\

Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 6:
Using Design Patterns

g wwaw.lloseng.com

4

6.1 Introduction to Patterns

\

Therecurring aspects of designs are called design patterns.

A pattern is the outline of a reusable solution to a general problem
encountered in a particular context

Many of them have been systematically documented for all software
developersto use

A good pattern should
—Be as general as possible
—Contain a solution that has been proven to effectively solve the
problem in the indicated context.

Sudying patterns is an effective way to learn from the experience of
others

£ wwaw.lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 2

Pattern description

Context:

The general situation in which the pattern applies
Problem:

—A short sentence or two raising the main difficulty.

Forces:

Theissues or concerns to consider when solving the problem
Solution:

The recommended way to solve the problem in the given context.

—'to balance the forces'
Antipatterns: (Optiona)
Solutions that are inferior or do not work in this context.

Related patterns: (Optional)

Patterns that are similar to this pattern.
Refer ences:

Who developed or inspired the pattern.

g wwaw.lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 3

6.2 The Abstraction-Occurrence Pattern

\

Context:

—Often in a domain model you find a set of related objects
(occurrences).

—The members of such a set share common information
- but aso differ from each other in important ways.
Problem:

—What is the best way to represent such sets of occurrencesin a
class diagram?

Forces:

—You want to represent the members of each set of occurrences
without duplicating the common information

£ wwaw.lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 4

Abstraction-Occurrence

Abstraction-Occurrence

Solution: Antipatterns:
«Abstraction» «Occurrence»
Libraryltem Libraryltem Title
name name name
TVSeries Episode author author author
seriesName number isbn' . isbn. i ISbgl. tionDat
producer title publlcatlonDate PubhcahonDate r_)u icationDate
storySynopsis libOfCongress libOfCongress libOfCongress
barCodeNumber barCodeNumber LF
Title . | Libraryltem é é
name barCodeNumber _ I : Libraryltem
author | GulliversTravels | | MobyDick | barCodeNumber
isbn
publicationDate
/ libOfCongress /
/ weaw lloseng.com I weaw. lloseng.com
/ © Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 5 / © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 6
Abstraction-Occurrence 6.3 The General Hierarchy Pattern
Context:
Squarevariant —Objects in a hierarchy can have one or more objects above them
(superiors),

\

ScheduledTrain

SpecificTrain

number date
ScheduledLeg SpecificLeg

origin

scheduledDepTime

scheduledArrTime

actualDepTime
actualArrTime

* *

destination

s,

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns

7

- and one or more objects below them (subordinates).
—Some objects cannot have any subordinates
Problem:
—How do you represent a hierarchy of objects, in which some
objects cannot have subordinates?
Forces:
—You want aflexible way of representing the hierarchy
- that prevents certain objects from having subordinates
—All the objects have many common properties and operations

\

£ wwaw.lloseng.com

Chapter 6: Using design patterns 8

/ © Lethbridge/Laganiére 2001

General Hierarchy

\

-l

* contains

File Directory

. «Node» _
Sol ution: «subordinate»
[4 1 0.1
«NonSuperiorNode»| |«SuperiorNode»
Employee |” supervises FileSystemltem
[1] 0.1
Secretary Technician Manager
&,

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns

9

General Hierarchy

Antipattern:

Recording

JAN

VideoRecoding|

AudioRecording

T |

MusicVideo

JazzRecording| | ClassicalRecording

BluesRecording

RockRecording

\

s,

weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns

10

6.4

\

The Player-Role Pattern

Context:

—A role is a particular set of properties associated

with an object in a particular context.

—An object may play different roles in different

contexts.
Problem:

—How do you best model players and roles so that a
player can change roles or possess multiple roles?

s,

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns

11

Player-Role

Forces:

aclass.

—Y ou want to avoid multiple inheritance.
—Y ou cannot allow an instance to change class

Solution:
«Player»

«AbstractRole»

7y

—It isdesirable to improve encapsulation by capturing
the information associated with each separaterolein

\

«Role1»

«Role2»

s,

weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns

12

Player-Role

Example 1:
Animal 0.2 | HabitatRole
Z'NypeOfFood habitat
Carnivore ||Herbivore ||Omnivore AquaticAnimal | [LandAnimal
,' www. lloseng.com
/ © Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 13

Player-Role

Example 2:

AttendanceRole Student LevelRole

attendanceé é é é level

FullTimeStudent| [PartTimeStudent GraduateStudent ||UndergraduateStudent

\

£ wwaw.lloseng.com

Chapter 6: Using design patterns 14

/ © Lethbridge/Laganiére 2001

Player-Role
Antipatterns:

Merge all the properties and behaviours into a single
«Player» class and not have «Role» classes at all.

Create roles as subclasses of the «Player» class.

