
Re
e
tive Metalogi
al Frameworks

David Basin

Institut f�ur Informatik, Universit�at Freiburg, Germany

Manuel Clavel

Department of Philosophy, University of Navarre, Spain

Jos�e Meseguer

Computer S
ien
e Laboratory, SRI International, USA

Abstra
t

A metalogi
al framework is a logi
 with an asso
iated methodology that is used to repre-

sent other logi
s and to reason about their metalogi
al properties. We propose that logi
al

frameworks
an be good metalogi
al frameworks when their logi
s support re
e
tive reason-

ing and their theories always have initial models. We present a
on
rete realization of this

idea in rewriting logi
 and report on experiments with the Maude system.

1 Introdu
tion

A logi
al framework is a formal logi
 with an asso
iated methodology that is employed for rep-

resenting and using other logi
s, theories, and, more generally, formal systems. A minimum

requirement for a logi
al framework is that obje
t logi
s and their entailment relations
an be

onservatively represented in the framework logi
. Typi
ally we also demand more. For exam-

ple, that the representation preserves appropriate kinds of stru
ture and that there is a small

on
eptual distan
e between the obje
t logi
 and its representation and use in the framework

logi
.

To
ompare logi
al frameworks and analyze their e�e
tiveness, it is helpful to make further

distin
tions
on
erning their intended appli
ation. In parti
ular, we
an distinguish between

logi
al frameworks, where the emphasis is on reasoning in a logi
, in the sense of simulating

its derivations in the framework logi
, and metalogi
al frameworks, where the emphasis is on

reasoning about logi
s. Metalogi
al frameworks are more powerful, as they in
lude the ability to

reason about a logi
's entailment relation as opposed to merely being adequate to demonstrate

entailment. Moreover, if a metalogi
al framework should provide a basis for formal metathe-

ory, it should also support reasoning about relationships between logi
s. This is standard in

metamathemati
s and is
ommon pra
ti
e when reasoning about formal systems in
omputer

s
ien
e.

The di�erent kinds of appli
ations make di�erent demands on the framework logi
. In a

logi
al framework it is suÆ
ient to use representations of proof rules to
onstru
t demonstrations

of (obje
t logi
) entailments. This is the approa
h taken in logi
al frameworks like Isabelle [28℄

and the Edinburgh LF [15℄. Note that under this approa
h one may formalize logi
s and theories

where indu
tion is present within the theory (e.g., indu
tion over the natural numbers in Peano

Arithmeti
), but indu
tion is not present over the en
oded theories. That is, the framework

logi
 does not support indu
tion over the terms and proofs of a theory, and in general there is

no reason to assume that sound indu
tion prin
iples exist.

In a metalogi
al framework, it is essential to have indu
tion over theories. When reasoning

about logi
s, standard proof-theoreti
 arguments usually require indu
tion over the formulae or

1

derivations of the obje
t logi
. Indu
tion is also one of the key
on
epts in reasoning about formal

systems in
omputer s
ien
e, e.g., programming language semanti
s.

Standard approa
hes to metalogi
al frameworks

Several approa
hes have been
onsidered in the past to strengthen logi
al frameworks so that they

an fun
tion as metalogi
al frameworks. One approa
h, whi
h we might summarize as \modules

with expli
it indu
tion," is to formalize theories in a framework logi
 supporting some notion

of a module, where ea
h module
omes with its own, expli
itly given, indu
tion prin
iple. For

example, in [1℄, theories were spe
i�ed by
olle
tions of parameterized modules (�-types) within

the Nuprl type theory (a
onstru
tive, higher-order logi
), and ea
h module in
luded its own

indu
tion prin
iple for reasoning about terms or proofs. This approa
h
an be very powerful and

an be used to show, e.g., that rules are admissible, or to relate di�erent theories.

An alternative approa
h is to formalize theories dire
tly using indu
tive de�nitions in a frame-

work logi
 or framework theory that is strong enough to formalize the
orresponding indu
tion

prin
iples. A simple example of this is the �rst-order theory FS

0

of [13℄, whi
h has been used

by [20℄ to
arry out experiments in formal metatheory. In FS

0

, indu
tive de�nitions are terms

in the framework logi
, and the framework logi
 has an indu
tion rule for reasoning about su
h

terms. Another
ommon
hoi
e is formalization of indu
tive de�nitions in strong \foundational"

framework logi
s like higher-order logi
 or set-theory [27, 14℄, or
al
uli like the
al
ulus of
on-

stru
tions with indu
tive de�nitions [26℄. In higher-order logi
 and set theory one
an internally

develop a theory of indu
tive de�nitions, where indu
tive de�nitions
orrespond to terms in

the metatheory (e.g., formalized as the least-�xedpoint of a monotoni
 fun
tion) and, from the

de�nition, indu
tion prin
iples are formally derived within the framework logi
. Alternatively,

in the
al
ulus of
onstru
tions, given an indu
tive de�nition, indu
tion prin
iples are simply

added, soundly, to the metalogi
. Current resear
h in this area fo
uses on appropriate indu
tion

prin
iples for logi
s with higher-order quanti�
ation, whi
h support higher-order abstra
t syntax

[11, 21, 29℄.

