
Type checking meta programs

Nikolaj Bj�rner

�

Kestrel Institute

bjorner@kestrel.edu

September 1, 1999

Abstract

We report on preliminary experiments with inferring types for meta programs: programs that ma-

nipulate programs. For this purpose we provide a two-level type system in a fragment of a higher-order

system of dependent types. The system is formulated with automatic type inference in mind.

In particular, we give a type system for dependent types and a constraint generation procedure which

generates semi-uni�cation constraints from untyped terms that have a solution if and only if the terms

have a type annotation in the type system. More interestingly, typability is preserved under reection,

i.e. when object level programs are reected to the meta-level.

1 Introduction

We would like to have a way to infer that the operations meta programs perform on their objects preserve

typability of the objects. Here, we develop type rules and constraint solving techniques for inferring types

of such programs.

On the surface this may seem as an innocent exercise in extending for instance the Hindley-Milner typing

discipline. However, since meta programs are often uniform in the sort of the object level expressions that

they manipulate, we observe that a type system based on dependent types becomes relevant.

We provide a two-level type system that allows to annotate data according to a simply typed discipline.

Programs that are allowed to inspect and change the data using pattern matching are on the other hand

typed using a dependent type discipline containing the types from the data. A central concern here is to

infer types at both levels automatically, which has led us to review notions such as polymorphic recursion

and rank-bounded polymorphism where types can be inferred by solving a suitable set of constraints (which

unfortunately is not always decidable in light of polymorphic recursion).

An example: Our leading example is that of a map operator that applies a function to every subterm of

an object level program. In ML or Haskell we would de�ne a datatype called Term to represent the object

level programs together with the de�nition of map

datatype Term =

App of Term * Term map f (App(M,N)) = f(App(map f M,map f N))

| Lam of var * Term map f (Lam(M,N)) = f(Lam(M,map f N))

| Var of var map f (Var M) = f(Var(M))

The Hindley-Milner discipline infers the type map : (Term -> Term) -> Term -> Term for map, but does

not capture that for the subset of terms in Term that can be typed, map preserves the derivable type if f

does so too.

�

This material is based upon work supported by NASA under award No NAG 2-1227, Incorporation of Inference Servers

using Logic Morphisms, and upon work supported by DARPA under Contract No. F30602-96-C-0282. Any opinions, �ndings

and conclusions or recommendations expressed in this material are those of the author and do not necessarily reect the views

of DARPA or NASA.

1

Dependent types: Richer typing disciplines, such as LF, or �P2 [AC98] do on the other hand allow to

easily capture such dependent type information using judgments of the form:

op map : �w : sort : ((�v : sort:Term[v]! Term[v]) ! Term[w]! Term[w]) (1)

such that map has a dependent type. The abstraction operator � is the usual constructor for dependent

function spaces. The type constructor Term takes here an argument of type sort and generates a type. In

LF it can be annotated as �v : sort : tp.

In fact, Twelf [PS98] employs sophisticated type inference based on higher-order pattern uni�cation to

infer missing information from declarations with implicit abstractions. Unfortunately the type of our map

example requires inserting the dependent abstraction � in a contravariant position. It is also an example of

a recursive function that is polymorphic in the object sort. It therefore does not seem fall into the class of

functions where the approach in Twelf infers the desired dependent type. On the other hand, Twelf bene�ts

from higher-order pattern uni�cation to infer types where standard �rst-order uni�cation does not apply.

An interesting extension of OCaml with dependent types is reported in [XP99]. A noteworthy application

of these is extended static checking of array bounds checking.

The programming language Cayenne [Aug99] uses a general higher-order strati�ed dependent type system

which allows to encode type preserving meta-programs, such as interpreters

1

, directly. The compiler requires

types to be fully annotated with types, yet type checking is undecidable as Cayenne allows �xpoint operators.

