
The context calculus �c

Extended Abstract

Mirna Bognar

�

Roel de Vrijer

�

Abstract

The calculus �c serves as a general framework for representing contexts. Essential

features are control over variable capturing and the freedom to manipulate contexts

before or after hole �lling, by a mechanism of delayed substitution. The context

calculus �c is given in the form of an extension of the lambda calculus. Many notions

of context can be represented within the framework; a particular variation can be

obtained by the choice of a so-called pretyping. By way of an example we treat the

contexts of Hashimoto & Ohori.

1 Introduction

The central notion in this paper is that of context, i.e. an expression with special places,

called holes, where other expressions can be placed. For example, in the lambda calculus,

(�x:2)z, where 2 denotes a hole, is a context. In formal systems with bound variables,

such as �-calculus, a distinctive feature of placing an arbitrary expression into a hole of

a context is variable capturing: some free variables of the expression may become bound

by the binders of the context. For example, placing the expression xz into the hole of

the context above results in the expression (�x:xz)z, where the free variable x of the

expression has become bound by the binder �x of the context.

In many formal systems, the standard transformations, which are de�ned on expres-

sions, are not de�ned on contexts. This implies that contexts are treated merely as a

notation, which hinders any formal reasoning about contexts and the interaction with ex-

pressions put into their holes. Our objective is to add contexts as �rst-class objects, and

to gain control over variable capturing and, more generally, `communication' between a

context and expressions to be put into its holes.

The starting point of our research has been De Bruijn's calculus of segments, which

was proposed in the context of Automath. More in general, the increasing interest in

contexts has its motivation from many directions, as diverse as modelling programs and

program environments, and dealing with anaphora in natural language representation. In

all these cases there is a need for manipulating contexts on the same level as expressions.

The study and formalisation of contexts has been the subject of various papers; we list a

few from the problem areas just mentioned.

�

Vrije Universiteit, Department of Theoretical Computer Science, de Boelelaan 1081a, 1081 HV Ams-

terdam, The Netherlands, mirna@cs.vu.nl, rdv@cs.vu.nl

1

In [Bru78], De Bruijn introduced a �-calculus extended with incomplete terms of a

special form, called segments. The purpose of segments was facilitating de�nitions and ma-

nipulation of abbreviations in the proof-checkers family Automath (see [NGV94]). Tech-

nically, segments can be characterized as contexts with precisely one hole at a special

position. The segment calculus included means for representing segments, variables over

segments and abstraction over segments. In [Bal87, Bal94] Balsters gave a simply typed

version of the segment calculus and proved conuence and subject reduction. A character-

isation of segments by means of the context calculus is given in Bognar & de Vrijer [BV99].

With the development of programming languages in mind, Hashimoto and Ohori (see

[HO98]) proposed a typed context calculus, which is an extension of the simply typed

lambda calculus. The type system speci�es the variable-capturing nature of contexts with

one hole using �-sensitive interface variables. The relations of �-reduction and hole �lling

reduction are combined, under the restriction that no �-steps are allowed within a context.

Sato, Sakurai and Burstall (see [SSB99]) de�ned a simply typed lambda calculus with �rst-

class environments. The calculus is provided with operations for evaluating expressions

within an environment and includes environments as function arguments.

With the purpose of modelling binding mechanisms in natural language, Kohlhase,

Kuschert and M�uller (see [KKM99]) introduced dynamic lambda calculus as an extension

of the simply typed lambda calculus with declarations. In their approach the scope of

binders sometimes extends the textual scope of a sentence. Declarations are �-sensitive

and �-reduction is not de�ned on declarations. In addition to types, expressions are

provided with modality, which describes their variable binding power.

Although emerging from di�erent �elds of research, with di�erent motivations, the

problem of formalising contexts and communication can be tackled uniformly. The context

calculus �c can serve as a uniform framework for representing di�erent kinds of contexts. It

is an extension of the lambda calculus with facilities for representing contexts and context-

related operations such as �lling the holes of a context by expressions (called `hole �lling')

or by contexts (called `composition'), and establishing the (explicit) `communication'.

