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Abstrat

A metalogial framework is a logi with an assoiated methodology that is used to repre-

sent other logis and to reason about their metalogial properties. We propose that logial

frameworks an be good metalogial frameworks when their logis support reetive reason-

ing and their theories always have initial models. We present a onrete realization of this

idea in rewriting logi and report on experiments with the Maude system.

1 Introdution

A logial framework is a formal logi with an assoiated methodology that is employed for rep-

resenting and using other logis, theories, and, more generally, formal systems. A minimum

requirement for a logial framework is that objet logis and their entailment relations an be

onservatively represented in the framework logi. Typially we also demand more. For exam-

ple, that the representation preserves appropriate kinds of struture and that there is a small

oneptual distane between the objet logi and its representation and use in the framework

logi.

To ompare logial frameworks and analyze their e�etiveness, it is helpful to make further

distintions onerning their intended appliation. In partiular, we an distinguish between

logial frameworks, where the emphasis is on reasoning in a logi, in the sense of simulating

its derivations in the framework logi, and metalogial frameworks, where the emphasis is on

reasoning about logis. Metalogial frameworks are more powerful, as they inlude the ability to

reason about a logi's entailment relation as opposed to merely being adequate to demonstrate

entailment. Moreover, if a metalogial framework should provide a basis for formal metathe-

ory, it should also support reasoning about relationships between logis. This is standard in

metamathematis and is ommon pratie when reasoning about formal systems in omputer

siene.

The di�erent kinds of appliations make di�erent demands on the framework logi. In a

logial framework it is suÆient to use representations of proof rules to onstrut demonstrations

of (objet logi) entailments. This is the approah taken in logial frameworks like Isabelle [28℄

and the Edinburgh LF [15℄. Note that under this approah one may formalize logis and theories

where indution is present within the theory (e.g., indution over the natural numbers in Peano

Arithmeti), but indution is not present over the enoded theories. That is, the framework

logi does not support indution over the terms and proofs of a theory, and in general there is

no reason to assume that sound indution priniples exist.

In a metalogial framework, it is essential to have indution over theories. When reasoning

about logis, standard proof-theoreti arguments usually require indution over the formulae or
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derivations of the objet logi. Indution is also one of the key onepts in reasoning about formal

systems in omputer siene, e.g., programming language semantis.

Standard approahes to metalogial frameworks

Several approahes have been onsidered in the past to strengthen logial frameworks so that they

an funtion as metalogial frameworks. One approah, whih we might summarize as \modules

with expliit indution," is to formalize theories in a framework logi supporting some notion

of a module, where eah module omes with its own, expliitly given, indution priniple. For

example, in [1℄, theories were spei�ed by olletions of parameterized modules (�-types) within

the Nuprl type theory (a onstrutive, higher-order logi), and eah module inluded its own

indution priniple for reasoning about terms or proofs. This approah an be very powerful and

an be used to show, e.g., that rules are admissible, or to relate di�erent theories.

An alternative approah is to formalize theories diretly using indutive de�nitions in a frame-

work logi or framework theory that is strong enough to formalize the orresponding indution

priniples. A simple example of this is the �rst-order theory FS

0

of [13℄, whih has been used

by [20℄ to arry out experiments in formal metatheory. In FS

0

, indutive de�nitions are terms

in the framework logi, and the framework logi has an indution rule for reasoning about suh

terms. Another ommon hoie is formalization of indutive de�nitions in strong \foundational"

framework logis like higher-order logi or set-theory [27, 14℄, or aluli like the alulus of on-

strutions with indutive de�nitions [26℄. In higher-order logi and set theory one an internally

develop a theory of indutive de�nitions, where indutive de�nitions orrespond to terms in

the metatheory (e.g., formalized as the least-�xedpoint of a monotoni funtion) and, from the

de�nition, indution priniples are formally derived within the framework logi. Alternatively,

in the alulus of onstrutions, given an indutive de�nition, indution priniples are simply

added, soundly, to the metalogi. Current researh in this area fouses on appropriate indution

priniples for logis with higher-order quanti�ation, whih support higher-order abstrat syntax

[11, 21, 29℄.