With our narrower scope of only wanting to infer types for meta programs over an object language that

reects the meta language closely we here attempt to enable type inference to infer the appropriate types

for recursively de�ned functions such as map. We develop a type derivation calculus and use it to extract

second-order semi-uni�cation constraints and report on experiments with a prototype implementation that

solves these constraints and returns principal types.

Other applications: We intend our type inference, when in a mature stage, to be applied to programs

that manipulate typed object programs. In particular we are building several interfaces from the categorical

speci�cation and program re�nement system Specware [SJ95] to theorem provers such as PVS, HOL98,

SNARK, Gandalf, Setheo, and Spass (for proving more interesting properties of speci�cations than available

in the type system given here) as well as to programming languages Lisp, C, Java, for extracting executable

code from computable speci�cations. These interfaces are written in Specware's speci�cation language itself.

Notice that it is only necessary to encode the part of the target language, whether it from a theorem prover

or programming language, which is in the image of our translations from Specware. We thereby avoid having

to encode the full glory of rich type systems, such as that of PVS, in order to infer types for the translations.

It accesses the language constructs using a recursive datatype much similar to the datatype Term (but

somewhat richer) and uses successive transformations to normalize terms in order to interface these with

theorem provers or programming languages. To interface with C, for instance, we employ transformations

of the form and type:

Giving bound variables unique names:

uniqueNames : �v : sort : NameSupply � Term[v] ! NameSupply � Term[v]

Standardizing arities for targeting multi-argument function application:

normalizeArity : �v : sort : ArityMap � Term[v] ! Term[v]

Code optimization by simpli�cation:

simplify : �v : sort : Term[v] ! Term[v]

Lambda lifting:

lambdaLiftTerm : �v : sort : Term[v] ! Term[v]

Insertion of explicit tail-recursive calls to compile into iteration:

tailRecursionEliminate : �v : sort : Term[v] ! Term[v]

1

See http://www.cs.chalmers.se/~augustss/cayenne.

2

2 A two-level language and its typing discipline

We capture the essence of Specware's higher-order speci�cation language using typed �-calculus. It includes

designated constructors App, Lam, Var that represent the object level representation of the meta-language.

Object level types are here called sorts to distinguish these from the meta languages types. Finally, but

most importantly a pattern matching construct allows to write speci�cations that manipulate terms based

on their abstract syntax tree.

expression M;N ::= x Meta Variable

j M N Meta Application

j �x :N Meta Abstraction

j �x : M Recursive de�nition

j Varx Object Variable

j App M N Object Application

j Lam x :M Object Abstraction

j �(App x y) M

1

; Lam x : y) M

2

; Varx) M

3

) Pattern match expression

2.1 Reduction semantics

We recall the rules for �-reduction that besides the standard � rule also includes the induced rules for pattern

matching.

�(App x y) M

1

; Lam x : y) M

2

; Varx) M

3

) (App M N) �!

�

M

1

[x :=M; y := N]

�(App x y) M

1

; Lam x : y) M

2

; Varx) M

3

) (Lam z :M) �!

�

M

2

[x := z; y :=M]

�(App x y) M

1

; Lam x : y) M

2

; Varx) M

3

) (Var z) �!

�

M

3

[x := z]

(�x : M)N �!

�

M [x := N]

�x : M �!

�

�x :(M [x := �x :M])

2.2 A typing discipline

Object terms are annotated with terms taken from the type sort. Meta terms are assigned the standard

types, that range over simple types � , type schemes �, and rank-2 bounded types �

+

, where polymorphism

ranges over sort variables. We write �~v : sort : � as a shorthand for �v

1

: sort; : : : ;�v

n

: sort : � where

~v = v

1

; : : : ; v

n

. We will be mainly using distinguished subsets �

0

and � of �

+

and use that (closed) terms

that can be assigned �

+

types can also be assigned � types.

sorts s ::= b

i

Base sort

j s) s

0

Function space sort

j u j v j w Sort variable

types � ::= b

i

Base type

j � ! �

0

Function space type

j Term[s] Object term sort

j Var[s] Object variable sort

rank � 1 � ::= �~v : sort : �

rank � 1

1

2

�

0

::= �

1

! : : :! �

n

! �

full rank�2 �

+

::= � j �~v : sort : (� ! �

+

) rank � 2 � ::= �~v : sort : �

0

The language is for simplicity limited to only introduce type abstraction over elements from sort. There

is no polymorphism on the meta level types nor within object level expressions. Polymorphism does on

the other hand come into play when building expressions that manipulate object level expressions. The

typing calculus for this combination is thus completely analogous to those used for rank-2 typing as well as

Mycroft's calculus for polymorphic recursion.