A new paradigm

In this paper we propose a new alternative: in some
ases we
an take the step from a logi-

al framework to a metalogi
al framework by augmenting the logi
al framework with re
e
tion

and indu
tion. This is the
ase when formalization of theories in the framework logi
 support

indu
tion prin
iples that
an be re
e
ted ba
k into the framework logi
. This proposal
an

be summarized with the slogan \logi
al frameworks with re
e
tion and initiality are metalogi
al

frameworks," whi
h
an in turn be expressed by the formula

Logi
al Framework+ Re
e
tion + Initiality =)Metalogi
al Framework. (1)

After making this idea pre
ise, we present a
on
rete realization of it using rewriting logi
,

whi
h we use to support the thesis that
ombining a logi
al framework with re
e
tion
an result

in an e�e
tive metalogi
al framework. Rewriting logi
 is not the only
andidate for a re
e
tive

logi
al framework, but we believe it is a good one. Rewriting logi
 has been demonstrated to be

a good logi
al framework [17, 24℄. Moreover the logi
 is balan
ed on a point where it is strong

enough to naturally formalize di�erent entailment systems, but it is weak enough that its theories

or modules always have initial models. This means that indu
tion on these initial models is a

sound reasoning prin
iple. The key then is to re
e
t these reasoning prin
iples into the logi
.

To sum up, we see our
ontributions as both theoreti
al and pra
ti
al. Theoreti
ally, our

work
ontributes to answering the question \what is a metalogi
al framework?" by proposing

re
e
tive logi
al frameworks, whose theories have initial models, as a possible answer. Moreover,

it illuminates the interrelationship between logi
al and metalogi
al frameworks, and the role of

re
e
tion as a key ingredient for turning a logi
al framework with initial models into a metalogi
al

2

one. Pra
ti
ally, our
ase study shows that rewriting logi
,
ombined with re
e
tion, is an

e�e
tive metalogi
al framework that is well suited for nontrivial kinds of metatheoreti
 reasoning.

2 Re
e
tive metalogi
al frameworks

2.1 Re
e
tive logi
s

Intuitively, a re
e
tive logi
 is a logi
 in whi
h important aspe
ts of its metatheory
an be

represented at the obje
t level | that is, in the logi
. Two standard metatheoreti
 notions that

an be so re
e
ted are theories

1

and entailment relations.

A general axiomati
 notion of re
e
tive logi
 was re
ently proposed in [9, 4℄ . The key
on
ept

is the notion of a universal theory. Let ` be the entailment relation de�ned in a logi
, let T be a

theory over a signature �, and let sen(T) be the set of �-senten
es. Then, given a set of theories

C, a theory U is C-universal if there is a fun
tion,
alled a representation fun
tion,

(`) :

[

T2C

fTg� sen(T) �! sen(U) ;

su
h that for ea
h T 2 C; ' 2 sen(T),

T ` ' () U ` T ` ' : (2)

A logi
 is re
e
tive when it
ontains a theory U that is C-universal and, in addition, U 2 C.

Note that in a re
e
tive logi
, sin
e U itself is representable, representation
an be iterated; hen
e

we immediately have a \re
e
tive tower"

T ` ' () U ` T ` ' () U ` U ` T ` ' : : : :

Note that if a framework logi
 is to support
exible metatheoreti
 reasoning, e.g., where we

an
ompare theories and reason about families of theories, then, in pra
ti
e we require more

than a representation fun
tion. Namely, we require a theory representation
al
ulus. We will not

formalize requirements for this here (see [12℄), but su
h a
al
ulus will typi
ally treat theories

as �rst-
lass obje
ts and provide
onstru
tors, destru
tors, and dis
riminators, for building and

reasoning about theories.

2.2 Re
e
ting indu
tion

In the introdu
tion, we proposed that logi
al frameworks with re
e
tion and initiality
an be

used as e�e
tive metalogi
al frameworks. Above we have given a logi
-independent a

ount of

re
e
tion. We now
onsider what we require from a logi
al framework so that we
an use re
e
tion

to augment theories with indu
tion prin
iples. In parti
ular, if the
ombination is to be a useful

metalogi
al framework, we also require that:

1. the logi
al framework must be weak enough so that there are valid indu
tion prin
iples for

reasoning about all formalized theories, and

2. strong enough so that it really is a viable logi
al framework.

We argue this as follows. If 2 is satis�ed, then obje
t logi
s and their entailment relations
an

be represented as theories in the logi
al framework, and if 1 is also satis�ed, then theories in the

logi
al framework, in
luding those representing obje
t logi
s, admit indu
tion. Now, if the logi
al

1

In this paper we
onsider a theory as a pair T = (�;�)
onsisting of a language syntax �,
alled a signature,

and a
olle
tion of axioms �. A logi
ian will typi
ally treat the theory's language and its theorems extensionally

as sets. However, it is more pra
ti
al (
omputationally) to spe
ify the sets using
onstru
tors: � for building

formulae, and � for building proofs of theorems.

3

framework is re
e
tive, then it
ontains a universal theory where theories
an be represented. It

is then possible to extend the universal theory so that sound reasoning prin
iples | in parti
ular,

indu
tion | for ea
h theory in the logi

an be re
e
ted ; that is, sound reasoning prin
iples for

ea
h theory
an be added to the universal theory.

2.3 Indu
tion and initiality

How
an we
apture the notion of indu
tion in an abstra
t and logi
-independent way? If the

framework logi
 is su
h that its theories have initial models, then indu
tive reasoning prin
iples

an be soundly added to a theory to derive senten
es valid in its initial model. This method is very

general; for example, for equational logi
, indu
tion and initiality are equivalent
on
epts [25℄,

and for di�erent propositional
al
uli,
ut elimination results
an be seen as indu
tive properties

of their initial
ategori
al models [16℄.

