF

�

�

term or substitution. It an be shown that this translation

preserves typing and redutions [3℄.

The �-normalization proedure we propose is partially displayed in Figure 4. It is artiulated in a num-

ber of judgments of the form L �� R where the right-hand side R is a �-normal term (or substitution),

while the left-hand side L is an xdLLF

�

term (resp. substitution) in the zones marked \ongruenes", or

a �-normal substitution �

0

applied to an xdLLF

�

term (resp. omposed with an xdLLF

�

substitution) in

the zones labeled \redutions". We rely on several auxiliary operations and judgments. The intuitionisti

part � of a �-normal substitution � is obtained by replaing every linear substitution term in � with \ ",

6
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Terms

xdllf

�

lvar

� ;̂ A `

xd

�

1 : A

xdllf

�

ivar

�; A `

xd

�

1 : A

� `

xd

�

i : A

xdllf

�

lskip

�; `

xd

�

i+ 1 : A

� `

xd

�

i : A

xdllf

�

iskip

�; B `

xd

�

i+ 1 : A

xdllf

�

hi

� `

xd

�

hi : >

(No elimination rule for >)

� `

xd

�

u : A � `

xd

�

v : B

xdllf

�

apair

� `

xd

�

hu; vi : A

&

B

� `

xd

�

u : A

&

B

xdllf

�

fst

� `

xd

�

fstu : A

� `

xd

�

u : A

&

B

xdllf

�

snd

� `

xd

�

sndu : B

xdllf

�

�

� `

xd

�

� : 1

� = �

1

1 �

2

�

1

`

xd

�

u : 1 �

2

`

xd

�

v : B

xdllf

�

let�

� `

xd

�

let�u in v : B

� = �

1

1 �

2

�

1

`

xd

�

u : A �

2

`

xd

�

v : B

xdllf

�




� `

xd

�

u




v : A
B

� = �

1

1 �

2

�

1

`

xd

�

u : A

1


A

2

�

2

;̂ A

1

;̂ A

2

`

xd

�

v : B

xdllf

�

let


� `

xd

�

let




u in v : B

� ;̂ A `

xd

�

u : B

xdllf

�

llam

� `

xd

�

^

�

A

: u : A�ÆB

� = �

1

1 �

2

�

1

`

xd

�

u : A�ÆB �

2

`

xd

�

v : A

xdllf

�

lapp

� `

xd

�

û v : B

�; A `

xd

�

u : B

xdllf

�

ilam

� `

xd

�

�

A

: u : A!B

� `

xd

�

u : A!B � `

xd

�

v : A

xdllf

�

iapp

� `

xd

�

u v : B

Substitutions

xdllf

�

Id

� `

xd

�

"

0

: �

� `

xd

�

"

j

: �

0

xdllf

�

uShift

� ;̂ `

xd

�

"

j+1

: �

0

� `

xd

�

"

j

: �

0

xdllf

�

iShift

�; A `

xd

�

"

j+1

: �

0

� = �

1

1 �

2

�

1

`

xd

�

u : A �

2

`

xd

�

� : �

0

xdllf

�

ldot

� `

xd

�

u :̂ � : �

0

;̂ A

� `

xd

�

� : �

0

xdllf

�

udot

� `

xd

�

:̂ � : �

0

;̂

� `

xd

�

u : A � `

xd

�

� : �

0

xdllf

�

idot

� `

xd

�

u : � : �

0

; A

Figure 3: Typing in xdLLF

�

�

as for ontexts. The substitution splitting judgment � = �

1

1 �

2

is also de�ned similarly to the analogous

relation on ontexts; notie that it operates only on xdLLF

�

�

substitutions; observe also that, like ontext

splitting, this operation is non-deterministi (e.g. u :̂ "

0

an be split as either u :̂ "

0

= u :̂ "

0

1 :̂ "

0

or

u :̂ "

0

= :̂ "

0

1 u :̂ "

0

). Finally, we have the linear and intuitionisti binder rossing operations:

^

+(�) and

+(�), and the assoiated redution judgment (not displayed). They are what it takes to push the sub-

stitution � through a binder: intuitively, they orrespond to 1 :̂ (� Æ ") and 1 : (� Æ "), respetively. These

omitted de�nitions an be found in [3℄.

The proedure in Figure 4 works as follows: it walks through an xdLLF

�

term using the ongruene

rules till the �rst substitution appliation t[� ℄ is enountered. Then, it normalizes � to �

0

and swithes

to the redution rules to push �

0

inside t. This reursive desent terminates when onstrutors without

arguments are proessed.