Communication is meant here in the broad sense of interaction between a context and

the expressions that are put into its holes. In particular, we present a technique that allows

us to control the passing of variable bindings. This regards not only potential capture of

a variable by a binder in the context, but also passing on imminent substitutions, that

emerge from earlier �-reduction within the context. It is accomplished by giving both

the context and the holes, as well as the expressions that are candidates to be �lled

in, a functional representation. There is an analogy to techniques used in higher-order

rewriting, where variable capturing is accomplished by a substitution calculus. (Refer e.g.

to Nipkow [Nip93], van Oostrom & van Raamsdonk [OR93].) Similar techniques are used

in the �eld of higher-order abstract syntax, see e.g. Pfenning & Elliott [PE88], Despeyroux,

Pfenning & Sch�urmann [DPS97]. There have been earlier proposals to use these techniques

for the formalization of contexts by, among others, Talcott [Tal91] and Sands [San98].

The power of our calculus is its expressivity, which is achieved by on the one hand

a exible syntax, and on the other hand the possibility of term-formation restrictions

within the framework. The syntax allows for a �rst-class treatment of contexts by having

explicit abstraction over context variables and free context manipulation. Term-formation

restrictions are implemented by `pretypings'. Via the choice of an adequate pretyping

di�erent notions of context can be represented within �c. The mechanism of pretyping

is demonstrated in Section 5 on a speci�c form of lambda calculus contexts.

2

2 Informal notions of context in the �-calculus

In this section we describe contexts as they are encountered in the �-calculus literature,

usually as an informal notational device. Unfortunately, �-calculus contexts are not com-

patible with �- and �-reduction. The standard theory of the untyped and simply typed

lambda calculus with constants is presupposed; the interested reader is referred to [Bar84].

A context over �-terms, or a �-context for short, is basically a �-term with some holes

in it. Contrary to �-terms, �-contexts are not considered modulo �-conversion (in the

name-carrying representation), nor are �-contexts subject to �-reduction. That means,

for example, that �x:2 6=

�

�y:2 and (�x:x2)y 6!

�

y2.

There are two basic context-related operations, both concerned with �lling holes. The

�rst operation, hole �lling, denoted by [], deals with placing terms into the holes of a

context. The second operation, composition, deals with putting contexts into the holes

of a context. For example, the composition of �-contexts �x:2 and x(�y:2) results in

�x:x(�y:2). In both operations, when a term or a context is placed into a hole of a

context, variable capturing may occur. The di�erence between these operations is, in

addition to the di�erence in the objects that are placed into the holes (terms vs. contexts),

in the resulting object: a �-term, in the case of hole �lling; and a �-context, in the case

of composition.

As a matter of fact, several variants of this simple view on contexts exist. The �rst

possibility for variation is in the number of holes allowed in a context: precisely one, or

many, including zero. The second possibility for variation is, in the case where many holes

are allowed, in the way these holes are treated: as copies of the same hole, which therefore

must be �lled with the same term as copies of di�erent holes, which therefore may be

�lled with possibly di�erent terms or as combination of both treatments by distinguishing

between holes and hole occurrences.

A formalisation of �-contexts should ideally provide means for representing contexts

and context-related operations, as well as rules for computing these operations, and, more-

over, should extend the standard rewrite relations to (the representations of) contexts.

The major problem in a na��ve formalisation is that the standard rewrite relations do not

commute with the new context reductions. Conuence is lost and, consequently, the cor-

responding equational theory is inconsistent. The non-commutation of �-reduction and

hole �lling is demonstrated by the next example, where a hole �lling constructor � has

been introduced and where hole �lling is computed by fill-reduction; a similar example

of non-commutation can be given for �-conversion and hole �lling.

Example. Let C � (�x:x2)y and t � x. Then

C � t � ((�x:x2)y)� x

!

fill

(�x:xx)y

!

�

yy

� s

0

but

C � t !