A new paradigm

In this paper we propose a new alternative: in some ases we an take the step from a logi-

al framework to a metalogial framework by augmenting the logial framework with reetion

and indution. This is the ase when formalization of theories in the framework logi support

indution priniples that an be reeted bak into the framework logi. This proposal an

be summarized with the slogan \logial frameworks with reetion and initiality are metalogial

frameworks," whih an in turn be expressed by the formula

Logial Framework+ Reetion + Initiality =)Metalogial Framework. (1)

After making this idea preise, we present a onrete realization of it using rewriting logi,

whih we use to support the thesis that ombining a logial framework with reetion an result

in an e�etive metalogial framework. Rewriting logi is not the only andidate for a reetive

logial framework, but we believe it is a good one. Rewriting logi has been demonstrated to be

a good logial framework [17, 24℄. Moreover the logi is balaned on a point where it is strong

enough to naturally formalize di�erent entailment systems, but it is weak enough that its theories

or modules always have initial models. This means that indution on these initial models is a

sound reasoning priniple. The key then is to reet these reasoning priniples into the logi.

To sum up, we see our ontributions as both theoretial and pratial. Theoretially, our

work ontributes to answering the question \what is a metalogial framework?" by proposing

reetive logial frameworks, whose theories have initial models, as a possible answer. Moreover,

it illuminates the interrelationship between logial and metalogial frameworks, and the role of

reetion as a key ingredient for turning a logial framework with initial models into a metalogial
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one. Pratially, our ase study shows that rewriting logi, ombined with reetion, is an

e�etive metalogial framework that is well suited for nontrivial kinds of metatheoreti reasoning.

2 Reetive metalogial frameworks

2.1 Reetive logis

Intuitively, a reetive logi is a logi in whih important aspets of its metatheory an be

represented at the objet level | that is, in the logi. Two standard metatheoreti notions that

an be so reeted are theories

1

and entailment relations.

A general axiomati notion of reetive logi was reently proposed in [9, 4℄ . The key onept

is the notion of a universal theory. Let ` be the entailment relation de�ned in a logi, let T be a

theory over a signature �, and let sen(T ) be the set of �-sentenes. Then, given a set of theories

C, a theory U is C-universal if there is a funtion, alled a representation funtion,

( ` ) :

[

T2C

fTg� sen(T ) �! sen(U) ;

suh that for eah T 2 C; ' 2 sen(T ),

T ` ' () U ` T ` ' : (2)

A logi is reetive when it ontains a theory U that is C-universal and, in addition, U 2 C.

Note that in a reetive logi, sine U itself is representable, representation an be iterated; hene

we immediately have a \reetive tower"

T ` ' () U ` T ` ' () U ` U ` T ` ' : : : :

Note that if a framework logi is to support exible metatheoreti reasoning, e.g., where we

an ompare theories and reason about families of theories, then, in pratie we require more

than a representation funtion. Namely, we require a theory representation alulus. We will not

formalize requirements for this here (see [12℄), but suh a alulus will typially treat theories

as �rst-lass objets and provide onstrutors, destrutors, and disriminators, for building and

reasoning about theories.

2.2 Reeting indution

In the introdution, we proposed that logial frameworks with reetion and initiality an be

used as e�etive metalogial frameworks. Above we have given a logi-independent aount of

reetion. We now onsider what we require from a logial framework so that we an use reetion

to augment theories with indution priniples. In partiular, if the ombination is to be a useful

metalogial framework, we also require that:

1. the logial framework must be weak enough so that there are valid indution priniples for

reasoning about all formalized theories, and

2. strong enough so that it really is a viable logial framework.

