
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 7:
Focusing on Users and Their Tasks

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 2

7.1 User Centred Design

Software development should focus on the needs of
users

• Understand your users
• Design software based on an understanding of the users’

tasks
• Ensure users are involved in decision making processes
• Design the user interface following guidelines for good

usability
• Have users work with and give their feedback about

prototypes, on-line help and draft user manuals

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 3

The Importance of Focusing on Users

• Reduced training and support costs
• Reduced time to learn the system
• Greater efficiency of use
• Reduced costs by only developing features that are

needed
• Reduced costs associated with changing the system later
• Better prioritizing of work for iterative development
• Greater attractiveness of the system, so users will be

more willing to buy and use it

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 4

7.2 Characteristics of Users

Software engineers must develop an understanding of
the users

• Goals for using the system
• Potential patterns of use
• Demographics
• Knowledge of the domain and of computers
• Physical ability
• Psychological traits and emotional feelings

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 5

7.3 Developing Use-Case Models of
Systems

A use case is a typical sequence of actions that a user
performs in order to complete a given task

• The objective of use case analysis is to model the
system
… from the point of view of how users interact with

this system
… when trying to achieve their objectives.

• A use case model consists of
— a set of use cases
— an optional description or diagram indicating how

they are related

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 6

Use cases

• In general, a use case should cover the full sequence of
steps from the beginning of a task until the end.

• A use case should describe the user’s interaction with
the system ...

—not the computations the system performs.
• A use case should be written so as to be as independent

as possible from any particular user interface design.
• A use case should only include actions in which the

actor interacts with the computer.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 7

Scenarios

A scenario is an instance of a use case
• It expresses a specific occurrence of the use case

—a specific actor ...
—at a specific time ...
—with specific data.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 8

How to Describe a Single Use Case

A. Name: Give a short, descriptive name to the use case.
B. Actors: List the actors who can perform this use case.
C. Goals: Explain what the actor or actors are trying to achieve.
D. Preconditions: State of the system before the use case.
E. Description: Give a short informal description.
F. Related use cases.
G. Steps: Describe each step using a 2-column format.
H. Postconditions: State of the system in following completion.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 9

Use Case Diagrams

Register in Course

Add Course

Add Course Offering

Student

Find information about course

Professor Actor

Registrar Actor

Enter Grade
for Course

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 10

Extensions

• Used to make optional interactions explicit or to handle
exceptional cases.

• By creating separate use case extensions, the description
of the basic use case remains simple.

• A use case extension must list all the steps from the
beginning of the use case to the end.

—Including the handling of the unusual situation.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 11

Generalizations

• Much like superclasses in a class diagram.
• A generalized use case represents several similar use

cases.
• One or more specializations provides details of the

similar use cases.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 12

Inclusions

• Allow one to express commonality between several
different use cases.

• Are included in other use cases
—Even very different use cases can share sequence of

actions.
—Enable you to avoid repeating details in multiple use

cases.

• Represent the performing of a lower-level task with a
lower-level goal.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 13

Example of generalization, extension and
inclusion

Open file by
typing name

Open file by
browsing

Open file

System
Administrator

Browse for file

Ordinary User

Attempt to open file
that does not exist

«extend» «include»

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 14

Example Description of a Use Case
Use case: Open file

Related use cases:
Generalization of:
• Open file by typing name
• Open file by browsing

Steps:

Actor actions System responses
1. Choose ‘Open…’ command 2. File open dialog appears
3. Specify filename
4. Confirm selection 5. Dialog disappears

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 15

Use case: Open file by typing name

Related use cases:
Specialization of: Open file

Steps:

Actor actions System responses
1. Choose ‘Open…’ command 2. File open dialog appears
3a. Select text field
3b. Type file name
4. Click ‘Open’ 5. Dialog disappears

Example (continued)

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 16

Use case: Open file by browsing

Related use cases:
Specialization of: Open file
Includes: Browse for file

Steps:

Actor actions System responses
1. Choose ‘Open…’ command 2. File open dialog appears
3. Browse for file
4. Confirm selection 5. Dialog disappears

Example (continued)

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 17

Use case: Attempt to open file that does not exist

Related use cases:
Extension of: Open file by typing name

Actor actions System responses
1. Choose ‘Open…’ command 2. File open dialog appears
3a. Select text field
3b. Type file name
4. Click ‘Open’ 5. System indicates that file

does not exist
6. Correct the file name
7. Click ‘Open’ 8 Dialog disappears

Example (continued)