�

(y2)� x

!

fill

yx

6� s

0

In the example, the reductions end in di�erent terms because in the reduction on the

left the substitution [[x := y]] that emerged from the rewrite step in context C is applied

to the term t, whilst in the reductions on the right the substitution is not applied to term

t, but only to the hole which `forgets' it. Note that the result of the left reduction is the

intended one.

3

What is needed is a way of denoting the intended bindings, that keeps track of �-

conversion or �-reduction in the (outer) context and passes the e�ects of these reductions

on to the terms (or contexts) replacing the holes. This problem of communication between

holes and objects to be put into the holes is common to both hole �lling and composition

and it can be tackled separately. Then hole �lling and composition reduce to replacing

holes, without any communication.

Accordingly, the reduction on the right can be repaired by explicitly keeping track of

these �; �-changes and applying the resulting substitution to the term after hole �lling.

((�x:x2)y)� x !

�

(y2

[[x:=y]]

)� x !

fill

y(x[[x := y]]) = yy

The problem of establishing communication is reduced to the encoding of this substi-

tution.

3 A gentle introduction to �c

The main aspects of the context calculus are kaleidoscopically sketched. A formal descrip-

tion of the calculus is given in Section 4.

Contexts. A context can be considered as a function over the possible contents of its

holes. For this reason, in the context calculus hole variables are introduced and contexts

are represented as functions over hole variables.

Communication. We take a basic, lambda-calculus-like approach, and solve this problem

by using the fact that in lambda calculus substitution emerges as the result of a �-step:

t [[x := t

0

]]

�

(�x:t)t

0

. Since it is convenient to use multiple substitution, we will introduce

new constructors � for multiple abstraction and for multiple application, together with

a multiple version of the �-rule. The second reduction in the example above now becomes

(the hole �lling constructor � is still auxiliary and h is a hole variable):

((�x:x(h x))y)� (�x:x) !

�

(y(h y))� (�x:x)

!

fill

y((�x:x) y)

!

�

yy

where the �rst term reveals the new representations of the hole (h x) and the term

(�x:x).

In general, communicating terms and, in the case of composition, communicating con-

texts are represented as multiple abstractions over variables that will become bound by

the binders of the context where they will eventually be placed. The holes are represented

as multiple applications of hole variables to a sequence of terms that keeps track of the

relevant ��-changes. When a communicating term is placed into the hole, communication

can be computed by applying a generalized form of the �-rule

(�x

1

; :::x

n

:U) V

1

:::V

n

! U [[x

1

:= V

1

; :::; x

n

:= V

n

]]

recovering the binding intention and passing the changes.

Hole �lling and composition. The rewrite relations hole �lling and composition depend

on the structure of a particular notion of context. However, since we represent contexts as

4

abstractions over hole variables, hole �lling simply boils down to (multiple) �-reduction.

So, in our running example we get (�h:�x:x(h x)y)(�x:x)!

�

�x:x((�x:x) x)y.

In the case of composition, the rewrite relation involves some shifting of abstractions.

For example, let C � �x:2 and D � x(�y:2) be two �-contexts. Then the composition

of the two, here denoted by C � D, results in the context �x:x(�y:2). Note that the

hole of the result of the composition is the hole of the second context, which potentially

binds variables x as well as y. In the context calculus, these contexts are represented

as C

c

� �h:�x: h x and D

c

� �g:x(�y: g y). Because the second context is going

to be put into the hole of C

c

, it is provided with means of communication, adapted for

this purpose: D

0

c

� �x:�g:x(�y: g xy). The composition puts the second context into

the hole, and moves the �g abstraction at the beginning of C, so that the whole is an

abstraction over the second hole g, the hole of D. The composition rewrite step should

result in C

c

�D

0

c

!

�

�g:�x: (�x:x(�y: g xy)) x. This is an instance of the composition

rewrite rule:

(�h:U) � (�u

1

:::u

n

:�g:V) !

�

�g:U [[h := �u

1

:::u

n

:V]]

where �g is shifted to the beginning of the reduct. Note that by performing the ensuing

communication step this term reduces to �g:�x:x(�y: g xy), which is a representation

of the resulting composition in lambda calculus.