\

g wwaw.lloseng.com

Chapter 6: Using design patterns 15

/ © Lethbridge/Laganiére 2001

6.5 The Singleton Pattern

Context:

—It is very common to find classes for which only one
instance should exist (singleton)

Problem:

—How do you ensure that it is never possible to create
more than one instance of a singleton class?

Forces:

—The use of apublic constructor cannot guarantee that
no more than one instance will be created.

—The singleton instance must aso be accessible to all
classes that requireit

\

£ wwaw.lloseng.com

Chapter 6: Using design patterns 16

/ © Lethbridge/Laganiére 2001

Singleton

\

Solution:

s

«Singleton»

thelnstance

getlnstance

Company

theCompany

Company «private»
getinstance

if (theConpany==nul)
theConpany= new Conpany();

reuntheGonpany;

weaw lloseng.com

6.6 The Observer Pattern

\

Context:
—When an association is created between two classes,
the code for the classes becomes inseparable.
—If you want to reuse one class, then you also have to
reuse the other.

Problem:
—How do you reduce the interconnection between
classes, especially between classes that belong to
different modules or subsystems?

Forces:
—Y ou want to maximize the flexibility of the system
to the greatest extent possible

£ wwaw.lloseng.com

// © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 17 / © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 18
Observer Observer
«Observable» | « , | «interface»
10b «Observer»
H . a server H -
Solution: nolifyObservers update Antipatterns:
Z% Zﬁ Connect an observer directly to an observable so that
they both have references to each other.
«ConcreteObservers Make the observers subclasses of the observable.

\

s,

«ConcreteObservable»

Observable

«interface»

T

Forecaster

Observer

Observers are

=3
notified when a new Z%

prediction is ready

WeatherViewer

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 19

\

/ © Lethbridge/Laganiére 2001

£ wwaw.lloseng.com

Chapter 6: Using design patterns 20

6.7 The Delegation Pattern Delegation

Context: Solution:
—Youare qesgnl nga method in aclass . «Delegator» «Delegate» i egefl nghEthod N
—Y ou realize that another class has a method which g g ddl egate et hod():
provides the required service delegatingMethod method }
—Inheritance is not appropriate
- E.g. because theisarule does not apply puUSH) =
Problem: Stack | LinkedList
roplem:. . oo addFirst lig. addRrst();
—How can you most effectively make use of a method pop addLast
that already existsin the other class? iSEmpty addAfter
Forces. removeFirst
d removeLast
—Y ou want to minimize development cost by reusing delete
/ methods / Sy
I weaw lloseng.com I weaw. lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 21 / © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 22

Delegation Delegation
Example: Antipatterns
Overuse generalization and inherit the method that isto
be reused
Booking |- SpecificFlight]. | RegularFlight Instead of creating a single method in the «Delegator»
f:IightNumber() fIightNumber:() flightNumber() that does nothi ng other than call amethod in the
T1ight N.mb:er 0 2 f:l i ght Nunber () = «Delegate
o turn U turn —consider having many different methods in the
speci ficFlight.flightNunber(); L regul arFl i ght. flightNunber(); «Delegator» caII the ddegate’s method

Access non-neighboring classes
return specificHight.regu ar Hi ght.fli ght Nunmber();

return get Regul ar Hi ght().flight Nu mber();

\
\

g wwaw.lloseng.com £ wwaw.lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 23 / © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 24

6.8 The Adapter Pattern Adapter
Context: Solution:
—Y ou are building an inheritance hierarchy and want to
incorporate it into an existing class. pol ynor phi cMet hod() =
—Thereused classis aso often aready part of its own inheritance {
hierarchy. «Superclass» return
Problem: : adapt ee. adapt edMet hod() ;
—How to obtain the power of polymorphism when reusing a class polymorphicMethod
whose methods 4
- have the same function
- but not the same signature «Adapter» «Adaptee»
as the other methods in the hierarchy?
Forces: adaptedMethod
—You do not have access to multiple inheritance or you do not
/ want to useit. /
/ weaw lloseng.com I weaw. lloseng.com
/ © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 25 / © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 26
Adapter 6.9 The Facade Pattern
Example: Context:
—Often, an application contains several complex packages.
vol ume() 5 —A programmer working with such packages has to manipulate
ThreeDShape many different classes
return Problem:
volume adapt ee. cal cVol une(); ' o _
—How do you simplify the view that programmers have of a
A complex package?
Forces:
] —It is hard for a programmer to understand and use an entire
Sphere Torus TimsTorus subsystem
calcVolume —If severa different appl ication_ ;Iasges call methods of the
complex package, then any modifications made to the package
/ / will necessitate a complete review of al these classes.
/ weaw lloseng.com I weaw. lloseng.com
/ © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 27 / © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 28

Facade

\

Solution:
«Facade» «PackageClass1»
«PackageClass2»
«PackageClass3»

Airline " | RegularFlight

findFlight

makeBooking *

deleteBooking Person

' www. lloseng.com

Chapter 6: Using design patterns 29

/ © Lethbridge/Laganiére 2001

6.10 The Immutable Pattern

\

Context:

—An immutable object is an object that has a state that never
changes after creation

Problem:
—How do you create a class whose instances are immutable?
Forces:

—There must be no loopholes that would alow ‘illega’

modification of an immutable object
Solution:

—Ensure that the constructor of the immutable class is the only
place where the values of instance variables are set or modified.