To type terms formed from App; Lam; and Var we introduce the constructors:

�

0

:

8

<

:

App : �v; w : sort : Term[v) w] ! Term[v] ! Term[w]

Lam : �v; w : sort : Var[v] ! Term[w] ! Term[v) w]

Var : �v : sort : Var[v] ! Term[v]

(2)

3

Otherwise a termM has a type annotation in the full rank-2 fragment if there is a type �

+

and derivation

of �

0

` M : �

+

using the inference rules from Figures 1 and 2. For later reference we write �

0

`

0

M : �

+

to

indicate that there is a typing derivation for �

+

in this calculus.

We have conciously provided an explicit rule for �xpoints instead of introducing a distinguished family

of constants �x : (�

+

! �

+

)! �

+

because this would have taken us out of the rank-2 fragment.

VAR

1

�; x : �

+

` x : �

+

APP

1

� ` M : � ! �

+

� ` N : �

� ` M N : �

+

ABS

1

�; x : � ` M : �

+

� ` �x:M : � ! �

+

FIX

1

�; x : �

+

` M : �

+

� ` �x:M : �

+

GEN

� ` M : �

+

� ` M : �v : sort : �

+

v 62 FV (�)

INST

1

� ` M : �v : sort : �

+

� ` M : �

+

[s=v]

Figure 1: Full rank-2 typing rules

The typing rule for pattern matching can be expressed in three variants, depending on whether the sort

of the matched term is of sort b

i

, v or s

1

) s

2

. We give the most general case, where the matched sort is

v, the other cases are instantiations of this case.

�; x : Term[u) v]; y : Term[u] ` M

1

: � u 62 FV (�)

�; x : Var[u]; y : Term[w] ` M

2

: �[v 7! u) w] u;w 62 FV (�)

�; x : Var[v] ` M

3

: �

� ` �(App x y) M

1

; Lam x : y) M

2

; Varx) M

3

) : Term[v]! �

Figure 2: Pattern matching typing rules

2.3 Derivability with reduced rank-2 types

To prepare the ground for type inference we will establish that we can replace the typing rules from Figure 1

by those from Figure 3 that only derive types in a subset of the rank-2 fragment and most importantly do

not contain INST as a separate rule.

VAR �; x : �~v : sort : �

0

` x : �

0

[~s=~v]

APP

� ` M : � ! �

0

� ` N : �

� ` M N : �

0

ABS

�; x : � ` M : �

0

� ` �x:M : � ! �

0

FIX

�; x : �~v : sort : �

0

` M : �

0

� ` �x:M : �

0

[~s=~v]

GEN

� ` M : �

� `M : �v : sort : �

v 62 FV (�)

Figure 3: Restricted rank-2 typing rules

For this calculus we write �

0

` M : � to indicate that there is a typing derivation of � for the term M

using the rules from Figures 3 and 2.

4

De�ne the operation �

�

as the normal form under the rewrite:

�! �v : sort:� �! �v : sort:(� ! �)

bound and free variables have been renamed apart to avoid the problems of variable capture. By �

�

under-

stand the context where each type annotation x : � is lifted to x : �

�

. Clearly, if �

+

is of the full rank-2, then

�

+�

is of the restricted rank-2.

It is easy to establish invertibility

Lemma 2.1 (Invertibility) If �

�

` M : �

+�

is derivable and �

+�

= �~v : sort : �

0

, then �

�

` M : �

0

is

derivable too.