We argue this as follows. If 2 is satis�ed, then objet logis and their entailment relations an

be represented as theories in the logial framework, and if 1 is also satis�ed, then theories in the

logial framework, inluding those representing objet logis, admit indution. Now, if the logial

1

In this paper we onsider a theory as a pair T = (�;�) onsisting of a language syntax �, alled a signature,

and a olletion of axioms �. A logiian will typially treat the theory's language and its theorems extensionally

as sets. However, it is more pratial (omputationally) to speify the sets using onstrutors: � for building

formulae, and � for building proofs of theorems.
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framework is reetive, then it ontains a universal theory where theories an be represented. It

is then possible to extend the universal theory so that sound reasoning priniples | in partiular,

indution | for eah theory in the logi an be reeted ; that is, sound reasoning priniples for

eah theory an be added to the universal theory.

2.3 Indution and initiality

How an we apture the notion of indution in an abstrat and logi-independent way? If the

framework logi is suh that its theories have initial models, then indutive reasoning priniples

an be soundly added to a theory to derive sentenes valid in its initial model. This method is very

general; for example, for equational logi, indution and initiality are equivalent onepts [25℄,

and for di�erent propositional aluli, ut elimination results an be seen as indutive properties

of their initial ategorial models [16℄.

We are therefore interested in a reetive metalogial framework having a universal theory

U suh that eah theory in the framework logi has initial models. Under suh irumstanes it

an be possible (as indeed it is the ase for rewriting logi) to extend the theory U to a theory I

that adds sound indutive priniples to eah theory in the logi, inluding U itself. This means

that we an use reetion in I to reason soundly about the indutive properties of any theory T .

This approah an be surprisingly powerful. Sine U represents all theories in the logi,

by reasoning by indution on U or its extension I we may be able to indutively reason about

properties satis�ed not only by a single theory, but by entire families of theories. We will give

an example of this later, namely, a metatheorem not just for a single logi, but for a family of

logis.

3 Rewriting logi as a reetive metalogial framework

We now show how the above, abstratly presented, ideas an be onretely realized. Our real-

ization in rewriting logi supports reetion and initiality as desribed above, and theories are

�rst-lass objets in the universal theory. Moreover, its implementation in the Maude system

supports objet level reasoning via metalevel omputation in (an extension of) the universal the-

ory: any reasoning in the objet logis (e.g., to show that formulae are syntatially well-formed

or provable) an be performed by reetion down, that is, by omputation in the theory that

represents the objet logi.

3.1 Rewriting logi

Rewriting logi [22℄ is a simple logi whose sentenes are sequents of the form

t �! t

0

with t and t

0

�-terms on a given signature �. From the logial point of view, we an think of

rewriting logi as a framework logi in whih any inferene system an be naturally formalized

by expressing eah inferene rule as a (possibly onditional) rewrite rule.

Theories in rewriting logi are triples (�; E;R), with � a signature of operators, E a set

of �-equations, and R a olletion of (possibly onditional) rewrite rules. The inferene rules

of rewriting logi [22℄ allow the derivation of all rewrites possible in a given theory. Rewriting

is understood modulo the equations E. This makes inferene exible and abstrat sine the

equations E an take are of strutural bookkeeping. For example, strutural rules for sequents

an be \internalized" by rewriting modulo appropriate equational axioms.

Sine a rewrite theory (�; E;R) has an underlying equational theory (�; E), rewriting logi is

parameterized by the hoie of the underlying equational logi. An attrative hoie in terms of

expressiveness ismembership equational logi [23℄, a logi that has sorts, subsorts, and overloading

of funtion symbols, and is apable of expressing partiality using equational onditions. Atomi
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sentenes are equations t = t

0

and membership assertions t : s, with s a sort. General axioms

are Horn lauses on suh atoms. Sine we an view an equational theory (�; E) as a rewrite

theory (�; E; ;), there is an obvious sublogi inlusion MEqtl � RWLogi, from membership

equational logi into rewriting logi. Both membership equational logi and rewriting logi have

initial models [23, 22℄.

