A Logic Programming Approach to Implementing Higher-Order Narrowing

Murat Sinan AYGUN

Department of Computer Engineering, Bogazici University, Istanbul, Turkey

Abstract We present the implementation of
higher-order narrowing in the framework of
AProlog. The work illustrates the strength of the
language by presenting how A-terms and types
embeded in AProlog extend the concept of logic
programming.

We specify variables to be solved by variables
bound at the meta-level and directly apply the
meta-level unification via these meta-level
variables. The main contribution of this work is
that we at the same time successfully encode
operational behavior of these meta-level solvable
variables at the object-logic. This approach frees
the programmer from implementing most of the
computations and as a result significantly
simplifies the implementation problem from the
programmer’s point of view. Our work is the first
concrete implementation of higher-order
narrowing.

We finally state that the adaptability of our
techniques requires a meta-level system that
supports A-abstraction, types, polymorphic
typing, implications and universal quantification in
goals and the body of clauses.

1 Introduction

Logic plays an important role in
specification of formal systems by its
simplicity and generality. By the discovery
of the unification process and its
exploitation in reasoning, new language
design strategies based on first-order logic
have been proposed. Prolog is a very simple
engine whose inference mechanism is based
on backchaining. Subsequent efforts have
extended these strategies to more powerful
meta-level systems such as AProlog [1] and
L;, a fragment of AProlog [2], which are
built over higher-order structures.
Computational characteristics of syntactic
structures are generalized and direct meta-
level support is provided in AProlog and L.
As a result, manipulation of these structures

is simplified compared to other programming
languages such as Pascal, Prolog and ML [2]. For
example, implementation of a proof system based
on natural deduction is easy in AProlog since
quantification logic can be supported naturally by
using the higher-order features of AProlog [1].
Certain restrictions are placed on functional
variables for ensuring the computability of a most
general unifier in L;. Compared to interpreters for
Horn clauses, L; has a more complex
computational mechanism [2]. This feature is due
to the enhancement of Horn logic by allowing
implications and universal quantifiers within goal
formulas.

On the other hand, the unification mechanism is
exploited in rewriting for the computation of
answers as in Prolog. This technique is known as
narrowing. It has recently been suggested to
extend the narrowing strategy over higher-order
structures to provide a more powerful meta-level
system [3, 4].

The idea to implement equational reasoning tools
on high-level meta-level systems is not new [5].
The implementation of higher-order term rewriting
in a tactic style theorem proving is considered in
[6]. The main difference between our research and
previous work is the following ideas, which are
applied to the implementation of higher-order
narrowing in AProlog:

Operational behavior of solvable variables is
specified by meta-level existentially quantified
variables. With this idea, instead of implementing
our own unification procedure at the object-logic,
which is the most important part, we directly apply
L,’s unification mechanism via these meta-level
solvable variables. The instances provided by the
meta-level system L, are the solution values.

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

As a result of the idea above, the
implementation problem is simplified from
the programmer’s point of view.

e We encode the meta-level solvable
variables by a special constructor “evar”
at the object-level and develop the
technicalities around the idea of
preserving the encoding mechanism.

By using the idea of encoding, we restrict
search space values for the meta-level
solvable variables. The reason is to rule out
infinite vacuous instances of them, which
block the computation of desired results. We
therefore improve the inference engine for
the application.

According to our knowledge, there is no
concrete implementation of higher-order
narrowing. Indeed, programming techniques
for implementing AProlog can also be used
for implementing higher-order narrowing.
But this approach highly complicates the
problem because of the reasons mentioned
above.

The adaptation of higher-order narrowing is
described in Section 2. The technical details
about the encoding mechanism are presented
in Section 3. The complete code for the
implementation is given in Section 4 and
Appendix.

2 Preliminaries

Definition 2.1 Let ferm and string be base
types where string contains strings and term
contains the terms called object-level terms.
Let 2, be the signature

app : term — term — term,
cons : string — term,

la : (term — term) — term,
rule : term — term — term,
some : (term — term) — term,
all : (term — term) — term,
eq : term — term — term.

cons, app, la, eq, rule are used to specify
respectively constants, application,

abstraction, query and rewrite rule. 7- and ¢-
formulas respectively represent higher-order and
first-order terms.

C:=conss|app Ct]|(C)
t=F|C|()

T:=F|x|conss|app TT|laxxT]|(T)
R:=rulet t| all \F.R

Q:=eqT T|some)F.Q.

s denotes strings. In order not to lead to any
confusion with meta-level quantified variables, F
variables in O- and R-formulas are called object-
level quantified variables. Object-level
existentially quantified variables specify variables
to be solved. It is assumed that arguments of
object-level existentially quantified variables can
only be bound variables.

Example 2.1 The object-level term

some \F.eq (la Ax.(app F x))
(la Ax.(app (cons “f) x))

represents the query Ax.(X x) =" Ax.(fx) where the
free variable X is represented by the object-level
existentially quantified variable F.

Note: It is assumed that » and ¢ denote 7-formulas.

Definition 2.2 Subterms in 7-formulas are defined
in the following manner:

o =1

o (ladx.btmp=tp,

e (app..(app (cons s) t)...tn)ip = tip for 1<i < n,

e (app...(app x t)...ta)iip = tip for 1<i < n.

Note: #[u],, is the result of replacing #,, in by u.

In Definition 2.2, we intentionally ignore the
positions within the formulas

(app-..(app F x1)...xn)
since we do not apply narrowing steps to x;...x,.

Definition 2.3 M-formulas called constant terms
are defined in the following manner:

M :=conss|app M T.

T denotes 7T-formulas and s denotes strings and the
name of constant terms.

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

Definition 2.4 and Definition 2.5 are
respectively the adaptations of the higher-
order lifting and narrowing procedures given
in [4].

Qu is used to denote the list of meta-level
quantifiers in AProlog [2] and [Qu, P] is a
meta-level predicate stating that the object-
level term P is in the context Qu.

Note: ni/ denotes empty lists.