By this we have a simpli�ed version of a theorem from [KT92]

Theorem 2.2 (Calculus minimization)

� `

1

M : �

+

i� �

�

` M : �

+�

This establishes adequacy of our type system based on ` instead of `

1

to infer rank-2 bounded types.

2.4 Subject reduction

In order to establish that this calculus preserves types under �-normalization we make use of the lemmas:

Lemma 2.3 If � ` M : � then �[s=v] ` M : �[s=v].

Lemma 2.4 If � ` M : �v : sort:� then � ` M : �[s=v].

Lemma 2.5 If � ` M : � and � � �

0

, then �

0

` M : �.

Lemma 2.6 If �; x

1

: �

1

; : : : ; x

n

: �

n

` M : �, and each of � ` N

i

: �

i

, then � ` M [x

i

:= N

i

] : �.

In lemmas 2.3 and 2.4 we assume �-renaming of bound sort variables to avoid capture. The proofs of

these lemmas are straight-forward, though we notice that the type rules for pattern matching have been

formulated carefully such that they admit this sort specialization. In Lemma 2.6 we assume �-renaming of

bound variables in terms to also avoid capture.

Theorem 2.7 (Subject reduction) If M �!

�

N and � ` M : � then � ` N : �.

As a corollary we obtain that if � ` N : Term[s] and � ` M (N) : Term[s

0

] then any reduction of M (N)

preserves the derivability of sort Term[s

0

] (Naturally, the type of M is Term[s] ! Term[s

0

]).

2.5 Weak rei�cation

As the object level expressions are themselves programs we are here interested to ensure that the object level

programs have a typing derivation. The typing system we are using happens to be su�cient to to type the

object level programs, when reected at the meta-level, so we seek a property of the form:

If � ` M : Term[s] then reify(�) ` reify(M) : reify(s)

where we de�ne rei�cation in the obvious way:

reify(Lam x :M) = �x : reify(M) reify(b

i

) = b

i

reify(App M N) = reify(M) reify(N) reify(s) s

0

) = reify(s)! reify(s

0

)

reify(Varx) = x reify(v) = b

v

and rei�cation of a context � is obtained by reifying each type annotation x : Term[s] to x : reify(s),

respectively x : Var[s] to x : reify(s).

We state the available theorem in more detail:

5

Theorem 2.8 (Weak Rei�cation) Assume M is built from only Lam, App, and Var. Then, if � ` M :

Term[s] is derivable, then

reify(�) ` reify(M) : reify(s)

is also derivable. Furthermore, if � ` x : Var[s] is derivable, then (x : Var[s]) 2 �

We call the theorem Weak Rei�cation because the presented system comes with some de�ciencies.

Variable capture Abstraction at the object level does not correspond directly to the scope conventions

at the meta level. In particular, the e�ect of reify(Lam x :M) causes x to be bound while we make

essential use of that it is free before rei�cation.

Open code Consider the expression:

�(Lam z : u) u; u) App ux) (Lam y :Vary)

It type checks with � : x : Term[s]; y : Var[s], but after reduction we are left with Var y, which is

an open term. Hence, our type system does not distinguish between open and closed code. It may be

another desirable feature of a type system to support this distinction.

3 Type inference

This section describes a method for inferring the necessary constraints that when solved give principal type

schemes for meta programs. The constraint system generates a second-order semi-uni�cation problem that

is solved using a higher-order semi-uni�cation algorithm.

3.1 Semi uni�cation

A semi-uni�cation problem is a set

~s

1

�

~

t

1

; ~s

2

�

~

t

2

; : : : ; ~s

n

�

~

t

n

of pairs of term lists of the same length. A solution to is a collection of substitutions R

1

; : : : ; R

n

; S such that

R

1

(S(~s

1

)) = S(

~

t

1

); : : : ; R

n

(S(~s

n

)) = S(

~

t

n

). The shorthand ~s =

~

t is used for the two constraints ~s �

~

t;

~

t � ~s.