3.2 Rewriting logi is a good logial framework

Rewriting logi is nonommittal about the struture and properties of the formulae expressed

by �-terms. They are user-de�nable as an algebrai data type satisfying equational axioms, so

that rewriting dedution takes plae modulo suh axioms. Beause of this eumenial neutrality,

rewriting logi has good properties as a logial framework. In [17, 18, 19℄, many examples of

logi representations are given, inluding �rst-order linear logi, sequent presentations of modal

and propositional logis, Horn logi with equality, and so on. In all suh examples, the represen-

tational distane between the objet logi and its representation is pratially zero, that is, the

representations are diret and faithfully mimi the original logis.

Note that there are several ways of onservatively representing a logi (with a �nitary syntax

and inferene system) within rewriting logi. A simple and diret way is to turn the inferene

rules into rewrite rules, whih may be onditional if the inferene rules have side onditions.

Alternatively, we an use the underlying membership equational logi to represent theoremhood

in a logi as a sort in a membership equational theory. Conditional membership equations then

diretly support the representation of rules as shemas, whih is typially used in presenting

logis and formal systems. This is the approah we have adopted in the experimental work that

we report in Setion 4.

3.3 Rewriting logi is reetive

Rewriting logi is reetive [10, 4℄. There is a universal theory UNIVERSAL, and a representation

funtion ( ` ) enoding pairs onsisting of a rewrite theory T and a sentene in it as sentenes

in UNIVERSAL. For any �nitely presented rewrite theory T (inluding UNIVERSAL itself) and any

terms t, t

0

in T , the representation funtion is de�ned by

T ` t �! t

0

= hT ; ti �! hT ; t

0

i ;

where T , t, t

0

are terms in UNIVERSAL. Then, the equivalene (2) for rewriting logi that is proved

in [10, 4℄ takes the form

T ` t �! t

0

() UNIVERSAL ` hT ; ti �! hT ; t

0

i :

4 Maude and experimental work

In this setion we report on a ase study in metatheoreti reasoning that is based on the above

ideas. For our study we used Maude [8, 6℄, whih is a reetive logi based on rewriting logi.

Maude's implementation has been designed with the expliit aims of supporting exeutable spe-

i�ation and reetive omputation.

4.1 Maude's metalevel

Maude's language design and implementation make systemati use of the fat that rewriting logi

is reetive to give the user a well-de�ned gateway to the metatheory of rewriting logi [5℄. This

entry point is the prede�ned module META-LEVEL, whih provides the user with the funtionality

neessary to exploit the universal theory for rewriting logi. In the module META-LEVEL, terms in
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modules are rei�ed as elements of a data type Term, and Maude modules (that is, theories with

initial semantis) are rei�ed as elements of a data type Module.

We illustrate the general syntax for representing modules, with a simple example: a module

NAT for natural numbers with zero and suessor and with a ommutative addition operator.

fmod NAT is

sorts Zero Nat .

subsort Zero < Nat .

op 0 : -> Zero .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat [omm℄ .

vars N M : Nat .

eq 0 + N = N .

eq s(N) + M = s(N + M) .

endfm

The representation NAT of NAT in META-LEVEL is the term

fmod 'NAT is

nil

sorts 'Zero ; 'Nat .

subsort 'Zero < 'Nat .

op '0 : nil -> 'Zero [none℄ .

op 's : 'Nat -> 'Nat [none℄ .

op '_+_ : 'Nat 'Nat -> 'Nat [omm℄ .

var 'N : 'Nat . var 'M : 'Nat .

none

eq '_+_[f'0g'Nat, 'N℄ = 'N .

eq '_+_['s['N℄, 'M℄ = 's['_+_['N, 'M℄℄ .

endfm

of sort Module.

The proesses of reduing a term to normal form in a funtional module (that is, a Churh-

Rosser and terminating equational theory) and of rewriting a term in a system module (that

is, a rewrite theory) using Maude's default interpreter are rei�ed respetively by funtions

meta-redue and meta-apply. In partiular, meta-redue takes as arguments the represen-

tations of a module T , and of a term t or a membership prediate t : s in that module. When the

seond argument is the representation t of a term t in T , meta-redue returns the representation

of the fully redued form of the term t using the equations in T . Similarly, when the seond

argument of meta-redue is the representation of a membership prediate t : s, the term t is

fully redued using the equations in T and then the representation of the Boolean value of the

orresponding prediate is returned. Hene meta-redue returns f'trueg'Bool if T ` t : s;

otherwise, it returns f'falseg'Bool.

