
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 5:
Modelling with Classes

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 2

5.1 What is UML?

The Unified Modelling Language is a standard graphical language
for modelling object oriented software

• At the end of the 1980s and the beginning of 1990s, the first object-
oriented development processes appeared

• The proliferation of methods and notations tended to cause
considerable confusion

• Two important methodologists Rumbaugh and Booch decided to
merge their approaches in 1994.

—They worked together at the Rational Software Corporation
• In 1995, another methodologist, Jacobson, joined the team

—His work focused on use cases
• In 1997 the Object Management Group (OMG) started the process

of UML standardization

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 3

UML diagrams

• Class diagrams
—describe classes and their relationships

• Interaction diagrams
—show the behaviour of systems in terms of how

objects interact with each other
• State diagrams and activity diagrams

—show how systems behave internally
• Component and deployment diagrams

—show how the various components of systems are
arranged logically and physically

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 4

UML features

• It has detailed semantics
• It has extension mechanisms
• It has an associated textual language

—Object Constraint Language (OCL)

The objective of UML is to assist in software
development

—It is not a methodology

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 5

What constitutes a good model?

A model should
• use a standard notation
• be understandable by clients and users
• lead software engineers to have insights about the

system
• provide abstraction

Models are used:
• to help create designs
• to permit analysis and review of those designs.
• as the core documentation describing the system.

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 6

5.2 Essentials of UML Class Diagrams

The main symbols shown on class diagrams are:
• Classes

- represent the types of data themselves
• Associations

- represent linkages between instances of classes
• Attributes

- are simple data found in classes and their instances
• Operations

- represent the functions performed by the classes and their
instances

• Generalizations
- group classes into inheritance hierarchies

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 7

Classes

A class is simply represented as a box with the name of
the class inside

• The diagram may also show the attributes and operations
• The complete signature of an operation is:

operationName(parameterName: parameterType …): returnType

Rectangle

height: int
width: int

getArea(): int
resize(int,int)

Rectangle

height
width

getArea
resize

Rectangle

height
width

Rectangle

getArea
resize

Rectangle

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 8

5.3 Associations and Multiplicity

An association is used to show how two classes are
related to each other

• Symbols indicating multiplicity are shown at each end of
the association

0,3..8 ******

Employee

*

* *****1..*

*0..1

Secretary

Office

Person

Company

Employee Company

Manager

BoardOfDirectors

BoardOfDirectors

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 9

Labelling associations

• Each association can be labelled, to make explicit the
nature of the association

*

supervisor

*****1..*

* worksFor

*allocatedTo0..1

boardMember

0,3..8 ******

Employee

Secretary

Office

Person

Company

Employee Company

Manager

BoardOfDirectors

BoardOfDirectors

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 10

Analyzing and validating associations

• Many-to-one
—A company has many employees,
—An employee can only work for one company.

- This company will not store data about the moonlighting
activities of employees!

—A company can have zero employees
- E.g. a ‘shell’ company

—It is not possible to be an employee unless you work
for a company

* worksFor
Employee Company

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 11

Analyzing and validating associations

• Many-to-many
—A secretary can work for many managers
—A manager can have many secretaries
—Secretaries can work in pools
—Managers can have a group of secretaries
—Some managers might have zero secretaries.
—Is it possible for a secretary to have, perhaps

temporarily, zero managers?
*

supervisor

*****1..*Secretary Manager

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 12

Analyzing and validating associations

• One-to-one
—For each company, there is exactly one board of

directors
—A board is the board of only one company
—A company must always have a board
—A board must always be of some company

Company BoardOfDirectors

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 13

Analyzing and validating associations

Avoid unnecessary one-to-one associations

Avoid this do this
Person

name
address
email
birthdate

Person

name

PersonInfo

address
email
birthdate

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 14

A more complex example

• A booking is always for exactly one passenger
—no booking with zero passengers
—a booking could never involve more than one

passenger.
• A Passenger can have any number of Bookings

—a passenger could have no bookings at all
—a passenger could have more than one booking

************Passenger SpecificFlightBooking

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 15

Association classes

• Sometimes, an attribute that concerns two associated
classes cannot be placed in either of the classes