This proedure terminates sine eah onstrutor in an xdLLF

�

term or substitution is visited exatly

one by the ongruene or redution judgments. However, it an fail unless it is guided by a typing
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Terms; ongruenes

(The obvious ases have been omitted)
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Terms; redutions

r

�

lvar

1[u :̂ �

0

℄ ��

r

u

r

�

ivar

1[u : �

0

℄ ��

r

u

r

�

shift

1["

j

℄ ��

r

j + 1

r

�

hi

hi[�

0

℄ ��

r

hi

t[�

0

℄ ��

r

u s[�

0

℄ ��

r

v

r

�

apair

ht; si[�

0

℄ ��

r

hu; vi

t[�

0

℄ ��

r

u

r

�
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r
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�

�
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℄ ��
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�

�

0

= �

1

1 �

2

t[�

1

℄ ��

r

u s[�

2

℄ ��
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1
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2
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1

℄ ��

r
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2

℄ ��

r

v

r
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(t




s)[�

0

℄ ��

r
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v

�

0

= �

1

1 �

2

t[�

1

℄ ��

r

u

^

+(

^

+(�

2

)) ��

h

�

0

2

s[�

0

2

℄ ��

r

v

r

�

let
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t in s)[�

0

℄ ��

r

let




u in v

^

+(�

0

) ��

h

�

0

0

t[�

0

0

℄ ��

r

u

r

�

llam

(

^

�

A

: t)[�

0

℄ ��

r

^

�

A

: u

�

0

= �

1

1 �

2

t[�

1

℄ ��

r

u s[�

2

℄ ��

r

v

r

�

lapp

(t̂ s)[�

0

℄ ��

r

û v

+(�

0

) ��

h

�

0

0

t[�

0

0

℄ ��

r

u

r

�

ilam

(�

A

: t)[�

0

℄ ��

r

�
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: u

t[�

0

℄ ��

r

u s[�

0

℄ ��
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r

�
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(t s)[�
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��
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r

�
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0

℄ ��
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Substitutions; ongruenes

(The obvious ases have been omitted)

� �� �

0

� Æ �
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Substitutions; redutions
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Shiftu
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Shifti
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0
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�

0
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1

1 �

2
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1

℄ ��

r
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2

��

r

�

r

�

ldot

(t :̂ �) Æ �

0

��

r

u :̂ �

� Æ �

0

��

r

�

r

�

udot

( :̂ �) Æ �

0

��

r

:̂ �

t[�

0
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r

u � Æ �

0

��

r

�

r

�

idot
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0

��
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Figure 4: �-Normalization of xdLLF

�

Terms and Substitutions
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derivation, even when starting from a typable term (or substitution). Indeed, objets suh as �

0

in

rule r

�

� (Figure 4) at as onstraints on the terms (or substitutions) that an be aeptably proessed.

More preisely, in a given ontext only a few (just one in the absene of hi) of the hoies for splitting

a substitution will satisfy these onstraints, namely the ones whih split the substitution aording to

the linear variables used in the orresponding terms. The typing rules of xdLLF

�

�

ensure that only those

splits an be used for redution. The substitution splitting judgment an generate substitutions that will

not pass this test, unless properly ontrolled. However, no problem arises when �-redution is supervised

by a typing derivation, as stated by the following theorem. (We abbreviate \D is a derivation of judgment

J" as D :: J .)

Theorem 4.1 (Subjet redution for��)

i . If T :: � `

xd

t : A, then there exist u, R, and U suh that R :: t �� u and U :: � `

xd

�

u : A.

ii . If S :: � `

xd

� : �

0

, then there exist �, R, and V suh that R :: � �� � and V :: � `

xd

�

� : �

0

.

Proof

After proper generalization of the statement, the proof proeeds by strutural indution on S and T . It relies on

several auxiliary results omitted for spae reasons. See [3℄ for details. 2

X

We expet our �-normalization proedure to be a funtion (even when no aompanying typing

derivation is given), but we have not had the time yet to verify this onjeture. Further results about

this proedure an be found in [3℄.

5 Future Developments

We have desribed the linear �-alulus with expliit substitutions xdLLF

�

, whih appears to be a

reasonable playground for experimenting with linear expliit substitutions as it isolates some of the most

deliate interations between expliit substitutions and linearity. This paper analyzed one approah to

oping with them, although it has several drawbaks that make it unsuitable as a foundational alulus

for a linear logial framework: in partiular, it annot be diretly extended to handle meta-variable

(essential for logial framework implementations), and it does not allow interleaving �-redutions with

other redution steps (making it very rigid). Nonetheless, we see it as a valuable �rst step toward

addressing these issues more satisfatorily. A few immediate questions arise from this endeavor:

- What happens if we use dual ontexts as in xDILL?

- What if we make substitutions dual too?

- How do named variables inuene the result (see also [7℄ on this)?

- Do we still get orret �-normal terms if we omit splitting substitutions?

- Can we de�ne a usable notion of weak �-normal forms?

- How do meta-variables �t into all this?

Answers to some of these questions should prove highly relevant to the implementation of linear logial

frameworks, linear funtional languages and other systems based on linear �-aluli. We are urrently

experimenting with languages that inorporate eah of these ideas.
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