Framework. In the context calculus the building blocks can freely be combined to form

�c-terms: variables, abstractions, applications and compositions. If a context contains

many occurrences of a hole, these may be given the same name, like in for example

the �c-term �h:�x:(h x)(h x). All occurrences of the same hole should have the

same number of arguments, though. If a context contains many holes, these can be

represented by di�erent hole variables, as in �h:�g:�x:(

1

h x) (�y:

2

g xy). Note that

here the holes are �lled sequentially using the �-rule. An alternative representation is

�h; g:�x:(

1

h x) (�y:

2

g xy). Last but not least, the calculus may include variables

over contexts and functions over contexts, witnessing the true �rst-class treatment of

contexts.

Pretyping. The exibility of the framework can be controlled by `pretyping', restricting

the �c-term formation. The aim of these restrictions is to gain more control over the

form of �c-terms. Pretyping works in �c like typing does in lambda calculus. In a typed

lambda calculus, each variable has a type and term formation is led by a set of typing

rules. Analogously, a set of pretyping rules controls the �c-term formation. By means of

pretyping, �c-terms can be restricted to representations of contexts with only one hole, or

variables in abstractions can be ensured to match their arguments, for example.

4 De�nition of �c

This section contains the de�nition of the (untyped) framework. In the absence of pre-

typing, which naturally controls term-formation, a couple of assumptions are made about

composition by using labelled composition constructors and composition rewrite rules of

special form. With pretyping de�ned, such assumptions can in general be enforced by the

pretyping rules.

Preliminary to the de�nition of �c-terms, the forms of composition that are allowed

need to be speci�ed. This can be accomplished by labeling each composition constructor

5

with an index � 2 I. We do not specify the precise form of the indices, but here only

assume the existence of the following functions de�ned on I. First Ar(�), which returns

the number of holes of the outer context involved in composition. Secondly Ind(�), which

speci�es whether contexts are represented as �- or �-abstractions, or as a sequence of such

abstractions. Thirdly Ncom(�), which speci�es (the cardinality of) the communication

between the holes of the main context and corresponding communicating contexts. Note

by the way that in many cases, depending on the pretyping, composition will be de�nable.

Let V be a countably in�nite set of variables.

De�nition 4.1 (�c) The set of un(pre)typed �c-terms �c is de�ned inductively by

U ::= u j (�u:U) j (U U) j

(�

n

u

1

; :::; u

n

:U) j (

n

U U:::U) j

(�

�

(U;U; :::; U)

where u 2 V, � 2 I, U; :::; U abbreviates n U 's and Ar(�) = n+ 1.

Notation. Variables u

1

; :::; u

n

in (�

n

u

1

; :::; u

n

:U) will be abbreviated by ~u, and n terms U

1

:::U

n

in

the expressions (

n

U U

1

:::U

n

) and (�

�

(U;U

1

; :::; U

n

) will be abbreviated by

~

U , where the vectors

are empty if n = 0. We will even omit the indices n and � and assume that the arities of �,

and � and the number of their arguments match. Furthermore, if � is binary, it is used in

in�x notation. As usual, standard abbreviations regarding brackets apply. In the remainder,

the following convention considering typical elements will be maintained (if not explicitly stated

otherwise): i; j; k;m; n 2 IN, u; u

0

; u

i

; v; w; ::: 2 V and U;U

0

; U

i

; V;W::: 2 �c.

