
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 2:
Review of Object Orientation

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 2

2.1 What is Object Orientation?

Procedural paradigm:
• Software is organized around the notion of procedures
• Procedural abstraction

—Works as long as the data is simple
• Adding data abstractions

—Groups together the pieces of data that describe
some entity

—Helps reduce the system’s complexity.
- Such as Records and structures

Object oriented paradigm:
• Organizing procedural abstractions in the context of data

abstractions

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 3

Object Oriented paradigm

An approach to the solution of problems in which all
computations are performed in the context of objects.

• The objects are instances of classes, which:
—are data abstractions
—contain procedural abstractions that operation on the

objects

• A running program can be seen as a collection of objects
collaborating to perform a given task

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 4

A View of the Two paradigms

main

perform transaction

compute fees

if checking
 then xxx
if savings
 then xxx
etc.

compute interest
if checking
 then xxx
if savings
 then xxx
etc.

debitcredit

Account

credit
debit

SavingsAccount

compute interest
compute fees

CheckingAccount

compute interest
compute fees

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 5

2.2 Classes and Objects

Object
• A chunk of structured data in a running software system

• Has properties
—Represent its state

• Has behaviour
—How it acts and reacts
—May simulate the behaviour of an object in the real

world

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 6

Objects

Margaret:

date of birth: 1980/03/03

position: Teller

Transaction 487:

amount: 200.00
time: 2001/09/01 14:30

Greg:

date of birth: 1970/01/01
address: 75 Object Dr.

Mortgage Account 29865:

balance: 198760.00

opened: 2000/08/12
property: 75 Object Dr.

Instant Teller 876:

location: Java Valley Cafe

Savings Account 12876:

balance: 1976.32
opened: 1997/03/03

Jane:

date of birth: 1955/02/02

position: Manager
address: 99 UML St.

address: 150 C++ Rd.

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 7

Classes

A class:
• Is a unit of abstraction in an object oriented (OO)

program

• Represents similar objects
—Its instances

• Is a kind of software module
—Describes its instances’ structure (properties)
—Contains methods to implement their behaviour

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 8

Is Something a Class or an Instance?
• Something should be a class if it could have instances
• Something should be an instance if it is clearly a single member of

the set defined by a class
Film

• Class; instances are individual films.
Reel of Film:

• Class; instances are physical reels
Film reel with serial number SW19876

• Instance of ReelOfFilm
Science Fiction

• Instance of the class Genre.
Science Fiction Film

• Class; instances include ‘Star Wars’
Showing of ‘Star Wars’ in the Phoenix Cinema at 7 p.m.:

• Instance of ShowingOfFilm

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 9

Naming classes

• Use capital letters
—E.g. BankAccount not bankAccount

• Use singular nouns

• Use the right level of generality
—E.g. Municipality, not City

• Make sure the name has only one meaning
—E.g. ‘bus’ has several meanings

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 10

2.3 Instance Variables

Variables defined inside a class corresponding to data
present in each instance

• Attributes
—Simple data
—E.g. name, dateOfBirth

• Associations
—Relationships to other important classes
—E.g. supervisor, coursesTaken
—More on these in Chapter 5

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 11

Variables vs. Objects

A variable
• Refers to an object
• May refer to different objects at different points in time

An object can be referred to by several different
variables at the same time

Type of a variable
• Determines what classes of objects it may contain

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 12

Class variables

A class variable’s value is shared by all instances of a
class.

• Also called a static variable

• If one instance sets the value of a class variable, then all
the other instances see the same changed value.

• Class variables are useful for:
—Default or ‘constant’ values (e.g. PI)
—Lookup tables and similar structures

Caution: do not over-use class variables

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 13

2.4 Methods, Operations and Polymorphism

Operatio!n
• A higher-level procedural abstraction that specifies a

type of behaviour
• Independent of any code which implements that

behaviour
—E.g., calculating area (in general)

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 14

Methods, Operations and Polymorphism

Method
• A procedural abstraction used to implement the

behaviour of a class.
• Several different classes can have methods with the

same name
—They implement the same abstract operation in ways

suitable to each class
—E.g, calculating area in a rectangle is done

differently from in a circle

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 15

Polymorphism

A property of object oriented software by which an
abstract operation may be performed in different ways
in different classes.

• Requires that there be multiple methods of the same
name

• The choice of which one to execute depends on the
object that is in a variable

• Reduces the need for programmers to code many if-
else or switch statements

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 16

2.5 Organizing Classes into Inheritance
Hierarchies

Superclasses
• Contain features common to a set of subclasses

Inheritance hierarchies
• Show the relationships among superclasses and

subclasses
• A triangle shows a generalization

Inheritance
• The implicit possession by all subclasses of features

defined in its superclasses

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 17

An Example Inheritance Hierarchy

Account

MortgageAccountSavingsAccount ChequingAccount

Inheritance
• The implicit possession by all subclasses of features

defined in its superclasses

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 18

The Isa Rule

Always check generalizations to ensure they obey the isa
rule

• “A checking account is an account”
• “A village is a municipality”

Should ‘Province’ be a subclass of ‘Country’?
• No, it violates the isa rule

—“A province is a country” is invalid!