The problem of determining if there is a solution is undecidable [KTU93] and is log-space inter-reducible to

type inference for polymorphic recursion [Hen91].

We have extended a naive semi-uni�cation search algorithm with higher-order uni�cation [Hue76] to get

a higher-order uni�cation algorithm specialized to semi uni�cation.

In addition to well-known reduction rules from higher-order uni�cation and semi-uni�cation we use a

rule of the form:

fx; (x t

1

: : : t

n

) � x; ug [C �! f(x y

1

: : : y

n

) = u; x; t

1

; : : : ; t

n

� x; y

1

; : : : ; y

n

g [C

The precise properties (completeness) of our uni�cation algorithm variant are under investigation.

Alternatively to building semi-uni�cation on top of higher-order uni�cation one can naturally reformulate

semi-uni�cation as a higher-order uni�cation problem by � bindig the uni�able variables and replacing

their occurrences by substitution variables applied to all of the bound variables. For example we change

f(X; g(Y)) to �(x; y):f(�

1

(x; y); g(�

2

(x; y))), where �

1

and �

2

are the new uni�able variables. If we were to

model application of two substitutions � and we would for example have

�(x; y):f(�

1

(

1

(x; y);

2

(x; y)); g(�

2

(

1

(x; y);

2

(x; y)))): (3)

So if f(X; g(Y)) � f(h(X); g(X)) is a semi-uni�cation constriant we reduce it to

(3) � �(x; y)f(h(�

1

(x; y)); g(�

1

(x; y)));

and can extract a most general solution

1

= �(x; y) : h(x);

2

= �

1

= �(x; y) : x; �

2

= �(x; y) : y:

6

3.2 Syntax directed accumulation of constraints

The inference algorithm [Wel93] and constraint system [Hen91] guide us to collect the necessary constraints

for checking our terms. The extraction of constraints is performed using the function

C[�;~� ` M] =) �;C

that takes a type context �, a set of type variables ~� , and a termM . It produces a type � and a set of semi

uni�cation constraints. We appeal to the typing rules in de�ning the e�ect of C on each possible subterm.

To generate constraints that allow to infer rank-2 types we label lambda abstractions with numbers 1, 2, or

3 in terms using the call L(M; 0; 2) to the labeling function (see also [Wel93]):

L(M N; k; d) = L(M;k + 1; d) L(N; 0; 3)

L(�x : M; k; d) =

�

�

d

x:L(M;k; d) k = 0

�

1

x:L(M;k� 1; d) k > 0

L(�x:M; k; d) = �x:L(M;k; d)

L(x; k; d) = x

L(�(App x y) M

1

; Lam x : y) M

2

; Varx) M

3

); k; d) =

�

�

d

(App x y) L(M

1

; k; d); Lam x : y) L(M

2

; k; d); Varx) L(M

3

; k; d)) k = 0

�

1

(App x y) L(M

1

; k � 1; d); Lam x : y) L(M

2

; k� 1; d); Varx) L(M

3

; k � 1; d)) k > 0

The labeling has the property of pairing o� abstractions with their bodies and indicate which abstractions

can be polymorphically unconstrained and which not. In summary the abstractions labeled by 1 have

companions, those labeled by 2 are unconstrained, and those labeled by 3 must be treated as monomorphic

to generate constraints that admit rank-2 annotations. (It can be shown that the normalization functions

�

1

, �

2

, �

3

, and �

4

from [Wel93] preserve the labeling induced by L so we can in fact ignore the normalization

provided there.)