Definition 2.4 Let X;, X5,...,.X; be all the
object-level universally quantified variables
of a rewrite rule. Let y1, ¥,...,)x be distinct
bound variables and H,, H,...,H, be distinct
new meta-level existentially quantified
variables whose quantifiers are appended to
the end of Qu (Qu is the list of meta-level
quantifiers in L,). Higher-order lifting of the
rewrite rule over yi,....y is the result of
replacing all occurrences of X; by H; y;...).

In the following higher-order narrowing
procedure, for a given query, the object-
level variables that are used to specify the
solvable variables are replaced with meta-
level existentially quantified variables in
order to apply directly L;’s unification
mechanism. After the query is solved, the
instances computed by the inference system
are the solution values we expect for these
object-level solvable variables.

Note: appu t denotes (app...(app u t,)...t,)
in Definition 2.5.

Definition 2.5 Let P denote a closed Q-
formula and P’ be the formula to which
higher-order narrowing steps are applied.
[Qu', P'] is obtained from [Qu, P] according
to the rule below such that P’ is the result of
replacing all the object-level existentially
quantified variables in P with meta-level
existentially quantified variables:

Let Qu; be Qu. If [Qu;, some AF.Q] (1< i< n)

then [Qui., ©(Q)] where Quiy = QudY (Y
is not bound in Qu;) and for each subterm app F

X inQ,<appF X, Y X > e o (or for each
subterm F in O, <F, Y> €).

Note: o;i(Q) is obtained by replacing a in O with b
for each <a, b> € w;.

Example 2.2 We will present the solution of the
query

some AF.

eq (la Ax.(app (app (cons “+")(app F X)) X))
(la 2x.(app (cons “succ”) x))

in the presence of the following rules:
e all 2X.
rule (app (app (cons "+") (cons "zero")) X)
X

« all 2X.all 1Y rule
(app (app (cons "+") (app (cons "succ") X)) Y)
(app (cons "succ") (app (app (cons "+") X) Y)).

step 1
The object-level existentially quantified variable F

is replaced with the meta-level -existentially
quantified variable Z.

[nil, some \F.

eq (la 2.x.(app (app (cons “+")(app F x)) x))
(la Ax.(app (cons “succ’) x))]

<nil>
leads to

[3Z, eq (la Ax.(app (app (cons “+")(Z x)) x))
(la Ax.(app (cons “succ’) x))]

<7>

Note: <....> denotes the ordered list containing
instances of solvable variables in the same order
their quantifiers appear in Q-formulas.

step 2
A narrowing step is applied to the subterm
(app (app (cons “+")(Z X)) x)

with the second rule. The lifting procedure is
applied to the second rule over x.

[3H13H2, rule
(app (app (cons “+”) (app (cons “succ”)(H1 x)))(Hz2 X))
(app (cons “succ”)(app (app (cons “+")(H1 x))(Hz x)))]

step 3
The resultant term after the narrowing step:

[3H4, eq
(la Ax.(app (cons “succ”)

(app (app (cons “+")(H1 X)) X)))
(la Ax.(app (cons “succ”) x))]

Murat Sinan AYGUN A Logic Programming Approach to Implementing Higher-Order Narrowing

<)x.(app (cons “succ”) (H1 x))>

where Z is substituted by

Ax.(app (cons “succ’) (H1 x)).

step 4
A narrowing step is applied to the subterm
(app (app (cons “+")(H1 X)) x)

with the first rule. The lifting procedure is
applied to the first rule over x.

[3Hs, rule
(app (app (cons “+”) (cons “zero”)) (Hs x))
(Ha)]

step 5
The resultant term after the narrowing step:

[nil, eq (la Ax.(app (cons “succ’) x))
(la Ax.(app (cons “succ”) x))]

<)x.(app (cons “succ”) (cons “zero”))>
where Hy is substituted by Ax.(cons “zero”).
step 6
Finally the result

[nil, eq (la Ax.(app (cons “succ’) x))
(la Ax.(app (cons “succ’) x))]

yields the formula [#il,T].
Note: T denotes tautologies.

Final result:

[nil,T]
<A\x.(app (cons “succ”) (cons “zero”))>

In general, a given query
[nil, some AF... some AF».Q]

<nil>
results in

[nil,T]
<t1 ...tn>

where #...f, are respectively the solution
values for F;...F,.

3 Implementation details

Below we present several examples of
AProlog programs. The symbol = denotes
implication, :- denotes its reverse. \ denotes

A-abstraction and pi along with a A-abstraction
denotes universal quantification. Upper case letters
are assumed to be universally quantified. The
symbol o in type expressions denotes the predicate

types.

Example 3.1 The program below specifies the
computation of all subterms within closed 7-
formulas.

Note: Closed 7-formulas denote the 7-formulas
that do not contain any quantified variable.

type fstterm — term — term — o.
fst (cons T) (cons T) context.

fst (app T1 T2) (app K1 T2) context :-
fst T1 K1 context.

fst (app T1T2) Z (app L1 T2) :-
fstT1ZL1, L1= (app__).

fst (app T1T2) Z (app T1L2) :-fst T2 Z L2.
fst (laT) (la Z) (la L) :- pi c\(fst (T ¢) (Z c) (L ¢)).

Lemma 3.1 Let s be a closed 7-formula. The goal
373L fst s Z L produces the results for all the
constant terms s, such that Z and L are
respectively substituted by

la y1\...la yn\s;, and s[context]p

where yi\..y,\ are all the A-abstractions in s
covering p.

The constant context of the type term is used to
denote the position to which replacement
mechanism is applied in a higher-order narrowing
step. After we apply the lifting procedure (see
Definition 2.4) to a rewrite rule over y;\...y,\, we
unify s, with the left hand side of the rule. Then,
context in s[context], will be replaced with the
right hand side.

Note: {x = x}s denotes that all x in s are replaced
with x’ The expression) ; I” |—[G denotes
intuitionistic provability of goal G from signature
2’and program 7[2].

The Proof of Lemma 3.1: The proof is by
induction.
Basis step:

CASE 1: when s is a variable, it should be
a bound variable since the assumption. The
expression fails.