We are therefore interested in a re
e
tive metalogi
al framework having a universal theory

U su
h that ea
h theory in the framework logi
 has initial models. Under su
h
ir
umstan
es it

an be possible (as indeed it is the
ase for rewriting logi
) to extend the theory U to a theory I

that adds sound indu
tive prin
iples to ea
h theory in the logi
, in
luding U itself. This means

that we
an use re
e
tion in I to reason soundly about the indu
tive properties of any theory T .

This approa
h
an be surprisingly powerful. Sin
e U represents all theories in the logi
,

by reasoning by indu
tion on U or its extension I we may be able to indu
tively reason about

properties satis�ed not only by a single theory, but by entire families of theories. We will give

an example of this later, namely, a metatheorem not just for a single logi
, but for a family of

logi
s.

3 Rewriting logi
 as a re
e
tive metalogi
al framework

We now show how the above, abstra
tly presented, ideas
an be
on
retely realized. Our real-

ization in rewriting logi
 supports re
e
tion and initiality as des
ribed above, and theories are

�rst-
lass obje
ts in the universal theory. Moreover, its implementation in the Maude system

supports obje
t level reasoning via metalevel
omputation in (an extension of) the universal the-

ory: any reasoning in the obje
t logi
s (e.g., to show that formulae are synta
ti
ally well-formed

or provable)
an be performed by re
e
tion down, that is, by
omputation in the theory that

represents the obje
t logi
.

3.1 Rewriting logi

Rewriting logi
 [22℄ is a simple logi
 whose senten
es are sequents of the form

t �! t

0

with t and t

0

�-terms on a given signature �. From the logi
al point of view, we
an think of

rewriting logi
 as a framework logi
 in whi
h any inferen
e system
an be naturally formalized

by expressing ea
h inferen
e rule as a (possibly
onditional) rewrite rule.

Theories in rewriting logi
 are triples (�; E;R), with � a signature of operators, E a set

of �-equations, and R a
olle
tion of (possibly
onditional) rewrite rules. The inferen
e rules

of rewriting logi
 [22℄ allow the derivation of all rewrites possible in a given theory. Rewriting

is understood modulo the equations E. This makes inferen
e
exible and abstra
t sin
e the

equations E
an take
are of stru
tural bookkeeping. For example, stru
tural rules for sequents

an be \internalized" by rewriting modulo appropriate equational axioms.

Sin
e a rewrite theory (�; E;R) has an underlying equational theory (�; E), rewriting logi
 is

parameterized by the
hoi
e of the underlying equational logi
. An attra
tive
hoi
e in terms of

expressiveness ismembership equational logi
 [23℄, a logi
 that has sorts, subsorts, and overloading

of fun
tion symbols, and is
apable of expressing partiality using equational
onditions. Atomi

4

senten
es are equations t = t

0

and membership assertions t : s, with s a sort. General axioms

are Horn
lauses on su
h atoms. Sin
e we
an view an equational theory (�; E) as a rewrite

theory (�; E; ;), there is an obvious sublogi
 in
lusion MEqtl � RWLogi
, from membership

equational logi
 into rewriting logi
. Both membership equational logi
 and rewriting logi
 have

initial models [23, 22℄.

3.2 Rewriting logi
 is a good logi
al framework

Rewriting logi
 is non
ommittal about the stru
ture and properties of the formulae expressed

by �-terms. They are user-de�nable as an algebrai
 data type satisfying equational axioms, so

that rewriting dedu
tion takes pla
e modulo su
h axioms. Be
ause of this e
umeni
al neutrality,

rewriting logi
 has good properties as a logi
al framework. In [17, 18, 19℄, many examples of

logi
 representations are given, in
luding �rst-order linear logi
, sequent presentations of modal

and propositional logi
s, Horn logi
 with equality, and so on. In all su
h examples, the represen-

tational distan
e between the obje
t logi
 and its representation is pra
ti
ally zero, that is, the

representations are dire
t and faithfully mimi
 the original logi
s.

Note that there are several ways of
onservatively representing a logi
 (with a �nitary syntax

and inferen
e system) within rewriting logi
. A simple and dire
t way is to turn the inferen
e

rules into rewrite rules, whi
h may be
onditional if the inferen
e rules have side
onditions.

Alternatively, we
an use the underlying membership equational logi
 to represent theoremhood

in a logi
 as a sort in a membership equational theory. Conditional membership equations then

dire
tly support the representation of rules as s
hemas, whi
h is typi
ally used in presenting

logi
s and formal systems. This is the approa
h we have adopted in the experimental work that

we report in Se
tion 4.

3.3 Rewriting logi
 is re
e
tive

Rewriting logi
 is re
e
tive [10, 4℄. There is a universal theory UNIVERSAL, and a representation

fun
tion (`) en
oding pairs
onsisting of a rewrite theory T and a senten
e in it as senten
es

in UNIVERSAL. For any �nitely presented rewrite theory T (in
luding UNIVERSAL itself) and any

terms t, t

0

in T , the representation fun
tion is de�ned by

T ` t �! t

0

= hT ; ti �! hT ; t

0

i ;

where T , t, t

0

are terms in UNIVERSAL. Then, the equivalen
e (2) for rewriting logi
 that is proved

in [10, 4℄ takes the form

T ` t �! t

0

() UNIVERSAL ` hT ; ti �! hT ; t

0

i :

4 Maude and experimental work

In this se
tion we report on a
ase study in metatheoreti
 reasoning that is based on the above

ideas. For our study we used Maude [8, 6℄, whi
h is a re
e
tive logi
 based on rewriting logi
.