C[�; x : � ;~� ` x] =) �; f(�; ~�) � (�;~�)g

C[�; x : �;~� ` M] =) �; C

C[�;~� ` �

1;2

x :M] =) (� ! �); C

C[�; x : �; �~� ` M] =) �; C

C[�;~� ` �

3

x :M] =) (� ! �); C

C[�;~� ` M] =) �

1

; C

1

C[�;~� ` N] =) �

2

; C

2

C[�;~� ` M N] =) �; C

1

[C

2

[f�

1

= �

2

! �g

C[�; x : �;~� ` M] =) �; C

1

C = C

1

[f� = �; (�;~�) � (�; ~�)g

C[�;~� ` �x:M] =) �; C

C[�; x : Term[b

i

) v

p

]; y : Term[b

i

]; [v

p

;]�; ~� ` M

1

] =) �

1

; C

1

b

i

is fresh

C[�; x : Var[v

p

]; [v

p

;]�; ~� ` M

2

] =) �

2

; C

2

C[�; x : Var[u]; y : Term[w]; [v

p

;]�; ~� ` M

3

] =) �

3

; C

3

u, w are fresh

C = C

1

[C

2

[C

3

[f�

1

= �

2

= Term[�(v

p

)];Term[�(u) w)] = �

3

g

[v

p

] = if d = 3 then v

p

else �

C[�;~� ` �

d

(App x y) M

1

; Lam x : y) M

2

; Varx) M

3

)] =) Term[v

p

]! Term[�(v

p

)]; C

The variables �; � (which range over types), u; v; w; v

p

; (which range over sorts), and � (which ranges

over functions from sorts to sorts) introduced in the rules are all fresh.

For a closed term M we generate constraints C by applying C[�

0

; � ` M], where the sort abstractions

have been deleted from �

0

(de�ned in (2)).

3.3 Constraint solving

We solve the accumulated constraints C for the term M by iterating the following:

7

Initial solution Find a most general semi-uni�er R, S for C.

Sort specialization When S(v

p

) = s

1

) s

2

for some v

p

, then add the constraints u = s

1

, w = s

2

to

C. This ensures that if the domain of the pattern match expression instantiates to a function space,

then the case for Lam is compatible with this type. In other words, it reduces the constraints to those

associated with the s

1

) s

2

version of the typing rule for pattern match expressions.

Domain restriction If there is a variable v (or �) not in FV (S(

~

t

i

)) for any of the right-hand sides of the

semi-uni�cation problem, such that the least speci�c generalizer � of R

1

(v); : : : ; R

n

(v) is not a variable,

then set S := � � S.

For the remaining variables v

p

, such that S(v

p

) = v

p

check that S(u) = u, and S(w) = w. This ensures

that any instantiation of v

p

to a functionspace is compatible with the typing constraints on the subcase for

abstraction.

The domain restriction step re�nes a principal solution to one where a maximally compositional typing

is produced. We describe this situation in more detail. If the constraint system associates the variables

�

1

; : : : ; v

i

; : : : ; �

n

with the unconstrained labeled abstractions (�

2

), then the resulting type of M is of the

form S(�

1

! : : : ! Term[: : : v

i

: : :] ! : : :! �

n

! �

0

). Furthermore, since the constraint system does not

place any of the �

i

in an equation (because they are introduced for bound variables without companions),

we have S(�

i

) = �

i

for a principal S. It is possible to instantiate each of the �

i

by 8� : �, but this makes

the typing of M minimally compositional: there are no well-typed terms with type 8� : �, so M cannot be

typed separately from its application points. The domain restriction step ensures that the �

i

are specialized

according to the uses of x

i

in the body of M

2

.

4 The example revisited

Recall the map function from the introduction

map f (App(M,N)) = f(App(map f M,map f N))

map f (Lam(M,N)) = f(Lam(M,map f N))

map f (Var M) = f(Var(M))

It can be de�ned as a closed term using the recursion operator �:

�map:�f : �(App x y) f(App (map f x) (map f y)); Lam x : y) f(Lam x : (map fy)); Varx) f(Var x))

Recall also the desired principal type

map : �w : sort : ((�v : sort:Term[v]! Term[v]) ! Term[w]! Term[w])

We supply C with the initial argument �

0

; � ` L(M; 0; 2) and apply the rules for C bottom-up. The result

of labeling M is:

�map:�

2

f : �

2

(App x y) : : :) (4)

The �rst rule requires to generate the constraints for polymorphic recursion. We therefore introduce the

sort map

�

for the bound variable map. Similarly we associate the sort f

�

with the second bound variable f .