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

CASE 2: s is a constant term. If it is
of the form cons c, the expression is satisfied
by backchaining with the first formula. If it
is of the form app s; s,, the expression is
satisfied by backchaining iteratively with the
second formula until it is reduced to the
form cons c. For the both forms, Z and L are
respectively substituted with s and context.
Inductive step:

CASE 1: s is la x\ s;. The resultant

expression

2 U ix’iterm}; Tl fst ({x > x%s1)
(Z1x)
(L x)

is computed by backchaining with the fifth
formula where Z and L are respectively
substituted with /a Z; and /a L,. We apply
induction hypothesis and the proof for this
case is concluded.

CASE 2: s is app s, s,. The resultant
expression X'; I" |, fst s, Z Ly is computed
by backchaining with the forth formula
where L is substituted with app s, L.
Backchaining with the forth formula is used
to apply fst procedure an argument of s. In
order to successively apply fs¢ procedure to
the all arguments of s, backchaining with the
third formula is used. We apply induction
hypothesis to conclude the case. B

Example 3.2 We will present a narrowing
step applied to the subterm

(app (app (cons “+”) (cons “zero”))
X)

of the 7-formula

(la Ax.(app (app (cons “+”)
(app (app (cons “+”) (cons “zero”))
X))
X))

in the presence of the following rule:

all 2\X.
rule (app (app (cons "+") (cons "zero")) X)
X

step 1

fst procedure is applied to the 7-formula to
compute

(la Ax.(app (app (cons “+”) (cons “zera”)) x))

and
(la 2x.(app (app (cons “+”) context) x)).
step 2
The lifting procedure is applied to the rule over x.

[3Hq4, rule
(la Ax.(app (app (cons “+”) (cons “zero”))

(H1 x)))
(la Ax.(H1 x))]

step 3
The subterm

(la Ax.(app (app (cons “+”) (cons “zero”))
X))

and the left hand of the rule

(la Ax.(app (app (cons “+”) (cons “zero”))

(H1x)))
are unified where H; is substituted by Ax.x.
step 4
context in
(la 2x.(app (app (cons “+”) context) x))
is replaced with the right hand side of the rule.

resultant term:
(la Ax.(app (app (cons “+”) x) x)).

When we deal with meta-level solvable variables
at the object-level, we should specify their
operational behavior at the object-logic. We do
this specification by restricting their solution
values. In the rest of this section, we will present a
clear account for the special treatment of these
meta-level solvable variables and the technicalities
around that idea. For example, when s in Example
3.1 contains meta-level existentially quantified
variables, they are vacuously unified with object-
level terms within the programming formulas
during the proof (see Example 3.3).

Example 3.3 In the proof of the expression,

2 h fst
(la x\la y\(app(app(cons "+")(Z y))x)) K L

(K, L, K’ L, Z are meta-level existentially
quantified variables), the following expression is
computed:

2u {xtermy":term}; I'li fst (Zy') K'L".

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

During the proof of the goal fst (Zy') K'L”’,
the variable Z is vacuously instantiated with
the infinite sequence

y'\(app (cons F1)F2),
y'\(app (app(cons F1) F2) Fa),

where Fi, F,...,F, are meta-level existential
variables. Because of the depth first search
strategy of AProlog, Z is instantiated with
these vacuous values in an infinite loop and
other cases are not considered. This is the
case that blocks the computation of desired
results.

Position tree introduced in Definition 3.1 is
a subsidiary structure, which is used to
eliminate the case described above by
preventing these infinite vacuous
instantiations of meta-level solvable
variables.

Definition 3.1 Let s be an object-level term
over the constructors app, la, cons, rule, eq
which may contain meta-level existentially
quantified variables. If s is converted to a
binary tree + whose nodes are defined over
the constructors n2, nli, nil, and evar by an
information erasing mapping such that

e The two-argument constructors app, rule,
eq are mapped to the node n2 with
degree 2,

e The one-argument constructor /a along
with a A-abstraction is mapped to the
node n/ with degree 1,

e The constructor cons and bound variables
are mapped to the node ni/ with degree 0,

e The subterms Z y;...y, are mapped to the
nodes evar 7', which denote the
existence of a meta-level solvable
variable in the current position (Z and Z'

are meta-level
variables),

existentially quantified

t is called the position tree or briefly position of s
and denoted by (s) .

The types are assigned to the constructors n2, ni,
nil, evar as follows:

n2: term — term — term,
n1: term — term,

nil : term,

evar: A — term.

A denotes type variables (polymorphic types) and
is universally quantified with a type quantifier
around the type declaration.

Example 3.4
(n1(n1(n2(n2 nil (evar Z4)) nil)))

is the position tree of
(la xVia y\(app(app(cons "+")(Z y))x)).

The subterm (Z y) here is encoded with the node
(evar Zy). We always guarantee the following case
for preserving the mapping by using some
techniques, which will be given later: when the
variable Z is substituted with y\, we also
substitute the variable Z; with (/) and eliminate
the evar.

By using the notion of position tree, we update the
program fs¢ in the following way.

type fst term —term —term —
term — term — term — o.

fst (cons T) (cons T) context (nil) (nil) context.

fst (app T1 T2) (app K1 T2) context
(n2 N1 N2) (n2 M1 N2) context -
fst T1 K1 context N1 M1 context .

fst (app T1 T2) Z (app L1 T2)
(n2N1N2) M (n2Q1N2):-fstT1ZL1 N1 M Q1,
L1=(app__), Q1=(n2__).

fst (app T1 T2) Z (app T1 L2)
(n2N1N2) M (n2 N1 Q2) :-fst T2 Z L2 N2 M Q2.

fst(laT) (la Z) (la L) (n1 N) (n1 M) (n1 Q) :-
pi c\(fst (T ¢) (Z c) (Lc) N M Q).

Lemma 3.2 Let s be an object-level term over the
constructors app, la, cons which may contain
variables existentially quantified at the meta-level.

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

For all p, (p denotes the positions of the
constant terms in s and y;\...y,\ are all the A-
abstractions in s covering p), the goal

3Z3L373L fsts ZL (s) Z' L'

is satisfied where Z, L are respectively
substituted by la yi\...la y,\s,, s[context],
and then the goal terminates.

Note: Z' and L' are respectively substituted
by the position trees of /a yi\...... la ya\sy
and s[context],.