The multiple abstractors �

n

and the multiple applicators

m

are generalised forms of

the familiar (simple) abstractor and applicator. The free and bound variables in a �c-term

are de�ned as in lambda calculus. As in the case of lambda calculus, �c-terms are con-

sidered equal up to �-conversion. Moreover, we assume that bound variables are renamed

whenever necessary. In �c, we need multiple substitutions, which are a straightforward

pointwise extension of (single) substitutions. For U;

~

V 2 �c and n distinct variables ~v,

where n is also the number of terms in

~

V , the result U [[~v :=

~

V]] of substituting V

i

for free

occurrences of v

i

in U (1 � i � n) is de�ned as:

u[[~v :=

~

V]] =

�

V

i

: if u = v

i

for some 1 � i � n

u : otherwise

,

(B~u:U

0

)[[~v :=

~

V]] = B~u:(U

0

[[~v :=

~

V]]),

F (U

0

; U

1

:::U

m

)[[~v :=

~

V]] = F (U

0

[[~v :=

~

V]]; U

1

[[~v :=

~

V]] :::U

m

[[~v :=

~

V]]).

Here B: denotes � or �, and F (;) denotes �, or �.

Before giving the de�nition of �c, an important assumption about the collection of the

composition rules is explained. We assume that the arguments of the composition are of

the right shape in the following sense. Suppose contexts are represented as sequences of

multiple abstractions, for example �u

1

u

2

:�u

3

:U is a representation of some context. If it is

the outer context in a composition, the composition should have another three arguments

that are communicating contexts represented in the same way: as sequences of multiple

abstractions, e.g., �((�u

1

u

2

:�u

3

:U); (�~u

0

:�~u

00

:U

0

); (�~v:�~v

0

:V); (�~w:�~w

0

:W)). Moreover,

the way the hole variables are grouped by the multiple binders should be preserved, so

the composition should reduce to �~u

00

~v

0

:�~w

0

:U [[u

1

:= �~u

0

:U

0

; u

2

:= �~v:V ; u

3

:= �~w:W]],

6

where the holes ~u

00

and ~v

0

are now under the same multiple abstractor because u

1

and u

2

were. It is assumed that all composition rules satisfy these conditions.

De�nition 4.2 (Context calculus �c) The context calculus �c is de�ned on terms of

�c with rewrite relations induced by the following rule schemes:

(�u:U) V !

�

U [[u := V]] (�)

(�~u:U)

~

V !

�

U [[~u :=

~

V]] (�)

In addition to these rule schemes, countably many composition rule schemes having the

following form are allowed:

�((

~

B~u:U); (�~v:

~

B~v

0

:V

1

); :::; (�~w:

~

B~w

0

:V

n

))

!

�

~

B~v

0

; :::; ~w

0

:U [[u

1

:= �~v:V

1

; :::; u

n

:= �~w:V

n

]] (�)

where

~

B~u:U stands for �~u:U or �u

1

:::u

i

:�u

i+1

::::�u

j

:::u

n

:U with u

1

:::u

i

u

i+1

:::u

j

:::u

n

= ~u.

Remark. The context calculus can be de�ned more e�ciently as follows. Since hole �lling and

compositions are functions on contexts and terms, they can be de�ned as �c-terms, provided a pow-

erful enough pretyping system (in the case of last example, let comp � �cd

0

:�g

0

:c(�x

0

:(d

0

x

0

)g

0

)).

Furthermore, by encoding the single abstraction and single application as special cases of the cor-

responding multiple one, the only constructors that are really needed are � and and the rule

(�).

Finally, we only mention the main result of �c.

Theorem 4.3 �c is conuent.

The proof is done indirectly via higher-order rewriting systems (HRSs), a framework

for term rewriting systems with binders. Since the context calculus is such a rewriting

system, it can very naturally be written as a HRS.

The proof is conducted in a couple of stages. Firstly, the higher-order system H

is de�ned, by translating the constructors and rewrite schemes of the context calculus.

The higher-order system H turns out to be orthogonal (there are no critical pairs and

all rules are left-linear (i.e. free variables occur at most once on the left-hand side of

a rule)). Since, by a general theorem, any orthogonal HRS is conuent, it follows that

H is conuent. Next, H is restricted to a subsystem, called H

�c

, which is closed under

reduction and which corresponds to the context calculus. From the properties of H and

the theory of HRSs, it can be shown that H

�c

is conuent, hence the context calculus too.

A full version of the proof can be found at http://www.cs.vu.nl/~mirna/conproof.ps.