• The following are equivalent

Registration

grade

Student CourseSection* ******

Registration

grade

Student CourseSection* *

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 16

Reflexive associations

• It is possible for an association to connect a class to
itself

Course *
isMutuallyExclusiveWith

*

*

prerequisite

successor *

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 17

Directionality in associations

• Associations are by default bi-directional
• It is possible to limit the direction of an association by

adding an arrow at one end

** NoteDay

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 18

5.4 Generalization

Specializing a superclass into two or more subclasses
• The discriminator is a label that describes the criteria

used in the specialization

Animal Animal

habitat typeOfFood

HerbivoreCarnivoreLandAnimalAquaticAnimal

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 19

Avoiding unnecessary generalizations

RockRecordingBluesRecordingClassicalRecordingJazzRecordingMusicVideo

VideoRecoding AudioRecording

Recording

rockbluesclassicaljazzmusic video

video audio

RecordingCategory
*
subcategorydescription

Recording *
hasCategory

subcategory subcategorysubcategorysubcategorysubcategory

:RecordingCategory :RecordingCategory

:RecordingCategory :RecordingCategory :RecordingCategory :RecordingCategory:RecordingCategory

9th Symphony

:Recording

Let it be

:Recording

The BeatlesBeethoven

title
artist

Inappropriate hierarchy of
classes, which should be
instances

Improved class diagram,
with its corresponding
instance diagram

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 20

Handling multiple discriminators

Animal

habitat

LandAnimalAquaticAnimal

AquaticCarnivore AquaticHerbivore LandCarnivore LandHerbivore

typeOfFood typeOfFood

• Creating higher-level generalization

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 21

• Using multiple inheritance

• Using the Player-Role pattern (in Chapter 6)

Handling multiple discriminators

Animal

habitat typeOfFood

HerbivoreCarnivoreLandAnimalAquaticAnimal

AquaticCarnivore AquaticHerbivore LandCarnivore LandHerbivore

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 22

Avoiding having instances change class

Student

attendance

PartTimeStudentFullTimeStudent

• An instance should never need to change class

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 23

5.5 Instance Diagrams

• A link is an instance of an association
—In the same way that we say an object is an instance

of a class

Carla:Employee

Ali:Employee

Wayne:Employee
OOCorp:Company OOCorp's Board:

UML inc's BoardUML inc:Company

Pat:Employee

Terry:Employee

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 24

Associations versus generalizations in
instance diagrams

• Associations describe the relationships that will exist
between instances at run time.

—When you show an instance diagram generated from
a class diagram, there will be an instance of both
classes joined by an association

• Generalizations describe relationships between classes
in class diagrams.

—They do not appear in instance diagrams at all.
—An instance of any class should also be considered

to be an instance of each of that class’s superclasses

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 25

5.6 More Advanced Features: Aggregation

• Aggregations are special associations that represent
‘part-whole’ relationships.

—The ‘whole’ side is often called the assembly or the
aggregate

—This symbol is a shorthand notation association
named isPartOf

****** Region

VehiclePart

Country

Vehicle

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 26

When to use an aggregation

As a general rule, you can mark an association as an
aggregation if the following are true:

• You can state that
—the parts ‘are part of’ the aggregate
—or the aggregate ‘is composed of’ the parts

• When something owns or controls the aggregate, then they
also own or control the parts

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 27

• A composition is a strong kind of aggregation
—if the aggregate is destroyed, then the parts are

destroyed as well

• Two alternatives for addresses

Composition

***** RoomBuilding

EmployeeEmployee
address: Address

Address
street
municipality
region
country
postalCode

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 28

Aggregation hierarchy

* *

*

WheelTransmissionEngineFrame

DoorBodyPanelChassis

Vehicle

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 29

Propagation

• A mechanism where an operation in an aggregate is
implemented by having the aggregate perform that
operation on its parts

• At the same time, properties of the parts are often
propagated back to the aggregate

• Propagation is to aggregation as inheritance is to
generalization.

—The major difference is:
- inheritance is an implicit mechanism
- propagation has to be programmed when required

****** LineSegmentPolygon

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 30

Interfaces

An interface describes a portion of the visible behaviour
of a set of objects.

• An interface is similar to a class, except it lacks instance
variables and implemented methods

«interface»
Cashier

withdraw
deposit

Machine

ATMEmployee

Person Machine

ATMEmployee

Person

Cashier Cashier

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 31

Notes and descriptive text

• Descriptive text and other diagrams
—Embed your diagrams in a larger document
—Text can explain aspects of the system using any

notation you like
—Highlight and expand on important features, and

give rationale
• Notes:

—A note is a small block of text embedded in a UML
diagram

—It acts like a comment in a programming language

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 32

Object Constraint Language (OCL)

OCL is a specification language designed to formally
specify constraints in software modules

• An OCL expression simply specifies a logical fact (a
constraint) about the system that must remain true