The Proof of Lemma 3.2:

The proof is similar to that of Lemma 3.1.
For the termination consider the case when s
is of the form H y,...y, where H is a meta-
level existential quantified variable. Assume
that it is encoded by (evar H'). The goal

3Z3L3Z'3L' fst (H y+...yn) ZL (evarH) Z' L'

fails since it can not find any formula to
backchain. The termination is guaranteed by
the encoding mechanism. B

Example 3.5 In the proof of the expression,
2 I h fst (la xVa y\(app(app(cons "+")(Z y))x))
KL

(n1(n1(n2(n2 nil (evar Z4)) nil)))
MN

K, L,M, N, 7Z,7,, K, L', M, N are meta-
level existentially quantified variables), the
following expression is computed:

2 u{X term,y:term} ;I }ifst(Zy)K L
(evarZ) M N'

The variable Z here will not be vacuously
instantiated as in Example 3.3 because the
expression will be failed by the existence of
evar in the goal. Here, we should make the
point clear. The reason for encoding the
meta-level variable Z with evar is not that
we want to specify the computation of non-
variable subterms that will be unified with
the left side of a rewrite rule. The reason is
exactly to eliminate the infinite vacuous
instantiations of Z, which were described in
Example 3.3.

The correctness of the implementation depends on
the preservation of the mapping between original
object-level terms and their position trees through
unification and replacement processes in higher-
order narrowing steps. These processes are applied
in parallel to both original object-level terms and
their position trees so that the preservation is
guaranteed. For example, in fs¢ program, we also
compute the position trees of la yi\...[a y,\s
and s[context], (see Lemma 3.2) in order to apply
in parallel the same narrowing steps to (s) with
the position tree of the same rewrite rule used for
the narrowing step of s. We use a specialized
unification algorithm for positional structures (see
the program up in Appendix). The program wup
unifies positional structures ignoring the "evar".
But after the unification, it is the case that some
evar constructors encode terms different from
meta-level solvable variables. See Example 3.6.

Example 3.6 Let nl(nil) and nl(evar(G)) be
respectively the positions of /a Ax.x and

la Ax.(F x).
Unification is applied to the pair

<la Ax.x, la Ax.(F x)>

by the expression /a Ax.x = la Ax.(F x) and the
specialized unification algorithm is simultaneously
applied to the pair </la Ax.x, la Ax.(F x)> by the
expression

2, I} up n1(nil) n1(evar(G)).

After the expressions are proved, the result is the
following forms </a Ax.x, la Ax.x> and

<n1(nil), n1(evar(nil))>.

We should further eliminate the evar from
nl(evar(nil)) since it no longer encodes a meta-
level solvable variable. After the elimination, the
mapping between the second elements of these
pairs still holds.

We need the following procedure, which is further
applied to positional structures for preserving the
mapping after their unification.

Definition 3.2 All evar constructors whose
occurrences in a position tree are of the form evar
t where ¢ is not a meta-level existentially

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

quantified variable are systematically
eliminated by replacing evar ¢ with ¢. The
procedure is called the mapping preserving
procedure.

In the application (see Section 4), after
unification and replacement processes are
applied in parallel to both original object-
level terms and their position trees, the
mapping preserving procedure is further
applied to the position trees.

In the rest of this section, we will consider
the implementation of the mapping
preserving procedure, which is given in the
following steps:

a) Replacement of meta-level existential
variables with object-level existential
variables

b) Elimination of all evar constructors

c) Replacement of object-level existential
variables with meta-level existential
variables

The implementation of the technique given
in the step a is based on the iterative
applications of the following step where
each application replaces one meta-level
variable.

o A new object-level variable is added to the
argument list of each of the remaining meta-
level existential variables. Then, one of them
is unified with this new object-level
variable.

In the step given above, unification is
exploited for the replacement process. A
new object-level variable is added to the
argument lists for ensuring that the
unification be always successful. We will
give the specification of the technique in the
step a as follows:

type rmo, rmo1 term — term — o.
type rmo02 term — term — term — o.

rmo1 (evarV) Vv -l

rmo1 (n2N _) V ©-rmo1NV, L
rmo1 (n1N) VvV &

rmo1 (evar N) VvV &

rmo1 (n2 _N) V :-rmo1 N V.

rmo02 (n1 N1) V (n1 N2) :- rmo02 N1 V N2.
rmo02 nil _ nil.
rmo02 (evarN) V (evar (NV)) :- 1.
rmo02 (evar N1) V (evar N2) :- rmo02 N1V N2, |.
rmo02 (evar N) _ (evar N).
rmo02 (n2 N1 N2) V (n2 U1 U2) :-
rmo02 N1V U1, rmo02 N2 V U2.

rmo'Y (some Q) :- pi c\(rmo02 Y c (Z c),

rmo1 (Z c) c, rmo (Z c) (Qc)), .
rmoYY.
The formula rmo02 is used for the addition of a
new object-level variable to the argument list of
each of the remaining meta-level existential
variables. The formula rmo1 is used to replace one
meta-level existential variable with this object-
level variable by exploiting unification.

In the formula
rmo02 (evarN) V (evar (NV)) -,

if the variable N is instantiated with a meta-level
existential variable, the formula is satisfied since
meta-level existential variables are of the type A
(meaning that they are of any type). On the other
hand, if the variable N is instantiated with an
object-level term, the formula is failed since
object-level terms are of the type term. By
specifying meta-level existential variables being of
any type, we place them in a more general
category than that the object-level terms belong to.

Example 3.7 We will present an application of the
step a to the position tree
(n1 (n2
(n2 nil (evar Z4))
(n2
(n2 nil (evar Z4))
(evar nil)))).

We change the notation to the following

(n1 (n2
(n2 nil (evar Z1 : A))
(n2
(n2 nil (evar Z1 : A))
(evar nil : term))))

in order to explicitly show how the type
expressions have an effect on the resulting
computations.

Note: 7 in the expression (evar p : 7) denotes that
)% is of the type T. Zl, Yl, Yg, Yg, Ul, UQ, U3, U4, U5
are meta-level existentially quantified variables.