4.2 Internal strategies

Sine the Maude system is a partiular implementation of the metatheory of rewriting logi, the

module META-LEVEL also provides gateway to the Maude system itself. By extending META-LEVEL,

the user an e�etively ustomize Maude (in Maude) to �t his partiular omputational needs.

Using rewriting rules at the metalevel, user-de�nable internal strategy languages an be de�ned

to hange the (default) operational semantis of Maude for system modules (that is, for rewrite

theories that need not be Churh-Rosser or terminating) [10, 4℄. The idea is to use the funtions

meta-redue and meta-apply as basi strategies, and then to extend the module META-LEVEL

by additional (arbitrarily omplex) strategy funtions, de�ned by rewrite rules.
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4.3 An indutive theorem prover in Maude

To reet and use indution priniples, we formalize an appropriate dedutive system in Maude.

Furthermore, we speify strategies for applying rules in this system by speifying rewriting strate-

gies.

In general, based on the onepts of reetion and internal strategy languages, theorem-

proving tools have a simple \reetive" design in Maude [7℄. An indutive theorem prover, whih

we implemented for metatheoreti reasoning, illustrates this. The idea is that the theory T ,

for whih we want to prove indutive theorems, is at the objet level; an inferene system I

for indutive proofs uses T as data and therefore should be spei�ed as a rewrite theory at the

metalevel; then, di�erent proof tatis to guide the appliation of the rewrite rules speifying

the inferene rules in I are strategies that an be represented at the meta-metalevel. This is

illustrated by the following piture:

?

6

Meta-metalevel

Metalevel

?

6

Objet level

Objet theory

indution

ITP: inferene rules for

indutive proofs

S-ITP: strategies for

The module ITP is an extension of the module META-LEVEL and realizes, for the ase of rewriting

logi, the extension I of the universal theory U with indutive priniples disussed in Setion 2.3.

Formulas are represented in ITP as terms of sort Formula built with the onstrutors equality,

impliation, onjuntion, and VQuantifiation. For example, the formula

8fN; Mg+(N, M) = +(M, N)

is represented in ITP by the term

VQuantifiation(('N ; 'M), equality('+['N, 'M℄, '+['M, 'N℄)).

The (sub)goals for the indutive theorem prover are represented with the onstrutors proveinInitial

and proveinVariety, for proofs in the initial model and proofs in the variety, respetively. Sets

of (sub)goals are built with the onstrutor goalSet, with emptyGoalSet the empty set of goals.

For example, the goal

NAT `

ind

(8fN, Mg)+(N, M) = +(M, N)

is represented in ITP by the term

proveinInitial(I, NAT,

VQuantifiation(('N ; 'M), equality('+['N, 'M℄, '+['M, 'N℄))),

where I should be a string of positive numbers. The strings of positive numbers are used to

number the (sub)goals in a proof.

With this mahinery in hand, it is possible to formalize in ITP indution priniples for Maude

modules. In our work, we formalize rewrite rules that speify the rules of inferene for proving

that a universally quanti�ed formula is an indutive onsequene of a given membership algebra

spei�ation. For example, the rule indution below rewrites a (sub)goal representing the task

of proving indutively in a moduleM a given formula 8fx;Xg� to a set of subgoals representing

the tasks of proving indutively the base ase(s) and the indution step(s) that result from
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indution on the variable x. The funtion getVars extrats the variable delaration from the

metarepresentation of the module M . The funtion findSortV �nds the metarepresentation of

the sort s of the variable x in the module M . The funtion extratRuleSystem extrats from

the metarepresentation of the module M all the lauses that de�ne the set s in M . (Notie that

spei�ations in membership equational logi oinide with a speial ase of many-sorted Horn

logi with equality.) Finally, the funtion makeNewGoalSetF generates from the de�ning lauses

of s the orresponding base ase(s) and indution step(s).

var Idx : IntString . var Mod : Module .

var X : Qid . var Xs : QidSet .

vars Alpha Beta : Formula .

rl [indution℄:

proveInitial(Idx, Mod,

VQuantifiation((X ; Xs), Alpha))

=>

makeNewGoalSetF(intString(Idx, 1), Mod, Xs, X, Alpha,

extratRuleSystem(Mod, findSortV(X, getVars(Mod)))) .