• A constraint cannot have any side-effects
—it cannot compute a non-Boolean result nor modify

any data.
• OCL statements in class diagrams can specify what the

values of attributes and associations must be

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 33

OCL statements

OCL statements can be built from:
• References to role names, association names, attributes

and the results of operations
• The logical values true and false
• Logical operators such as and, or, =, >, < or <> (not

equals)
• String values such as: ‘a string’
• Integers and real numbers
• Arithmetic operations *, /, +, -

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 34

An example: constraints on Polygons

LinearShape

startPoint: Point
1..*
edge

LineSegment

Path Line Polygon

RegularPolygon

endPoint: Point

{startPoint <> endPoint}

{ordered}

{edge->size=1}

{edge->forAll(e1,e2 |
 e1.length = e2.length)}

{edge->forAll(e1,e2 |
 e1 <> e2
 implies e1.startPoint <> e2.startpoint
 and e1.endPoint <> e2.endpoint)}

length : int

length
{length =
edge.length->sum}

{edge->first.startPoint =
 edge->last.endPoint}

a LinearShape is any shape
that can be constructed of line
segments (in contrast with
shapes that contain curves).

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 35

5.7 Detailed Example: A Class Diagram for
Genealogy

• Problems
—A person must have two parents
—Marriages not properly accounted for

2

child

Person

name

placeOfBirth
dateOfBirth
placeOfDeath
dateOfDeath
placeOfMarriage

dateOfMarraige
dateOfDivorce *

parent

0..1

0..1 wife

husband

{husband.sex
 = #male}

{wife.sex
 = #female}

{parent->forAll(p1,p2:
 p1 <> p2
 implies p1.sex <> p2.sex)}

sex

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 36

Genealogy example: Possible solutions

Person

name

placeOfBirth
dateOfBirth
placeOfDeath
dateOfDeath

Union

placeOfMarriage
dateOfMarriage
dateOfDivorce

parents

0..1

child

*

*

partner 0..2

sex

Person

name
placeOfBirth
dateOfBirth
placeOfDeath
dateOfDeath

Union

placeOfMarriage
dateOfMarriage
dateOfDivorce

parents

0..1

child

*

child*** malePartner* 0..1child

**

femalePartner 0..1

Woman Man

{partner->forAll(p1,p2 |
 p1 <> p2
 implies p1.sex <> p2.sex)}

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 37

5.8 The Process of Developing Class
Diagrams

You can create UML models at different stages and with
different purposes and levels of details

• Exploratory domain model:
—Developed in domain analysis to learn about the

domain
• System domain model:

—Models aspects of the domain represented by the
system

• System model:
—Includes also classes used to build the user interface

and system architecture

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 38

System domain model vs System model

• The system domain model omits many classes that are
needed to build a complete system

—Can contain less than half the classes of the system.
—Should be developed to be used independently of

particular sets of
- user interface classes
- architectural classes

• The complete system model includes
—The system domain model
—User interface classes
—Architectural classes
—Utility classes

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 39

Suggested sequence of activities

• Identify a first set of candidate classes
• Add associations and attributes
• Find generalizations
• List the main responsibilities of each class
• Decide on specific operations
• Iterate over the entire process until the model is

satisfactory
—Add or delete classes, associations, attributes,

generalizations, responsibilities or operations
—Identify interfaces
—Apply design patterns (Chapter 6)

 Don’t be too disorganized. Don’t be too rigid either.

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 40

Identifying classes

• When developing a domain model you tend to discover
classes

• When you work on the user interface or the system
architecture, you tend to invent classes

—Needed to solve a particular design problem
—(Inventing may also occur when creating a domain

model)
• Reuse should always be a concern

—Frameworks
—System extensions
—Similar systems

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 41

A simple technique for discovering domain
classes

• Look at a source material such as a description of
requirements

• Extract the nouns and noun phrases
• Eliminate nouns that:

—are redundant
—represent instances
—are vague or highly general
—not needed in the application

• Pay attention to classes in a domain model that represent
types of users or other actors

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 42

Identifying associations and attributes

• Start with classes you think are most central and
important

• Decide on the clear and obvious data it must contain and
its relationships to other classes.

• Work outwards towards the classes that are less
important.

• Avoid adding many associations and attributes to a class
—A system is simpler if it manipulates less

information

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 43

Tips about identifying and specifying valid
associations

• An association should exist if a class
- possesses
- controls
- is connected to
- is related to
- is a part of
- has as parts
- is a member of, or
- has as members

 some other class in your model
• Specify the multiplicity at both ends
• Label it clearly.