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

step 1
2 'h Mo ()]
(n1 (n2
(n2 nil (evar Z4 : A))
(n2
(n2 nil (evar Z1 : A))
(evar nil : term))))
Yi
leads to
2ufcti:iterm}; 'k (I

mo02 (n1 (n2
(n2 nil (evarZ4 : A))
(n2
(n2 nil (evar Z1 : A))
(evar nil : term))))

¢ (U cy)
and
2 v {cq:term}; I Firmo1 (U ¢) ¢4 (1)
and

2 ufciiterm}; I'lirmo (Urcr) (Yac1) (V)
where Y is substituted with some Y,.

step 2

By the proof of I U is substituted by

ci\(n1 (n2 (n2 nil (evar (Z1 ¢1) : B))
(n2
(n2 nil (evar (Z1 c1) : B))
(evar nil : term))))

Note: We change the type variable from A
to B in order to express the changing type.
The proof of II induces the two proof
expressions
2ufct term}; I'H

mo02 (evarZy :A)ci Uz (V)
and

XU {cr:term} ; I b rmo02
(evar nil : term) ¢ Us. (V1)

Notice that the expression V will backchain
with

rmo02 (evar N) V (evar (N V)) :- L.
whereas the expression VI will fail to
backchain with that formula since nil is of

the atomic type ferm. The type expressions
enhance the computations.

step 3

By the proof of Il Z; is substituted with c1\c; and
the value for U is changed to
ci\(n1 (n2 (n2 nil (evar c1 : term))

(n2

(n2 nil (evar ¢, : term))
(evar nil : term))))

Notice that the type is changed to term.
Note: The proof of Il induces the expression
2 v {cy:term}; I} rmo1 (evar (Z4 ¢1) : B) c.
The formula
rmo1 (evarV)V -\

occurs at the beginning of the program in order to
guarantee that the expression will first backchain
with that formula. Cut (!) is put in order to prevent
backchaining with the other formula which leads a
vacuous instantiation of Z;.

step 4
The proof of I'V induces to

2u{ctiterm} U {cz2: term}; I" firmo02 (VIN)
n1(n2 (n2 nil (evar c, : term))
(n2
(n2 nil (evar c4 : term))
(evar nil : term)))
c2 (Us ¢2)

and

2u{cr i term}y U {cy: term}; T |
rmo1 (Us ¢2) ¢2 (V1)
step 5

By the proof of VII U, is substituted with

co \(n1 (n2 (n2 nil (evar ¢4 : term))
(n2
(n2 nil (evar ¢4 : term))
(evar nil : term)))).

Note: The expression

2'u {c1: term} L {c2: term}; I” b rmo02
(evarc, : term) c2 Us.

is induced by the proof of VII. It will not
backchain with

rmo02 (evar N) V (evar (NV)) :- .

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

since ¢ is of the atomic type term. By using
types, we impose constrains and specify the
direction of computations.

Notice that the proof of VIII will fail. This
is because the expression

YU {cr:term} U {c2: term}; I b rmo1
(n1 (n2 (n2 nil (evar c1 : term))
(n2
(n2 nil (evar c1 : term))
(evar nil : term))))
C2
does not lead to any expression that
successfully backchains with the formula

rmo1 (evarV)V -\
step 6

The expression IV will backchain with the

formula
moYY

and the proof is completed where Y, is
substituted by

ci\(n1 (n2 (n2 nil (evar ¢4 : term))
(n2
(n2 nil (evar ¢, : term))
(evar nil : term))))

and therefore Y] is substituted by

some ci\(n1 (n2 (n2 nil (evar ¢, : term))
(n2
(n2 nil (evar ¢, : term))
(evar nil : term)))). &

Lemma 3.3 For any positional structure p,
the goal 3H rmo p H succeeds once and then
terminates.

The specification of the technique in the step
b is as follows:

type el_ev term — term — o.

el_ev (n1N1) (n1N2) - el_ev N1 N2.
el_ev (some N1) (some N2) :-

pi c\(el_ev (N1 c) (N2 c)).
el_ev (n2 N1 N2) (n2 N3 N4) :-

el_evN1 N3, el_evN2 N4.
el_ev(evar(n2N1N2)) T:-el_ev(n2N1N2) T, .
el_ev (evarN) N.
el_ev nil nil.

Example 3.8 We will consider an
application of the step b to the result

produced in the Example 3.7. The proof
expression

2 I helev
some ci\(n1 (n2 (n2 nil (evar c1))
(n2
(n2 nil (evar c¢1))
(evar nil))))
Hy

induces the formulas
XU {ct:term} ; I fiel_ev (evarcy) Hz (U]
and

2u{ct:term} ; I fiel_ev (evar nil) Ha (1

where Hi, H, and H; are meta-level existentially
quantified variables.

H> and H; are respectively substituted by ¢; and ni/
via the backchaining of I and II with

el_ev (evar N) N.

and H; is as a result substituted by
some ci\(n1 (n2 (n2 nil ¢1)
(n2
(n2 nil ¢1)

nil))). m

The specification of the technique in the step c is
as follows:

type rom term — term — o.

rom (n1 N1) (n1 N2) :- rom N1 N2.
rom nil nil.
rom (some N1) N2 :-
piy\romy (evar_) = rom (N1y) N2.
rom (n2 N1 N2) (n2 N3 N4) :-
rom N1 N3, rom N2 N4.

Example 3.9 We will consider an application of
the step ¢ to the result produced in the Example
3.8. The proof expression

2 I hrom
some ci\(n1 (n2 (n2 nil c1)
(n2
(n2 nil ¢)
nil)))
Hy
induces

XU {ci: term} ; I'u {rom ¢ (evar 2)} h
rom ¢1 Ha

where H;, H., and Z are meta-level existentially
quantified variables. The goal rom ¢ M-
backchains with the formula

10

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

rom c1 (evar Z).

and H- is substituted by (evar Z). H; is as a
result substituted by
(n1 (n2 (n2 nil (evar 2))
(n2
(n2 nil (evar 2))
nil))). m

The specification of the mapping preserving
procedure is as follows:

mpp NI NF :- rmo NI M, el_ev M L, rom L NF.

4 Implementation

In this section we will present the
implementation of higher-order narrowing.
mpp and fst programs, which were given in
the previous section are used in this section.
See Appendix for the rest of the programs
used in the implementation.