Maude's implementation has been designed with the expli
it aims of supporting exe
utable spe
-

i�
ation and re
e
tive
omputation.

4.1 Maude's metalevel

Maude's language design and implementation make systemati
 use of the fa
t that rewriting logi

is re
e
tive to give the user a well-de�ned gateway to the metatheory of rewriting logi
 [5℄. This

entry point is the prede�ned module META-LEVEL, whi
h provides the user with the fun
tionality

ne
essary to exploit the universal theory for rewriting logi
. In the module META-LEVEL, terms in

5

modules are rei�ed as elements of a data type Term, and Maude modules (that is, theories with

initial semanti
s) are rei�ed as elements of a data type Module.

We illustrate the general syntax for representing modules, with a simple example: a module

NAT for natural numbers with zero and su

essor and with a
ommutative addition operator.

fmod NAT is

sorts Zero Nat .

subsort Zero < Nat .

op 0 : -> Zero .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat [
omm℄ .

vars N M : Nat .

eq 0 + N = N .

eq s(N) + M = s(N + M) .

endfm

The representation NAT of NAT in META-LEVEL is the term

fmod 'NAT is

nil

sorts 'Zero ; 'Nat .

subsort 'Zero < 'Nat .

op '0 : nil -> 'Zero [none℄ .

op 's : 'Nat -> 'Nat [none℄ .

op '_+_ : 'Nat 'Nat -> 'Nat [
omm℄ .

var 'N : 'Nat . var 'M : 'Nat .

none

eq '_+_[f'0g'Nat, 'N℄ = 'N .

eq '_+_['s['N℄, 'M℄ = 's['_+_['N, 'M℄℄ .

endfm

of sort Module.

The pro
esses of redu
ing a term to normal form in a fun
tional module (that is, a Chur
h-

Rosser and terminating equational theory) and of rewriting a term in a system module (that

is, a rewrite theory) using Maude's default interpreter are rei�ed respe
tively by fun
tions

meta-redu
e and meta-apply. In parti
ular, meta-redu
e takes as arguments the represen-

tations of a module T , and of a term t or a membership predi
ate t : s in that module. When the

se
ond argument is the representation t of a term t in T , meta-redu
e returns the representation

of the fully redu
ed form of the term t using the equations in T . Similarly, when the se
ond

argument of meta-redu
e is the representation of a membership predi
ate t : s, the term t is

fully redu
ed using the equations in T and then the representation of the Boolean value of the

orresponding predi
ate is returned. Hen
e meta-redu
e returns f'trueg'Bool if T ` t : s;

otherwise, it returns f'falseg'Bool.

4.2 Internal strategies

Sin
e the Maude system is a parti
ular implementation of the metatheory of rewriting logi
, the

module META-LEVEL also provides gateway to the Maude system itself. By extending META-LEVEL,

the user
an e�e
tively
ustomize Maude (in Maude) to �t his parti
ular
omputational needs.

Using rewriting rules at the metalevel, user-de�nable internal strategy languages
an be de�ned

to
hange the (default) operational semanti
s of Maude for system modules (that is, for rewrite

theories that need not be Chur
h-Rosser or terminating) [10, 4℄. The idea is to use the fun
tions

meta-redu
e and meta-apply as basi
 strategies, and then to extend the module META-LEVEL

by additional (arbitrarily
omplex) strategy fun
tions, de�ned by rewrite rules.

6

4.3 An indu
tive theorem prover in Maude

To re
e
t and use indu
tion prin
iples, we formalize an appropriate dedu
tive system in Maude.

Furthermore, we spe
ify strategies for applying rules in this system by spe
ifying rewriting strate-

gies.

In general, based on the
on
epts of re
e
tion and internal strategy languages, theorem-

proving tools have a simple \re
e
tive" design in Maude [7℄. An indu
tive theorem prover, whi
h

we implemented for metatheoreti
 reasoning, illustrates this. The idea is that the theory T ,

for whi
h we want to prove indu
tive theorems, is at the obje
t level; an inferen
e system I

for indu
tive proofs uses T as data and therefore should be spe
i�ed as a rewrite theory at the

metalevel; then, di�erent proof ta
ti
s to guide the appli
ation of the rewrite rules spe
ifying

the inferen
e rules in I are strategies that
an be represented at the meta-metalevel. This is

illustrated by the following pi
ture:

?

6

Meta-metalevel

Metalevel

?

6

Obje
t level

Obje
t theory

indu
tion

ITP: inferen
e rules for

indu
tive proofs

S-ITP: strategies for

The module ITP is an extension of the module META-LEVEL and realizes, for the
ase of rewriting

logi
, the extension I of the universal theory U with indu
tive prin
iples dis
ussed in Se
tion 2.3.

Formulas are represented in ITP as terms of sort Formula built with the
onstru
tors equality,

impli
ation,
onjun
tion, and VQuantifi
ation. For example, the formula

8fN; Mg+(N, M) = +(M, N)

is represented in ITP by the term

VQuantifi
ation(('N ; 'M), equality('+['N, 'M℄, '+['M, 'N℄)).

The (sub)goals for the indu
tive theorem prover are represented with the
onstru
tors proveinInitial

and proveinVariety, for proofs in the initial model and proofs in the variety, respe
tively. Sets

of (sub)goals are built with the
onstru
tor goalSet, with emptyGoalSet the empty set of goals.