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 44

Actions versus associations

• A common mistake is to represent actions as if they
were associations

*

LibraryPatron

borrow Loan

borrowedDate
dueDate
returnedDate

Bad, due to the use of associations
that are actions

*

return

CollectionItem

*

*

LibraryPatron

CollectionItem

*

*

Better: The borrow operation creates a Loan, and
the return operation sets the returnedDate
attribute.

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 45

Identifying attributes

• Look for information that must be maintained about each
class

• Several nouns rejected as classes, may now become
attributes

• An attribute should generally contain a simple value
—E.g. string, number

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 46

Tips about identifying and specifying valid
attributes

• It is not good to have many duplicate attributes
• If a subset of a class’s attributes form a coherent group,

then create a distinct class containing these attributes

*

Person

name
addresses

addresses
Person

name
street1
municipality1
provOrState1
country1
postalCode1
street2
municipality2
provOrState2
country2
postalCode2

Person

name

Address

street
municipality
provOrState
country
postalcode
type

Bad due to
a plural
attribute

Bad due to too many
attributes, and inability
to add more addresses

Good solution. The
type indicates whether
it is a home address,
business address etc.

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 47

An example (attributes and associations)

*

supervisor

RegularFlight

time
flightNumber

*

Passenger

SpecificFlight

date

name
employeeNumber

Employee

jobFunction

Booking

seatNumber

name
number

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 48

Identifying generalizations and interfaces

• There are two ways to identify generalizations:
—bottom-up

- Group together similar classes creating a new superclass
—top-down

- Look for more general classes first, specialize them if
needed

• Create an interface, instead of a superclass if
—The classes are very dissimilar except for having a

few operations in common
—One or more of the classes already have their own

superclasses
—Different implementations of the same class might

be available

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 49

An example (generalization)

*

supervisor

RegularFlight

time
flightNumber

*

PassengerRole

SpecificFlight

date

Person

name
idNumber

0..20..20..20..20..20..2

EmployeeRole

jobFunction

Booking

seatNumber

PersonRole

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 50

Allocating responsibilities to classes

A responsibility is something that the system is required to do.
• Each functional requirement must be attributed to one of the classes

—All the responsibilities of a given class should be clearly
related.

—If a class has too many responsibilities, consider splitting it into
distinct classes

—If a class has no responsibilities attached to it, then it is
probably useless

—When a responsibility cannot be attributed to any of the existing
classes, then a new class should be created

• To determine responsibilities
—Perform use case analysis
—Look for verbs and nouns describing actions in the system

description

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 51

Categories of responsibilities

• Setting and getting the values of attributes
• Creating and initializing new instances
• Loading to and saving from persistent storage
• Destroying instances
• Adding and deleting links of associations
• Copying, converting, transforming, transmitting or

outputting
• Computing numerical results
• Navigating and searching
• Other specialized work

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 52

An example (responsibilities)

—Creating a new
regular flight

—Searching for a
flight

—Modifying
attributes of a
flight

—Creating a
specific flight

—Booking a
passenger

—Canceling a
booking

*

supervisor

RegularFlight

time
flightNumber

*

PassengerRole

SpecificFlight

date

******Person

name
idNumber

0..20..20..20..20..20..2

EmployeeRole

jobFunction

Booking

seatNumber

PersonRole
Airline

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 53

Prototyping a class diagram on paper

• As you identify classes, you write their names on small
cards

• As you identify attributes and responsibilities, you list
them on the cards

— If you cannot fit all the responsibilities on one card:
- this suggests you should split the class into two related

classes.
• Move the cards around on a whiteboard to arrange them

into a class diagram.
• Draw lines among the cards to represent associations and

generalizations.

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 54

Identifying operations

Operations are needed to realize the responsibilities of
each class

• There may be several operations per responsibility
• The main operations that implement a responsibility are

normally declared public
• Other methods that collaborate to perform the

responsibility must be as private as possible

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 55

An example (class collaboration)

Airplane

addLinkToSpecificFlight [a2, d3]
deleteLinkToSpecificFlight [d2]

SpecificFlight

+ specifyAirplane [a1]
+ createFlightLog [b1]

+ makeBooking [c1]

+ changeAirplane [d1]
+ findCrewMember [e1]

EmployeeRole

+ getName [e2]

FlightLog

FlightLog [b2]

Booking

Booking [c2]

PassengerRole

addLinkToBooking [c4]

*

0..1

*

*

crewMember

0..1

addLinkToBooking [c3]

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 56

Class collaboration ‘a’