4.1 Specification of
narrowing

higher-order

For simplicity, we will first consider higher-
order steps applied only to the left hand side
of a query. We will later consider higher-
order steps applied to the both sides.

The list constructor subs of the type
term — term — term

denotes the list containing instances of
variables to be solved in the same order their
quantifiers appear in Q-formulas and nil
here is used to denote empty lists.

Note: Recall that the symbol <...> in
Section 2 denotes the ordered list containing
instances of solvable variables. In this
section it is denoted by the constructor subs.

Example 4.1.1 After the query
some LF. some \K. some \L.Q,
is solved, the list

subs (evar N) subs (evar M) subs (evar S)
nil respectively contains the solution values
N, M, Sof F, K, L.

We assume that after a query is solved, the
subs list contains only the closed instances.

11

4.1.1 Higher-order narrowing applied only to
the left hand side

type query term — term — o.

type pre_nar term — term — term — o.

type ho_narr_step term — term — term — term — o.
type rewrite_rules term — o.

ho_narr_step TNUY :-
fstTZ1 L1 NZ2 L2,
rewrite_rules R,
ro_m_rl R (rule LS1RS1),
c_pos R (n2LS2RS2),
If1 L2 (rule LS1 RS1) (rule LS3 RS3),
rev1 Z2 (rule LS3 RS3) (rule LS4 RS4),
Z1=LS4, up 22182,
rcL2L1 RS4RS2UY.

pre_nar (subs XK) N (subs X L) :- pre_nar KN L.
pre_nar(eq TT) _ nil.
pre_nar(eq T1 T2) (n2 N1 N2) nil :-
ho_narr_step T1 N1 T3 N3,
mpp (n2 N3 N2) N4,
pre_nar (eq T3 T2) N4 nil.

query QS :-rep_o_m QK,
c_posQL,
pre_narKLS.

Example 4.1.1.1 We will present the solution of
the query below in the presence of the following
rules:

rules:

o rewrite_rules (all X\
rule (app (app (cons "+") (cons "zero")) X)
X).
o rewrite_rules (all X\all Y\rule
(app (app (cons "+") (app (cons "succ") X)) Y)
(app (cons "succ") (app (app (cons "+") X) Y))).

query:

query
(some F\

eq (la Ax.(app (app (cons “+")(app F X)) x))
(la Ax.(app (cons “succ”) x)))
u.
Note: U is a meta-level existentially quantified
variable. For notational simplicity we ignore 3’
and 7/"in the expression

S ThG.

For the following computations Z;, G, G;, G,, Hy,
H,, Hs;, Hy, Hs, Hg are meta-level existentially
quantified variable.

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

step 1

The object-level existentially quantified
variable F is replaced with the meta-level
existentially quantified variable Z.

¥
query
(some F\

eq (la x\(app (app (cons “+")(app F x)) X))
(la x\(app (cons “succ’) x)))
u

leads to

]

pre_nar

eq (la X\(app (app (cons “+")(Z x)) x)) U
(la x\(app (cons “succ’) x))

n2 (n1 (n2 (n2 nil (evar G)) nil))
(n1 (n2 nil nil))

nil
where U is substituted by

subs (evar Z) nil.

step 2

The proof of I induces

b ho_narr_step

(la X\(app (app (cons “+")(Z x)) x)) (ll)
(n1 (n2 (n2 nil (evar G)) nil))

Hi
H,
and

H
mpp (n2 Hz (n1 (n2 nil nil))) H ({11)]

and
H
pre_nar (v)
eq H,
(la x\(app (cons “succ”) x))

Hs
nil.

step 3

By the proof of II, a narrowing step is
applied to the subterm

(app (app (cons “+")(Z x)) x)

with the second rule and H;, H, are
respectively substituted by

(la x\(app (cons “succ”)
(app (app (cons “+")(Z1 x))x)))

and

(n1 (n2 nil (n2 (n2 nil (evar G1)) (evar nil)))).

Z. is substituted by

x\(app (cons “succ”) (Z1 x)).

step 4
By the proof of I11,

H
mpp (n2 (n1 (n2 nil
(n2 (n2 nil (evar Gy))
(evar nil))))
(n1 (N2 nil nil)))
Hs

Hj is substituted by

(n2 (n1 (n2 nil
(n2 (n2 nil (evar Gy))

nil)))
(n1 (n2 nil nil))).

step 5
The proof of IV
]

pre_nar
eq (la x\(app (cons “succ”)

(app (app (cons “+")(Z1 x))

X))

(la x\(app (cons “succ’) x))
(n2 (n1 (N2 nil

(n2 (n2 nil (evar Gy))
nil)))
(n1 (n2 nil nil)))
nil
induces
ki

ho_narr_step
(la x\(app (cons “succ”)

(app (app (cons “+")(Z1 x))

X))
(n1 (n2 nil
(n2 (n2 nil (evar G2))
nil)))

Ha

Hs

and

H

mpp (n2 Hs (n1 (n2 nil nil))) Hs

and

12

V)

(V1)

Murat Sinan AYGUN A Logic Programming Approach to Implementing Higher-Order Narrowing

ki
pre_nar
eq Hs (W)}
(la x\(app (cons “succ’) x))
Hs
nil.

step 6

By the proof of V, a narrowing step is
applied to the subterm

(app (app (cons “+")(Z1 X))
X)
with the first rule and H,, Hs are respectively
substituted by

(la x\(app (cons “succ’) x))
and
(n1 (n2 nil (evar nil))).

Z is substituted by x\(cons “succ”) and
therefore U is substituted by

subs (evar x\(app (cons “succ”) (cons “zero”)))
nil.

By the proof of VI, Hy is substituted by

(n2 (n1 (N2 nil nil))
(n1 (N2 nil nil))).