5 An example of pretyping

The pretyped calculus �c

!

given in this section describes the simply typed lambda cal-

culus with contexts (i) with many holes, which may occur manifold, (ii) where holes are

�lled sequentially, (iii) including composition and (iv) including context variables and

functions over (representations of) contexts. The pretyping rules of �c

!

generally follow

the typing rules of the calculus of Hashimoto and Ohori (cf. [HO98]). In this section,

we will �rst de�ne the pretypes, the pretyping rules and the calculus �c

!

. Then, we will

7

(var)

(x : �) 2 �

�;� ` x : �

(hvar)

(h : [~�]�) 2 � �;� `

~

V : ~�

�;� ` h

~

V : �

(abs)

�; x : �;� ` U : �

0

�;� ` �x : �:U : � ! �

0

(habs)

�;�; h : [~�]� ` U : �

0

�;� ` �h : [~�]�:U : [~�]�) �

0

(app)

�;� ` U : � ! �

0

�;� ` V : �

�;� ` U V : �

0

(mabs)

�; ~x : ~�;� ` U : �

�;� ` �~x : ~�:U : [~�]�

(mapp)

�;� ` U : [~�]� �;� `

~

V : ~�

�;� ` U

~

V : �

(fill)

�;� ` U : [~�]�) �

0

�;� ` V : [~�]�

�;� ` U V : �

0

Figure 1: Pretyping rules for �c

!

summarize some properties of �c

!

and briey compare �c

!

to the calculus of Hashimoto

and Ohori [HO98]. Finally, we will name two variations of this pretyping.

If BT denotes the set of base types with a 2 BT , then the � -pretypes (� 2 T) and the

�-pretypes (� 2 P) are de�ned as

� ::= a j � ! � j [~�]�) � and � ::= � j [~�]� .

Here, ! and) associate to the right, ! binds stronger than [] and [] binds stronger

than). The � -pretypes are used for pretyping terms and contexts, and the �-pretypes

are also used for pretyping communicating objects and holes. The pretyping uses two

bases, the basis � containing declarations of the form x : � , and the basis � containing

declarations of the form h : [~�]� . The bases are split because the elements of � are used

as true variables and the elements of � as markers, in the sense that they are used for

marking the beginning (abstraction) and endings (i.e. holes) of a context. The new type

constructors [] and) are introduced for better correspondence with the constructors of

�c (namely, [] for � and) and for distinguishing between two kinds of abstractions:

over term or context variables, and over hole variables (! versus)), as will become clear

in the pretyping rules. In the pretyping rules,

~

U : ~� denotes the pointwise pretyping U

i

: �

i

for 1 � i � j~� j, and both � and � are, without loss of generality, assumed to contain

distinct variables.

De�nition 5.1 (Pretyping rules for �c

!

) A term U 2 �c is pretypable by � from the

bases �;�, if �;� ` U : � can be derived using the pretyping rules displayed in Figure 1.

We comment on the rules shortly. The rules (var), (abs) and (app) are the familiar

Church style typing rules for �

!

. The rules (hvar), (habs) and (fill) are their respective

counterparts for the hole variables. By the rule (hvar), hole variables are immediately

provided with communication, generalizing the interface technique in the type system in

[HO98]. Note that a plain hole variable is not pretypable. However, the more general

rule, �;� ` h : [~�]� if (h : [~�]�) 2 �, is also posssible in our setting. The rule (fill)

is actually an application rule. An alternative understanding of the rules (habs) and

(fill) is that the (simple) abstractor and applicator are duplicated in order to distinguish

between abstractions over term or context variables and abstractions over hole variables,

8

(x : a) 2 fz : a; x : ag

(h : [a]a) 2 fh : [a]ag z : a; x : a;h : [a]a ` x : a (z : a) 2 fz : ag

z : a; x : a;h : [a]a ` h x : a (h : [a]a) 2 fh : [a]ag z : a;h : [a]a ` z : a

z : a;h : [a]a ` �x : a: h x : a! a z : a;h : [a]a ` h z : a

z : a;h : [a]a ` (�x : a: h x)(h z) : a

z : a ` �h : [a]a:(�x : a: h x)(h z) : [a]a) a

Figure 2: An example of pretyping in �c

!

and the corresponding applications. The rules (mabs) and (mapp) are added for pretyping

communication. By the rule (mabs) no hole variables may occur in a communication.