Making a bi-directional link between two existing objects;
e.g. adding a link between an instance of

SpecificFlight and an instance of Airplane.
!
1. (public) The instance of SpecificFlight

— makes a one-directional link to the instance of
Airplane

— then calls operation 2.
2. (non-public) The instance of Airplane

— makes a one-directional link back to the instance
of SpecificFlight

Airplane

addLinkToSpecificFlight [a2, d3]

SpecificFlight

+ specifyAirplane [a1]

* 0..1

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 57

Class collaboration ‘b’

Creating an object and linking it to an existing object
e.g. creating a FlightLog, and linking it to a

SpecificFlight.
!
1. (public) The instance of SpecificFlight

— calls the constructor of FlightLog
(operation 2)

—then makes a one-directional link to the new
instance of FlightLog.

2. (non-public) Class FlightLog’s constructor
—makes a one-directional link back to the

instance of SpecificFlight.

SpecificFlight

+ createFlightLog [b1]

FlightLog

FlightLog [b2]

0..10..10..10..10..10..1

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 58

Class collaboration ‘c’
Creating an association class, given two existing objects
e.g. creating an instance of Booking, which will link a

SpecificFlight to a PassengerRole.
1. (public) The instance of PassengerRole

— calls the constructor of Booking (operation 2).
2. (non-public) Class Booking’s constructor, among its other actions

— makes a one-directional link back to the instance of
PassengerRole

— makes a one-directional link to the instance of
SpecificFlight

— calls operations 3 and 4.
3. (non-public) The instance of SpecificFlight

— makes a one-directional link to the instance of Booking.
4. (non-public) The instance of PassengerRole

— makes a one-directional link to the instance of Booking.

SpecificFlight
+ makeBooking [c1]

Booking

Booking [c2]

PassengerRole

addLinkToBooking [c4]
* ****** addLinkToBooking [c3]

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 59

Class collaboration ‘d’

Changing the destination of a link
e.g. changing the Airplane of to a SpecificFlight,

from airplane1 to airplane2
!1. (public) The instance of SpecificFlight

—deletes the link to airplane1
—makes a one-directional link to airplane2
—calls operation 2
—then calls operation 3.

2. (non-public) airplane1
—deletes its one-directional link to the instance of
SpecificFlight.

3. (non-public) airplane2
—makes a one-directional link to the instance of
SpecificFlight.

Airplane

addLinkToSpecificFlight [a2, d3]
deleteLinkToSpecificFlight [d2]

SpecificFlight

+ changeAirplane [d1]

* 0..1

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 60

Class collaboration ‘e’

Searching for an associated instance
e.g. searching for a crew member associated with a

SpecificFlight that has a certain name.
!
1. (public) The instance of SpecificFlight

— creates an Iterator over all the crewMember
links of the SpecificFlight\

— for each of them call operation 2, until it finds a
match.

2. (may be public) The instance of EmployeeRole
returns its name.

SpecificFlight

+ findCrewMember [e1]

EmployeeRole

+ getName [e2]

* *
crewMember

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 61

5.9 Implementing Class Diagrams in Java
• Attributes are implemented as instance variables
• Generalizations are implemented using extends
• Interfaces are implemented using implements
• Associations are normally implemented using instance variables

• Divide each two-way association into two one-way associations
—so each associated class has an instance variable.

• For a one-way association where the multiplicity at the other
end is ‘one’ or ‘optional’

—declare a variable of that class (a reference)
• For a one-way association where the multiplicity at the other

end is ‘many’:
—use a collection class implementing List, such as Vector

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 62

Example: SpecificFlight

class SpecificFlight
{
 private Calendar date;
 private RegularFlight regularFlight;
 private TerminalOfAirport destination;
 private Airplane airplane;
 private FlightLog flightLog;

 private ArrayList crewMembers;
 // of EmployeeRole
 private ArrayList bookings
 ...
}

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 63

Example: SpecificFlight

 // Constructor that should only be called from
 // addSpecificFlight
 SpecificFlight(
 Calendar aDate,
 RegularFlight aRegularFlight)
 {
 date = aDate;
 regularFlight = aRegularFlight;
 }

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 64

Example: RegularFlight
class RegularFlight
{
 private ArrayList specificFlights;
 ...
 // Method that has primary
 // responsibility

 public void addSpecificFlight(
 Calendar aDate)
 {
 SpecificFlight newSpecificFlight;
 newSpecificFlight =
 new SpecificFlight(aDate, this);
 specificFlights.add(newSpecificFlight);
 }
 ...
}