The expression VII
¥

pre_nar
eq (la x\(app (cons “succ”) x))
(la x\(app (cons “succ’) x))

(n2 (n1 (n2 nil nil))
(n1 (n2 nil nil))).
nil

is satisfied. W

4.1.2 Higher-order narrowing applied to
the both sides

We change the specification of pre_nar in
4.1.1 as follows:

pre_nar (subs XK) N (subs X L) :- pre_nar KN L.
pre_nar(eq TT) _ nil.
pre_nar(eq T1 T2) (n2 N1 N2) nil :-
(ho_narr_step T1 N1 T3 N3,
mpp (n2 N3 N2) N4,
pre_nar (eq T3 T2) N4 nil);
(ho_narr_step T2 N2 T3 N3,
mpp (n2 N1 N3) N4,
pre_nar(eq T1 T3) N4 nil).

4.1.3 Conjunction of queries

For simplicity, we have considered the
implementation for a single query. By simple
modifications we can extend the result for a
conjunction of queries:

e (-formulas are redefined as follows:
A:=eqTT|and(eqTT)A,
Q= A|some \F.Q,

where and is of term — term — term.

e [n Definition 3.1 the two-argument constructor
and is also mapped to the node n2 with degree
2.

e Last we change the specification of pre nar in
4.1.1 as follows:

pre_nar (subs XK) N (subs X L) :- pre_nar KN L.
pre_nar(eq T T) _ nil.
pre_nar (and (eq T T) K) (n2 (n2 N1 N2) L) nil :-
up N1 N2,
mpp L P,
pre_nar K P nil.
pre_nar(eq T1 T2) (n2 N1 N2) nil :-
(ho_narr_step T1 N1 T3 N3,
mpp (n2 N3 N2) N4,
pre_nar (eq T3 T2) N4 nil);
(ho_narr_step T2 N2 T3 N3,
mpp (n2 N1 N3) N4,
pre_nar (eq T1 T3) N4 nil).
pre_nar (and (eq T1 T2) K) (n2 (n2 N1 N2) L) nil :-
(ho_narr_step T1 N1 T3 N3,
mpp (N2 (N2 N3 N2) L) N4,
pre_nar (and (eq T3 T2) K) N4 nil),
(ho_narr_step T2 N2 T3 N3,
mpp (N2 (N2 N1 N3) L) N4,
pre_nar (and (eq T1 T3) K) N4 nil).

4.2 Extending to pattern rules

For simplicity, we have considered the
implementation for first-order rules. By simple
modifications we can extend the result for pattern
rules.

e R-formulas are redefined as follows:
R:=rule T T| all \F.R.

e The last clause in fs program is changed to

fst (laT) (laZ) (laL) (n1N) (n1 M) (n1 Q) :-
pi c\(fst ¢ ¢ context (nil) (nil) context =
fst(Tc)(Zc)(Lc)NMQ).

and the following clause is added to the top.
fst (la T) (la T) context (n1 N) (n1 N) context.

13

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

4.3 Improvement of the search

In the implementation, the search for
unifiers can go down infinite paths. We will
in this section introduce a control
mechanism in order to improve the search.
We assume that the rules are first-order and
terminating.

4.3.1 Apply narrowing if it is needed
Example 4.3.1.1 Even though the query

some \F.eq
(la Ax.(app (cons “succ”)
(app (cons “succ’)

(app (app (cons “+") (app F x))
x))))
(la Ax.(app (cons “succ”) (cons “zero”)))

is unsolvable, the interpreter does not
terminate and infinitely applies narrowing
steps.

Assume that the object-level existentially
quantified variable F is replaced with the
meta-level existentially quantified variable
7. Before a narrowing step being applied to
the subterm

(app (app (cons “+") (Z X))
X)
it is needed to check whether the top level
constant term

(app (cons “succ”) (app (app (cons “+")(Z X))
X))

can be reduced to (cons “zero”). Since it can
not match the left side of any rule in
Example 4.1.1.1, it can not be reduced to
(cons “zero”). Applying a narrowing step to
its subterm

(app (app (cons “+7) (Z X))
X)
leads to going down the infinite path without
a solution.

We can use a control procedure that checks
the possibility of a constant term to match
the left side of a rule before narrowing steps
being applied.

Example 4.3.1.2 For a constant term ¢, the goal
3H is_match (¢)'c H succeeds. If ¢ can match the
left side of a rule, H is substituted by the object-
level term suc. Otherwise / is substituted by the
object-level term fail.

4.3.2 Problematic case

The following is the situation that can not be
treated by the procedure given in Section 4.3.1.
Assume that ¢ is the constant term to which
narrowing is applied and f, is another constant
term that occurs in ¢ at the position p. /; and /, are
left hand sides of two rewrite rules. /; and /, match
t and 1, respectively. Compared to ¢, instead of ¢,
an object-level universally quantified variable is at
the position p in /;.

Example 4.3.2.1 Let the following be a query
where the object-level existentially quantified
variable F is replaced with the meta-level
existentially quantified variable Z.

some AF.
eq (la Ax.(app (cons “t’)
(app (a;;);; (cons “+")(app F x))
X

(la x.(cons “zero”).
Let /; be the following constant term
(app (cons “t") X)

where X is an object-level universally quantified
variable. Assume that 7 and #, are respectively

(app (cons “t") (ap/;)(app (cons “+")(Z X))
X

and

(app (c';rpp (cons “+")(Z X))
X).

Even if 7 can not be reduced to
(cons “zero”),

the procedure can not detect this since ¢ will
always match /; while going down the infinite
path.

14

Murat Sinan AYGUN

A Logic Programming Approach to Implementing Higher-Order Narrowing

Appendix

/I* The program rep_o_m replaces object-level
existentially quantified variables with meta-level
existentially quantified variables *//

type rep_o_m term - A —o.

rep_o_m (cons T1) (cons T1).

rep_o_m (app T1T2) (U1 T2):-rep_o_mT1 U1,

rep o_m (laT1) (laT2) :-
piy\(rep_o_myy=rep_o_m(T1y) (T2y)).

rep_o_m (some T1) (subs (evarF) T2) :-
piy\(repomyF =rep_o m(T1y)T2).

rep_o_m(andT1 T2) (and U1 U2) &

rep_o_m(app T1 T2) (app U1 U2) &

rep_o_m(eqT1T2) (eqU1U2) -

rep_o_mT1U1, rep_o_mT2U2.