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 19

A possible inheritance hierarchy of
mathematical objects

Rectangle

QuadrilateralCircle

Ellipse Polygon PlaneLine

Shape3DShape2D

MatrixShape Point

MathematicalObject

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 20

Make Sure all Inherited Features Make
Sense in Subclasses

Account

balance
opened
creditOrOverdraftLimit

credit
debit
calculateInterest

MortgageAccount

collateralProperty
collateralValue

setCollateralValue

ChequingAccount

highestChequeNumber

withdrawUsingCheque
calculateServiceCharge

SavingsAccount

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 21

2.6 Inheritance,
Polymorphism and
Variables

RegularPolygon

numPoints
radius

changeNumPoints
changeScale
getArea
getPerimeterLength
getVertices

Rectangle

height
width

setHeight
setWidth

changeScale

getArea
getPerimeterLength
getVertices
getBoundingRect

ArbitraryPolygon

points

addPoint
removePoint
rotate
changeScale
getArea
getPerimeterLength
getVertices

SimplePolygon

orientation

rotate

Shape2D

rotate

translate

changeScale
getArea
getPerimeterLength

getCenter

getBoundingRect

Ellipse

getSemiMajorAxis
getSemiMinorAxis

rotate

getArea
getPerimeterLength

getOrientation
getBoundingRect

Circle

rotate

getArea
getPerimeterLength
getBoundingRect

Polygon

getVertices
getBoundingRect

EllipticalShape

semiMajorAxis

semiMinorAxis

changeScale

changeScale

getRadius

getFocus1
getFocus2

orientation

getOrientation

center

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 22

Some Operations in the Shape Example

Original objects
(showing bounding rectangle)

Rotated objects
(showing bounding rectangle)

Translated objects
(showing original)

Scaled objects
(50%)

Scaled objects
(150%)

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 23

Abstract Classes and Methods

An operation should be declared to exist at the highest
class in the hierarchy where it makes sense

• The operation may be abstract (lacking implementation)
at that level

• If so, the class also must be abstract
—No instances can be created
—The opposite of an abstract class is a concrete class

• If a superclass has an abstract operation then its
subclasses at some level must have a concrete method
for the operation

—Leaf classes must have or inherit concrete methods
for all operations

—Leaf classes must be concrete

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 24

Overriding

A method would be inherited, but a subclass contains a
new version instead

• For restriction
—E.g. scale(x,y) would not work in Circle

• For extension
—E.g. SavingsAccount might charge an extra fee

following every debit
• For optimization

—E.g. The getPerimeterLength method in
Circle is much simpler than the one in Ellipse

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 25

Immutable objects

• Instance variables may only be set when an object is first
created.

• None of the operations allow any changes to the instance
variables

—E.g. a scale method could only create a new
object, not modify an existing one

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 26

How a decision is made about which method
to run

1. If there is a concrete method for the operation in
the current class, run that method.

2. Otherwise, check in the immediate superclass to
see if there is a method there; if so, run it.

3. Repeat step 2, looking in successively higher
superclasses until a concrete method is found and
run.

4. If no method is found, then there is an error
• In Java and C++ the program would not have

compiled

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 27

Dynamic binding

Occurs when decision about which method to run can
only be made at run time

• Needed when:
—A variable is declared to have a superclass as its

type, and
—There is more than one possible polymorphic

method that could be run among the type of the
variable and its subclasses

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 28

2.7 Concepts that Define Object Orientation

Necessary for a system or language to be OO
• Identity

—Each object is distinct from each other object, and can be
referred to

—Two objects are distinct even if they have the same data
• Classes

—The code is organized using classes, each of which describes a
set of objects

• Inheritance
—The mechanism where features in a hierarchy inherit from

superclasses to subclasses
• Polymorphism

—The mechanism by which several methods can have the same
name and implement the same abstract operation.

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 29

Other Key Concepts

Abstraction
• Object -> something in the world
• Class -> objects
• Superclass -> subclasses
• Operation -> methods
• Attributes and associations -> instance variables

Modularity
• Code can be constructed entirely of classes

Encapsulation
• Details can be hidden in classes
• This gives rise to information hiding:

—Programmers do not need to know all the details of a class

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 30

The Basics of Java
History

• The first object oriented programming language was Simula-67
—designed to allow programmers to write simulation programs

• In the early 1980’s, Smalltalk was developed at Xerox PARC
—New syntax, large open-source library of reusable code,

bytecode, platform independence, garbage collection.
• late 1980’s, C++ was developed by B. Stroustrup,

—Recognized the advantages of OO but also recognized that there
were tremendous numbers of C programmers

• In 1991, engineers at Sun Microsystems started a project to design a
language that could be used in consumer ‘smart devices’: Oak

—When the Internet gained popularity, Sun saw an opportunity to
exploit the technology.