For example, the goal

NAT `

ind

(8fN, Mg)+(N, M) = +(M, N)

is represented in ITP by the term

proveinInitial(I, NAT,

VQuantifi
ation(('N ; 'M), equality('+['N, 'M℄, '+['M, 'N℄))),

where I should be a string of positive numbers. The strings of positive numbers are used to

number the (sub)goals in a proof.

With this ma
hinery in hand, it is possible to formalize in ITP indu
tion prin
iples for Maude

modules. In our work, we formalize rewrite rules that spe
ify the rules of inferen
e for proving

that a universally quanti�ed formula is an indu
tive
onsequen
e of a given membership algebra

spe
i�
ation. For example, the rule indu
tion below rewrites a (sub)goal representing the task

of proving indu
tively in a moduleM a given formula 8fx;Xg� to a set of subgoals representing

the tasks of proving indu
tively the base
ase(s) and the indu
tion step(s) that result from

7

indu
tion on the variable x. The fun
tion getVars extra
ts the variable de
laration from the

metarepresentation of the module M . The fun
tion findSortV �nds the metarepresentation of

the sort s of the variable x in the module M . The fun
tion extra
tRuleSystem extra
ts from

the metarepresentation of the module M all the
lauses that de�ne the set s in M . (Noti
e that

spe
i�
ations in membership equational logi

oin
ide with a spe
ial
ase of many-sorted Horn

logi
 with equality.) Finally, the fun
tion makeNewGoalSetF generates from the de�ning
lauses

of s the
orresponding base
ase(s) and indu
tion step(s).

var Idx : IntString . var Mod : Module .

var X : Qid . var Xs : QidSet .

vars Alpha Beta : Formula .

rl [indu
tion℄:

proveInitial(Idx, Mod,

VQuantifi
ation((X ; Xs), Alpha))

=>

makeNewGoalSetF(intString(Idx, 1), Mod, Xs, X, Alpha,

extra
tRuleSystem(Mod, findSortV(X, getVars(Mod)))) .

Proving a theorem
onsists then in applying (with a strategy and, therefore, in the module S-ITP,

at the meta-metalevel) the rewrite rules in the module ITP to the term representing the initial

(sub)goals until it is rewritten to the term empty.

4.4 An example: the dedu
tion theorem

As an example,
onsider the dedu
tion theorem for minimal logi
 (of impli
ation). This theorem

is interesting for several reasons. To begin with, it is a
entral metatheorem that holds for many

Hilbert systems and justi�es proof under temporary assumption in the manner of a natural

dedu
tion proof system. Moreover, although relatively simple, it illustrates some subtle aspe
ts

of formal metareasoning. For example, it is a
tually a metatheorem not about a parti
ular

dedu
tive system, but rather one that relates di�erent dedu
tive systems: one in whi
h A ! B

is proven and a se
ond (whi
h is the �rst, augmented by the axiom A) in whi
h B is proven.

Indeed, as A is an arbitrary formula, the standard statement of the dedu
tion theorem is a
tually

a statement about the relationship between a family of pairs of dedu
tive systems. And as we

will see, it
an be formalized even more generally than this.

The dedu
tion theorem is proven by indu
tion over the stru
ture of derivations. We start

by spe
ifying minimal logi
 as a module in Maude. The formulae of minimal logi

orrespond

to members of the set L

M

, built from the binary
onne
tive ! (written in�x, asso
iating to the

right) and sentential
onstants. Theorems
orrespond to members of a se
ond set T

M

, and are

either instan
es of the standard Hilbert axiom s
hemata

A! B ! A

and

(A! B)! (A! B ! C)! (A! C) ;

or are generated by applying the rule modus ponens :

A A! B

B

The module MINIMAL below represents minimal logi
 within membership equational logi
 (and

rewriting logi
), in the sense that a formula � is a theorem in minimal logi
 if and only if its

representation � is a term of sort Theorem, that is, the membership assertion � : Theorem is true

in MINIMAL.

8

mod MINIMAL is

sorts SentConstant Formula Theorem .

subsort SentConstant < Formula .

subsort Theorem < Formula .

op -> : Formula Formula -> Formula .

vars A B C : Formula .

mb A -> (B -> A) : Theorem .

mb (A -> B) -> ((A ->(B -> C)) -> (A -> C)) : Theorem .

mb B : Theorem if (A -> B) : Theorem and A : Theorem .

endm

We write `

M

A to denote that A 2 T

M

, and A `

M

B to denote that if minimal logi
 is

extended with the additional axiom A, then B belongs to the resulting set of theorems. The

dedu
tion theorem then states that for any A and B in L

M

,

A `

M

B =) `

M

A! B :

This metatheorem is proven by indu
tion on the stru
ture of derivations in minimal logi
 extended

with the axiom A.

A

ording to our representation of minimal logi
 in rewriting logi
, we
an rephrase the

dedu
tion theorem in the following terms: for any formulae A and B, if B:Theorem is true in the

module MINIMAL extended with the membership axiom mb A:Theorem, then A �! B:Theorem

is true in MINIMAL.

Noti
e that this theorem states an impli
ation between the truth of two membership assertions

over two di�erent membership equational theories. Sin
e the truth of membership assertions over

theories is de�ned in the metatheory of rewriting logi
, the \obje
t" theory about whi
h we have

to prove the dedu
tion theorem is in fa
t, in our setting, the universal theory for rewriting logi
.