Proving a theorem onsists then in applying (with a strategy and, therefore, in the module S-ITP,

at the meta-metalevel) the rewrite rules in the module ITP to the term representing the initial

(sub)goals until it is rewritten to the term empty.

4.4 An example: the dedution theorem

As an example, onsider the dedution theorem for minimal logi (of impliation). This theorem

is interesting for several reasons. To begin with, it is a entral metatheorem that holds for many

Hilbert systems and justi�es proof under temporary assumption in the manner of a natural

dedution proof system. Moreover, although relatively simple, it illustrates some subtle aspets

of formal metareasoning. For example, it is atually a metatheorem not about a partiular

dedutive system, but rather one that relates di�erent dedutive systems: one in whih A ! B

is proven and a seond (whih is the �rst, augmented by the axiom A) in whih B is proven.

Indeed, as A is an arbitrary formula, the standard statement of the dedution theorem is atually

a statement about the relationship between a family of pairs of dedutive systems. And as we

will see, it an be formalized even more generally than this.

The dedution theorem is proven by indution over the struture of derivations. We start

by speifying minimal logi as a module in Maude. The formulae of minimal logi orrespond

to members of the set L

M

, built from the binary onnetive ! (written in�x, assoiating to the

right) and sentential onstants. Theorems orrespond to members of a seond set T

M

, and are

either instanes of the standard Hilbert axiom shemata

A! B ! A

and

(A! B)! (A! B ! C)! (A! C) ;

or are generated by applying the rule modus ponens :

A A! B

B

The module MINIMAL below represents minimal logi within membership equational logi (and

rewriting logi), in the sense that a formula � is a theorem in minimal logi if and only if its

representation � is a term of sort Theorem, that is, the membership assertion � : Theorem is true

in MINIMAL.
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mod MINIMAL is

sorts SentConstant Formula Theorem .

subsort SentConstant < Formula .

subsort Theorem < Formula .

op -> : Formula Formula -> Formula .

vars A B C : Formula .

mb A -> (B -> A) : Theorem .

mb (A -> B) -> ((A ->(B -> C)) -> (A -> C)) : Theorem .

mb B : Theorem if (A -> B) : Theorem and A : Theorem .

endm

We write `

M

A to denote that A 2 T

M

, and A `

M

B to denote that if minimal logi is

extended with the additional axiom A, then B belongs to the resulting set of theorems. The

dedution theorem then states that for any A and B in L

M

,

A `

M

B =) `

M

A! B :

This metatheorem is proven by indution on the struture of derivations in minimal logi extended

with the axiom A.

Aording to our representation of minimal logi in rewriting logi, we an rephrase the

dedution theorem in the following terms: for any formulae A and B, if B:Theorem is true in the

module MINIMAL extended with the membership axiom mb A:Theorem, then A �! B:Theorem

is true in MINIMAL.

Notie that this theorem states an impliation between the truth of two membership assertions

over two di�erent membership equational theories. Sine the truth of membership assertions over

theories is de�ned in the metatheory of rewriting logi, the \objet" theory about whih we have

to prove the dedution theorem is in fat, in our setting, the universal theory for rewriting logi.