—The new language, renamed Java, was formally presented in
1995 at the SunWorld ’95 conference.

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 31

Java documentation

Looking up classes and methods is an essential skill
• Looking up unknown classes and methods will get you a

long way towards understanding code
Java documentation can be automatically generated by
a program called Javadoc

• Documentation is generated from the code and its
comments

• You should format your comments as shown in some of
the book’s examples

—These may include embeded html

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 32

Overview of Java

The next few slides will remind you of several key Java
features

• Not in the book
• See the book’s web site for

—A more detailed overview of Java
—Pointers to tutorials, books etc.

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 33

Characters and Strings

Character is a class representing Unicode characters
• More than a byte each
• Represent any world language

char is a primitive data type containing a Unicode
character

String is a class containing collections of characters
• + is the operator used to concatenate strings

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 34

Arrays and Collections

Arrays are of fixed size and lack methods to manipulate them

Vector is the most widely used class to hold a collection of other
objects

• More powerful than arrays, but less efficient

Iterators are used to access members of Vectors
•Enumerations were formally used, but were more complex

v = new Vector();

Iterator i = v.iterator();
while(i.hasNext())
{
 aMethod(v.next());
}

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 35

Casting

Java is very strict about types
• If a variable is declared to have the type X, you can only

invoke operations on it that are defined in class X or its
superclasses

—Even though an instance of a subclass of X may be
actually stored in the variable

• If you know an instance of a subclass is stored, then you
can cast the variable to the subclass

—E.g. if I know a Vector contains instances of
String, I can get the next element of its
Iterator using:
(String)iterator.next();

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 36

Exceptions

Anything that can go wrong should result in the raising
of an Exception
•Exception is a class with many subclasses for

specific things that can go wrong
Use a try - catch block to trap an exception

try
{
 // some code
}
catch (ArithmeticException e)
{
 // code to handle division by zero
}

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 37

Interfaces

Like abstract classes, but cannot have executable
statements

• Define a set of operations that make sense in several
classes

• Abstract Data Types
A class can implement any number of interfaces

• It must have concrete methods for the operations
You can declare the type of a variable to be an interface

• This is just like declaring the type to be an abstract class
Important interfaces in Java’s library include
•Runnable, Collection, Iterator,
Comparable, Cloneable

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 38

Packages and importing

A package combines related classes into subsystems
• All the classes in a particular directory

Classes in different packages can have the same name
• Although not recommended

Importing a package is done as follows:
import finance.banking.accounts.*;

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 39

Access control

Applies to methods and variables
•public

—Any class can access
•protected

—Only code in the package, or subclasses can access
• (blank)

—Only code in the package can access
•private

—Only code written in the class can access
—Inheritance still occurs!

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 40

Threads and concurrency

Thread:
• Sequence of executing statements that can be running

concurrently with other threads
To create a thread in Java:

• 1. Create a class implementing Runnable or extending
Thread

• 2. Implement the run method as a loop that does
something for a period of time

• 3. Create an instance of this class
• 4. Invoke the start operation, which calls run

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 41

Programming Style Guidelines

Remember that programs are for people to read
• Always choose the simpler alternative
• Reject clever code that is hard to understand
• Shorter code is not necessarily better

Choose good names
• Make them highly descriptive
• Do not worry about using long names

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 42

Programming style …

Comment extensively
• Comment whatever is non-obvious
• Do not comment the obvious
• Comments should be 25-50% of the code

Organize class elements consistently
• Variables, constructors, public methods then private

methods

Be consistent regarding layout of code

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 43

Programming style …

Avoid duplication of code
• Do not ‘clone’ if possible

—Create a new method and call it
—Cloning results in two copies that may both have

bugs
- When one copy of the bug is fixed, the other may

be forgotten

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 44

Programming style ...

Adhere to good object oriented principles
• E.g. the ‘isa rule’

Prefer private as opposed to public

Do not mix user interface code with non-user interface
code

• Interact with the user in separate classes
—This makes non-UI classes more reusable

© Lethbridge/Laganière 2001 Chapter 2: Review of Object Orientation 45

2.10 Difficulties and Risks in Object-
Oriented Programming

Language evolution and deprecated features:
• Java is evolving, so some features are ‘deprecated’ at

every release
• But the same thing is true of most other languages

Efficiency can be a concern in some object oriented
systems

• Java can be less efficient than other languages
—VM-based
—Dynamic binding