The third rule to apply uses the pattern matching construct and introduces variables v

1

; : : : v

3

; v; �. More

invocations of C are made for each sub-case. In summary, the rules for C determine the constraints:

2

As a technical aside, we would furthermore have to extend our system with polymorphism over types to allow types of the

form 8� : �, so for the more restricted type system we have to reject solutions that require polymorphism over types.

8

map

�

= f

�

! Term[v]! Term[� v]

Term[� v] = �

1

Term[� v] = �

2

Term[� (u) w)] = �

3

�;map

�

� �; f

�

! Term[b

i

) v]! Term[v

1

) v

2

]

�;map

�

� �; f

�

! Term[b

i

]! Term[v

1

]

�; f

�

� �;Term[v

2

]! �

1

�; f

�

� �;Term[v]! �

2

�;map

�

� �; f

�

! Term[w]! Term[v

3

]

�; f

�

� �;Term[u) v

3

]! �

3

We notice that 8�:� is a solution for f

�

, but also �s : sort:Term[s]! Term[s] which is the least speci�c

generalization obtained from the inequalities for f

�

.

In summary we (and our prototype semi-uni�cation implementation) get the principal solution:

v

1

= b

i

; v

2

= v; v

3

= w;

� = �x:x; �

1

= Term[v]; �

2

= Term[v]; �

3

= Term[u) w];

map

�

= f

�

! Term[v]! Term[v]

by �rst solving the semi-uni�cation problem, and then extracting the type

�v : sort : Term[v]! Term[v]

for f

�

as we are taking the least speci�c generalization of the types Term[v]! Term[v], Term[v]! Term[v],

and Term[u) w]! Term[u) w].

4.1 Beyond a single example

To give a taste of additional features that are required to infer types for slightly more elaborate programs

we summarize a simple example that has appeared in an optimization transformation in our C generator.

The optimization steps consists in transforming code of the form:

let x = (M

1

;M

2

) in M

3

[First(x); Second(x); x]

to a partially reduced version

let y

1

= M

1

; y

2

= M

2

;x = (y

1

; y

2

) in M

3

[y

1

; y

2

; x]

where we have introduced the additional constructors together with the corresponding pattern-maching rules:

Pair : �v

1

; v

2

: sort : Term[v

1

] ! Term[v

2

] ! Term[v

1

� v

2

]

First : �v

1

; v

2

: sort : Term[v

1

� v

2

] ! Term[v

1

]

Second : �v

1

; v

2

: sort : Term[v

1

� v

2

] ! Term[v

2

]

into the language.

We can now write our transformation function in a slightly sugared extension of our core language. First,

the auxiliary

mkLet(x;M;N) = App (Lam x :N)M

from which we easily infer the typing

9

mkLet : �v

1

; v

2

: sort : Var[v

1

]� Term[v

1

]� Term[v

2

] ! Term[v

2

] :

To reduce pairs from one occurrence we give the function reducePairs, it assumes the existence of a

function fresh : �v : sort : Term[v] ! Var[v] to generate fresh variables. More critically, it is necessary to

either extend pattern-matching with equational constraints or allow type inference to take conditions into

account when typing the forks of an if-then-else statement. We adapt the former approach and introduce

the construct freeze which causes the compiler to replace a pattern �(Var (freeze(t))) M

1

; : : :) by a when

clause (as found in for instance Ocaml): �(Var y when (t = y))M

1

; : : :): The sort of the branch containing

freeze is naturally now constrained to be that of t, which is essential for the type inference to succeed.