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 18

Use case: Browse for file (inclusion)

Steps:
Actor actions System responses
1. If the desired file is not displayed,
select a directory

2. Contents of directory is
displayed

3. Repeat step 1 until the desired file is
displayed
4. Select a file

Example (continued)

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 19

The Modeling Process: Choosing Use
Cases on Which to Focus

• Often one use case (or a very small number) can be
identified as central to the system

—The entire system can be built around this particular
use case

• There are other reasons for focusing on particular use
cases:

—Some use cases will represent a high risk because for
some reason their implementation is problematic

—Some use cases will have high political or
commercial value

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 20

The Benefits of Basing Software
Development on Use Cases

• They can help to define the scope of the system

• They are often used to plan the development process

• They are used to both develop and validate the
requirements

• They can form the basis for the definition of testcases

• They can be used to structure user manuals

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 21

Use Cases Must Not be Seen as a Panacea

• The use cases themselves must be validated
—Using the requirements validation methods.

• There are some aspects of software that are not covered
by use case analysis.

• Innovative solutions may not be considered.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 22

7.4 Basics of User Interface Design

• User interface design should be done in conjunction with
other software engineering activities.

• Do use case analysis to help define the tasks that the UI
must help the user perform.

• Do iterative UI prototyping to address the use cases.

• Results of prototyping will enable you to finalize the
requirements.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 23

Usability vs. Utility

Does the system provide the raw capabilities to allow the
user to achieve their goal?

• This is utility.

Does the system allow the user to learn and to use the
raw capabilities easily?

• This is usability.

Both utility and usability are essential
• They must be measured in the context of particular types

of users.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 24

Aspects of Usability

Usability can be divided into separate aspects:
• Learnability

—The speed with which a new user can become
proficient with the system.

• Efficiency of use
—How fast an expert user can do their work.

• Error handling
—The extent to which it prevents the user from making

errors, detects errors, and helps to correct errors.
• Acceptability.

—The extent to which users like the system.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 25

Different Learning Curves

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Days of learning

Complex
system,
hard to
learn

Simple
system,
easy to
learn

Simple
system,
hard to
learn

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 26

Some Basic Terminology of User Interface
Design

• Dialog: A specific window with which a user can interact, but
which is not the main UI window.

• Control or Widget: Specific components of a user interface.
• Affordance: The set of operations that the user can do at any given

point in time.
• State: At any stage in the dialog, the system is displaying certain

information in certain widgets, and has a certain affordance.
• Mode: A situation in which the UI restricts what the user can do.
• Modal dialog: A dialog in which the system is in a very restrictive

mode.
• Feedback: The response from the system whenever the user does

something, is called feedback.
• Encoding techniques. Ways of encoding information so as to

communicate it to the user.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 27

6.5 Usability Principles

1. Do not rely only on usability guidelines – always test with users.
• Usability guidelines have exceptions; you can only be confident that

a UI is good if you test it successfully with users.
2: Base UI designs on users’ tasks.

• Perform use case analysis to structure the UI.
3: Ensure that the sequences of actions to achieve a task are as
simple as possible.

• Reduce the amount of reading and manipulation the user has to do.
• Ensure the user does not have to navigate anywhere to do

subsequent steps of a task.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 28

Usability Principles

4: Ensure that the user always knows what he or she can
and should do next.

• Ensure that the user can see what commands are
available and are not available.

• Make the most important commands stand out.
5: Provide good feedback including effective error
messages.

• Inform users of the progress of operations and of their
location as they navigate.

• When something goes wrong explain the situation in
adequate detail and help the user to resolve the problem.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 29

Usability Principles

6: Ensure that the user can always get out, go back or
undo an action.

• Ensure that all operations can be undone.
• Ensure it is easy to navigate back to where the user came

from.
7: Ensure that response time is adequate.

• Users are very sensitive to slow response time
—They compare your system to others.

• Keep response time less than a second for most
operations.

• Warn users of longer delays and inform them of
progress.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 30

Usability Principles

8: Use understandable encoding techniques.
• Choose encoding techniques with care.
• Use labels to ensure all encoding techniques are fully

understood by users.
 9: Ensure that the UI’s appearance is uncluttered.