Note that there is no composition in the pretyping rules. This is because composition is

de�nable within �c

!

: for every (context) U of pretype [~�]�) �

0

and every (communicating

context) V of pretype [~�]([~�]�) �) the following closed pretypable �c-term can act as a

composition constructor in comp U V ,

comp � �c : [~�]�) �

0

:�d : [~�]([~�]�) �):�g[~�]�:c (�~u : ~�:(d ~u) (�~v : ~�: g ~v))

: ([~�]�) �

0

)! ([~�]([~�]�) �)) ([~�]�) �

0

)).

Consequently, the composition constructor, rewrite rule and pretyping rule are omitted

from �c

!

.

Figure 2 is an example of pretyping in �c

!

.

De�nition 5.2 (�c

!

) The terms of �c

!

are the well-pretyped terms of �c according to

De�nition 5.1. The rewrite rules are the rules (�) and (�) of �c, now over well-pretyped

terms.

We have the following results.

Proposition 5.3 (Uniqueness of pretypes) If �;� ` U : �

1

and �;� ` U : �

2

then

�

1

� �

2

.

Proposition 5.4 (Subject reduction) If �;� ` U : � and U !! V , then �;� ` V : �.

Proposition 5.5 (Strong normalization) Reduction in �c

!

is strongly normalizing.

The proofs of the �rst two propositions are the standard ones, as in the case of �

!

�a

la Church. The proof of the second proposition uses counterparts of the generation lemma

and the substitution lemma. Note that, because of the choice of the rule (hvar), the subject

reduction property does not hold for a multiple version of �-rule, e.g. �~u : ~�: h ~u !

�

h

and h is not pretypable. The proof of strong normalization can be done via the natural

translation of �c

!

into �

!

.

The example described in this section extends the work of Hashimoto and Ohori [HO98].

It includes multiple occurrences of a hole and drops their condition on the �-rule, by which

�-reduction is not allowed within (representations of) contexts. Moreover, �c

!

allows

composition, which is not present in their system.

We conclude by mentioning two simple variations of this example of pretyping, which

can even be combined. These variations illustrate the expressive power of the framework

�c, which results from the possibility of �ne-tuning the pretyping rules.

9

Untyped �-contexts. Let BT contain only one pretype constant t, consider � -pretypes

modulo t

�

=

t! t, and add a rule by which if �;� ` U : � then �;� ` U : �

0

for �

�

=

�

0

.

Such a pretyping describes the untyped lambda calculus with the same kind of contexts

as �c

!

, which again has the subject reduction property (the uniqueness of pretyping and

strong normalization are lost, as expected). For example, according to this pretyping,

z : t ` �h : [t] t :(�x : t: h x)(h z) : [t]t) t and ` (�x : t:xx)(�x : t:xx) : t.

This pretyping essentially has the e�ect of rules for well-formedness of untyped �-terms

and of typing rules on the contexts and holes, by ignoring the type constructor !.

�-contexts with one hole. As contexts \with one hole" we consider those which trans-

late to �c-terms where each subterm has at most one free hole variable. Such contexts

can be captured by imposing extra conditions on �. The conditions involve leaving �

out (but keeping h if present, in the rules (var), (habs) and (fill)) or splitting � of the

post-condition into a �nite union of �

i

's (not necessarily disjoint) that are used by the

pre-conditions (in the rules (app) and (mapp)), and in all cases, allowing �('s) to contain

at most one element (in the rules (hvar), (abs), (app), (mabs) and (mapp)). These condi-

tions restrain the pretyping of terms that can act as composition constructors, which seem

to have a subterm with two free variables of �-pretypes; for instance d and g in the sub-

term (d ~u) (�~v : ~�: g ~v) of the �c

!