We are now ready for the de�nition of reducePairs.

reducePairs(App (Lam x :M

3

) (Pair(M

1

;M

2

))) =

let y

1

= fresh(M

1

)

y

2

= fresh(M

2

)

replace = � (First(Var (freeze(x))))) y

1

j Second(Var (freeze(x)))) y

2

j t) t)

M

0

3

= map replace M

3

in

mkLet(y

1

;M

1

;

mkLet(y

2

;M

2

;

mkLet(x;Pair(y

1

; y

2

);M

0

3

)))

reducePairs(t) = t

It is possible to now generate type constraints and infer the type reducePairs : �v : sort : Term[v] !

Term[v]: The let-bound variable replace, which by the labeling algorithm L is labeled by 1, is given the type:

�v : sort : Term[v] ! Term[v]; which naturally matches they way it is used in map.

5 Conclusions

We have presented a calculus and type inference system together with a little experimental evidence that the

sought typability problem is within reach of even simple solvers for higher-order semi-uni�cation problems.

For the presented approach we have kept the meta-language and object language monomorphic on their

own domain of types and sorts. Besides preventing typability of let-polymorphism it also prevents us from

checking type correctness for programs that manipulate programs that manipulate programs. For instance,

if we optimize our meta-programs using themselves we would like to ensure that the resulting programs also

preserve typability of the object programs that they manipulate. This can be checked by running the type

inference on the generated output, but we have not provided a way for dealing with this statically.

In some of our translation examples the meta programs do also manipulate and build object level sorts.

This takes us directly out of the proposed type system and leads in general to highly intractable type

inference problems. We are nevertheless hopeful that it will be possible to �nd reasonable restrictions where

this added functionality is isolated in a controllable way.

In general we may think of multi-level type systems for staged meta computation as described in the

forthcoming [Tah99]. The more general type system described here may on the other hand enable writing

multi-stage programs that also access the abstract syntax of stages at a lower level. It will however be

necessary to strengthen the type system to distinguish open and closed code for a sound integration with

multi-staged programming.

Acknowledgements: We thank Walid Taha, who pointed out the distinction between open and closed

code, David Espinosa, Doug Smith, and C�esar Mu~noz for stimulating discussions, and Richard Waldinger

for equally stimulating co�ee.

References

[AC98] R.M. Amadio and P.L. Curien. Domains and Lambda-Calculi, vol. 46 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, Cambridge, 1998.

10

[Aug99] L. Augustsson. Cayenne | a language with dependent types. In Proceedings of the ACM SIGPLAN

International Conference on Functional Programming (ICFP '98), vol. 34(1) of ACM SIGPLAN

Notices, pages 239{250. ACM, June 1999.

[Hen91] F. Henglein. Type inference with polymorphic recursion. ACM Transactions on Programming

Languages and Systems (TOPLAS), January 1991.

[Hue76] G. Huet. R�esolution d'�equations dans des langages d'ordre 1, 2, ... !. Th�ese de doctorat, Universit�e

de Paris VII, Paris, France, 1976.

[KT92] A.J. Kfoury and J. Tiuryn. Type reconstruction in �nite rank fragments of the second-order

�-calculus. Information and Computation, 98(2):228{257, June 1992.

[KTU93] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-uni�cation problem.

Information and Computation, 102(1):83{101, January 1993.

[PS98] F. Pfenning and C. Sch�urmann. Twelf User's Guide, 1.2 edition. Technical Report CMU-CS-98-173,

Carnegie Mellon University, September 1998.

[SJ95] Y.V. Srinivas and R. J�ullig. Specware: Formal support for composing software. Lecture Notes in

Computer Science, 947:399{422, 1995.

[Tah99] W. Taha. Multi-Stage Programming: Its theory and Applications. PhD thesis, Oregon Graduate

Institute of Science and Technology, July 1999.

[Wel93] J. Wells. A direct algorithm for type inference in the rank 2 fragment of the second-order lambda-

calculus. Technical Report 93-017, Boston University, November 1993.

[XP99] H. Xi and F. Pfenning. Dependent types in practical programming. In A. Aiken, editor, Conference

Record of the 26th Symposium on Principles of Programming Languages (POPL'99), pages 214{

227. ACM, January 1999.

11