This
orresponds to the following goal for the indu
tive theorem prover, where A and B are

variables of sort Term in the module META-LEVEL:

META-LEVEL `

ind

8(A ; B)

meta-redu
e(

(mod'ARROW is

in
luding 'BOOL .

sorts('SentConstant ; 'Formula ; 'Theorem) .

subsort 'SentConstant < 'Formula .

subsort 'Theorem < 'Formula .

op 'impl : 'Formula 'Formula -> 'Formula [none℄ .

var 'A : 'Formula . var 'B : 'Formula . var 'C : 'Formula .

mb A : 'Theorem .

mb 'impl['A, 'impl['B, 'A℄℄ : 'Theorem .

mb 'impl['impl['A, 'B℄,

'impl['impl['A, 'impl['B, 'C℄℄, 'impl['A, 'C℄℄℄ : 'Theorem .

mb'B : 'Theorem if

' and [('impl['A, 'B℄ : 'Theorem), ('A : 'Theorem)℄ = f'trueg'Bool .

none

none

endm),

B : 'Theorem) = f'trueg'Bool

=)

meta-redu
e(

(mod'ARROW is

in
luding 'BOOL .

sorts('SentConstant ; 'Formula ; 'Theorem) .

9

subsort 'SentConstant < 'Formula .

subsort 'Theorem < 'Formula .

op 'impl : 'Formula 'Formula -> 'Formula [none℄ .

var 'A : 'Formula . var 'B : 'Formula . var 'C : 'Formula .

mb 'impl['A, 'impl['B, 'A℄℄ : 'Theorem .

mb 'impl['impl['A, 'B℄,

'impl['impl['A, 'impl['B, 'C℄℄, 'impl['A, 'C℄℄℄ : 'Theorem .

mb'B : 'Theorem if

' and [('impl['A, 'B℄ : 'Theorem), ('A : 'Theorem)℄ = f'trueg'Bool .

none

none

endm),

'impl[A , B ℄ : 'Theorem) = f'trueg'Bool .

Observe that applying indu
tion on the variable B using the indu
tion rule introdu
ed

above will be of little use here: B is a variable of sort Term and, therefore, the base
ase(s) and

the indu
tion step(s) that the fun
tion makeNewGoalSetF will generate
orrespond to the
lauses

that de�ne the set Term in the module META-LEVEL. Instead what we need are the base
ase(s)

and the indu
tion step(s) that
orrespond to the
lauses de�ning the subset of the set Term that

in
ludes only those terms of sort Term representing at the metalevel terms of sort Theorem in the

module MINIMAL extended with the membership axiom mb A :Theorem.

To generate the appropriate indu
tion, we extend the module ITPwith a new rule indu
tion*.

This rule generates the appropriate base
ase(s) and indu
tion step(s) when proving in the module

META-LEVEL a universally quanti�ed impli
ative formula 8fx;Xg(�

1

^� � �^�

n

) �! � by indu
tion

on a variable x of sort Term, if the impli
ative formula in
ludes in its ante
edent a
lause �

i

that

restri
ts the s
ope of the variable x to metarepresentations of terms of a sort s in a module T .

The fun
tion makeNewGoalSetF* uses the set of
lauses that de�ne the set s in the module T

(obtained with the fun
tion extra
tRuleSystem) to generate the appropriate base
ase(s) and

indu
tion step(s).

rl [indu
tion*℄:

proveInitial(Idx, META-LEVEL,

VQuantifi
ation((X ; Xs),

impli
ation(

onjun
tion(Beta,

equality('meta-redu
e[T, X : s℄ = f'trueg'Bool)),

Alpha)))

=>

makeNewGoalSetF*(intString(Idx, 1), META-LEVEL, Xs, X, Beta, Alpha,

extra
tRuleSystem(T, s)) .

Using the rule indu
tion*, along with the rest of inferen
e rules spe
i�ed in ITP, we have

proven this metatheorem with a strategy de�ned in S-ITP that mirrors the standard presentation

of the proof of the dedu
tion theorem.

4.5 Proving a parameterized dedu
tion theorem in ITP

In [2, 3℄, Basin and Matthews showed how metatheorems that are parameterized by their s
ope

of appli
ation
an be proved using a theory of parameterized indu
tive de�nitions as a metathe-

ory. To illustrate the notion of a s
oped metatheorem they present a generalized version of the

dedu
tion theorem that
an be applied to all extensions of the language and axioms of minimal

logi
 as well as extensions of rules that satisfy
ertain
onditions. From their theorem it follows,

for example, that the dedu
tion theorem holds not just for minimal logi
 of impli
ation, but also

10

for any propositional or �rst-order extension, but not ne
essarily for extensions to modal logi
s

(whi
h would require adding new rules, as opposed to axioms).

Sin
e the requirements demanded of the metatheory in [2, 3℄ | namely, that we
an build

families of sets using parameterized indu
tive de�nitions, and that we
an reason about their

elements by indu
tion | are indeed satis�ed by rewriting logi
 and our theory representation

al
ulus, we should be able to formalize s
oped metatheorems as goals in the extended module

ITP and prove them (probably using strategies) in the module S-ITP.