/I* The program ¢_pos computes position trees *//
type c_pos term — term — o.

c_pos (cons _) nil.
¢_pos nil nil.
c_pos(app T _) (evarU) - c_posT (evar U), |.
c_pos (laT1) (n1T2) :- c_pos (T1 nil) T2.
c_pos (some T1) T2 :-

piy\c_posy (evar_) = c_pos (T1y) T2.
c_pos (all T1) T2 :-

piy\c_posy (evar_) = c_pos (T1y) T2.
c_pos (and T1 T2) (n2 U1 U2) &
c_pos (app T1T2) (n2U1 U2) &
c_pos (rule T1 T2) (n2U1 U2) &
c_pos(eqT1T2) (n2U1U2) :-

c_posT1 U1, c_pos T2 U2.

/II* The program r_o_m rl replaces object-level
universally quantified variables in rules with meta-level
existentially quantified variables *//
type r_o_m_rl term —term — o.

r.om_rl(consT) (consT).
r.om_rl(app T1 T2) (evar U1 T2) :-
r_o_m_rl T1 (evar U1), \.
romirl(laT1)(laT2) -
piyNr_o_m_r yy=r_o_m_rl (T1y)(T2Yy)).
romirl(alT1)T2:-
piy\r.om rly(evar_)=r o m_rl(T1y) T2

romrl(app T1T2) (app U1 U2) &
r_o_m_rl (rule T1 T2) (rule U1 U2) :-

romrT1U1, ro_m_riT2 U2.

II* The program If1 takes lifting of a rewrite rule *//
type If1, If02 term — term — term — o.

If1 (n17T) (rule Y1 Y2) (rule (la P1) (la P2)) :-
pi c\((/f02 Y1 (Z1 c) ¢), (Ifo2Y2 (Z2 c) c),
(F1 T (rule (Z1 c) (Z2 c¢))(rule (P1 c¢) (P2 c)))).
If1n2L_)YP:-Ift LYP.
If1(n2_R)YP:-Iflf RYP.
If1 context Y'Y.

If02 (evar N) (evar (N V)) V.
If02 (cons T) (cons T) _.
1f02 (app T1 T2) (app Z1 Z2) V -
f02T1 21V, If02 T2 Z2 V.
If02 (laT1) (laT2) V :-
piy\(ff02 yy _=1fo2 (T1y)(T2y) V).

15

II* The program rev1 removes evar's from a rewrite rule *//
type rev1 term — term — term — o.
type rev02 term — term — o.

rev1 (n1T) (rule (la K) (la L)) (rule (la M) (la N)) :-
pic\rev1 T (rule (Kc) (L c)) (rule (M c) (N c)).
revl (n2 _ _) (rule Y1 Y2) (rule Z1 Z2) &
rev1 nil (rule Y1 Y2) (rule Z1 Z2) -
rev02Y1 Z1, rev02 Y2 Z2.

rev02 (evarV) V.
rev02 (cons T) (cons T).
rev02 (app Y1 Y2) (app Z1 Z22) :-
rev02 Y1 Z1, rev02Y2 Z2.

/I The program up unifies positional structures //
type up term — term — o.

up (nTN) (nTM):-upNM, !

up (NTN)M :-up N M.

up (evar N) (evar N).

up (evar (n2 M1 M2)) (n2 M1 M2).

up (n2 M1 M2) (evar (n2 M1 M2)).

up (evar nil) nil.

up nil (evar nil).

up nil nil.

up (n2 N1 N2) (n2 M1 M2) - up N1 M1, up N2 M2.

/I* The program rc replaces context *//

type rc term — term — term —
term — term — term — o.

rc(n1P) (laY) (laZ)N (laU) (n1M) :-
pi x\(rc P (Y x) (Zx) N (U x) M).
rc (n2P1P2) (app T1T2) ZN
(app T1U) (n2P1M):-rcP2T2ZNUM, L.
rc (n2P1P2)(app T1T2)ZN
(app UT2) (n2MP2) :-rcP1T1ZNUM.
rec context context ZN Z N.

5 Conclusion

We illustrate how A-terms and types embeded in
AProlog extend the concept of logic programming.
The adaptability of our techniques requires a meta-
level system that supports A-abstraction, types,
polymorphic typing, implications and universal
quantification in goals and the body of clauses. By
using implications and universal quantification in
goals and the body of clauses, we directly reason
about A-terms. A similar way is used in [6].
Moreover, we give polymorphic types to meta-
level solvable variables for their special treatment
at the object-level. Particularly, we present them in
a more general category than that the object-level
terms in. By using type expressions we specify the
direction of computations.

Murat Sinan AYGUN A Logic Programming Approach to Implementing Higher-Order Narrowing

Selection of a rule and position to which
narrowing steps are applied is in the default
controlling, that is, the depth first search
strategy. The search for unifiers can go
down infinite paths. The search can be
improved by using control procedures.
Using high-level search primitives described
in [6] can enhance our implementation.

Acknowledgments 1 would like to thank
Dale Miller for his encouraging comments
when [first introduced my ideas. I would
thank to Cem Say and referees for their
comments on my work.

References

1. Miller, D. and G. Nadathur (1987) “A
Logic Programming Approach To
Manipulating Formulas and Programs,”
IEEE Symposium on Logic
Programming, pp. 379-388, San
Francisco, September.

2. Miller, D. (1991) “A Logic Programming
Language with Lambda-Abstraction,
Function Variables, and Simple
Unification,” Journal of Logic and
Computation, Vol. 1, No. 4.

3. Prehofer, C. (1994) “Higher-order
Narrowing,” Proceedings of the ninth
Annual IEEE Symposium on Logic in
Computer Science, pp. 507-516.

4, Qian, Z. (1994) “Higher-Order
Equational Logic Programming,”
Proceedings of the 2Ist Annual ACM
SIGPLAN-SIGACT Symposium on
Principles of Programming Languages,
pp- 254-367, January.

5. Nipkow, T. (1989) “Equational
Reasoning in Isabelle,” Science of
Computer Programming Vol. 12,
Number 2, pp.123-149.

6. Felty, A. (1992) "A Logic Programming
Approach to Implementing Higher-Order
Term Rewriting," Proceedings of the
January 1991 Workshop on Extensions to
Logic Programming, Springer-Verlag
LNCS 596.

16