• Avoid displaying too much information.
• Organize the information effectively.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 31

Usability Principles

10: Consider the needs of different groups of users.
• Accommodate people from different locales and people

with disabilities.
• Ensure that the system is usable by both beginners and

experts.
11: Provide all necessary help.

• Organize help well.
• Integrate help with the application.
• Ensure that the help is accurate.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 32

Usability Principles

12. Be consistent.
• Use similar layouts and graphic designs throughout your

application.
• Follow look-and-feel standards.
• Consider mimicking other applications.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 33

Some Encoding Techniques

• Text and fonts
• Icons
• Photographs
• Diagrams and abstract graphics
• Colours
• Grouping and bordering
• Spoken words
• Music
• Other sounds
• Animations and video
• Flashing

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 34

Example
 (bad UI)

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 35

Example
 (better UI)

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 36

7.6 Evaluating User Interfaces

Heuristic evaluation
1. Pick some use cases to evaluate.

2. For each window, page or dialog that appears during
the execution of the use case

—Study it in detail to look for possible usability
defects.

3. When you discover a usability defect write down the
following information:

—A short description of the defect.
—Your ideas for how the defect might be fixed.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 37

Evaluating User Interfaces

Evaluation by observation of users
• Select users corresponding to each of the most important

actors
• Select the most important use cases
• Write sufficient instructions about each of the scenarios
• Arrange evaluation sessions with users
• Explain the purpose of the evaluation
• Preferably videotape each session
• Converse with the users as they are performing the tasks
• When the users finish all the tasks, de-brief them
• Take note of any difficulties experienced by the users
• Formulate recommended changes

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 38

7.7 Implementing a Simple GUI in Java

The Abstract Window Toolkit (AWT)
• Component: the basic building blocks of any graphical

interface.
—Button , TextField , L i s t , Label,
ScrollBar.

• Container: contain the components constituting the GUI
—Frame, Dialog and Panel

• LayoutManager: define the way components are laid
out in a container.
—GridLayout, BorderLayout

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 39

Example

public class ClientGUI
 extends Frame implements ChatIF
{
 private Button closeB = new Button("Close");
 private Button openB = new Button("Open");
 private Button sendB = new Button("Send");
 private Button quitB = new Button("Quit");
 private TextField portTxF = new TextField("");
 private TextField hostTxF = new TextField("");
 private TextField message = new TextField();
 private Label portLB =
 new Label("Port: ", Label.RIGHT);
 private Label hostLB =
 new Label("Host: ", Label.RIGHT);
 private Label messageLB =
 new Label("Message: ", Label.RIGHT);
 private List messageList = new List();
!...
}

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 40

Example
public ClientGUI(String host, int port)
{
 super("Simple Chat");
 setSize(300,400);
 setVisible(true);

 setLayout(new BorderLayout(5,5));
 Panel bottom = new Panel();
 add("Center", messageList);
 add("South", bottom);
 bottom.setLayout(new GridLayout(5,2,5,5))
 bottom.add(hostLB);
 bottom.add(hostTxF);
 bottom.add(portLB);
 bottom.add(portTxF);
 bottom.add(messageLB);
 bottom.add(message);
 bottom.add(openB);
 bottom.add(sendB);
 bottom.add(closeB);
 bottom.add(quitB);

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 41

Example
 sendB.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 send();
 }
 });
}

public void send()
{
 try
 {
 client.sendToServer(message.getText());
 }
 catch (Exception ex)
 {
 messageList.add(ex.toString());
 messageList.makeVisible(messageList.getItemCount()-1);
 messageList.setBackground(Color.yellow);
 }
}

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 42

7.8 Difficulties and Risks in Use Case
 Modelling and UI Design

• Users differ widely
—Account for differences among users when you

design the system.
—Design it for internationalization.
—When you perform usability studies, try the system

with many different types of users.
• User interface implementation technology changes

rapidly
—Stick to simpler UI frameworks widely used by

others.
—Avoid fancy and unusual UI designs involving

specialized controls that will be hard to change.

© Lethbridge/Laganière 2001 Chapter 7: Focusing on Users and Their Tasks 43

Difficulties and Risks in Use Case Modelling
and UI Design

• User interface design and implementation can often
take the majority of work in an application:

—Make UI design an integral part of the software
engineering process.

—Allocate time for many iterations of prototyping and
evaluation.

• Developers often underestimate the weaknesses of a
GUI

—Ensure all software engineers have training in UI
development.

—Always test with users.
—Study the UIs of other software.