—Instance methods which access properties must not have side
effects.

—If amethod that would otherwise modify an instance variable is
required, then it has to return a new instance of the class.

£ wwaw.lloseng.com

Chapter 6: Using design patterns 30

/ © Lethbridge/Laganiére 2001

6.1

\

1 The Read-only Interface Pattern

Context:

—Y ou sometimes want certain privileged classes to be able to
modify attributes of objects that are otherwise immutable

Problem:

—How do you create a situation where some classes see a class as
read-only whereas others are able to make modifications?

Forces:

—Restricting access by using the publi ¢, pr otect ed and
pri vat e keywordsis not adequately selective.

—Making access publi ¢ makesit public for both reading and
writing

g wwaw.lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 31

Read-only Interface

\

Solution:

«interface»
«ReadOnlyinterface»

«UnprivilegedClass»

getAttribute

AN

«Mutable»
attribute «private» " | «Mutator»
getAttribute
setAttribute
' www lloseng.com
// © Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 32

Read-only Interface

Read-only Interface
Example: Antipatterns:
Make the read-only class a subclass of the «Mutable» class
«interface» Override all methods that modify properties
Person —such that they throw an exception
getName
E
Mutableperson
firstName
lastName
setFirstName
setLastName
/ getName /
,' www. lloseng.com
/ © Lethbridge/Laganiére 2001

s,

weaw. lloseng.com
/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 34

Chapter 6: Using design patterns 33

6.12 The Proxy Pattern Proxy

Context:

Solution:
—Often, it is time-consuming and complicated to create instances
of aclass (heavyweight classes).

—There is a time delay and a complex mechanism involved in
creating the object in memory

Problem:

«interface»
«ClasslIF»

—How to reduce the need to create instances of a heavyweight
class?

_ T 1

«Client» «Proxy»
—We want al the objects in adomain model to be available for

programs to use when they execute a system’s various
responsibilities.

«HeavyWeight»

\

—It isalso important for many objects to persist from run to run
of the same program
&,

weaw lloseng.com
/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 35

\

s,

weaw. lloseng.com
/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 36

Proxy

\

«interface»

Thelig denertswill

et

Example: ListIF be caded i rtol ocal
menory o'y when
Zﬁ % needed
ListProxy PersistentList
«interface»
Student
StudentProxy| PersistentStudent|

s

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns

37

6.13 Detailed Example: The Observable
layer of OCSF

AbstractClient|

il

AdaptableClient

connectionEstablished
connectionClosed
handleMessageFromServer

\

AbstractServer * | ConnectionToClien
AdaptableServer

clientConnected
clientDisconnected

Observable

serverStarted
serverStopped
handleMessageFromClient

—=—]

| ObservableClient | | ObservableServer |

s,

weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 38

The Observable layer of OCSF (continued)

\

Observable

AdaptableClient AdaptableServer
/N
ObservableClient ObservableServer
openConnection listen
closeConnection stopListening
sendToServer close
isConnected sendToAllClients
getPort isListening
setPort getClientConnections
getHost getNumberOfClients
setHost getPort
getlnetAddress setPort
handleMessageFromServer clientConnnected
connectionClosed clientDisconnected
connectionEstablished serverStarted
serverStopped

s,

handleMessageFromClient

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns

39

Using the observable layer

\

1. Create a class that implements the Obser ver interface.

2. Register it as an observer of the Obser vahl e:
public MessageHand er(Observah e dient)

dient.addObserver(th s);

}...

3. Define the updat e method in the new class:
public va d updat ¢ Observabl e obs, Cbject nmessage)

{

if (nmessageinstanced Sonmed ass)

/I process the nessage

}
}

s,

weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 6: Using design patterns 40

6.14 Difficulties and Risks When Creating
Class Diagrams

\

Patternsarenot a panacea:

—Whenever you see an indication that a pattern should
be applied, you might be tempted to blindly apply the
pattern. However this can lead to unwise design
decisions.

Resolution:

— Always understand in depth the forces that need to
be balanced, and when other patterns better balance
the forces.

—NMake sure you justify each design decision carefully.

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 41

Difficulties and Risks When Creating Class
Diagrams

Developing patternsishard
—Writing a good pattern takes considerable work.
—A poor pattern can be hard to apply correctly
Resolution:

—Do not write patterns for othersto use until you
have considerable experience both in software design
and in the use of patterns.

—Take an in-depth course on patterns.

—Iteratively refine your patterns, and have them peer
reviewed at each iteration.

weaw. lloseng.com

© Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 42