This orresponds to the following goal for the indutive theorem prover, where A and B are

variables of sort Term in the module META-LEVEL:

META-LEVEL `

ind

8( A ; B )

meta-redue(

(mod'ARROW is

inluding 'BOOL .

sorts('SentConstant ; 'Formula ; 'Theorem) .

subsort 'SentConstant < 'Formula .

subsort 'Theorem < 'Formula .

op 'impl : 'Formula 'Formula -> 'Formula [none℄ .

var 'A : 'Formula . var 'B : 'Formula . var 'C : 'Formula .

mb A : 'Theorem .

mb 'impl['A, 'impl['B, 'A℄℄ : 'Theorem .

mb 'impl['impl['A, 'B℄,

'impl['impl['A, 'impl['B, 'C℄℄, 'impl['A, 'C℄℄℄ : 'Theorem .

mb'B : 'Theorem if

' and [('impl['A, 'B℄ : 'Theorem), ('A : 'Theorem)℄ = f'trueg'Bool .

none

none

endm),

B : 'Theorem) = f'trueg'Bool

=)

meta-redue(

(mod'ARROW is

inluding 'BOOL .

sorts('SentConstant ; 'Formula ; 'Theorem) .
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subsort 'SentConstant < 'Formula .

subsort 'Theorem < 'Formula .

op 'impl : 'Formula 'Formula -> 'Formula [none℄ .

var 'A : 'Formula . var 'B : 'Formula . var 'C : 'Formula .

mb 'impl['A, 'impl['B, 'A℄℄ : 'Theorem .

mb 'impl['impl['A, 'B℄,

'impl['impl['A, 'impl['B, 'C℄℄, 'impl['A, 'C℄℄℄ : 'Theorem .

mb'B : 'Theorem if

' and [('impl['A, 'B℄ : 'Theorem), ('A : 'Theorem)℄ = f'trueg'Bool .

none

none

endm),

'impl[ A , B ℄ : 'Theorem) = f'trueg'Bool .

Observe that applying indution on the variable B using the indution rule introdued

above will be of little use here: B is a variable of sort Term and, therefore, the base ase(s) and

the indution step(s) that the funtion makeNewGoalSetF will generate orrespond to the lauses

that de�ne the set Term in the module META-LEVEL. Instead what we need are the base ase(s)

and the indution step(s) that orrespond to the lauses de�ning the subset of the set Term that

inludes only those terms of sort Term representing at the metalevel terms of sort Theorem in the

module MINIMAL extended with the membership axiom mb A :Theorem.

To generate the appropriate indution, we extend the module ITPwith a new rule indution*.

This rule generates the appropriate base ase(s) and indution step(s) when proving in the module

META-LEVEL a universally quanti�ed impliative formula 8fx;Xg(�

1

^� � �^�

n

) �! � by indution

on a variable x of sort Term, if the impliative formula inludes in its anteedent a lause �

i

that

restrits the sope of the variable x to metarepresentations of terms of a sort s in a module T .

The funtion makeNewGoalSetF* uses the set of lauses that de�ne the set s in the module T

(obtained with the funtion extratRuleSystem) to generate the appropriate base ase(s) and

indution step(s).

rl [indution*℄:

proveInitial(Idx, META-LEVEL,

VQuantifiation((X ; Xs),

impliation(

onjuntion(Beta,

equality('meta-redue[T, X : s℄ = f'trueg'Bool)),

Alpha)))

=>

makeNewGoalSetF*(intString(Idx, 1), META-LEVEL, Xs, X, Beta, Alpha,

extratRuleSystem(T, s)) .

Using the rule indution*, along with the rest of inferene rules spei�ed in ITP, we have

proven this metatheorem with a strategy de�ned in S-ITP that mirrors the standard presentation

of the proof of the dedution theorem.

4.5 Proving a parameterized dedution theorem in ITP

In [2, 3℄, Basin and Matthews showed how metatheorems that are parameterized by their sope

of appliation an be proved using a theory of parameterized indutive de�nitions as a metathe-

ory. To illustrate the notion of a soped metatheorem they present a generalized version of the

dedution theorem that an be applied to all extensions of the language and axioms of minimal

logi as well as extensions of rules that satisfy ertain onditions. From their theorem it follows,

for example, that the dedution theorem holds not just for minimal logi of impliation, but also

10



for any propositional or �rst-order extension, but not neessarily for extensions to modal logis

(whih would require adding new rules, as opposed to axioms).