To illustrate this idea, we
onsider a generalized version of the dedu
tion theorem that applies

to all extensions of minimal logi
 with a new rule of the form

C D

E

that satis�es a
ertain
ondition; namely, in the step
ase we
an use the assumptions A �! C

and A �! D to prove A �! E. This metatheorem
orresponds to the following goal for the

indu
tive theorem prover, where A , B , C , D , and E are variables of sort Term in the module

META-LEVEL:

META-LEVEL `

ind

8(A ; B ; C ; D ; E)

((meta-redu
e(ARROW+, 'impl[A , C ℄ : 'Theorem) = f'trueg'Bool

^

meta-redu
e(ARROW+, 'impl[A , D ℄ : 'Theorem) = f'trueg'Bool

=)

meta-redu
e(ARROW+, 'impl[A , E ℄ : 'Theorem) = f'trueg'Bool)

^

meta-redu
e(ARROW+A, B : 'Theorem) = f'trueg'Bool)

=)

meta-redu
e(ARROW+, 'impl[A , B ℄ : 'Theorem) = f'trueg'Bool),

where ARROW+ is shorthand for the term

(mod'ARROW is

in
luding 'BOOL .

sorts('SentConstant ; 'Formula ; 'Theorem) .

subsort 'SentConstant < 'Formula .

subsort 'Theorem < 'Formula .

op 'impl : 'Formula 'Formula -> 'Formula [none℄ .

var 'A : 'Formula . var 'B : 'Formula . var 'C : 'Formula .

mb 'impl['A, 'impl['B, 'A℄℄ : 'Theorem .

mb 'impl['impl['A, 'B℄,

'impl['impl['A, 'impl['B, 'C℄℄, 'impl['A, 'C℄℄℄ : 'Theorem .

mb'B : 'Theorem if

' and ['impl['A, 'B℄ : 'Theorem, 'A : 'Theorem℄ = f'trueg'Bool .

mb E : 'Theorem if

' and [C : 'Theorem, D : 'Theorem℄ = f'trueg'Bool .

none

none

endm)

and ARROW+A is shorthand for the term

(mod'ARROW is

in
luding 'BOOL .

sorts('SentConstant ; 'Formula ; 'Theorem) .

subsort 'SentConstant < 'Formula .

11

subsort 'Theorem < 'Formula .

op 'impl : 'Formula 'Formula -> 'Formula [none℄ .

var 'A : 'Formula . var 'B : 'Formula . var 'C : 'Formula .

mb A : 'Theorem .

mb 'impl['A, 'impl['B, 'A℄℄ : 'Theorem .

mb 'impl['impl['A, 'B℄,

'impl['impl['A, 'impl['B, 'C℄℄, 'impl['A, 'C℄℄℄ : 'Theorem .

mb'B : 'Theorem if

' and ['impl['A, 'B℄ : 'Theorem, 'A : 'Theorem℄ = f'trueg'Bool .

mb E : 'Theorem if

' and [C : 'Theorem, D : 'Theorem℄ = f'trueg'Bool .

none

none

endm).

Using the rule indu
tion*, along with the rest of the inferen
e rules spe
i�ed in ITP, we

have proven this metatheorem with a strategy de�ned in S-ITP that follows the expe
ted proof

strategy, beginning with indu
tion on the variable B .

5 Con
lusion

We have presented, both abstra
tly and
on
retely, a new approa
h to metatheoreti
 reasoning

based on using re
e
tive logi
al frameworks whose theories have initial models. Initial experi-

ments with these ideas are en
ouraging. We
an formalize theories as modules in Maude and use

the Maude system as a logi
al framework to prove theorems in the theories. Moreover, using

re
e
tive reasoning we
an exploit the initiality of these modules by re
e
tively formalizing in-

du
tion prin
iples over them. This yields a formalization well-suited for reasoning about theories

and their interrelationships.

Referen
es

[1℄ D. Basin and R. Constable. Metalogi
al frameworks. In G. Huet and G. Plotkin, editors, Logi
al

Environments, pages 1{29. Cambridge University Press, 1993.

[2℄ D. Basin and S. Matthews. S
oped metatheorems. In Se
ond International Workshop on Rewriting

Logi
 and its Appli
ations, volume 15, pages 1{12. Ele
troni
 Notes in Theoreti
al Computer S
ien
e

(ENTCS), September 1998.

[3℄ D. Basin and S. Matthews. Stru
turing metatheory on indu
tive de�nitions. Information and

Computation, 1999. To appear.

[4℄ M. Clavel. Re
e
tion in General Logi
s and in Rewriting Logi
 with Appli
ations to the Maude

Language. PhD thesis, University of Navarre, 1998.

[5℄ M. Clavel, F. Dur�an, S. Eker, P. Lin
oln, N. Mart��-Oliet, and J. Meseguer. Metalevel
omputation

in Maude. In C. Kir
hner and H. Kir
hner, editors, Se
ond International Workshop on Rewriting

Logi
 and its Appli
ations, volume 15 of Ele
troni
 Notes in Theoreti
al Computer S
ien
e, pages

3{23, Pont-�a-Mousson, Fran
e, September 1998. Elsevier.

[6℄ M. Clavel, F. Dur�an, S. Eker, P. Lin
oln, N. Mart��-Oliet, J. Meseguer, and J. Quesada. Maude:

Spe
i�
ation and programming in rewriting logi
. SRI International, January 1999, http://maude.

sl.sri.
om.

[7℄ M. Clavel, F. Dur�an, S. Eker, and J. Meseguer. Building equational proving tools by re
e
tion in

rewriting logi
. In Pro
eedings of the CafeOBJ Symposium '98, Numazu, Japan. CafeOBJ Proje
t,

April 1998.

[8℄ M. Clavel, S. Eker, P. Lin
oln, and J. Meseguer. Prin
iples of Maude. In J. Meseguer, editor, First

International Workshop on Rewriting Logi
 and its Appli
ations, volume 4 of Ele
troni
 Notes in

Theoreti
al Computer S
ien
e, pages 65{89, Asilomar (California), September 1996. Elsevier.