-term comp given above. Therefore, a composition

constructor �, and the following composition pretyping rule and composition rewrite rule

are added

�;� ` U : [~�]�) �

0

�;� ` V : [~�]([~�]�) �)

�;� ` U � V : [~�]�) �

0

(comp)

(�h : [~�]�:U) � (�~u : ~�:�g : [~�]�:V) !

�

�g : [~�]�:U [[h := �~u : ~�:V]] (�)

The composition pretyping rule resembles the composition on functions: if V : A ! B

and U : B ! C then U � V : A ! C with A � �;B � � and C � �

0

. In this rule,

communication is added, pretyped by [~�] and [~�], which `move' through the pretypes

following the movement of the corresponding abstractions in the composition rewrite rule.

Even with the additional composition pretyping rule and rewrite rule, in the calculus

obtained by such pretyping the properties of uniqueness of pretyping, subject reduction

and strong normalization are preserved.

Acknowledgements

We would like to thank Vincent van Oostrom for suggesting several improvements.

References

[Bal87] Herman Balsters. Lambda calculus extended with segments. In Mathematical logic and

theoretical computer science (College Park, Md., 1984{1985), pages 15{27. Dekker, New

York, 1987.

[Bal94] H. Balsters. Lambda calculus extended with segments: Chapter 1, Sections 1.1 and 1.2

(Introduction). In R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, editors, Selected

papers on Automath, pages 339{367. North-Holland, Amsterdam, 1994.

[Bar84] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics, volume 103 of Studies

in Logic and the Foundations of Mathematics. North-Holland Publishing Company,

revised edition, 1984. (Second printing 1985).

10

[Bru78] N.G. de Bruijn. A namefree lambda calculus with facilities for internal de�nition of

expressions and segments. Technical Report 78-WSK-03, Technological University Eind-

hoven, 1978.

[BV99] Mirna Bognar and Roel de Vrijer. Segments in the context of contexts. Preprint, Vrije

Universiteit Amsterdam, 1999.

[DPS97] Jo�elle Despeyroux, Frank Pfenning, and Carsten Sch�urmann. Primitive recursion for

higher-order abstract syntax. In Typed lambda calculi and applications (Nancy, 1997),

pages 147{163. Springer, Berlin, 1997.

[HO98] Masatomo Hashimoto and Atsushi Ohori. A typed context calculus.

S�urikaisekikenky�usho K�oky�uroku, (1023):76{91, 1998. Type theory and its appli-

cation to computer systems (Japanese) (Kyoto, 1997).

[KKM99] Michael Kohlhase, Susanna Kuschert, and Martin M�uller. Dynamic lambda calculus.

Preprint, available at http://www.ags.uni-sb.de/~kohlhase, 1999.

[NGV94] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected Papers on Automath,

volume 133 of Studies in Logic and the Foundations of Mathematics. North-Holland,

Amsterdam, 1994.

[Nip93] T. Nipkow. Orthogonal Higher-Order Rewrite Systems are Conuent. In Proceedings of

the International Conference on Typed Lambda Calculi and Application, pages 306{317,

1993.

[OR93] V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction systems

and higher-order rewrite systems. Technical Report CS-R9361, CWI, 1993. Extended

abstract in Proceedings of HOA'93.

[PE88] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the SIG-

PLAN'88 Conference on Programming Language Design and Implementation, pages

199{208. ACM Press, 1988.

[San98] David Sands. Computing with contexts, a simple approach. Electronic Notes in Theo-

retical Computer Science, 10, 1998.

[SSB99] M. Sato, T. Sakurai, and R. Burstall. Explicit environments. In Jean-Yves Girard,

editor, Proceedings of the 4th International Conference on Typed Lambda Calculi and

Application, pages 340{354, 1999.

[Tal91] C. L. Talcott. Binding structures. In Vladimir Lifschitz, editor, Arti�cial Intelligence

and Mathematical Theory of Computation. Academic Press, 1991.

11