Sine the requirements demanded of the metatheory in [2, 3℄ | namely, that we an build

families of sets using parameterized indutive de�nitions, and that we an reason about their

elements by indution | are indeed satis�ed by rewriting logi and our theory representation

alulus, we should be able to formalize soped metatheorems as goals in the extended module

ITP and prove them (probably using strategies) in the module S-ITP.

To illustrate this idea, we onsider a generalized version of the dedution theorem that applies

to all extensions of minimal logi with a new rule of the form

C D

E

that satis�es a ertain ondition; namely, in the step ase we an use the assumptions A �! C

and A �! D to prove A �! E. This metatheorem orresponds to the following goal for the

indutive theorem prover, where A , B , C , D , and E are variables of sort Term in the module

META-LEVEL:

META-LEVEL `

ind

8( A ; B ; C ; D ; E )

((meta-redue(ARROW+, 'impl[ A , C ℄ : 'Theorem) = f'trueg'Bool

^

meta-redue(ARROW+, 'impl[ A , D ℄ : 'Theorem) = f'trueg'Bool

=)

meta-redue(ARROW+, 'impl[ A , E ℄ : 'Theorem) = f'trueg'Bool)

^

meta-redue(ARROW+A, B : 'Theorem) = f'trueg'Bool)

=)

meta-redue(ARROW+, 'impl[ A , B ℄ : 'Theorem) = f'trueg'Bool),

where ARROW+ is shorthand for the term

(mod'ARROW is

inluding 'BOOL .

sorts('SentConstant ; 'Formula ; 'Theorem) .

subsort 'SentConstant < 'Formula .

subsort 'Theorem < 'Formula .

op 'impl : 'Formula 'Formula -> 'Formula [none℄ .

var 'A : 'Formula . var 'B : 'Formula . var 'C : 'Formula .

mb 'impl['A, 'impl['B, 'A℄℄ : 'Theorem .

mb 'impl['impl['A, 'B℄,

'impl['impl['A, 'impl['B, 'C℄℄, 'impl['A, 'C℄℄℄ : 'Theorem .

mb'B : 'Theorem if

' and ['impl['A, 'B℄ : 'Theorem, 'A : 'Theorem℄ = f'trueg'Bool .

mb E : 'Theorem if

' and [ C : 'Theorem, D : 'Theorem℄ = f'trueg'Bool .

none

none

endm)

and ARROW+A is shorthand for the term

(mod'ARROW is

inluding 'BOOL .

sorts('SentConstant ; 'Formula ; 'Theorem) .

subsort 'SentConstant < 'Formula .
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subsort 'Theorem < 'Formula .

op 'impl : 'Formula 'Formula -> 'Formula [none℄ .

var 'A : 'Formula . var 'B : 'Formula . var 'C : 'Formula .

mb A : 'Theorem .

mb 'impl['A, 'impl['B, 'A℄℄ : 'Theorem .

mb 'impl['impl['A, 'B℄,

'impl['impl['A, 'impl['B, 'C℄℄, 'impl['A, 'C℄℄℄ : 'Theorem .

mb'B : 'Theorem if

' and ['impl['A, 'B℄ : 'Theorem, 'A : 'Theorem℄ = f'trueg'Bool .

mb E : 'Theorem if

' and [ C : 'Theorem, D : 'Theorem℄ = f'trueg'Bool .

none

none

endm).

Using the rule indution*, along with the rest of the inferene rules spei�ed in ITP, we

have proven this metatheorem with a strategy de�ned in S-ITP that follows the expeted proof

strategy, beginning with indution on the variable B .

5 Conlusion

We have presented, both abstratly and onretely, a new approah to metatheoreti reasoning

based on using reetive logial frameworks whose theories have initial models. Initial experi-

ments with these ideas are enouraging. We an formalize theories as modules in Maude and use

the Maude system as a logial framework to prove theorems in the theories. Moreover, using

reetive reasoning we an exploit the initiality of these modules by reetively formalizing in-

dution priniples over them. This yields a formalization well-suited for reasoning about theories

and their interrelationships.
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