12

[9℄ M. Clavel and J. Meseguer. Axiomatizing re
e
tive logi
s and languages. In G. Ki
zales, editor,

Pro
eedings of Re
e
tion'96, pages 263{288, San Fran
is
o (California), April 1996. Xerox PARC.

[10℄ M. Clavel and J. Meseguer. Re
e
tion and strategies in rewriting logi
. In J. Meseguer, editor, First

International Workshop on Rewriting Logi
 and its Appli
ations, volume 4 of Ele
troni
 Notes in

Theoreti
al Computer S
ien
e, pages 125{147, Asilomar (California), September 1996. Elsevier.

[11℄ J. Despeyroux, F. Pfenning, and C. S
h�urmann. Primitive re
ursion for higher-order abstra
t

syntax. In Pro
eedings of the 3rd International Conferen
e on Typed Lambda Cal
uli and Appli
a-

tions (TLCA'97), volume 1210 of Le
ture Notes in Computer S
ien
e, Nan
y, Fran
e, April 1997.

Springer-Verlag.

[12℄ F. Dur�an. A Re
e
tive Module Algebra with Appli
ations to the Maude Language. PhD thesis,

University of M�alaga, 1999. http://maude.
sl.sri.
om.

[13℄ S. Feferman. Finitary indu
tively presented logi
s. In Logi
 Colloquium '88. North-Holland, 1988.

[14℄ M. Gordon and T. Melham. Introdu
tion to HOL: A Theorem Proving Environment for Higher

Order Logi
. Cambridge University Press, 1993.

[15℄ R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logi
s. J. ACM, 40(1):143{184,

January 1993.

[16℄ S. M. Lane. Why
ommutative diagrams
oin
ide with equivalent proofs. Contemporary Mathemat-

i
s, 13:387{401, 1982.

[17℄ N. Mart��-Oliet and J. Meseguer. Rewriting logi
 as a logi
al and semanti
 framework. Te
hni
al

Report SRI-CSL-93-05, SRI International, Computer S
ien
e Laboratory, August 1993. To appear

in D. Gabbay, ed., Handbook of Philosophi
al Logi
, Kluwer A
ademi
 Publishers.

[18℄ N. Mart��-Oliet and J. Meseguer. General logi
s and logi
al frameworks. In D. Gabbay, editor, What

is a Logi
al System?, pages 355{392. Oxford University Press, 1994.

[19℄ N. Mart��-Oliet and J. Meseguer. Rewriting logi
 as a logi
al and semanti
 framework. In J. Meseguer,

editor, First International Workshop on Rewriting Logi
 and its Appli
ations, volume 4 of Ele
troni

Notes in Theoreti
al Computer S
ien
e. Elsevier, September 1996.

[20℄ S. Matthews, A. Smaill, and D. Basin. Experien
e with FS

0

as a framework theory. In G. Huet and

G. Plotkin, editors, Logi
al Environments, pages 61{82. Cambridge University Press, 1993.

[21℄ R. M
Dowell and D. Miller. A logi
 for reasoning with higher-order abstra
t syntax. In Twelfth

Annual IEEE Symposium on Logi
 in Computer S
ien
e, June 1997.

[22℄ J. Meseguer. Conditional rewriting logi
 as a uni�ed model of
on
urren
y. Theoreti
al Computer

S
ien
e, 96(1):73{155, 1992.

[23℄ J. Meseguer. Membership algebra as a semanti
 framework for equational spe
i�
ation. In F. Parisi-

Presi

e, editor, Pro
eedings of WADT'97, volume 1376 of Le
ture Notes in Computer S
ien
e, pages

18{61. Springer-Verlag, 1998.

[24℄ J. Meseguer. Resear
h dire
tions in rewriting logi
. In U. Berger and H. S
hwi
htenberg, editors,

Computational Logi
, NATO Advan
ed Study Institute, Marktoberdorf, Germany, July 29 - August

6, 1997. Springer-Verlag, 1998.

[25℄ J. Meseguer and J. A. Goguen. Initiality, indu
tion and
omputability. In M. Nivat and J. C.

Reynolds, editors, Algebrai
 Methods in Semanti
s, pages 459{541. Cambridge University Press,

1985.

[26℄ C. Paulin-Mohring. Indu
tive De�nitions in the System Coq - Rules and Properties. In M. Bezem

and J.-F. Groote, editors, Pro
eedings of the
onferen
e Typed Lambda Cal
uli and Appli
ations,

volume 664 of Le
ture Notes in Computer S
ien
e, 1993. LIP resear
h report 92-49.

[27℄ L. C. Paulson. A �xedpoint approa
h to implementing (
o)indu
tive de�nitions. In Pro
eedings

of the 12th International Conferen
e on Automated Dedu
tion (CADE-12), volume 814 of Le
ture

Notes in Arti�
ial Intelligen
e, Nan
y, Fran
e, June 1994. Springer-Verlag.

[28℄ L. C. Paulson. Isabelle : a generi
 theorem prover; with
ontributions by Tobias Nipkow, volume

828 of Le
ture Notes in Computer S
ien
e,. Springer, Berlin, 1994.

[29℄ C. S
h�urmann and F. Pfenning. Automated theorem proving in a simple meta-logi
 for LF. In

C. Kir
hner and H. Kir
hner, editors, Pro
eedings of the 15th International Conferen
e on Automated

Dedu
tion (CADE-15), volume 1421 of Le
ture Notes in Computer S
ien
e, pages 286{300, Lindau,

Germany, July 1998. Springer-Verlag.

13

